八年级数学上册 2.1.1 认识无理数教学案

合集下载

北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例

北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例
将学生分成小组,让学生根据讲授的新知,讨论无理数的性质和表示方法。
2.案例分析:让学生分析一些实际问题,如测量物体长度、计算圆的面积等,运用无理数解决实际问题。
3.小组分享:各小组向全班分享自己的讨论成果和案例分析,促进学生之间的交流和合作。
(四)总结归纳
1.无理数的定义和性质:引导学生总结无理数的定义和性质,加深学生对无理数概念的理解。
北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例
一、案例背景
本节内容是北师大版八年级数学上册第二章实数的第一节——认识无理数。在学习了有理数的基础上,本节课引导学生认识无理数,理解无理数的概念和性质,体会数学的广泛应用。无理数是数学中的一个重要概念,它在生活中和学科领域中有着广泛的应用。如圆周率π就是一个无理数,它在几何学、物理学等领域有着重要应用。另外,无理数在数学分析、高等数学等领域也是基本概念。因此,本节课对于学生理解和掌握数学知识体系,培养学生的数学思维能力具有重要意义。
5.注重学生的反思与评价:在教学过程中,我注重学生的反思与评价,及时反馈,指导学生的改进方向。通过引导学生进行自我反思和相互评价,我帮助学生检查自己对无理数概念的理解和掌握程度,发现自己的不足,明确改进的方向。这种教学方式能够培养学生的评价能力和批判性思维,提高学生的自我认知和自我改进能力。
作为一名特级教师,我深知教学案例亮点的重要性。在教学过程中,我努力将教学内容与学生的生活实际和学科领域相结合,采用多种教学方法和手段,关注学生的个体差异,创设生动有趣的情境,引导学生在问题导向的过程中自主探究和合作交流,培养学生的数学思维能力和问题解决能力。同时,我注重学生的反思与评价,及时反馈,调整教学策略,以达到最佳教学效果。
(二)讲授新知
1.无理数的定义:详细讲解无理数的定义,并通过实例进行说明,让学生理解和掌握无理数的概念。

北师大版八年级数学上册:2.1《认识无理数》教学设计

北师大版八年级数学上册:2.1《认识无理数》教学设计

北师大版八年级数学上册:2.1《认识无理数》教学设计一. 教材分析《认识无理数》是北师大版八年级数学上册第二章的第一节内容。

本节内容是在学生学习了实数、有理数的基础上,引入无理数的概念,使学生了解无理数在生活中的应用和实际意义,培养学生运用数学解决实际问题的能力。

教材通过丰富的实例和探究活动,让学生感受无理数的存在,体验数的概念的扩展,培养学生的数感。

二. 学情分析八年级的学生已经学习了实数和有理数,对数的概念有一定的了解。

但是,学生对无理数的理解可能还比较模糊,需要通过具体的实例和实践活动来加深对无理数概念的理解。

此外,学生可能对无理数的存在感到困惑,需要教师通过讲解和引导,让学生逐渐接受无理数的存在。

三. 教学目标1.了解无理数的概念,理解无理数的存在和实际意义。

2.能够识别常见的无理数,如π、√2等。

3.能够运用无理数解决实际问题,提高运用数学解决实际问题的能力。

4.培养学生的数感,提高学生的数学思维能力。

四. 教学重难点1.重点:无理数的概念和实际意义的理解。

2.难点:无理数的识别和运用。

五. 教学方法1.实例教学法:通过具体的实例,让学生感受无理数的存在和实际意义。

2.实践活动法:通过实践活动,让学生加深对无理数概念的理解。

3.问题驱动法:通过提问和引导,让学生主动探索无理数的性质和运用。

六. 教学准备1.教材和教案。

2.投影仪和教学课件。

3.练习题和测试题。

七. 教学过程1.导入(5分钟)利用投影仪展示生活中的实例,如圆的周长和面积的关系,引出无理数的概念。

2.呈现(10分钟)讲解无理数的定义,通过具体的实例,让学生感受无理数的存在。

如π、√2等。

3.操练(10分钟)让学生进行练习,识别常见的无理数,加深对无理数概念的理解。

4.巩固(10分钟)讲解无理数的性质和运用,让学生通过实践活动,加深对无理数概念的理解。

5.拓展(10分钟)引导学生思考无理数在生活中的应用和实际意义,培养学生的数感。

八年级数学上册2.1认识无理数教学设计 (新版北师大版)

八年级数学上册2.1认识无理数教学设计 (新版北师大版)

八年级数学上册2.1认识无理数教学设计(新版北师大版)一. 教材分析《八年级数学上册2.1认识无理数》这一节,主要让学生了解无理数的概念,掌握无理数的性质,以及学会用有理数和无理数表示实数。

教材通过生活中的实例引入无理数的概念,接着引导学生通过观察、思考、探究,掌握无理数的性质。

在这一过程中,学生需要理解无理数与有理数的区别,以及无理数在实际生活中的应用。

二. 学情分析八年级的学生已经学习了有理数的概念和性质,具备一定的数学基础。

但是,对于无理数这一概念,学生可能较为陌生,难以理解。

因此,在教学过程中,教师需要结合学生的实际情况,从生活实例出发,引导学生逐步理解无理数的概念,并掌握无理数的性质。

三. 教学目标1.让学生了解无理数的概念,知道无理数是一种实数。

2.让学生掌握无理数的性质,能够辨别一个数是有理数还是无理数。

3.让学生理解无理数在实际生活中的应用,提高学生运用数学知识解决问题的能力。

四. 教学重难点1.重难点:无理数的概念和性质。

2.难点:理解无理数在实际生活中的应用。

五. 教学方法1.情境教学法:通过生活实例引入无理数的概念,让学生在实际情境中感受无理数。

2.启发式教学法:引导学生观察、思考、探究,从而掌握无理数的性质。

3.小组合作学习:让学生在小组讨论中,共同解决问题,提高学生的合作能力。

六. 教学准备1.教学课件:制作课件,展示无理数的定义、性质和实际应用。

2.教学素材:准备一些生活中的实例,用于引入无理数的概念。

3.练习题:准备一些有关无理数的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如圆的周长、声音的频率等,引导学生思考这些实例与数学的关系。

进而提出问题:“你知道无理数吗?无理数是什么?”让学生分享自己对无理数的理解。

2.呈现(15分钟)教师利用课件,详细讲解无理数的定义、性质和特点。

同时,通过展示一些实际应用的例子,让学生了解无理数在生活中的重要作用。

北师大版八年级上册 2.1 认识无理数 第一课时 教案

北师大版八年级上册 2.1 认识无理数 第一课时 教案

2.1认识无理数〔第一课时〕一、教学目的叙写1.学生通过预习教材21页,并考虑情景引入中的问题1.2.学生通过合作探究局部,初步感知数不够用了,让学生充分感受“新数〞〔无理数〕的存在.3.学生通过交流知识点、易错点和思想方法,培养学生归纳才能和有条理的表达才能.4.学生通过完成“五、当堂评价〞,能正确地进展判断某些数是否为有理数,加深对有理数和无理数的理解.二、教学重难点1.重点:让学生经历无理数的发现过程.2.难点:会判断一个数是否为无理数.三、教学过程〔一〕、情景引入[师]同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数、小数、分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩大到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.1、考虑:⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?2、一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数〔或分数〕吗?〔二〕、自主探究[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常快乐地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请同学们把自己拼的图展示一下.同学们非常踊跃地呈现自己的作品给教师.[师]如今我们一齐把大家的做法总结一下:下面再请大家共同考虑一个问题,假设拼成大正方形的边长为a,那么a应满足什么条件呢?[生甲]a是正方形的边长,所以a肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.[生丙]由a2=2可判断a应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后答复.[生甲]我们组的结论是:因为12=1,22=4,32=9,…整数的平方越来越大,所以a 应在1和2之间,故a不可能是整数.[生乙]因为913131,943232,412121=⨯=⨯=⨯,…两个一样因数的乘积都为分数,所以a 不可能是分数.[师]经过大家的讨论可知,在等式a 2=2中,a 既不是整数,也不是分数,所以a 不是有理数,但在现实生活中确实存在像a 这样的数,由此看来,数又不够用了.活动内容:【议一议】→【释一释】→【忆一忆】→【找一找】将两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.设这个大的正方形的边长为a,a 满足什么条件?【议一议】:22a =,请问:①a 可能是整数吗?②a 可能是分数吗? 【释一释】:释1.满足22a =的a 为什么不是整数?释2.满足22a =的a 为什么不是分数?【忆一忆】:让学生回忆“有理数〞概念,既然a 不是整数也不是分数,那么a 一定不是有理数,这说明:有理数不够用了,为“新数〞〔无理数〕的学习奠定了根底【找一找】:在以下正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段〔三〕、合学应用例:在数轴上表示满足()220x x =>的x .解:〔四〕、整理反思1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?2.客观世界中,确实存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?〔五〕、当堂评价1、如图,答复以下问题:〔1〕以直角三角形的斜边为边的正方形的面积是多少?〔2〕设正方形的边长为b,b 满足什么条件?〔3〕b 是有理数吗?2、如图,等边三角形ABC 的边长为2,高为h,h 可能是整数吗?可能是分数吗? 〔六〕、变练拓展1.请你在方格纸上按照如下要求设计直角三角形:〔1〕使它的三边中有一边边长不是有理数;〔2〕使它的三边中有两边边长不是有理数;〔3〕使它的三边边长都不是有理数.2. 以下图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的假设干个顶点,可得到一些线段,试分别找出两条长度是有理数的线段和三条长度不是有理数的线段.解:如图,AB =2,BE =1,AB 、BE 是有理数.AD 2=AB 2+BD 2=22+32=13,AC 2=1+1=2.AE 2=AB 2+BE 2=22+12=5.AC 、AD 、AE 既不是整数,也不是分数,所以不是有理数.。

2.1.1 认识无理数 教学设计 2023—2024学年北师大版数学八年级上册

2.1.1 认识无理数 教学设计 2023—2024学年北师大版数学八年级上册

2.1.1 认识无理数一、板书课题 师:同学们,今天我们来学习数怎么不够用了二、出示目标 师:为了学好本节课,请看本节课的学习目标学习目标会区别一个数是不是有理数三、自学指导 师:来看我们本节课的自学指导自学指导认真看课本21P 内容,要求:(1)怎样把两个小正方形剪开拼成一个大正方形,(2)完成做一做,思考这个数为什么不能用有理数表示五分钟后,比谁能快速的完成自学指导中的问题四、学自学(学生看书, 教师巡视,,督促每位学生认真看书)五、测与导1、问题一:怎样小正方形剪拼成一个大正方形,并求出它的边长,边长的平方等于A 引例1: 下面请同学们拿出准备好的两个边长为1的小正方形,把两个边长为1的小正方形通过剪、拼,设法得到一个大正方形。

引例2: a 可能是整数吗?说说你的理由. 引导学生从多个方面进行拼接,理解22=a ,a 不是整数,由于⋅⋅⋅==42,1122,越来越大,则a 不是整数.引例3: a 可能是分数吗?说说你的理由.因为943232 412121=⨯=⨯,结果都是分数,所以a 不可能是分数. 生总结:a 既不是整数,也不是分数,所以a 不是有理数.归纳总结:有理数包括:整数和分数.如果一个数既不是整数也不是分数,那么这个数不是有理数.2、做一做:(1) 如图,以直角三角形的斜边为边的正方形的面积是多少?a 2=2a 12 b解:两条直角边分别为1和2,根据勾股定理,得12+22=5,所以正方形的面积是5.(2)设该正方形的边长为b,则b应满足什么条件?b是有理数吗?解:b2=5.①因为22=4,32=9,4<5<9,所以b不可能是整数.②没有两个相同的分数相乘得5,故b不可能是分数.因为没有一个整数或分数的平方为5,所以b不是有理数.3、检测:随堂练习(引导学生回答正三角形的性质,强调书写格式)预设问题(1)正三角形的性质不会(2)格式书写不规范4、小结:本节课我们学习了不能用有理数表示的数六、练P 1必做:22选做:P 222七、教学反思:。

《认识无理数》 教学设计

《认识无理数》 教学设计

《认识无理数》教学设计一、教学目标1、知识与技能目标学生能够理解无理数的概念,明确无理数与有理数的区别。

学生能够识别常见的无理数,如根号 2、圆周率π等。

2、过程与方法目标通过对有理数和无理数的比较,培养学生的逻辑思维能力和分类讨论能力。

经历无理数的探索过程,提高学生的数学探究能力和创新意识。

3、情感态度与价值观目标激发学生对数学的好奇心和求知欲,感受数学的魅力和价值。

培养学生严谨的科学态度和勇于探索的精神。

二、教学重难点1、教学重点无理数的概念。

区分有理数和无理数。

2、教学难点无理数概念的形成和理解。

三、教学方法讲授法、讨论法、探究法四、教学过程1、导入新课回顾有理数的概念,提问学生:我们已经学习了有理数,那么是否所有的数都是有理数呢?展示一个边长为 1 的正方形,让学生计算其对角线的长度。

2、探索新知引导学生通过勾股定理计算出正方形对角线的长度为根号 2。

提问:根号 2 是有理数吗?让学生进行小组讨论。

教师讲解:通过计算可知,根号 2 不能表示为两个整数的比值,因此它不是有理数,而是无理数。

3、无理数的概念给出无理数的定义:无限不循环小数叫做无理数。

举例说明常见的无理数,如圆周率π、根号 3 等。

4、有理数与无理数的区别组织学生讨论有理数和无理数的区别,从定义、表现形式等方面进行比较。

总结:有理数可以表示为两个整数的比值,包括整数、有限小数和无限循环小数;无理数是无限不循环小数。

5、例题讲解出示一些数,让学生判断哪些是有理数,哪些是无理数。

如:0333…,314,根号 5,-***********…等。

6、课堂练习布置相关练习题,让学生巩固对无理数的认识和判断。

7、课堂小结回顾本节课所学内容,包括无理数的概念、有理数与无理数的区别。

8、布置作业课本课后练习题。

让学生寻找生活中用到无理数的例子。

五、教学反思在教学过程中,要充分引导学生进行思考和讨论,让他们在探索中理解无理数的概念。

对于一些较难理解的知识点,可以通过多举例、多练习的方式帮助学生掌握。

北师大版八年级数学上册:21认识无理数教学设计

北师大版八年级数学上册:21认识无理数教学设计
-学生可能会回答:“是边长的√2倍”,进而引出√2是一个无理数的事实。
3.引出无理数:告诉学生,像√2这样不能表示为两个整数之比的数,我们称之为无理数。从而导入新课——认识无理数。
(二)讲授新知
1.无理数的定义:详细讲解无理数的概念,强调无理数的不可度量性和无限不循环性。
-解释:无理数是无限不循环小数,不能精确地表示为分数形式。
6.分层教学,关注差异:针对不同学生的学习能力,设计不同难度的练习题和拓展任务,使每个学生都能在原有基础上得到提高。
-对于基础较弱的学生,重点在于理解无理数的概念和基本性质;对于基础较好的学生,可以增加一些拓展性问题,提高他们的思维能力。
7.持续评价,激励发展:采用多元化的评价方式,如课堂问答、小组讨论、作业反馈等,对学生的学习过程和结果进行持续评价,激励学生不断进步。
(二)过程与方法
1.通过对无理数的探究,培养学生独立思考、合作交流的能力。
2.引导学生通过观察、猜想、验证等环节,发现无理数的性质,提高学生的归纳总结能力。
3.运用数轴、几何图形等工具,将无理数与直观图形相结合,培养学生的空间想象力和数形结合思想。
4.通过解决实际问题,让学生体会数学在实际生活中的应用,提高学生的实际问题解决能力。
-解释无理数与有理数的区别和联系。
-计算√9-√16,并说明结果是有理数还是无理数。
2.实际应用题:
-一个正方形的对角线长度是边长的√2倍,求该正方形的对角线长度。
-估算圆的周长,已知半径为3cm,π取3.14。
-某同学在跑步时,以每秒√2米的速度匀速前进,求1分钟内跑过的距离。
3.拓展提升题:
-证明:如果一个数的平方是无理数,那么这个数本身也是无理数。
7.课后作业:布置适量的课后作业,巩固学生对无理数的认识,提高学生的实际问题解决能力。

北师大版八年级数学上册2.1认识无理数优秀教学案例

北师大版八年级数学上册2.1认识无理数优秀教学案例
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对问题进行讨论、交流。
2.讨论内容:让学生结合所学知识,运用逼近法估算无理数的大小,如估算π的值。
3.讨论过程:引导学生通过观察、分析、归纳等数学思维方法,探索无理数的性质,提高学生的逻辑思维能力。
(四)总结归纳
1.学生总结:让学生根据自己的学习体会,总结本节课所学的无理数的性质和估算方法。
3.小组评价:引导学生对其他小组的汇报进行评价,提高学生的评价能力和批判性思维。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,总结学习方法和经验,提高学生的自我监控能力。
2.学生互评:学生之间相互评价,培养学生的评价能力和批判性思维。
3.教师评价:教师对学生的学习过程和成果进行评价,及时反馈,指导学生的学习。
教学重点:无理数的概念和性质,逼近法估算无理数的大小。
教学难点:无理数的概念理解,逼近法的运用。
二、教学目标
(一)知识与技能
1.让学生理解无理数的概念,掌握无理数的性质,能正确识别和表示无理数。
2.让学生学会运用逼近法估算无理数的大小,提高学生的数学运算能力。
3.培养学生运用数学知识解决实际问题的能力,提高学生的数学应用意识。
5.教学内容的总结与作业的布置:教师针对学生的学习情况进行总结,强调本节课的重点和难点,布置有关无理数的练习题,巩固所学知识,要求学生运用所学知识,独立完成作业,提高学生的动手操作能力。同时,教师对学生的作业进行批改,及时反馈,指导学生的学习,使学生能够更好地掌握无理数的相关知识。
(二)讲授新知
1.无理数的概念:讲解无理数的定义,通过具体例子让学生理解无理数的特点。
2.无理数的性质:讲解无理数的性质,如无限不循环小数、不能精确表示等,引导学生通过观察、分析、归纳等数学思维方法,探索无理数的性质。

八年级数学上册2.1认识无理数说课稿(新版北师大版)

八年级数学上册2.1认识无理数说课稿(新版北师大版)

八年级数学上册2.1认识无理数说课稿(新版北师大版)一. 教材分析八年级数学上册2.1认识无理数是北师大版初中数学的一个重要内容。

这一节主要让学生了解无理数的概念,理解无理数与有理数的关系,以及掌握无理数的估算方法。

教材通过丰富的例子,引导学生探索无理数的特点,培养学生的抽象思维能力。

二. 学情分析八年级的学生已经学习了有理数的概念,对数的运算有一定的了解。

但是,他们对无理数的概念可能感到陌生,理解起来有一定的困难。

因此,在教学过程中,我需要关注学生的认知水平,通过生动的例子和实际操作,帮助学生理解和掌握无理数的概念。

三. 说教学目标1.知识与技能:让学生了解无理数的概念,理解无理数与有理数的关系,掌握无理数的估算方法。

2.过程与方法:通过观察、操作、探索等活动,培养学生的抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 说教学重难点1.重点:无理数的概念和性质。

2.难点:无理数与有理数的关系,无理数的估算方法。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等。

2.教学手段:多媒体课件、实物模型、几何画板等。

六. 说教学过程1.导入:通过一个故事引入无理数的概念,激发学生的兴趣。

2.新课导入:讲解无理数的概念,通过例子让学生理解无理数的特点。

3.案例分析:分析一些实际问题,让学生了解无理数在生活中的应用。

4.小组讨论:让学生分组讨论无理数与有理数的关系,分享各自的观点。

5.课堂练习:让学生做一些相关的练习题,巩固所学知识。

6.总结:对本节课的内容进行总结,强调无理数的概念和性质。

7.拓展:介绍一些无理数的应用领域,激发学生的学习兴趣。

七. 说板书设计板书设计要清晰、简洁,能够突出无理数的概念和性质。

主要包括以下几个部分:1.无理数的概念2.无理数的特点3.无理数与有理数的关系4.无理数的估算方法八. 说教学评价通过课堂表现、练习题和小组讨论等方式对学生的学习情况进行评价。

北师大版数学八年级上册2.1认识无理数第1课时优秀教学案例

北师大版数学八年级上册2.1认识无理数第1课时优秀教学案例
在教学过程中,我注重启发式教学,引导学生主动探究、积极思考,培养他们的创新精神。同时,关注学生的个体差异,实施差异化教学,使每个学生都能在课堂上得到有效的锻炼。
二、教学目标
(一)知识与技能
1.让学生理解无理数的概念,知道无理数的特点,能够识别生活中的无理数实例。
2.使学生掌握无理数的性质,了解无理数与有理数的区别,能够运用性质进行简单的论证和判断。
2.教师对学生的学习情况进行评价,关注他们的个体差异,实施差异化教学,使每个学生都能得到有效的锻炼。
3.总结本节课的主要内容,强调无理数的概念、性质和运算方法。
(五)作业小结
1.布置课后作业,让学生运用所学知识解决实际问题,提高他们的实践能力。
2.通过作业的完成情况,了解学生对课堂所学知识的掌握程度,为今后的教学提供参考。
五、案例亮点
(二)讲授新知
1.引导学生提出问题:“无理数有什么特点?”,“无理数与有理数有什么区别?”等,激发他们的思考。
2.组织学生进行小组讨论,鼓励他们发表自己的观点和看法,培养他们的团队合作精神。
3.教师通过讲解,引导学生自主探究无理数的性质,如不能表示为两个整数的比值,不能精确表示等。
4.利用多媒体课件展示无理数的性质,让学生直观地感受无理数的特点。
3.鼓励学生在课后进行深入研究,拓展知识面,提高他们的创新能力。
五、教学反思
本节课通过生活实例引入无理数的概念,引导学生探究无理数的性质和运算方法,注重培养学生的实践能力和创新能力。在教学过程中,关注学生的个体差异,实施差异化教学,使每个学生都能得到有效的锻炼。同时,注重启发式教学,培养学生主动探究、积极思考的能力。但在时间安排上,可以更加合理,确保学生有足够的时间进行小组讨论和作业练习。

八年级数学上册《认识无理数》教案、教学设计

八年级数学上册《认识无理数》教案、教学设计
3.提高拓展题:完成课本第57页第4、5题,这两题涉及无理数的运算规则和估算方法,旨在提高学生的运算能力和逻辑思维能力。
4.思活中的应用有哪些?请举例说明。”让学生在课后继续思考,培养他们的观察力和创新意识。
5.自主学习任务:要求学生利用网络资源或图书馆资料,了解一位数学家在无理数领域的研究成果,并撰写一篇200字左右的简短报告,以提高学生的数学素养和自主学习能力。
4.利用信息技术手段,如几何画板、数学软件等,帮助学生直观地认识无理数,提高学习效果。
(三)情感态度与价值观
1.培养学生勇于探索、敢于质疑的精神,使他们认识到数学知识的无穷魅力;
2.增强学生对数学美的感知,激发他们对数学学科的兴趣和热爱;
3.培养学生严谨、细致的学习态度,提高他们分析问题和解决问题的能力;
2.教学内容:介绍勾股定理和无理数的定义。
过程设计:让学生回顾勾股定理,然后教师解释:“在勾股定理中,当一个直角三角形的两条直角边长度分别为1时,根据定理,对角线的长度为根号2。然而,根号2并不能精确表示为两个整数的比,这样的数就是无理数。”接着,正式引入无理数的定义。
(二)讲授新知
1.教学内容:讲解无理数的性质、分类及其表示方法。
2.探究活动:组织学生进行小组合作,探索无理数的性质和运算规则。通过讨论、验证和归纳,让学生在自主探究中发现问题、解决问题。
-设想一:利用数学游戏或竞赛,增加学习的趣味性,如“谁找到了最多的无理数?”
-设想二:设计思维导图,帮助学生梳理无理数的相关知识点,形成知识网络。
3.实践应用:将无理数知识应用于解决实际问题,如测量物体的长度、计算面积等,让学生在实际操作中深化对无理数的理解。
2.学生在四则运算中处理无理数的能力,引导他们运用已有知识解决新问题;

2.1 第1课时 认识无理数(教学设计——精品教案)

2.1  第1课时 认识无理数(教学设计——精品教案)

2.1认识无理数教学目标【知识与能力】感受无理数产生的实际背景和引入的必要性.【过程与方法】经历动手拼图过程,发展动手能力和探索精神.【情感态度价值观】通过现实中的实例,让学生认识到无理数与实际生活是紧密联系的,数学是来源于实践又应用于实践的.教学重难点【教学重点】感受无理数产生的背景.【教学难点】会判断一个数是不是无理数.教学准备两张边长为1的正方形纸片,多媒体课件.教学过程第一环节:情境引入导入一:七年级的时候,我们学习了有理数,知道了整数和分数统称为有理数,考虑下面的问题:(1)一个整数的平方一定是整数吗?(2)一个分数的平方一定是分数吗?[设计意图]做必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理,为后续环节的进行起了很好的铺垫作用.导入二:一个等腰直角三角形的直角边长为1,那么它的斜边长等于多少?利用勾股定理计算一下.【总结】我们在小学学了非负数,在七年级发现数不够用了,引入了负数,即把小学学过的正数、零扩充到有理数的范围,有理数包括整数和分数,那么有理数范围是否能满足我们实际生活的需要呢?第二环节:新知构建探究活动问题:x是整数(或分数)吗?2.把边长为1的两个小正方形,通过剪、拼,设法拼成一个大正方形,你会吗?出示教材P21图2 - 1.图2 - 1是两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.问题1:拼成后的正方形是什么样的呢?问题2:拼成后的大正方形面积是多少?问题3:若新的大正方形边长为a,a2=2,则:①a可能是整数吗?②a可能是分数吗?【总结】没有两个相等的整数的积等于2,也没有两个相等的分数的积等于2,因此a 不可能是有理数.[设计意图]选取客观存在的“无理数”实例,让学生深刻感受“数不够用了”.巧设问题背景,顺利引入本节课题.思路一(1)如图所示,以直角三角形的斜边为边的正方形的面积是多少? (2)设该正方形的边长为b,b满足什么条件?(3)b是有理数吗?【问题解答】(1)由勾股定理可知,直角三角形的斜边的平方为5,所以正方形的面积是5.(2) b2=5.(3)没有一个整数或分数的平方为5,也就是没有一个有理数的平方为5,所以b不是有理数.思路二在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段.【问题解答】构造直角三角形,利用勾股定理可得,长度为有理数的线段有AB,EF.长度不是有理数的线段有CD,GH,MN.[设计意图]创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣 ,让学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,了解学习“新数”的必要性.[知识拓展] 正方形网格中的线段既可以表示有理数,也可以表示有理数之外的数.数轴上的点可以表示有理数,也可以表示有理数之外的数.比如正方形OCBA 的对角线长度就不是有理数,数轴上的点P 表示的就是这个非有理数.网格上长方形(包括正方形)的对角线的长度都不一定是有理数.第三环节:课堂小结通过生活中的实例,证实了确实存在不是有理数的数.第四环节:检测反馈1.在直角三角形中两个直角边长分别为2和3,则斜边的长 ( )A .是有理数B .不是有理数C .不确定D .4答案:B2.下列面积的正方形,边长不是有理数的是 ( )A .16B .25C .2D .4答案:C3.在右面的正方形网格中,按照要求连接格点的线段:长度是有理数的线段为 ,长度不是有理数的线段为 .答案:略第五环节:布置作业一、教材作业【必做题】教材随堂练习及教材习题2.1第1题.【选做题】教材第22页习题2.1第2题.二、课后作业【基础巩固】1.在正方形网格中,每个小正方形的边长为1,则网格上的ΔABC 中,边长不是有理数的线段有 ,在图中再画一条边长不是有理数的线段.【能力提升】2.在任意两个有理数之间都有无数个有理数. 假设a ,b 是两个有理数,且a <b ,在a ,b 两数之间插入一个数为 .【拓展探究】3.把下列小数化成分数.(1)0.6;(2)0.7·;(3)0.3·4·.4.你会在下面的正方形网格(每个小正方形面积为1)中画出面积为10的正方形吗?试一试.【答案与解析】1.AB ,BC ,AC 略(解析:AB 2=42+12=17,BC 2=22+32=13,AC 2=22+42=20.)2.a+b 2(解析:答案不唯一,如插入a 和b 正中间的数.)3.解析:(1)0.6=35; (2)设0.7·=x ,则10x =7.7·,∴9x =7,从而x =79;(3)设0.3·4·=x ,则100x =34.3·4·,∴99x =34,从而x =3499.解:(1)0.6=35. (2) 0.7·=79. (3) 0.3·4·=3499.4.略板书设计2.1.1认识无理数1.拼接正方形.2.做一做.3.a ,b 存在,但不是有理数.教学设计反思成功之处大量事实证明,与生活贴得越近的东西就越容易引起学生的浓厚兴趣,更能激发学生学习的积极性.为此,本课时通过拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆质疑.不足之处在教学过程中,没有刻意安排一些环节,帮助理解能力差的学生加深对“新数”的理解. 再教设计设计更多的实例让理解能力差的学生较好地理解“新数”.为进一步学习“新数”,即第二课时的教学埋下伏笔.。

北师大版八年级上册2.1认识无理数(第2课时)教学设计

北师大版八年级上册2.1认识无理数(第2课时)教学设计
(二)教学设想
1.针对无理数概念的教学,我设想通过以下步骤进行:
a.利用历史故事或实际情境引入无理数的概念,如通过讲述古希腊数学家希伯斯发现√2是无理数的故事,激发学生的好奇心。
b.通过数轴展示无理数和有理数的关系,让学生直观感受无理数的无限不循环性。
c.引导学生通过自我探索和小组讨论,总结无理数的特点,形成对无理数的深刻理解。
1.教学内容:设计具有代表性的练习题,涵盖无理数的概念、性质、运算等方面,让学生在实际操作中巩固所学知识。
2.教学方法:采用个别指导、集体讲解等方式,帮助学生解决练习中的问题。
3.教学实施:学生独立完成练习题,教师对学生的答题情况进行点评,指出错误原因,引导学生总结经验教训。
(五)总结归纳
1.教学内容:对本节课学习的无理数的概念、性质、运算和应用等方面进行总结。
b.教师对学生的作业进行及时批改和反馈,针对学生的个性化问题给予指导,帮助学生提高。
4.学生的学习兴趣:部分学生对数学学习可能存在恐惧心理,教师应通过生动的教学情境、有趣的教学活动,激发学生的学习兴趣,使他们愿意主动投入到无理数的学习中。
5.学生的合作交流能力:在教学过程中,教师应注重培养学生的合作交流能力,让他们在小组讨论、互帮互助中提高解决问题的能力。
三、教学重难点和教学设想
(一)教学重难点
b.通过数学建模的方式,让学生尝试将无理数应用于解决更复杂的数学问题,提高他们的问题解决能力。
4.为了突破教学难点,我设想采用以下策略:
a.利用多媒体教学资源,如动画、视频等,帮助学生形象理解无理数的性质和运算规则。
b.开展小组合作学习,让学生在交流讨论中互相启发,共同解决难题。
c.鼓励学生提出疑问,给予个别指导,针对学生的个性化问题进行针对性教学。

八年级数学上册2.1认识无理数教案 新版北师大版

八年级数学上册2.1认识无理数教案 新版北师大版

八年级数学上册2.1认识无理数教案新版北师大版一. 教材分析本节课的主题是“认识无理数”,是无理数概念的学习。

无理数是实数的重要组成部分,与有理数相对应。

学生在学习有理数的基础上,进一步认识无理数,理解无理数的性质和无理数在实际生活中的应用。

教材通过引入π、√2等具体例子,让学生感受无理数的存在,并通过观察、实验、推理等方法,引导学生认识无理数的概念。

二. 学情分析八年级的学生已经学习了有理数,对实数的概念有了一定的了解。

但无理数作为实数的一个分支,与有理数有很大的不同,学生可能难以理解。

因此,在教学过程中,需要结合学生的认知水平,采用生动形象的例子和直观的演示,引导学生理解和接受无理数的概念。

三. 教学目标1.让学生理解无理数的概念,认识无理数的存在。

2.让学生掌握无理数的性质,了解无理数在实际生活中的应用。

3.培养学生的观察能力、实验能力和推理能力。

四. 教学重难点1.教学重点:无理数的概念和性质。

2.教学难点:无理数的理解和应用。

五. 教学方法采用问题驱动法、情境教学法、观察实验法、小组合作法等教学方法。

通过生动形象的例子和直观的演示,引导学生观察、实验、推理,从而理解和掌握无理数的概念。

六. 教学准备1.准备相关例题和练习题。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备相关教学素材,如π、√2等。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念,进而引出无理数的概念。

提问:“同学们,我们已经学习了有理数,那么你们知道有理数有哪些特点吗?今天我们将要学习一种新的数——无理数,你们猜猜无理数有哪些特点呢?”2.呈现(10分钟)利用多媒体展示无理数的定义和性质,让学生直观地感受无理数的存在。

呈现无理数的定义:“无理数是不能表示为两个整数比的数。

”呈现无理数的性质:“无理数是实数的一部分,与有理数相对应。

无理数不能精确表示,它们的小数部分是无限不循环的。

”3.操练(15分钟)让学生通过观察、实验、推理等方法,加深对无理数概念的理解。

认识无理数教学设计

认识无理数教学设计


教学难点 对拼图得出的面积为 2 的正方形边长 a 是个什么样的
数的探究过程。
(5)教学方法 (学法)
“引导探索法” (自主探究,合作学习,采用小组合作的方法, 教学环节 1 教学内容 创设情境引出质疑
教师活动 ①讲述毕达哥拉斯“万物皆数”的故事
②除了有理数外还有没有其他的数呢?
(6)教 学 过 程
为后面学习二次根式、二元一次方程打下基础,在初中数学中 占有重要地位。
①通过拼图活动,让学生感受无理数产生的实际背景
和引入的必要性
(3)教学目标
知识与技 能
②运用有理数的有关知识,通过逻辑推理判断一个数
是否为有理数
③结合勾股定理知识,会根据要求画线段
过程与方 法
引导学生进行合作交流,让其经历剪拼,观察、实验、
猜想、证明等数学活动过程,发展逻辑思维能力。
情感态度 与价值观
通过系列的数学活动,让学生充分体验数学源于生
活、寓于生活、用于生活的实际意义,激发学生学习
的热情。
①让学生参与无理数发现的过程,感知生活中无理数
(4) 教学重点难点 教学重点
存在的必要性和合理性 ②能够运用有理数的知识判断给出的数是否为有理
教学环节 3 教学内容 实例剖析加深理解
教学过程
教师活动 例 1:如图,以直角三角形的斜边为边的正 方形的面积是多少? 设该正方形的边长为 b,b 满足什么样条 件?③b 是有理数吗?
S ?
2
1
教师活动 例 2:.如图,正三角形的边长为 2,高为 h,
h 可能是整数吗?可能是分数吗?
A

h
教学环节 4
教师 王丽
2.1 认识无理数 (第 1 课时)教学设计

北师大版八年级数学上册:2.1《认识无理数》教案

北师大版八年级数学上册:2.1《认识无理数》教案

北师大版八年级数学上册:2.1《认识无理数》教案一. 教材分析《认识无理数》是北师大版八年级数学上册第二章的第一节内容。

本节课的主要内容是让学生了解无理数的概念,理解无理数与有理数的关系,以及掌握一些估算无理数大小方法。

教材通过引入π和√2等实际例子,帮助学生建立起无理数的直观印象,进而引导学生通过观察、思考、探究,发现无理数的特点和性质。

二. 学情分析学生在学习本节课之前,已经学习了有理数的相关知识,对数的概念有一定的了解。

但是,学生对无理数的概念和性质可能感到陌生,理解起来有一定难度。

因此,在教学过程中,教师需要关注学生的认知水平,通过生动具体的例子和实际操作,帮助学生理解和掌握无理数的概念。

三. 教学目标1.了解无理数的概念,理解无理数与有理数的关系。

2.能够运用逼近法估算无理数的大小。

3.培养学生的观察能力、思考能力和动手能力。

四. 教学重难点1.重点:无理数的概念和性质。

2.难点:理解无理数与有理数的关系,以及运用逼近法估算无理数的大小。

五. 教学方法1.采用情境教学法,通过引入实际例子,激发学生的学习兴趣。

2.采用探究教学法,引导学生通过观察、思考、动手操作,自主发现无理数的特点和性质。

3.采用讲解法,教师详细讲解无理数的概念和性质,引导学生理解和掌握。

4.采用小组合作学习法,鼓励学生互相讨论、交流,共同解决问题。

六. 教学准备1.准备相关课件和教学素材。

2.准备计算器、纸张等学习工具。

七. 教学过程1.导入(5分钟)利用课件展示π和√2的实际应用场景,如圆的周长和物体尺寸的测量等,引发学生对无理数的兴趣。

同时,提出问题:“你们认为π和√2是什么类型的数?”让学生思考并发表观点。

2.呈现(15分钟)教师讲解无理数的概念,通过PPT展示无理数的定义和性质,让学生了解无理数的特点。

同时,举例说明无理数与有理数的关系,如π和√2都是无理数,而2和3是有理数。

3.操练(10分钟)教师提出问题:“如何估算无理数的大小?”引导学生运用逼近法估算无理数的大小。

北师大版数学八年级上册2.1.1认识无理数教学设计

北师大版数学八年级上册2.1.1认识无理数教学设计
北师大版数学八年级上册2.1.1认识无理数教学设计
一、教学目标
(一)知识与技能
1.理解无理数的概念,掌握无理数与有理数的区别和联系,能够识别常见的无理数,例如π和√2等。
2.学会使用数轴比较无理数的大小,能够进行无理数的近似计算,提高学生的数学运算能力。
3.掌握无理数的基本性质,如无理数的不可约性、无理数与有理数的运算规律等,为后续学习打下基础。
1.分组讨论:将学生分成小组,针对以下问题进行讨论:
-无理数在实际生活中的应用例子;
-无理数与有理数的运算规律;
-无理数证明的方法。
2.小组分享:各小组派代表分享讨论成果,其他小组进行补充和评价。教师在此过程中,引导学生相互学习,相互借鉴,提高课堂氛围。
(四)课堂练习
1.设计具有针对性的练习题,涵盖无理数的概念、性质、运算等方面,让学生在实践中巩固所学知识。
2.无理数的运算:通过具体例题,讲解无理数与有理数的加减乘除运算规律,以及无理数的大小比较方法。同时,强调在计算过程中,如何进行近似计算,提高学生的运算能力。
3.无理数的证明:引导学生通过合情推理和严谨证明来理解无理数的存在。以根号2为例,使用反证法进行证明,让学生感受数学的严谨性。
(三)学生小组讨论
(二)过程与方法
在教学过程中,采用以下方法使学生达到以上目标:
1.采用情境引入法,通过实际例子或故事激发学生对无理数的兴趣,引导学生主动探究无理数的奥秘。
2.利用数轴、图片等直观教具,帮助学生形象地理解无理数的概念,培养学生的直观想象能力。
3.设计小组讨论、合作探究等活动,让学生在交流互动中掌握无理数的性质和运算规律,提高学生的合作能力和解决问题的能力。
2.学生在数学运算方面,对无理数的处理可能存在困难。教师应关注学生的运算过程,及时纠正错误,指导学生掌握无理数的运算规律。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

认识无理数 学 科 数学 课题 2.1认识无理数 (一)
授课教师
教学 目标 通过拼图活动,让学生感受无理数产
生的背景和学习它的必要性。

重点 对无理数的认识。

德育 目标 丰富无理数的实际背景,使学生体会到无
理数在实际生活中大量存在,并对无理数的产生感性认识。

难点 无理数产生的实际背景和学习它的必要性。

1.什么叫有理数?举例说明。

2.勾股定理的内容是什么?若Rt ⊿ABC 的两直角边是5、12,那么它的斜边是多少
教学过程 课堂笔记
二、互动导学 随着人类的认识不断发展,人们发现,现实社会生活中确实存在不同于有理数的数,本章我们将学习无理数、实数、平方根、立方根的概念。

学习利用估算或借助计数器求一个无理数的近似值,并解决有关的实际问题 拼图活动(课本32页) 把准备好的两块边长为1的正方形,通过剪一剪、拼一拼,拼成一个大的正方形。

(1)设大正方形的边长为a ,a 满足条件是什么? (2)a 可能是整数吗? (3)a 可以是以2为分母的分数吗?a 可以是以3为分母的分数吗?说说你的理由。

(4)a 可能是分数吗?说说你的理由,与同伴交流。

,93,42,11222===越来越大,所以a 不可能是整数
,41
)21
(2= 94
)32(2=结果都是分数,所以a 不可能是分数”
事实上,在等式22=a 中,a 既不是整数也不是分数,所以a 不是有理数。

说明社会生活中存在着不是有理数的数。

做一做
1.课本P32页“做一做”内容
(1)以直角三角形的斜边为边的正方形的面积是多少?
(2)设正方形的边长为b ,b 满足什么条件?
(3)b 是有理数吗? 生活中的确存在一些不是有理数的数。

三:当堂练习
一、填空题
1.在⊿ABC 中,∠C = 90°,若4,3==b a ,则c =_______;
2.用长cm 4,宽cm 3的邮票300枚不重不漏摆成一个正方形,这个正方形的边长等
于________cm ; 3.平方等于16的数是 ;
4.如果492=a ,则=a 。

5.如果,4,122==b a 则=+b a 。

6.如右图:以直角三角形斜边为边的正方形
面积是 ;
二、选择题
1. 边长为1的正方形的对角线长是( )
A. 整数
B.分数
C. 有理数
D. 不是有理数
2.下面各正方形的边长不是有理数的是( )
A.面积为25的正方形
B.面积为169
的正方形
C.面积为27的正方形
D.面积为1.44的正方形
三、总结:
A
C B
F
E
12。

相关文档
最新文档