(完整版)动态平衡问题常见解法

合集下载

动态平衡问题的基本解法

动态平衡问题的基本解法

动态平衡问题的基本解法动态平衡问题的基本解法1. 引言动态平衡问题是指在系统的内外部力量作用下,系统仍能保持稳定状态的问题。

这个问题在日常生活和科学研究中都有广泛应用。

在物理学、工程学、经济学以及生态学等领域,动态平衡问题都被广泛讨论和研究。

如何有效解决动态平衡问题,是一个备受关注的问题。

2. 动态平衡问题的背景和定义动态平衡问题通常涉及系统的动态变化和影响因素的数量。

一个简单的例子是平衡秤上的物体。

当一个重物和一个轻物分别放在平衡秤两端时,平衡秤处于静止状态,这是一个静态平衡问题。

但是,当我们开始抖动平衡秤,使其处于动态变化的状态,就涉及到了动态平衡问题。

动态平衡问题的定义可以是:在外界力的作用下,一个系统能够以某种方式调整自身状态,使得系统保持稳定的状态,并且能够适应外界的变化。

在解决动态平衡问题时,我们需要考虑系统内外的各种影响因素,并采取相应的措施来维持系统的平衡。

3. 动态平衡问题的解决方法在解决动态平衡问题时,我们需要采取一系列的解决方法,包括但不限于以下几种:3.1 负反馈机制负反馈机制是一种常见的解决动态平衡问题的方法。

负反馈机制通过对系统内外的变化进行监测,然后采取相应的措施来抑制这些变化,从而维持系统的平衡。

负反馈机制的核心思想是通过自身调节,使得系统能够对外界的变化做出适应性反应。

当温度过高时,空调系统会自动降低温度,以维持室内的舒适温度。

3.2 主动控制方法主动控制方法是另一种常见的解决动态平衡问题的方式。

主动控制方法通过对系统的输入和输出进行精确的调节,以实现对系统状态的控制和维持。

与负反馈机制不同的是,主动控制方法在系统内部引入了额外的控制元件,以主动地干预和调节系统的状态。

自动驾驶汽车利用激光雷达和摄像头等传感器,结合实时路况信息和路线规划算法,实现对车辆的主动控制和保持行驶平衡。

3.3 适应性调节策略适应性调节策略是一种针对动态平衡问题的高级解决方法。

适应性调节策略根据系统内外的变化情况,通过学习和调整来实现对系统状态的动态平衡。

动态平衡问题的几种解法【复习准备】

动态平衡问题的几种解法【复习准备】

动态平衡问题的几种解法在有关物体平衡的问题中,有一类涉及动态平衡。

这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。

解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。

下面就介绍几种动态平衡问题的解题方法。

方法一:图解法(三角形法则)原理:当物体受三力作用而处于平衡状态时,其合力为零,三个力的矢量依次恰好首尾相连,构成闭合三角形,当物体所受三个力中二个发生变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。

例题1:如图1所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。

今使板与斜面的夹角缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?解析:取球为研究对象,球受重力G、斜面支持力F1、挡板支持力F2。

因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形。

挡板逆时针转动时,F2的方向也逆时针转动,F1的方向不变,作出如图2所示的动态矢量三角形。

由图可知,F2先减小后增大,F1随增大而始终减小。

点评:三角形法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可以是其它力),另一个力的大小变化,第三个力则大小、方向均发生变化的问题,对变化过程进行定性的分析。

方法二:解析法原理:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,根据具体情况引入参量,建立平衡方程,求出应变参量与自变参量的一般函数关系,然后根据自变量的变化确定应变量的变化。

例题2:如图3所示,小船用绳索拉向岸边,设船在水中运动时所受水的阻力不变,那么小船在匀速靠岸过程中,下面说法哪些是正确的()A. 绳子的拉力F不断增大B. 绳子的拉力F不变C. 船所受的浮力不断减小D. 船所受的浮力不断增大解析:小船共受四个力作用:重力G、浮力F浮、水的阻力f、绳子拉力F。

动态平衡问题(含解析)

动态平衡问题(含解析)

动态平衡问题 类型一 动态平衡问题1.动态平衡是指物体的受力状态缓慢发生变化,但在变化过程中,每一个状态均可视为平衡状态.2.常用方法 (1)解析法对研究对象进行受力分析,画出受力示意图,根据物体的平衡条件列方程,得到因变量与自变量的函数表达式(通常为三角函数关系),最后根据自变量的变化确定因变量的变化. (2)图解法此法常用于求解三力平衡问题中,已知一个力是恒力、另一个力方向不变的情况.一般按照以下流程分析: 受力分析―――――――→化“动”为“静”画不同状态下的平衡图――――――→“静”中求“动”确定力的变化 (3)相似三角形法在三力平衡问题中,如果有一个力是恒力,另外两个力方向都变化,且题目给出了空间几何关系,多数情况下力的矢量三角形与空间几何三角形相似,可利用相似三角形对应边成比例求解(构建三角形时可能需要画辅助线).题型例析1 图解法例1 (多选)如图所示,在倾角为α的斜面上,放一质量为m 的小球,小球和斜面及挡板间均无摩擦,当挡板绕O 点逆时针缓慢地转向水平位置的过程中( )A.斜面对球的支持力逐渐增大B.斜面对球的支持力逐渐减小C.挡板对小球的弹力先减小后增大D.挡板对小球的弹力先增大后减小 题型例析2 解析法例2 (2020·广东中山市月考)如图,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,木板对球的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计一切摩擦,在此过程中( )A.F N1先增大后减小,F N2始终减小B.F N1先增大后减小,F N2先减小后增大C.F N1始终减小,F N2始终减小D.F N1始终减小,F N2始终增大题型例析3相似三角形法例3(2020·山西大同市开学考试)如图所示,AC是上端带光滑轻质定滑轮的固定竖直杆,质量不计的轻杆BC一端通过铰链固定在C点,另一端B悬挂一重力为G的物体,且B端系有一根轻绳并绕过定滑轮,用力F拉绳,开始时∠BCA>90°,现使∠BCA缓慢变小,直到∠BCA=30°.此过程中,轻杆BC所受的力()A.逐渐减小B.逐渐增大C.大小不变D.先减小后增大变式训练1(单个物体的动态平衡问题)(多选)(2020·广东惠州一中质检)如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A,A的左端紧靠竖直墙,A与竖直墙之间放一光滑圆球B,已知A的圆半径为球B的半径的3倍,球B所受的重力为G,整个装置处于静止状态.设墙壁对B的支持力为F1,A对B的支持力为F2,若把A向右移动少许后,它们仍处于静止状态,则F1、F2的变化情况分别是()A.F1减小B.F1增大C.F2增大D.F2减小变式训练2(多个物体的动态平衡问题)(多选)(2019·全国卷Ⅰ·19)如图所示,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮.一细绳跨过滑轮,其一端悬挂物块N,另一端与斜面上的物块M相连,系统处于静止状态.现用水平向左的拉力缓慢拉动N,直至悬挂N的细绳与竖直方向成45°.已知M始终保持静止,则在此过程中()A.水平拉力的大小可能保持不变B.M所受细绳的拉力大小一定一直增加C.M所受斜面的摩擦力大小一定一直增加D.M所受斜面的摩擦力大小可能先减小后增加类型二平衡中的临界、极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”“恰能”“恰好”等.临界问题常见的种类:(1)由静止到运动,摩擦力达到最大静摩擦力.(2)绳子恰好绷紧,拉力F=0.(3)刚好离开接触面,支持力F N=0.2.极值问题平衡中的极值问题,一般指在力的变化过程中的最大值和最小值问题.3.解题方法(1)极限法:首先要正确地进行受力分析和变化过程分析,找出平衡的临界点和极值点;临界条件必须在变化中去寻找,不能停留在一个状态来研究临界问题,而要把某个物理量推向极端,即极大和极小.(2)数学分析法:通过对问题的分析,根据物体的平衡条件写出物理量之间的函数关系(或画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值).(3)物理分析方法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值.例4(2020·广东茂名市测试)如图所示,质量分别为3m和m的两个可视为质点的小球a、b,中间用一细线连接,并通过另一细线将小球a与天花板上的O点相连,为使小球a和小球b均处于静止状态,且Oa 细线向右偏离竖直方向的夹角恒为37°,需要对小球b朝某一方向施加一拉力F.若已知sin 37°=0.6,cos 37°=0.8.重力加速度为g,则当F的大小达到最小时,Oa细线对小球a的拉力大小为()A.2.4mgB.3mgC.3.2mgD.4mg例5如图所示,质量为m的物体放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F、方向水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F多大,都不能使物体沿斜面向上滑行,求:(1)物体与斜面间的动摩擦因数;(2)这一临界角θ0的大小.跟踪训练1.(2020·河南驻马店市第一学期期终)质量为m的物体用轻绳AB悬挂于天花板上,用水平力F拉着绳的中点O,使OA段绳偏离竖直方向一定角度,如图所示.设绳OA段拉力的大小为F T,若保持O点位置不变,则当力F的方向顺时针缓慢旋转至竖直方向的过程中()A.F先变大后变小,F T逐渐变小B.F先变大后变小,F T逐渐变大C.F先变小后变大,F T逐渐变小D.F先变小后变大,F T逐渐变大2.(多选)如图所示,质量均为m的小球A、B用劲度系数为k1的轻弹簧相连,B球用长为L的细绳悬挂于O 点,A球固定在O点正下方,当小球B平衡时,细绳所受的拉力为F T1,弹簧的弹力为F1;现把A、B间的弹簧换成原长相同但劲度系数为k2(k2>k1)的另一轻弹簧,在其他条件不变的情况下仍使系统平衡,此时细绳所受的拉力为F T2,弹簧的弹力为F2.则下列关于F T1与F T2、F1与F2大小的比较,正确的是()A.F T1>F T2B.F T1=F T2C.F1<F2D.F1=F23.(多选)(2016·全国卷Ⅰ·19)如图,一光滑的轻滑轮用细绳OO′悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b.外力F向右上方拉b,整个系统处于静止状态.若F方向不变,大小在一定范围内变化,物块b仍始终保持静止,则()A.绳OO′的张力也在一定范围内变化B.物块b所受到的支持力也在一定范围内变化C.连接a和b的绳的张力也在一定范围内变化D.物块b与桌面间的摩擦力也在一定范围内变化4.(2020·安徽黄山市高三期末)如图所示,在水平放置的木棒上的M、N两点,系着一根不可伸长的柔软轻绳,绳上套有一光滑小金属环.现将木棒绕其左端逆时针缓慢转动一个小角度,则关于轻绳对M、N两点的拉力F1、F2的变化情况,下列判断正确的是()A.F1和F2都变大B.F1变大,F2变小C.F1和F2都变小D.F1变小,F2变大5.(2020·广东高三模拟)如图所示,竖直墙上连有细绳AB,轻弹簧的一端与B相连,另一端固定在墙上的C 点.细绳BD与弹簧拴接在B点,现给BD一水平向左的拉力F,使弹簧处于伸长状态,且AB、CB与墙的夹角均为45°.若保持B点不动,将BD绳绕B点沿顺时针方向缓慢转动,则在转动过程中BD绳的拉力F的变化情况是()A.变小B.变大C.先变小后变大D.先变大后变小6.(2020·河南信阳市高三上学期期末)如图所示,足够长的光滑平板AP与BP用铰链连接,平板AP与水平面成53°角固定不动,平板BP可绕水平轴在竖直面内自由转动,质量为m的均匀圆柱体O放在两板间,sin 53°=0.8,cos 53°=0.6,重力加速度为g.在使BP板由水平位置缓慢转动到竖直位置的过程中,下列说法正确的是()A.平板AP受到的压力先减小后增大B.平板AP受到的压力先增大后减小C.平板BP受到的最小压力为0.6mg7.(2020·黑龙江哈尔滨市三中高三模拟)如图所示,斜面固定,平行于斜面处于压缩状态的轻弹簧一端连接物块A,另一端固定,最初A静止.在A上施加与斜面成30°角的恒力F,A仍静止,下列说法正确的是()A.A对斜面的压力一定变小B.A对斜面的压力可能不变C.A对斜面的摩擦力一定变大D.A对斜面的摩擦力可能变为零8.(多选)如图所示,倾角为α的粗糙斜劈放在粗糙水平面上,物体a放在斜劈的斜面上,轻质细线一端固定在物体a上,另一端绕过光滑的定滑轮1固定在c点,滑轮2下悬挂物体b,系统处于静止状态.若将固定点c向右移动少许,而物体a与斜劈始终静止,则()A.细线对物体a的拉力增大B.斜劈对地面的压力减小C.斜劈对物体a的摩擦力减小D.地面对斜劈的摩擦力增大9.(多选)(2019·河北唐山一中综合测试)如图所示,带有光滑竖直杆的三角形斜劈固定在水平地面上,放置于斜劈上的光滑小球与套在竖直杆上的小滑块用轻绳连接,开始时轻绳与斜劈平行.现给小滑块施加一竖直向上的拉力,使小滑块沿杆缓慢上升,整个过程中小球始终未脱离斜劈,则有()A.轻绳对小球的拉力逐渐增大B.小球对斜劈的压力先减小后增大C.竖直杆对小滑块的弹力先增大后减小D.对小滑块施加的竖直向上的拉力逐渐增大10.(多选)如图所示装置,两根细绳拴住一小球,保持两细绳间的夹角θ=120°不变,若把整个装置顺时针缓慢转过90°,则在转动过程中,CA绳的拉力F1、CB绳的拉力F2的大小变化情况是()A.F1先变小后变大B.F1先变大后变小C.F2一直变小D.F2最终变为零11.倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数μ=0.5.现给A施加一水平力F,如图所示.设最大静摩擦力与滑动摩擦力相等(sin 37°=0.6,cos 37°=0.8),如果物体A能在斜面上静止,水平推力F与G的比值不可能是()A.3B.2C.1D.0.512.(2020·山西“六校”高三联考)跨过定滑轮的轻绳两端分别系着物体A和物体B,物体A放在倾角为θ的斜面上,与A相连的轻绳和斜面平行,如图所示.已知物体A的质量为m,物体A与斜面间的动摩擦因数为μ(μ<tan θ),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量的取值范围(最大静摩擦力等于滑动摩擦力).参考答案类型一动态平衡问题题型例析1图解法例1【答案】BC【解析】对小球受力分析知,小球受到重力mg、斜面的支持力F N1和挡板的弹力F N2,如图,当挡板绕O 点逆时针缓慢地转向水平位置的过程中,小球所受的合力为零,根据平衡条件得知,F N1和F N2的合力与重力mg大小相等、方向相反,作出小球在三个不同位置力的受力分析图,由图看出,斜面对小球的支持力F N1逐渐减小,挡板对小球的弹力F N2先减小后增大,当F N1和F N2垂直时,弹力F N2最小,故选项B、C正确,A、D错误.故选BC。

动态平衡问题常见解法

动态平衡问题常见解法

动态平衡问题苗贺铭动态平衡问题是高中物理平衡问题中的一个难点,学生不掌握问题的根本和规律,就不能解决该类问题,一些教学资料中对动态平衡问题归纳还不够全面。

因此,本文对动态平衡问题的常见解法梳理如下。

所谓的动态平衡,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,物体在任意时刻都处于平衡状态,动态平衡问题中往往是三力平衡。

即三个力能围成一个闭合的矢量三角形。

一、图解法方法:对研究对象受力分析,将三个力的示意图首尾相连构成闭合三角形。

然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形的边长,各力的大小及变化就一目了然了。

例题1如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过切程中( )A.F N1始终减小B. F N2始终减小C. F N1先增大后减小D. F N2先减小后增大解析:以小球为研究对象,分析受力情况:重力G、墙面的支持力和木板的支持力,如图所示:由矢量三角形可知:始终减小,始终减小。

归纳:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。

二、解析法方法:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,建立平衡方程,得到自变量与应变量的函数关系,由自变量的关系确定应变量的关系。

例题2.1倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m 一直保持相对木板静止状态,如图所示.在这一过程中,物块m受到长木板支持力F N和摩擦力F f的大小变化情况是() A. F N变大,F f变大B. F N变小,F f变小C. F N变大,F f变小D. F N变小,F f变大解析:设木板倾角为θ根据平衡条件:F N=mgcosθF f=mgsinθ可见θ减小,则F N变大,F f变小;故选:C例题2.2 如图所示,轻绳OA 、OB 系于水平杆上的A 点和B 点,两绳与水平杆之间的夹角均为30°,重物通过细线系于O 点。

动态平衡问题的分析方法

动态平衡问题的分析方法

动态平衡问题的分析方法动态平衡问题是平衡问题中的难点问题,这里,我们将通过具体实例来分析如何求解动态平衡问题。

一、图解法例1、如图所示,用水平细线将电灯拉到图示位置,若保持灯位置不变,将细线由顺时针转到竖直的过程中,细线受到的拉力?A、变大B、变小C、先变大后变小D、先变小后变大分析和解答:如图所示,选O点为研究对象,可认为O点受到三个力作用:一个灯的重力引起的对O点向下的拉力,一个是电线的拉力,再一个是线的拉力,根据共点力作用下物体平衡条件,可知电线拉力(OB)和细线(OA)拉力的合力必和灯的重力大小相等,方向相反,作用在一条直线上,作力的平行四边形,由于电线拉力和细线拉力的合力大小和方向是不变的,而且电线拉力方向(即OB)方向也不变,可以发现随细线OA拉力方向改变,电线拉力逐渐变小。

(即线段的长度)而细线拉力则先变小后变大,当细线拉力方向和电线拉力方向垂直时,细线拉力取最小值,由此选项D正确。

点评:利用图解法来定性分析一些动态平衡问题,简单直观有效,是经常使用的方法。

分析时要注意那些力的大小不变,注意那些力的方向不变,注意那些力的大小和方向都不变。

(1)若已知一个力不变,另一个力F1方向不变大小变,则用三角形法(或图解法)处理问题,另一个力F2的最小值条件为F1⊥F2.(2)若已知一个力不变,另一个力大小不变方向变,则用图解法处理问题.例2、如图,柔软轻绳ON的一端O固定,其中间某点M拴一重物,用手拉住绳的另一端N.初始时,OM竖直且MN被拉直,OM与MN之间的夹角为α.现将重物向右上方缓慢拉起,并保持夹角α不变.在OM由竖直被拉到水平的过程中( )A .MN上的张力逐渐增大B.MN上的张力先增大后减小C.OM上的张力逐渐增大D.OM上的张力先增大后减小分析和解答:选AD.重物受到重力mg、OM绳的拉力FOM、MN 绳的拉力FMN共三个力的作用.缓慢拉起过程中任一时刻可认为是平衡状态,三力的合力恒为0.如图所示,由三角形定则得一首尾相接的闭合三角形,由于α>且不变,则三角形中FMN与FOM的交点在一个优弧上移动,由图可以看出,在OM被拉到水平的过程中,绳MN中拉力一直增大且恰好达到最大值,绳OM中拉力先增大后减小,故A、D正确,B、C错误.点评:这类问题的特点是:重力大小方向都不变,还有两个力的夹角不变,可以画圆,因为有两个力的夹角α不变,所以表示重力的线段对应的圆周角不变。

动态平衡问题的几种解法

动态平衡问题的几种解法

动态平衡问题的几种解法在有关物体平衡的问题中,有一类涉及动态平衡。

这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。

解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。

下面就介绍几种动态平衡问题的解题方法。

方法一:图解法(三角形法则)原理:当物体受三力作用而处于平衡状态时,其合力为零,三个力的矢量依次恰好首尾相连,构成闭合三角形,当物体所受三个力中二个发生变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。

例题1:如图1所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。

今使板与斜面的夹角缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?解析:取球为研究对象,球受重力G、斜面支持力F1、挡板支持力F2。

因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形。

挡板逆时针转动时,F2的方向也逆时针转动,F1的方向不变,作出如图2所示的动态矢量三角形。

由图可知,F2先减小后增大,F1随增大而始终减小。

点评:三角形法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可以是其它力),另一个力的大小变化,第三个力则大小、方向均发生变化的问题,对变化过程进行定性的分析。

方法二:解析法原理:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,根据具体情况引入参量,建立平衡方程,求出应变参量与自变参量的一般函数关系,然后根据自变量的变化确定应变量的变化。

例题2:如图3所示,小船用绳索拉向岸边,设船在水中运动时所受水的阻力不变,那么小船在匀速靠岸过程中,下面说法哪些是正确的()A. 绳子的拉力F不断增大B. 绳子的拉力F不变C. 船所受的浮力不断减小D. 船所受的浮力不断增大解析:小船共受四个力作用:重力G、浮力F浮、水的阻力f、绳子拉力F。

高中物理:动态平衡问题的几种解法

高中物理:动态平衡问题的几种解法

在有关物体平衡的问题中,有一类涉及动态平衡。

这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。

解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。

下面就介绍几种动态平衡问题的解题方法。

方法一:三角形法则。

原理:当物体受三力作用而处于平衡状态时,其合力为零,三个力的矢量依次恰好首尾相连,构成闭合三角形,当物体所受三个力中二个发生变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。

例1. 如图1所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。

今使板与斜面的夹角缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?图1解析:取球为研究对象,球受重力G、斜面支持力F1、挡板支持力F2。

因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形。

挡板逆时针转动时,F2的方向也逆时针转动,F1的方向不变,作出如图2所示的动态矢量三角形。

由图可知,F2先减小后增大,F1随增大而始终减小。

图2说明:三角形法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可以是其它力),另一个力的大小变化,第三个力则大小、方向均发生变化的问题,对变化过程进行定性的分析。

方法二:解析法。

原理:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,根据具体情况引入参量,建立平衡方程,求出应变参量与自变参量的一般函数关系,然后根据自变量的变化确定应变量的变化。

例2. 如图3所示,小船用绳索拉向岸边,设船在水中运动时所受水的阻力不变,那么小船在匀速靠岸过程中,下面说法哪些是正确的()图3A. 绳子的拉力F不断增大B. 绳子的拉力F不变C. 船所受的浮力不断减小D. 船所受的浮力不断增大解析:小船共受四个力作用:重力G、浮力、水的阻力、绳子拉力F。

高中物理解决动态平衡问题的五种方法(带答案)

高中物理解决动态平衡问题的五种方法(带答案)

第03讲 解决动态平衡问题的五种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。

解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法:(一)解析法 对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。

(二)结论法 若合力不变,两等大分力夹角变大,则分力变大.若分力大小不变,两等大分力夹角变大,则合力变小.1、粗细均匀的电线架在A 、B 两根电线杆之间。

由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A .冬季,电线对电线杆的拉力较大B .夏季,电线对电线杆的拉力较大C .夏季与冬季,电线对电线杆的拉力一样大D .夏季,电线杆对地面的压力较大2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力F T (两个拉力大小相等)及它们的合力F 的大小变化情况为( )A .F T 减小,F 不变B .F T 增大,F 不变C .F T 增大,F 减小D .F T 增大,F 增大3、如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重物D用绳拴住通过滑轮固定于墙上的A 点。

若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中( ) A.绳的拉力、滑轮对绳的作用力都增大 B.绳的拉力减小,滑轮对绳的作用力增大C.绳的拉力不变,滑轮对绳的作用力增大D.绳的拉力、滑轮对绳的作用力都不变A CB(三)图解法此法常用于求解三力平衡且有一个力是恒力、另有一个力方向不变的问题。

一般按照以下流程解题。

1、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将()A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.P对Q的弹力逐渐增大C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止。

动态平衡问题

动态平衡问题
A.第一次轻绳的拉力逐渐增大 B.第一次半圆环受到的压力逐渐减小
C.小圆环第一次在 N 点与第二次在 N 点时,轻Байду номын сангаас的拉力相等 D.小圆环第一次在 N 点与第二次在 N 点时,半圆环受到的压力相等
针对训练 1、(2021·安徽合肥高三质检)如图所示,两小球 A、B 固定在一轻质细杆的两端, 其质量分别为 m1 和 m2.将其放入光滑的半圆形碗中,当细杆保持静止时,圆的半径 OA、OB 与竖直方向夹角分别为 30°和 45°,则 m1 和 m2 的比值为( A )
动态平衡问题
一.动态平衡
是指平衡问题中的一部分力是变力,是动 态力,力的大小和方向均要发生变化,所 以叫动态平衡。
基本思路:
化“动”为“静”,“静”中求“动”。
二、解决动态平衡方法
1、图解法:图解法分析物体动态平衡问题时,一般物体只受三个 力作用,且其中一个力大小、方向均不变,另一个力的方向不变, 第三个力大小、方向均变化. (1)用力的矢量三角形分析力的最小值问题的规律:
(1)特点:往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生 变化,则此时用力的矢量三角形与空间几何三角形相似。相似三角形法是解平衡 问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和几何 三角形相似,可利用相似三角形对应边成比例进行计算,注意:构建三角形时可 能需要画辅助线。
程中( C )
A.球对 BC 边的压力一直增大 B.球对 BC 边的压力一直减小 C.球对 BC 边的压力先增大后减小 D.球对 BC 边的压力先减小后增大
针对训练 1.(2021·辽宁模拟)(多选)如图所示,处于竖直平面内的正六边形 ABCDEF,可绕 过 C 点且与平面垂直的水平轴自由转动,该金属框架的边长为 L,中心记为 O,用两根不可 伸长、长度均为 L 的轻质细线将质量为 m 的金属小球悬挂于 A、E 两个顶点并处于静止状 态.现顺时针缓慢转动框架,转过 90°角,重力加速度为 g,在整个转动过程中,下列说法 中正确的是( BD ) A.细线 OA 中拉力的最大值为 mg B.细线 OE 中拉力的最大值为2 3 3mg C.细线 OA 中拉力逐渐增大 D.细线 OE 中拉力逐渐减小

求解动态平衡类试题的七种方法

求解动态平衡类试题的七种方法

A α AB f F N F αF 1F 2 求解动态平衡类试题的七种方法付红周重庆市丰都中学408200动态平衡是与静止相对而言的,物体缓慢运动(移动)或者匀速直线运动时,即使有时合力不完全为零,也可近似地把物体当作平衡来处理,可以认为物体依然处于平衡状态,解决动态平衡的基本思路还是合力为零一、力的合成法例1、一只质量为m 的蚂蚁,在半径为R 的半球形碗内爬行,在距碗底高R /2的A 点停下来,则蚂蚁在A 点受到的摩擦力大小为 ( )A 、mg 21B 、mg 23C 、mg )231(-D 、mg 22 解:设支持力F 与水平线的夹角为α,则212sin ==R R a ,030=a ,受力如图,F 与f 的合力与G 等大反向,故mg a G f 23cos ==,所以B 正确 二、力的分解法例2、如图所示,电灯的重力G ,如果保持A 、O 位置不变,当B 点逐渐向上移动到O 点的正上方时,AO 、BO 绳的拉力大小是如何变化的?解析:OC 绳的拉力效果有两个,一是沿AO 绳拉紧AO 的效果,另一个是沿BO 绳使BO 绳拉紧的效果。

根据OC 绳拉力的效果,用平行四边形定则,作出OC 绳的拉力和两个分力在OB 绳方向变化时的几个平行四边形,如图1所示。

由图可知,当B 点位置逐渐变化到B /、B //的过程中,表示F 1大小的线段OF OF OF 111、、'''的长度在逐渐减小。

故F 1在不断减小;表示F 2大小的线段OF OF OF 222、、'''的长度先减小后增大,故F 2是先减小后增大。

三、正交分解法例3、如图所示,滑轮固定在天花板上,细绳跨过滑轮连接物体A 和B ,物体B 静止于水平地面上,用 f 和 F N 分别表示地面对物体B 的摩擦力和支持力,现将B 向左移动一小段距离,下列说法正确的是:( )A 、f 和 F N 都变大;B 、f 和 F N 都变小;C 、f 增大, F N 减小;D 、f 减小, F N 增大;解:正交分解F ,a F F cos 1=,a F F sin 2=,水平方向a F f F cos 1==,左移B ,α角增大,a cos 减小,F 不变,所以f 减小;竖直方向mg F F N =+2,a sin 增大,2F 增大,a F mg F N sin -=,F N 减小,故选BA BF 四、正弦定理法例4、如图所示,一个重为G 的小环套在竖直放置的半径为R 的光滑大圆环上,一个劲度系数为k ,原长为L(L<2R)的轻弹簧,一端固定在大圆环顶点A ,另一端与小环相连,小环在大圆环上可无摩擦滑动,环静止于B 点时,则弹簧与竖直方向的夹角θ为多少?解析:选小环为研究对象,其受力情况如图所示:重力G ,竖直向下;弹簧对小环的拉力F ,沿弹簧向上;大环对小环的弹力N ,其作用线过圆心O 。

动态平衡问题常见解法

动态平衡问题常见解法

动态平衡问题苗贺铭动态平衡问题是高中物理平衡问题中的一个难点,学生不掌握问题的根本和规律,就不能解决该类问题,一些教学资料中对动态平衡问题归纳还不够全面。

因此,本文对动态平衡问题的常见解法梳理如下。

所谓的动态平衡,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,物体在任意时刻都例题F N2..不由矢量三角形可知:始二、解析法方法:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,建立平衡方程,得到自变量与应变量的函数关系,由自变量的关系确定应变量的关系。

例题2.1倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m?一直保持相对木板静止状态,如图所示.在这一过程中,物块m受到长木板支持力F N和摩擦力F f的大小变化情况是()A.F N变大,F f变大B.F N变小,F f变小C.F N变大,F f变小D.F N变小,F f变大解析:设木板倾角为θ根据平衡条件:F N=mgcosθF f=mgsinθ可见θ减小,则F N变大,F f变小;例题°,重物通三、相似三角形方法:找到与力的矢量三角形相似的几何三角形,根据相似三角形的性质,建立比例关系,进行讨论。

例题3如图所示,光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A到半球的顶点B的过程中,半球对小球的支持力N和绳对小球的拉力T的大小变化情况是(????)。

(A)N变大,T变小???(B)N变小,T变大???(B)N变小,T先变小后变大??(D)N不变,T变小解析:小球受力如图所示,此三力使小球受力平衡.力矢量三角形如图乙,设球面半径为R ,BC=h,AC=L,AO=R.则由三角形相似有:R G h =L F T =RF NG 、h 、R 均为定值,故F N 为定值,不变,F T ∝L ,由题知:L ↓,故F T ↓.故D 正确.归纳:相似三角形法适用于物体受到的三个力中,一个力的大小、方向均不变,其他两个力的方向均发生变化,且三个力中没有两个力保持垂直关系,但可以找到与力构成的矢量三角形相似的几何解析:以结点O 为研究对角,受到三个拉力,如图所示分别为F M 、F N 、F 合,将三力构成矢量三角形(如图所示的实线三角形),以O 为圆心,F M 为半径作圆,需满足力F 合大小、方向不变,角α减小,则动态矢量三角形如图中画出的一系列虚线表示的三角形。

(完整版)高一物理力学受力分析之动态平衡问题

(完整版)高一物理力学受力分析之动态平衡问题

动态平衡一、三角形图示法(图解法)方法规律总结:常用于解三力平衡且有一个力是恒力,另一个力方向不变的问题。

例1、如图1-17所示,重G的光滑小球静止在固定斜面和竖直挡板之间。

若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F1 、F2各如何变化?答案:F1逐渐变小,F2先变小后变大变式:1、质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中点O,如图所示,用T表示OA段拉力的大小,在O点向左移动的过程中( A )A.F逐渐变大,T逐渐变大B。

F逐渐变大,T逐渐变小C。

F逐渐变小,T逐渐变大D。

F逐渐变小,T逐渐变小2、如图所示,一个球在两块光滑斜面板AB、AC之间,两板与水平面间的夹角均为60°,现使AB板固定,使AC板与水平面间的夹角逐渐减小,则下列说法中正确的是( A )A。

球对AC板的压力先减小再增大B.球对AC板的压力逐渐减小C.球对AB板的压力逐渐增大D.球对AB板的压力先增大再减小二、三角形相似法方法规律总结:在三力平衡问题中,如果有一个力是恒力,另外两个力方向都发生变化,且力的矢量三角形与题所给空间几何三角形相似,可以利用相似三角形对应边的比例关系求解.例2、如图所示,AC是上端带定滑轮的固定竖直杆,质量不计的轻杆AB一端通过铰链固定在A点,另一端B悬挂一重为G的重物,且B端系有一根轻绳并绕过定滑轮,用力F拉绳,开始时∠BAC>90°,现使∠BAC缓慢变小,直到杆AB接近竖直杆AC.此过程中,杆AB所受的力( A )A.大小不变 B.逐渐增大C.先减小后增大 D.先增大后减小变式:1、如图所示,固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔.质量为m的小球套在圆环上.一根细线的下端系着小球,上端穿过小孔用手拉住.现拉动细线,使小球沿圆环缓慢上移.在移动过程中手对线的拉力F和轨道对小球的弹力N的大小变化情况是( C )A。

高中物理解决动态平衡问题的五种方法(带答案)

高中物理解决动态平衡问题的五种方法(带答案)

第03讲解决动态平衡问题的五种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。

解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法:(一)解析法对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。

(二)结论法若合力不变,两等大分力夹角变大,则分力变大.*若分力大小不变,两等大分力夹角变大,则合力变小.1、粗细均匀的电线架在A、B两根电线杆之间。

由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A.冬季,电线对电线杆的拉力较大B.夏季,电线对电线杆的拉力较大C.夏季与冬季,电线对电线杆的拉力一样大D.夏季,电线杆对地面的压力较大:2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力F T(两个拉力大小相等)及它们的合力F 的大小变化情况为( )A .F T 减小,F 不变B .F T 增大,F 不变C .F T 增大,F 减小D .F T 增大,F 增大3、如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重物D用绳拴住通过滑轮固定于墙上的A 点。

若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中( )A.'B.绳的拉力、滑轮对绳的作用力都增大 B.绳的拉力减小,滑轮对绳的作用力增大 C.绳的拉力不变,滑轮对绳的作用力增大 D.绳的拉力、滑轮对绳的作用力都不变A C B(三)图解法此法常用于求解三力平衡且有一个力是恒力、另有一个力方向不变的问题。

一般按照以下流程解题。

{1、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将()A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.P对Q的弹力逐渐增大C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大】3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止。

(完整)高中物理解决动态平衡问题的五种方法(带答案)

(完整)高中物理解决动态平衡问题的五种方法(带答案)
C.夏季与冬季,电线对电线杆的拉力一样大
D.夏季,电线杆对地面的压力较大
2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲) 移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力FT(两个拉力大小相等)及它们的合力F的大小变化情况为( )A.FT减小,F不变B.FT增大,F不变
C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大
3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁
在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑
块均静止。现将滑块平行于斜面向上拉过一较小的距离,球仍搁在挡板 与滑块上且处于静止状态,则与原来相比( )
C、N变小,T先变小后变大D、N不变,T变小
2、如图所示, 固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔。 质量为m的小球套在圆环上。 一根细线的下端系着小球,上端穿过小孔用 手拉住。现拉动细线,使小球沿圆环缓慢上移,在移动过程中手对线的拉 力F和轨道对小球的弹力FN的大小变化情况是( ) A.F不变,FN增大B.F不变,FN减小C.F减小,FN不变
缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F1,
A.F1增大,F2减小
C.F1增大,F2增大
B.F1减小,F2减小
D.F1减小,F2增大
12、如图所示,用一根细线系住重力为G、半径为R的球,其与倾角为α的光滑斜面接触,处于静止状态,球与斜面的接触面非常小,当细线悬点O固定不动,斜面缓慢水平向左移 动直至绳子与斜面平行的过程中,下述正确的是( ). A.细绳对球的拉力先减小后增大B.细绳对球的拉力先增大后减小C.细绳对球的拉力一直减小D.细绳对球的拉力最小值等于G

(完整版)高中物理解决动态平衡问题的五种方法(带答案)

(完整版)高中物理解决动态平衡问题的五种方法(带答案)

第03讲 解决动态平衡问题的五种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。

解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法:(一)解析法 对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。

(二)结论法 若合力不变,两等大分力夹角变大,则分力变大.若分力大小不变,两等大分力夹角变大,则合力变小.1、粗细均匀的电线架在A 、B 两根电线杆之间。

由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A .冬季,电线对电线杆的拉力较大B .夏季,电线对电线杆的拉力较大C .夏季与冬季,电线对电线杆的拉力一样大D .夏季,电线杆对地面的压力较大2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力F T (两个拉力大小相等)及它们的合力F 的大小变化情况为( )A .F T 减小,F 不变B .F T 增大,F 不变C .F T 增大,F 减小D .F T 增大,F 增大3、如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重物D用绳拴住通过滑轮固定于墙上的A 点。

若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中( ) A.绳的拉力、滑轮对绳的作用力都增大 B.绳的拉力减小,滑轮对绳的作用力增大C.绳的拉力不变,滑轮对绳的作用力增大D.绳的拉力、滑轮对绳的作用力都不变A CB(三)图解法此法常用于求解三力平衡且有一个力是恒力、另有一个力方向不变的问题。

一般按照以下流程解题。

1、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将()A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.P对Q的弹力逐渐增大C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止。

动态平衡的几种解法

动态平衡的几种解法

动态平衡问题的几种解法刘金艳在有关物体平衡的问题中,有一类涉及动态平衡。

这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。

解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。

下面就介绍几种动态平衡问题的解题方法。

方法一:三角形法则。

原理:当物体受三力作用而处于平衡状态时,其合力为零,三个力的矢量依次恰好首尾相连,构成闭合三角形,当物体所受三个力中二个发生变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。

例1.如图1所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。

今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?图1解析:取球为研究对象,球受重力G、斜面支持力F1、挡板支持力F2。

因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形。

挡板逆时针转动时,F2的方向也逆时针转动,F1的方向不变,作出如图2所示的动态矢量三角形。

由图可知,F2先减小后增大,F1随β增大而始终减小。

图2点评:三角形法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可以是其它力),另一个力的大小变化,第三个力则大小、方向均发生变化的问题,对变化过程进行定性的分析。

方法二:解析法。

原理:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,根据具体情况引入参量,建立平衡方程,求出应变参量与自变参量的一般函数关系,然后根据自变量的变化确定应变量的变化。

例2. 如图3所示,小船用绳索拉向岸边,设船在水中运动时所受水的阻力不变,那么小船在匀速靠岸过程中,下面说法哪些是正确的( )图3A. 绳子的拉力F 不断增大B. 绳子的拉力F 不变C. 船所受的浮力不断减小D. 船所受的浮力不断增大解析:小船共受四个力作用:重力G 、浮力F 浮、水的阻力f 、绳子拉力F 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态平衡问题
苗贺铭
动态平衡问题是高中物理平衡问题中的一个难点,学生不掌握问题的根本和规律,就不能解决该类问题,一些教学资料中对动态平衡问题归纳还不够全面。

因此,本文对动态平衡问题的常见解法梳理如下。

所谓的动态平衡,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,物体在任意时刻都处于平衡状态,动态平衡问题中往往是三力平衡。

即三个力能围成一个闭合的矢量三角形。

一、图解法
方法:对研究对象受力分析,将三个力的示意图首尾相连构成闭合三角形。

然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形的边长,各力的大小及变化就一目了然了。

例题1如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过切程中( )
A.F N1始终减小
B. F N2始终减小
C. F N1先增大后减小
D. F N2先减小后增大
解析:以小球为研究对象,分析受力情况:重力G、
墙面的支持力和木板的支持力,如图所示:由矢量三
角形可知:始终减小,始终减小。

归纳:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。

二、解析法
方法:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,建立平衡方程,得到自变量与应变量的函数关系,由自变量的关系确定应变量的关系。

例题2.1倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m 一直保持相对木板静止状态,如图所示.在这一过程中,物块m受到长木板支持力F N和摩擦力F f的大小变化情况是() A. F N变大,F f变大
B. F N变小,F f变小
C. F N变大,F f变小
D. F N变小,F f变大
解析:设木板倾角为θ
根据平衡条件:F N=mgcosθ
F f=mgsinθ
可见θ减小,则F N变大,F f变小;
故选:C
例题2.2 如图所示,轻绳OA 、OB 系于水平杆上的A 点和B 点,两绳与水平杆之间的夹角均为30°,重物通过细线系于O 点。

将杆在竖直平面内沿顺时针方向缓慢转动30°此过程中( )
A. OA 绳上拉力变大,OB 绳上拉力变大
B. OA 绳上拉力变大,OB 绳上拉力变小
C. OA 绳上拉力变小,OB 绳上拉力变大
D. OA 绳上拉力变小,OB 绳上拉力变小
解析:转动前,T A =T B ,2T A sin30°=mg ,则T A =mg=T B ;
转动后,OA 与水平方向的夹角变为60°,OB 变为水平。

T A ’sin60°=mg ,T A ’cos60°= T B ’
解得:T A ’=332mg ,T B ’=2
1T A ’=33mg ,故B 正确。

归纳:解析法适用于一个力大小、方向都不变,另两个力在变化的过程中始终垂直的问题,或一个力大小、方向不变,另两个力大小相等的问题
三、相似三角形
方法:找到与力的矢量三角形相似的几何三角形,根据相似三角形的性质,建立比例关系,进行讨论。

例题3 如图所示,光滑的半球形物体固定在水平地面上,球心正
上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,
另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使
小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和
绳对小球的拉力T 的大小变化情况是( )。

(A) N 变大,T 变小 (B)N 变小,T 变大
(B) N 变小,T 先变小后变大 (D)N 不变,T 变小
解析:小球受力如图所示,此三力使小球受力平衡.力矢
量三角形如图乙,设球面半径为R ,BC=h,AC=L,AO=R.则
由三角形相似有:R G h =L F T =R
F N
G 、h 、R 均为定值,故F N 为定值,不变,F T ∝L ,由题知:
L ↓,故F T ↓.故D 正确.
归纳:相似三角形法适用于物体受到的三个力中,
一个力的大小、方向均不变,其他两个力的方向均发生
变化,且三个力中没有两个力保持垂直关系,但可以找到与力构成的矢量三角形相似的几何三角形的问题。

四、辅助圆法
方法:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,第一种情况以不变的力为弦作个圆,在辅助的圆中可容易画出两力夹角不变的力的矢量三角形,从而轻易判断各力的变化情况。

第二种情况以大小不变,方向变化的力为半径作一个辅助圆,在辅助的圆中可容易画出一个力大小不变、方向改变的力的矢量三角形,从而轻易判断各力的变化情况。

例题4.1 如图所示,物体G 用两根绳子悬挂,开始时绳OA 水平,现将两绳同时沿顺时针方向转过90°,且保持两绳之间的夹角α不变(α>90°),物体保
持静止状态。

在旋转过程中,设绳OA 的拉力为T1,绳OB 的拉力为T2,
则:( )
A 、T1先减小后增大
B 、T1先增大后减小
C 、T2逐渐减小
D 、T2最终变为零
解析:取绳子结点O 为研究对角,受到三根绳的拉力,如图所示分别为F 1、F 2、F 3,将三力构成矢量三角形(如图所示的实线三角形CDE),需满足力F 3大小、方向不变,角∠ CDE 不变(因为角α不变),由于角∠DCE 为直角,则三力的几何关
系可以从以DE 边为直径的圆中找,则动态矢量三角形如图中画
出的一系列虚线表示的三角形。

由此可知,F 1先增大后减小,
F 2随始终减小,且转过90°时,当好为零。

正确答案选项为B 、
C 、
D 。

例题4.2如图所示,在做“验证力的平行四边形定则”的实验时,用M 、N 两个测力计(图中未画出)通过细线拉橡皮条的端点,使其到达O 点,此时α+β=90°,然后保持M 的示数不变,而使α角减小,为保持端点位置不变,可采用的办法是( )
A . 减小N 的示数同时减小β角
B . 减小N 的示数同时增大β

C . 增大N 的示数同时增大β角
D . 增大N 的示数同时减小β

解析:以结点O 为研究对角,受到三个拉力,如图所示分别为F M 、F N 、F 合,将三力构成矢量三角形(如图所示的实线三角形),以O 为圆心,F M 为半径作圆,需满足力F 合大小、方向不变,角α减小,则动态矢量三角形如图中画出的一系列虚线表示的三角形。

由此可知F N 的示数减小同时β角减小。

故选A 。

归纳:作辅助圆法适用的问题类型可分为两种情况:①物体
所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,另两个力大小、方向都在改变,但动态平衡时两个力的夹角不变。

②物体所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,动态平衡时一个力大小不变、方向改变,另一个力大小、方向都改变。

五、拉密定理法
方法:如图所示,在同一平面内,当三个共点力的合力为零
时,其中任一个力与其它两个力夹角正弦的比值相等,即α
sin 1F =βsin 2F =γ
sin 3F 。

其实质就是正弦定理的变型。

例题5 如图,柔软轻绳ON 的一端O 固定,其中间某点M 拴一重物,
用手拉住绳的另一端N .初始时,OM 竖直且MN 被拉直,OM 与MN 之间的
夹角α(α>90°).现将重物向右上方缓慢拉起,并保持夹角α不变,
在OM 由竖直被拉到水平的过程中( )
O
F 合
F N F M γ F 3 F 2 F 1
β α
A MN 上的张力逐渐增大
B MN 上的张力先增大后减小
C OM 上的张力逐渐增大
D OM 上的张力先增大后减小
解析:缓慢拉起到某位置时受力分析如图所示,根据拉密定理αsin mg =βsin MO
F =γsin MN
F ,缓慢拉起过程中,β变大,sin β先变大后变小,F MO 先变大后变小;γ变小,sin γ变大,F MN 逐渐变大。

故选AD 。

归纳:在物体受到三个力的动态平衡问题中,应用拉密定理可解决一个力的大小、方向不变,另两个力大小、方向都改变,但夹角不变的问题。

mg F MO
F MN β γ。

相关文档
最新文档