最新日照市中考数学试题及答案

合集下载

山东省日照市中考数学试卷

山东省日照市中考数学试卷

山东省日照市中考数学试卷参考答案与试题解析一、选择题(共大题共12小题,其中1-8题每小题3分,9-12题每小题3分,满分40分.每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置上)1.(3分)(2014•日照)在已知实数:﹣1,0,,﹣2中,最小的一个实数是()..C.4.(3分)(2014•日照)某养殖场2013年底的生猪出栏价格是每千克a元,受市场影响,2014年第一季度出栏价格平均每千克下降了15%,到了第二季度平均没千克比第一季度又上升了20%,则第6.(3分)(2014•日照)李大伯在承包的果园里种植了100棵樱桃树,今年已经进入收获期,收获7.(3分)(2014•日照)关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2BD8.(3分)(2014•日照)如图,正六边形ABCDEF是边长为2cm的螺母,点P是FA延长线上的点,在A、P之间拉一条长为12cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为()运动的路径长为:++++(解方程组得,两直线的交点坐标为(,>10.(4分)(2014•日照)如图,已知△ABC的面积是12,点E、I分别在边AB、AC上,在BC边上依次作了n个全等的小正方形DEFG,GFMN,…,KHIJ,则每个小正方形的边长为().C.x=,11.(4分)(2014•日照)如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分.已知抛物线的对称轴为x=2,与x轴的一个交点是(﹣1,0).有下列结论:①abc>0;②4a﹣2b+c<0;③4a+b=0;④抛物线与x轴的另一个交点是(5,0);⑤点(﹣3,y1),(6,y2)都在抛物线上,则有y1<y2.其中正确的是()=212.(4分)(2014•日照)下面是按照一定规律排列的一列数:第1个数:﹣(1+);第2个数:﹣(1+)×(1+)×(1+);第3个数:﹣(1+)×(1+)×(1+)×(1+)×(1+);…﹣,由)1+)1+)))1+﹣)][1+﹣,个数分别为﹣,﹣,﹣,﹣,其中最大的数为﹣,即第二、填空题(共4小题,每小题4分,满分16分,不需写出解答过程,请将答案直接写在答题卡相应的位置上)13.(4分)(2014•日照)分解因式:x3﹣xy2=x(x+y)(x﹣y).14.(4分)(2014•日照)小明从市环境监测网随机查阅了若干天的空气质量数据作为样本进行统计,分别绘制了如图的条形统计图和扇形统计图,根据图中提供的信息,可知扇形统计图中表示空气质量为优的扇形的圆心角的度数为108°.=30×15.(4分)(2014•日照)已知a>b,如果+=,ab=2,那么a﹣b的值为1.+=16.(4分)(2014•日照)如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=.=.三、解答题(本大题共6小题,满分64分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(8分)(2014•日照)为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?﹣18.(8分)(2014•日照)在某班“讲故事”比赛中有一个抽奖活动,活动规则是:只有进入最后决赛的甲、乙、丙三位同学,每人才能获得一次抽奖机会.在如图所示的翻奖牌正面的4个数字中选一个数字,选中后就可以得到该数字后面的相应奖品:前面的人选中的数字,后面的人就不能再选择数字了.(1)请用树状图(或列表)的方法求甲、乙二人得到的奖品都是计算器的概率.(2)有的同学认为,如果甲先翻奖牌,那么他得到篮球的概率会大些,这种说法正确吗?请说明理由.;===19.(10分)(2014•日照)如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC 边上任意一点,把EA绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;(2)当∠BAE=30°时,求CF的长.×.,20.(10分)(2014•日照)如图,为了绿化小区,某物业公司要在形如五边形ABCDE的草坪上建一个矩形花坛PKDH.已知:PH∥AE,PK∥BC,DE=100米,EA=60米,BC=70米,CD=80米.以BC所在直线为x轴,AE所在直线为y轴,建立平面直角坐标系,坐标原点为O.(Ⅰ)求直线AB的解析式.(Ⅱ)若设点P的横坐标为x,矩形PKDH的面积为S.(1)用x表示S;(2)当x为何值时,S取最大值,并求出这个最大值.,+=21.(14分)(2014•日照)阅读资料:小明是一个爱动脑筋的学生,他在学习了有关圆的切线性质后,意犹未尽,又查阅到了与圆的切线相关的一个问题:如图1,已知PC是⊙O的切线,AB是⊙O的直径,延长BA交切线PC与P,连接AC、BC、OC.因为PC是⊙O的切线,AB是⊙O的直径,所以∠OCP=∠ACB=90°,所以∠B=∠2.在△PAC与△PCB中,又因为:∠P=∠P,所以△PAC∽△PCB,所以=,即PC2=PA•PB.问题拓展:(Ⅰ)如果PB不经过⊙O的圆心O(如图2)等式PC2=PA•PB,还成立吗?请证明你的结论;综合应用:(Ⅱ)如图3,⊙O是△ABC的外接圆,PC是⊙O的切线,C是切点,BA的延长线交PC于点P;(1)当AB=PA,且PC=12时,求PA的值;(2)D是BC的中点,PD交AC于点E.求证:=.由平行线分线段成比例定理即可求得=,=,由平行线分线段成比例定理即可求得==6.=,=.=,=.==,.=,=.=,=.==,.22.(14分)(2014•日照)如图1,在菱形OABC中,已知OA=2,∠AOC=60°,抛物线y=ax2+bx+c (a≠0)经过O,C,B三点.(Ⅰ)求出点B、C的坐标并求抛物线的解析式.(Ⅱ)如图2,点E是AC的中点,点F是AB的中点,直线AG垂直BC于点G,点P在直线AG 上.(1)当OP+PC的最小值时,求出点P的坐标;(2)在(1)的条件下,连接PE、PF、EF得△PEF,问在抛物线上是否存在点M,使得以M,B,C为顶点的三角形与△PEF相似?若存在,请求出点M的坐标;若不存在,请说明理由.OC=BC=BD=2,,,所以,BGQ=,即∠,∠2,=32点的坐标为(3+,顶点为,,,,x=2×,,∠,,,BGQ==,2。

2023年山东省日照市中考数学试卷(含答案)055140

2023年山东省日照市中考数学试卷(含答案)055140

2023年山东省日照市中考数学试卷试卷考试总分:120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )1. 某地区一月份的平均气温为,三月份的平均气温为,则三月份的平均气温比一月份的平均气温高( )A.B.C.D.2. 下列图形中,既是轴对称图形,又是中心对称图形的是( )A.等腰三角形B.平行四边形C.等边三角形D.矩形3. 年,中国青年科学家李栋首创的新型超分辨成像技术,使显微镜的分辨率达到了其中数据用科学计数法表示是( )A.B.C.D.4. 下图是由个相同的小立方体搭成的几何体,则下列说法正确的是( )A.主视图的面积最大B.俯视图的面积最大C.左视图的面积最大D.三个视图面积一样大5.如图,直线,则的度数是( )−19C ∘2C ∘17C∘21C∘−17C∘−21C∘20180.000000097m 0.0000000970.97×10−79.7×10−80.97×1079.7×1086a//b ∠AA.B.C.D.6. 若为正整数,则表示的是( )A.个相加B.个相加C.个相乘D.个相乘7. 在中国数学名著《九章算术》中,有这样一个问题:“今有共买牛,七家共出一百九十,不足三百三十;九家共出二百七十,盈三十.问家数、牛价各几何?”大意是:几家人凑钱合伙买牛,如果每家共出元,那么还缺少元钱;如果每家共出元,又多了元钱.问共有多少人家,每头牛的价钱是多少元?若设有户人家,则可列方程为( )A.B.C.D.8. 为了有效地利用土地,安徽省各大中城市兴建高楼,如图,小明在某高楼前点测得楼顶的仰角为,向高楼前进米到点,又测得仰角为,则该高楼的高度大约为( )A.米B.米C.米D.米9. 在中,,,,则的长是( )A.B.C.D.10. 已知关于的方式方程的解是非负数,那么的取值范围是( )A.28∘31∘39∘42∘k ()k 322()k 33()k 22()k 35k 7190330927030x x+330=x−3019072709x−330=x+3019072709+330=−307×190x 9×270x−330=+307×190x 9×270x D 30∘60C 45∘821635270Rt △ABC ∠C =90∘a =1c =2b 13–√25–√x =3x−a x−313a a >1B.且C.且D.11. 在抛物线上有,和三点,若抛物线与轴的交点在正半轴上,则,和的大小关系为 A.B.C.D.12. 如图,智能机器人从平面直角坐标系的原点出发,向上走个单位长度到达点,再向左走个单位长度到达点,再向下走个单位长度到达点,再向右走个单位长度到达点,再向上走个单位长度到达点,…以此规律走下去,当智能机器人到达点时,它的坐标为( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )13. 因式分解:=________.14. 已知点的坐标为在第二象限,则的取值范围是_______.15. 如图,双曲线与直线交于点,,并且点的坐标为,点的纵坐标为.根据图象信息可得关于的方程的解为________,________.16. 如图,内接于,平分交边于点,交于点,过点作a ≥1a ≠3a ≥1a ≠9a ≤1y=a −2ax−3a x 2A(−0.5,)y 1B(2,)y 2C(3,)y 3y y 1y 2y 3()<<y 2y 1y 3<<y 3y 2y 1<<y 3y 1y 2<<y 1y 2y 301A 11A 22A 32A 43A 5A 2021(505,506)(−505,505)(506,−506)(−506,506)x−4x 3P (a −2,3a)a y =m x y =kx+b M N M (1,3)N −1x =kx+b m x =x 1=x 2△ABC ⊙O AD ∠BAC BC E ⊙O D D ⊙O的切线,作作于点,设的半径为.则下列结论正确的是________(写出所有正确结论的序号)①;②;③;④若,则.”B 卡 ..________第题图三、 解答题 (本题共计 6 小题 ,每题 12 分 ,共计72分 )17. 计算和解方程.;.18. 某工厂甲、乙两个部门各有员工人,为了了解这两个部门员工的生产技能情况,相关部门进行了抽样调查,过程如下:【收集数据】从甲、乙两个部门各随机抽取名员工,进行了生产技能测试,测试成绩(百分制,单位:分)如下:【整理、描述数据】按分数段整理以上两组样本数据后,绘制甲、乙两部门员工成绩的频数分布图(如图)(说明:测试成绩分及以上为优秀,分为良好,分为合格)【分析数据】两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲乙________________________请将上述不完整的频数分布图补充完整;请分别求出乙部门员工测试成绩的平均数,中位数和众数填入表中;请根据以上统计过程进行下列推断;①估计乙部门生产技能优秀的员工约有________人;②你认为甲,乙哪个部门员工的生产技能水平较高,请说明理由,(至少从两个不同的角度说明推断的合理性) 19. 如图,在中,对角线与相交于点,=,过点作交于点.(1)求证:;(2)若=,,求线段的长. 20. 用火柴棒拼成如图所示的几何图形.倒由根火柴棒拼成,图由根火柴棒拼成,图由根火柴棒拼成A AF ⊥BC F ⊙O R,AF =h MN//BC △BDE ∼△BCA AB ⋅AC =2R ⋅h ∠BAC =2a =2cosαAB+AC ADA o TE F Yc M D N16(1)sin −++tan 60∘12−−√4()12−245∘(2)5+3x =0x 2200208070−7960−6978.3577.575(1)(2)(3)▱ABCD AC BD O ∠CAB ∠ACB B BE ⊥AB AC E AC ⊥BD AB 14cos ∠CAB =78OE 16211316⋯⋯(1)图由________根火柴棒拼成.(2)根据规律猜想并用含的代数式表示图火柴棒的根数.21. 如图,在四边形中,,为中点,过作交于点,连接交于点,连接交于点,若,求证:.22. 如图,已知抛物线=经过点,,交轴于另一点,其顶点为.(1)求抛物线的解析式;(2)点为抛物线上一点,直线交轴于点,若与相似,求点坐标;(3)如果点在轴上,点在直线上,那么在抛物线上是否存在点,使得以,,,为顶点的四边形是菱形?若存在,请求出菱形的周长;若不存在,请说明理由.4n n ABFC ∠BAC =∠BFC =∠BCN =90∘E BC C CN ⊥BC AF N EN BF M CM AN G AB =AF MG =GC y −+bx+c x 2A(−3,0)C(0,3)x B D P CP x E △CAE △OCD P F y M AC N C F M N参考答案与试题解析2023年山东省日照市中考数学试卷试卷一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )1.【答案】B【考点】有理数的减法【解析】根据题意用三月份的平均气温减去一月份的平均气温列式计算求解.【解答】解:.故选.2.【答案】D【考点】中心对称图形轴对称图形【解析】此题暂无解析【解答】此题暂无解答3.【答案】B【考点】科学记数法—表示较小的数【解析】此题暂无解析【解答】解:用科学计数法表示是.故选.4.2−(−19)=2+19=21C∘B 0.0000000979.7×10−8BB【考点】简单组合体的三视图【解析】此题暂无解析【解答】解:主视图是第一层三个小正方形,第二层中间一个小正方形,主视图的面积是;俯视图是第一层左边一个小正方形,第二层三个小正方形,第三层中间一个小正方形,俯视图的面积是;左视图第一层三个小正方形,第二层中间一个小正方形,左视图的面积是.所以俯视图的面积最大.故选.5.【答案】C【考点】三角形的外角性质平行线的性质【解析】此题暂无解析【解答】解:∵,∴.∵,∴.故选.6.【答案】C【考点】幂的乘方及其应用【解析】幂的乘方,底数不变,指数相乘,据此判断即可.【解答】解:,即表示的是个相乘.故选.7.【答案】A454B a//b ∠1=70∘∠1=∠A+31∘∠A =−=70∘31∘39∘C =⋅()k 32k 3k 3()k 322()k 3C由实际问题抽象出一元一次方程数学常识【解析】设有户人家,根据题意可得每头牛的价钱是,由每头牛的价钱不变可得方程.【解答】设有户人家,则.8.【答案】A【考点】解直角三角形的应用-仰角俯角问题【解析】由于是和的公共直角边,可在中,根据的正切值,用表示出的长;同理可在中,根据的度数,用表示出的长;根据,即可求得的长.【解答】解:设楼高为.则,在中有:.解得.故选.9.【答案】B【考点】勾股定理【解析】根据勾股定理即可求解.【解答】解:在中,,,,∴.故选.10.【答案】C【考点】x x+330x−3019072709x x+330=x−3019072709AB Rt △ABD Rt △ABC Rt △ABC ∠ACB AB BC Rt △ABD ∠D AB BD CD =BD−BC AB AB x AB =CB =x Rt △ADB =DB AB 60+x x =tan60°=3–√x ≈82m A Rt △ABC ∠C =90∘a =1c =2b ===−c 2a 2−−−−−−√−2212−−−−−−√3–√B分式方程的解解一元一次不等式【解析】根据分式方程的解法即可求出的取值范围.【解答】,,∴,由于该分式方程有解,令代入,∴,∵该方程的解是非负数解,∴,∴,∴的范围为:且,11.【答案】C【考点】二次函数图象上点的坐标特征【解析】根据解析式得出抛物线的对称轴,由抛物线与轴的交点在正半轴可得,即抛物线开口向下,根据二次函数的性质可得答案.【解答】解:∵抛物线的对称轴为,且抛物线与轴的交点在正半轴上,∴,即,∴当时,随的增大而增大;当时,随的增大而减小,且抛物线上的点离对称轴的水平距离越远,函数值越小,∴.故选.12.【答案】A【考点】规律型:点的坐标【解析】此题暂无解析【解答】解:观察图象可知,下标为偶数时在二四象限,下标为奇数时在一三象限,a 3(3x−a)=x−39x−3a =x−38x =3a −3x =3a −38x =3a −38x−3≠0a ≠9≥03a −38a ≥1a a ≥1a ≠9y a <0x =−=1−2a 2ay −3a >0a <0x <1y x x >1y x <<y 3y 1y 2C除以余数是的在第一象限,除以余数是的在第三象限,观察图形和已知条件可得点的坐标为,的坐标为的坐标为,的坐标为,每个点一循环.因为,所以在第一象限,坐标为.故选.二、 填空题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )13.【答案】【考点】提公因式法与公式法的综合运用【解析】此题暂无解析【解答】此题暂无解答14.【答案】【考点】点的坐标解一元一次不等式组【解析】根据第二象限的横坐标小于零,纵坐标大于零,可得不等式组,根据解不等式组,可得答案.【解答】解:由点在第二象限,得解得.故答案为:.15.【答案】,【考点】反比例函数与一次函数的综合【解析】首先把点代入中,求出反比例函数解析式,再利用反比例函数解析式求出点坐标,求关于的方程的解就是看一次函数与反比例函数图象交点横坐标就是的值.4143A 1(0,1)A 2(−1,1),A 3(−1,−1)A 4(1,−1)42021=505×4+1A 2021(505,506)A x(1+2x)(1−2x)0<a <2P (a −2,3a){a −2<0,3a >0,0<a <20<a <2−31M y =m x N x =kx+b m x x解:∵在反比例函数图象上,∴,∴反比例函数解析式为:.∵也在反比例函数图象上,点的纵坐标为.∴,∴,∴关于的方程的解为:;.故答案为:;.16.【答案】【考点】切线的判定相似三角形的性质与判定勾股定理相似三角形的判定与性质圆的综合题【解析】此题暂无解析【解答】三、 解答题 (本题共计 6 小题 ,每题 12 分 ,共计72分 )17.【答案】解:原式.,因式分解得:,∴或,即,.【考点】特殊角的三角函数值实数的运算零指数幂、负整数指数幂解一元二次方程-因式分解法【解析】直接特殊角的三角函数值,根式,负指数幂化简,即可得到答案;因式分解即可解出方程.M(1,3)m=1×3=3y =3x N N −1x =−3N(−3,−1)x =kx+b m x −31−31(1)=−++13–√223–√422=4+1=5(2)5+3x =0x 2x(5x+3)=0x =05x+3=0=0x 1=−x 235(1)(2)解:原式.,因式分解得:,∴或,即,.18.【答案】解:如图,平均数:中位数:将这组数据从小到大排列第,个数据分别是,,则中位数是,众数:这组数据出现次数最多的数是,则众数是,填表如下:部门平均数中位数众数甲乙①估计乙部门生产技能优秀的员工人数是人.②甲:、甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;、甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高;乙:、乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;、乙部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高.【考点】频数(率)分布直方图算术平均数中位数众数【解析】此题暂无解析【解答】解:如图,(1)=−++13–√223–√422=4+1=5(2)5+3x =0x 2x(5x+3)=0x =05x+3=0=0x 1=−x 235(1)(2)×(92+71+83+81+72+81+91+83+75+82120+80+81+69+81+73+74+82+80+70+59)=781011808180.5818178.3577.5757880.581(3)200×=12012201∘2∘1′2∘(1)平均数:中位数:将这组数据从小到大排列第,个数据分别是,,则中位数是,众数:这组数据出现次数最多的数是,则众数是,填表如下:部门平均数中位数众数甲乙①估计乙部门生产技能优秀的员工人数是人.②甲:、甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;、甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高;乙:、乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;、乙部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高.19.【答案】∵=,∴=,∴是菱形.∴;在中,,=,∴=,在中,,=,∴=,∴==.【考点】平行四边形的性质解直角三角形菱形的判定与性质【解析】(1)根据=利用等角对等边得到=,从而判定平行四边形是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在中和在中求得和,从而利用=求解即可.【解答】∵=,∴=,∴是菱形.∴;(2)×(92+71+83+81+72+81+91+83+75+82120+80+81+69+81+73+74+82+80+70+59)=781011808180.5818178.3577.5757880.581(3)200×=12012201∘2∘1′2∘∠CAB ∠ACB AB CB ▱ABCD AC ⊥BD Rt △AOB cos ∠CAB ==AO AB 78AB 14AO 14×=78494Rt △ABE cos ∠EAB ==AB AE 78AB 14AE =AB 8716OE AE−AO 16−=494154∠CAB ∠ACB AB CB ABCD Rt △AOB Rt △ABE AO AE OE AE−AO ∠CAB ∠ACB AB CB ▱ABCD AC ⊥BD ∠CAB ==AO 7在中,,=,∴=,在中,,=,∴=,∴==.20.【答案】.解:由得出的规律可知:图火柴棒的根数为:.【考点】规律型:图形的变化类【解析】本题考查了图形的变化规律.【解答】解:由图可知:图由根火柴棒拼成,图由根火柴棒拼成,图由根火柴棒拼成……,∴由此可以得出规律,图形标号每增加,就增加根火柴,∴根据此规律可得出图形的火柴棒的根数为:,故答案为:.解:由得出的规律可知:图火柴棒的根数为:.21.【答案】证明:如图,过点作于,连接,则有.∵,∴,,∴、、、四点共圆,、、、四点共圆,∴,,∴,∴,∴.∵、、、四点共圆,,∴是该圆的直径.∵为中点,∴,点为该圆的圆心.∵,∴根据垂径定理可得.∴.又∵,∴,∴.∵、、、四点共圆,∴.∵,∴.Rt △AOB cos ∠CAB ==AO AB 78AB 14AO 14×=78494Rt △ABE cos ∠EAB ==AB AE 78AB 14AE =AB 8716OE AE−AO 16−=494154(1)21(2)(1)n 6+5(n−1)=5n+1(1)1621131615416+5=2121(2)(1)n 6+5(n−1)=5n+1E EH ⊥AF H CH ∠EHN =90∘∠BAC =∠BFC =∠BCN =90∘∠BAC +∠BFC =180∘∠EHN =∠ECN =90∘A B F C E H C N ∠CAF =∠CBF ∠CHN =∠CEN ∠AHC =∠BEM △AHC ∽△BEM =AC BM AH BE A B F C ∠BAC =90∘BC E BC BE =EC =BC 12E EH ⊥AF AH =HF =AF 12==AC BM AH BE AF BC ∠CAF =∠MBC △CAF ∽△MBC ∠ACF =∠BMC A B F C ∠ACF +∠ABF =180∘∠BMC +∠FMC =180∘∠ABF =∠FMC∵,∴,∴,∴.∵,∴,,∴,∴,∴.【考点】四点共圆圆的综合题【解析】如图,过点作于,连接,易证、、、四点共圆,、、、四点共圆,根据圆周角定理可得,,从而可得,即可得到,则有.易证点为过、、、的圆的圆心,根据垂径定理可得.即可得到,由此可证到,则有.根据圆内接四边形对角互补可得,根据平角的定义可得,根据等角的补角相等可得.由可得,从而可得,则有.由可得,,根据等角的余角相等可得,则有,即可得到.【解答】证明:如图,过点作于,连接,则有.∵,∴,,∴、、、四点共圆,、、、四点共圆,∴,,∴,∴,∴.∵、、、四点共圆,,∴是该圆的直径.∵为中点,∴,点为该圆的圆心.∵,∴根据垂径定理可得.∴.又∵,∴,∴.∵、、、四点共圆,∴.∵,∴.∵,∴,∴,∴.∵,∴,,∴,∴,∴.22.AB =AF ∠ABF =∠AFB ∠FMC =∠AFB GM =GF ∠MFC =90∘∠MFG+∠GFC =90∘∠FMC +∠FCM =90∘∠GFC =∠FCM GF =GC GM =GF =GC E EH ⊥AF H CH A B F C E H C N ∠CAF =∠CBF ∠CHN =∠CEN ∠AHC =∠BEM △AHC ∽△BEM =AC BM AH BE E A B F C AH =HF =AF 12==AC BM AH BE AF BC △CAF ∽△MBC ∠ACF =∠BMC ∠ACF +∠ABF =180∘∠BMC +∠FMC =180∘∠ABF =∠FMC AB =AF ∠ABF =∠AFB ∠FMC =∠AFB GM =GF ∠MFC =90∘∠MFG+∠GFC =90∘∠FMC +∠FCM =90∘∠GFC =∠FCM GF =GC GM =GF =GC E EH ⊥AF H CH ∠EHN =90∘∠BAC =∠BFC =∠BCN =90∘∠BAC +∠BFC =180∘∠EHN =∠ECN =90∘A B F C E H C N ∠CAF =∠CBF ∠CHN =∠CEN ∠AHC =∠BEM △AHC ∽△BEM =AC BM AH BE A B F C ∠BAC =90∘BC E BC BE =EC =BC 12E EH ⊥AF AH =HF =AF 12==AC BM AH BE AF BC ∠CAF =∠MBC △CAF ∽△MBC ∠ACF =∠BMC A B F C ∠ACF +∠ABF =180∘∠BMC +∠FMC =180∘∠ABF =∠FMC AB =AF ∠ABF =∠AFB ∠FMC =∠AFB GM =GF ∠MFC =90∘∠MFG+∠GFC =90∘∠FMC +∠FCM =90∘∠GFC =∠FCM GF =GC GM =GF =GC【答案】∵抛物线=经过点,,∴,解得.故此抛物线解析式为:=;∵==,∴顶点.∵,,,∴,==,,==,∴点只能在点左边.①若,则,∴=,∴=,∴.∵,∴.联立,解得,(舍去),∴;②若,则,∴=,∴=,∴.∵,∴.联立,解得,(舍去),∴.因此,或;在抛物线上存在点,使得以,,,为顶点的四边形是菱形.①若为对角线,则与互相垂直平分时,四边形为菱形,∵===,∴=,∴,四边形为正方形,∴点与顶点重合,∵,∴,,∴菱形的周长为;②若为菱形的一边,则,,=时,四边形为菱形.过作于,设直线交轴于,,则,.∴===,∵,=,∴==,∴,又∵==,∴,y −+bx+c x 2A(−3,0)C(0,3){ −9−3b +c =0c =3{ b =−2c =3y −−2x+3x 2y −−2x+3x 2−(x+1+4)2D(−1,4)A(−3,0)C(0,3)D(−1,4)AC =32–√OA OC 3CD =2–√∠OCD ∠CAE 135∘E A △CAE ∽△DCO ==CA AE DC CO 2–√3AE 9OE 12E(−12,0)C(0,3)=x+3y CE 14 y =−−2x+3x 2=x+3y CE 14 =−x 194=y 13916{ =0x 2=3y 2P(−,)943916△CAE ∽△OCD ==CA AE OC CD 32–√AE 2OE 5E(−5,0)C(0,3)=x+3y CE 35 y =−−2x+3x 2=x+3y CE 35 =−x 1135=y 13625{ =0x 2=3y 2P(−,)1353625P(−,)943916(−,)1353625N C F M N CF CF NM CNFM ∠NCF ∠FCM ∠ACO 45∘∠NCM 90∘CN ⊥CM CNFM N D D(−1,4)N(−1,4)CN =2–√CNFM 42–√CF MN //CF CM//FN NM NF CNFM F FH ⊥NM H NM x G N(m,−−2m+3)m 2M(m,m+3)G(m,0)NM |m+3−(−−2m+3)|m 2|+3m|m 2NF CM//FN ∠ACO 45∘∠NFH ∠FNH 45∘NF =FH 2–√FH OG |m||+3m|=|m|m 22–√−3−–√−3+–√∴=或=,∴,或,∴菱形周长为或因此,存在菱形,其周长为或或.【考点】二次函数综合题【解析】(1)根据待定系数法可求抛物线的解析式;(2)分两种情况:①若;②若;进行讨论即可求解;(3)分两种情形:①若为对角线,则与互相垂直平分时,四边形为菱形;②若为菱形的一边,则,,=时,四边形为菱形;进行讨论即可解决问题.【解答】∵抛物线=经过点,,∴,解得.故此抛物线解析式为:=;∵==,∴顶点.∵,,,∴,==,,==,∴点只能在点左边.①若,则,∴=,∴=,∴.∵,∴.m −3−2–√m −3+2–√NF =3+22–√NF =3−22–√12+82–√12−82–√42–√8+122–√12−82–√△CAE ∽△DCO △CAE ∽△OCD CF CF NM CNFM CF MN //CF CM//FN NM NF CNFM y −+bx+c x 2A(−3,0)C(0,3){ −9−3b +c =0c =3{ b =−2c =3y −−2x+3x 2y −−2x+3x 2−(x+1+4)2D(−1,4)A(−3,0)C(0,3)D(−1,4)AC =32–√OA OC 3CD =2–√∠OCD ∠CAE 135∘E A △CAE ∽△DCO ==CA AE DC CO 2–√3AE 9OE 12E(−12,0)C(0,3)=x+3y CE 14y =−−2x+32联立,解得,(舍去),∴;②若,则,∴=,∴=,∴.∵,∴.联立,解得,(舍去),∴.因此,或;在抛物线上存在点,使得以,,,为顶点的四边形是菱形.①若为对角线,则与互相垂直平分时,四边形为菱形,∵===,∴=,∴,四边形为正方形,∴点与顶点重合,∵,∴,,∴菱形的周长为;②若为菱形的一边,则,,=时,四边形为菱形.过作于,设直线交轴于,,则,.∴===,∵,=,∴==,∴,又∵==,∴,∴=或=,∴,或,∴菱形周长为或因此,存在菱形,其周长为或或.y =−−2x+3x 2=x+3y CE 14 =−x 194=y 13916{ =0x 2=3y 2P(−,)943916△CAE ∽△OCD ==CA AE OC CD 32–√AE 2OE 5E(−5,0)C(0,3)=x+3y CE 35 y =−−2x+3x 2=x+3y CE 35 =−x 1135=y 13625{ =0x 2=3y 2P(−,)1353625P(−,)943916(−,)1353625N C F M N CF CF NM CNFM ∠NCF ∠FCM ∠ACO 45∘∠NCM 90∘CN ⊥CM CNFM N D D(−1,4)N(−1,4)CN =2–√CNFM 42–√CF MN //CF CM//FN NM NF CNFM F FH ⊥NM H NM x G N(m,−−2m+3)m 2M(m,m+3)G(m,0)NM |m+3−(−−2m+3)|m 2|+3m|m 2NF CM//FN ∠ACO 45∘∠NFH ∠FNH 45∘NF =FH 2–√FH OG |m||+3m|=|m|m 22–√m −3−2–√m −3+2–√NF =3+22–√NF =3−22–√12+82–√12−82–√42–√8+122–√12−82–√。

山东r日照中考数学试题及答案

山东r日照中考数学试题及答案

山东r日照中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 7B. 3x - 5 = 14C. 4x + 6 = 22D. 5x - 10 = 25答案:C2. 已知一个圆的半径为5cm,求这个圆的面积。

A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B3. 若a和b互为相反数,下列哪个等式成立?A. a + b = 0B. a - b = 0C. a × b = 1D. a ÷ b = 1答案:A4. 一个等差数列的首项为3,公差为2,求第5项的值。

A. 11B. 13C. 15D. 17答案:B5. 计算下列表达式的值:(2x - 3)(x + 4)。

A. 2x² + 5x - 12B. 2x² + 5x + 12C. 2x² - 5x + 12D. 2x² - 5x - 12答案:A6. 下列哪个函数的图像是一条直线?A. y = 2x + 3B. y = x² - 4C. y = √xD. y = 1/x答案:A7. 计算下列概率:从5个红球和3个蓝球中随机抽取一个球,抽到红球的概率是多少?A. 1/2B. 2/3C. 3/4D. 4/5答案:B8. 一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积。

A. 72 cm³B. 36 cm³C. 48 cm³D. 24 cm³答案:A9. 已知一个二次函数的顶点坐标为(2, -3),且开口向上,求该函数的一般形式。

A. y = a(x - 2)² - 3B. y = a(x + 2)² - 3C. y = a(x - 2)² + 3D. y = a(x + 2)² + 3答案:A10. 计算下列三角函数值:sin(30°)。

山东日照市中考试题(数学)

山东日照市中考试题(数学)

山东日照市中考试题数学注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷4页为选择题,24分;第Ⅱ卷8页为非选择题,96 分;全卷共12 页,满分120 分,考试时间为120 分钟.2.答第Ⅰ卷前,考生务势必自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并回收.3.第Ⅰ卷每题选出答案后,一定用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需变动,先用橡皮擦洁净,再改涂其余答案.4.考试时,不同意使用科学计算器.第Ⅰ卷(选择题共24分)一、选择题:本大题共8 小题,在每题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来,每题选对得 3 分,选错、不选或选出的答案超出一个均记零分.1.只用以下图形不可以镶嵌的是A .三角形B .四边形C.正五边形D.正六边形2.以下计算结果正确的选项是A . 2 x2 y3 2xy 2 x3 y4B . 3 x2 y 5 xy2 = 2 x2 yC.4 2 34xy D. ( 3a 2)(3a 2) 9a2 4 28 x y 7x y3.在平面直角坐标系中,若点P(m- 3, m+ 1)在第二象限,则m 的取值范围为A .- 1< m< 3B. m> 3C. m<-1D. m>-14.将一正方形纸片按以下次序折叠,而后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片睁开,获得的图形是5.若对于 x 的一元二次方程(m 1)x2 5x m2 3m 2 0 的常数项为0,则 m 的值等于A.1B.2C.1 或 2 6.如图 1,在矩形ABCD 中,动点P 从点 B 出发,沿点 P 运动的行程为x,△ ABP 的面积为y,假如 y 对于D . 0BC, CD, DA 运动至点 A 停止.设 x 的函数图象如图 2 所示,则△ ABC的面积是A .10B .16 C.18 D.207.若 A(13 , y1), B( 5 , y2), C(1, y3)为二次函数y x2 4x 5 的图象上的三4 4 4点,则 y1, y2, y3的大小关系是A .y1y2 y3B .y2 y1 y3C. y3 y1 y2 D .y1 y3 y2 8.以下图, AB 是⊙ O 的直径, AD = DE,AE 与 BD 交于点 C,则图中与∠ BCE 相等的角有A.2个B.3 个C.4 个D.5 个第Ⅱ卷(非选择题共96分)二、填空题:本大题共8 小题,每题填对得 4 分,共 32 分.只需求填写最后结果.9.在 2008 年北京奥运会国家体育场的“鸟巢”钢构造工程施工建设中,初次使用了我国科研人员自主研制的强度为 4.581 亿帕的钢材. 4.581 亿帕用科学计数法表示为__________ 帕(保留两位有效数字).10.如图,已知AB∥ CD, BE 均分∠ ABC,∠ CDE = 150 °,则∠ C= __________.11.分解因式 : (2a b )28ab=____________ .12.如图,一个空间几何体的主视图和左视图都是边长为圆,那么这个几何体的侧面积是.1 的正三角形,俯视图是一个13.某书店把一本新书按标价的九折销售,仍可赢利20%.若该书的进价为 21 元,则标价为.14.将一个正三角形纸片剪成四个全等的小正三角形,再将此中的一个按相同的方法剪成四个更小的正三角形,这样持续下去,结果以下表:所剪次数 1 2 3 4 n正三角形个数 4 7 10 13 a n则 a n=(用含 n 的代数式表示).15.“上涨数”是一个数中右侧数字比左侧数字大的自然数(如:一个两位数,是“上涨数”的概率是.16.如图, C 为线段 AE 上一动点(不与点A,E 重合),在34, 568,2469 等).任取AE 同侧分别作正三角形ABC和正三角形 CDE ,AD 与 BE 交于点 O,AD 与 BC 交于点 P,BE 与 CD 交于点 Q,连接 PQ.以下五个结论:①AD=BE;② PQ∥ AE;③ AP=BQ;④ DE =DP ;⑤∠ AOB=60°.恒建立的有 __________(把你以为正确的序号都填上).三、解答题:本大题共 7 小题,共 64 分.解答要写出必需的文字说明、证明过程或演算步骤.17. (此题满分 6 分 )先化简,再求值:1 1 ÷ b ,此中 a 12 , b 1 2 .a b a b 2ab b2a218. (此题满分8 分 )复兴中学某班的学生对本校学生会倡议的“抗震救灾,万众一心”自发捐钱活动进行抽样调查,获得了一组学生捐钱状况的数据.以下图是依据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3︰ 4︰5︰ 8︰ 6,又知此次检查中捐钱25 元和 30 元的学生一共 42 人.(1)他们一共检查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有 1560 名学生,预计全校学生捐钱多少元?19 ( 8 )为迎接2008 年奥运会,某工艺厂准备生产奥运会标记“中国印”和奥运会祥瑞物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标记需要甲原料和乙原料分别为4盒和 3 盒,生产一套奥运会祥瑞物需要甲原料和乙原料分别为 5 盒和10 盒.该厂购进甲、乙原料的量分别为20000 盒和 30000 盒,假如所进原料所有用完,求该厂能生产奥运会标记和奥运会祥瑞物各多少套?20. (此题满分10 分 )在梯形 ABCD 中, AB∥ CD ,∠ A=90°, AB=2, BC=3,CD =1, E 是 AD 中点.求证: CE⊥ BE.21. (此题满分10 分)如图,AC 是某市环城路的一段,AE, BF, CD 都是南北方向的街道,其与环城路AC 的交叉路口分别是A,B,C.经丈量花卉世界 D 位于点 A 的北偏东45°方向、点 B 的北偏东30°方向上, AB=2km ,∠ DAC =15°.( 1)求 B, D 之间的距离;(2)求 C, D 之间的距离.22. (此题满分10 分 )( 1)研究新知:如图 1,已知△ ABC 与△ ABD 的面积相等,试判断AB 与 CD 的地点关系,并说明原因.( 2)结论应用:①如图 2,点 M, N 在反比率函数y k( k> 0)的图象上,过点M 作xME ⊥ y 轴,过点N 作 NF ⊥ x 轴,垂足分别为E,F .试证明: MN ∥ EF.②若①中的其余条件不变,只改变点 M, N 的地点如图 3 所示,请判断 MN 与 EF 能否平行.23. (此题满分12 分 )在△ ABC 中,∠ A=90°, AB= 4, AC= 3, M 是 AB 上的动点(不与A,B 重合),过M 点作 MN ∥ BC 交 AC 于点 N.以 MN 为直径作⊙ O,并在⊙ O 内作内接矩形 AMPN .令 AM=x.( 1)用含 x 的代数式表示△MNP 的面积 S;( 2)当 x 为什么值时,⊙ O 与直线 BC 相切?( 3)在动点M 的运动过程中,记△ MNP与梯形BCNM重合的面积为y,试求y 对于x 的函数表达式,并求x 为什么值时, y 的值最大,最大值是多少?。

最新山东省日照市初三中考数学试卷

最新山东省日照市初三中考数学试卷

山东省日照市中考数学试卷一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.(3分)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.2.(3分)剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.3.(3分)铁路部门消息:“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×1084.(3分)在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A. B.C.D.5.(3分)如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120°B.30°C.40°D.60°6.(3分)式子有意义,则实数a的取值范围是()A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2 D.a>27.(3分)下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等8.(3分)反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A. B.C.D.9.(4分)如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B.C.5 D.10.(4分)如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.11.(4分)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.13912.(4分)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③ B.③④⑤C.①②④D.①④⑤二、填空题(本大题共4小题,每小题4分,满分16分)13.(4分)分解因式:2m3﹣8m= .14.(4分)为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是.15.(4分)如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是.16.(4分)如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.三、解答题17.(9分)(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2;(2)先化简,再求值:﹣÷,其中a=.18.(9分)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即,可使四边形ABCD为矩形.请加以证明.19.(10分)若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.20.(10分)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?21.(12分)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b 相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.22.(14分)如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN =8S△QAB,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.山东省日照市中考数学试卷参考答案与试题解析一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.(3分)(•日照)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【解答】解:﹣3的绝对值是3.故选:B.2.(3分)(•日照)剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.【解答】解:A、既不是中心对称图形,也不是轴对称图形,故本选项正确;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,也是轴对称图形,故本选项错误;D、既是中心对称图形,也是轴对称图形,故本选项错误.故选A.3.(3分)(•日照)铁路部门消息:“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【解答】解:4640万=4.64×107.故选:C.4.(3分)(•日照)在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A. B.C.D.【解答】解:在Rt△ABC中,由勾股定理得,BC==12,∴sinA==,故选:B.5.(3分)(•日照)如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120°B.30°C.40°D.60°【解答】解:∵∠AEF=∠1=60°,∵AB∥CD,∴∠2=∠AEF=60°,故选D.6.(3分)(•日照)式子有意义,则实数a的取值范围是()A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2 D.a>2【解答】解:式子有意义,则a+1≥0,且a﹣2≠0,解得:a≥﹣1且a≠2.故选:C.7.(3分)(•日照)下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等【解答】解:如图∠AOB==60°,OA=OB,∴△AOB是等边三角形,∴AB=OA,∴圆内接正六边形的边长与该圆的半径相等,A正确;在平面直角坐标系中,不同的坐标可以表示不同一点,B错误;一元二次方程ax2+bx+c=0(a≠0)不一定有实数根,C错误;根据旋转变换的性质可知,将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC 与△ADE全等,D错误;故选:A.8.(3分)(•日照)反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A. B.C.D.【解答】解:∵y=的图象经过第一、三象限,∴kb>0,∴k,b同号,A、图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;B、图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;C、图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;D、图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意;故选:D.9.(4分)(•日照)如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O 于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B.C.5 D.【解答】解:过点D作OD⊥AC于点D,∵AB是⊙O的直径,PA切⊙O于点A,∴AB⊥AP,∴∠BAP=90°,∵∠P=30°,∴∠AOP=60°,∴∠AOC=120°,∵OA=OC,∴∠OAD=30°,∵AB=10,∴OA=5,∴OD=AO=2.5,∴AD==,∴AC=2AD=5,故选A.10.(4分)(•日照)如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC 的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.【解答】解:∵∠BAC=60°,AO是∠BAC的角平分线,∴∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,∵AO=2t,∴r=t,∴S=πt2,∴S是圆心O运动的时间t的二次函数,∵π>0,∴抛物线的开口向上,故选D.11.(4分)(•日照)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.139【解答】解:∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=64,∵上边的数与左边的数的和正好等于右边的数,∴a=11+64=75,故选B.12.(4分)(•日照)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③ B.③④⑤C.①②④D.①④⑤【解答】解:①∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴抛物线与x轴的另一交点坐标为(0,0),结论①正确;②∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线过原点,∴﹣=2,c=0,∴b=﹣4a,c=0,∴4a+b+c=0,结论②正确;③∵当x=﹣1和x=5时,y值相同,且均为正,∴a﹣b+c>0,结论③错误;④当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴抛物线的顶点坐标为(2,b),结论④正确;⑤观察函数图象可知:当x<2时,yy随x增大而减小,结论⑤错误.综上所述,正确的结论有:①②④.故选C.二、填空题(本大题共4小题,每小题4分,满分16分)13.(4分)(•日照)分解因式:2m3﹣8m= 2m(m+2)(m﹣2).【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).14.(4分)(•日照)为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是182 .【解答】解:根据题意,得在该时间段中,通过这个路口的汽车数量的平均数是(183+191+169+190+177)÷5=182.故答案为182.15.(4分)(•日照)如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是6π.【解答】解:∵四边形AECD是平行四边形,∴AE=CD,∵AB=BE=CD=6,∴AB=BE=AE,∴△ABE是等边三角形,∴∠B=60°,==6π,∴S扇形BAE故答案为:6π.16.(4分)(•日照)如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为1+.【解答】解:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,如图所示:则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,在△AOM和△BAN中,,∴△AOM≌△BAN(AAS),∴AM=BN=,OM=AN=,∴OD=+,OD=BD=﹣,∴B(+,﹣),∴双曲线y=(x>0)同时经过点A和B,∴(+)•(﹣)=k,整理得:k2﹣2k﹣4=0,解得:k=1±(负值舍去),∴k=1+;故答案为:1+.三、解答题17.(9分)(•日照)(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2;(2)先化简,再求值:﹣÷,其中a=.【解答】解:(1)﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2=﹣2﹣1+(1﹣)×4==;(2)﹣÷====,当a=时,原式=.18.(9分)(•日照)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD=BC(答案不唯一),可使四边形ABCD为矩形.请加以证明.【解答】(1)证明:在△DCA和△EAC中,,∴△DCA≌△EAC(SSS);(2)解:添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;故答案为:AD=BC(答案不唯一).19.(10分)(•日照)若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.【解答】解:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个;(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率==.20.(10分)(•日照)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【解答】解:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x 万平方米,根据题意,得﹣=4解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a万平方米,根据题意得54×2+2(54+a)≥360解得:a≥72.答:则至少每年平均增加72万平方米.21.(12分)(•日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b 相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.【解答】解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C(2,1)到直线3x+4y+5=0的距离d==3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP 的最大值=×2×4=4,S△ABP的最小值=×2×2=2.22.(14分)(•日照)如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x 轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN =8S△QAB,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.【解答】解:(1)如图,连接OC,∵M(4,0),N(0,3),∴OM=4,ON=3,∴MN=5,∴OC=MN=,∵CD为抛物线对称轴,∴OD=MD=2,在Rt△OCD中,由勾股定理可得CD===,∴PD=PC﹣CD=﹣=1,∴P(2,﹣1);(2)∵抛物线的顶点为P(2,﹣1),∴设抛物线的函数表达式为y=a(x﹣2)2﹣1,∵抛物线过N(0,3),∴3=a(0﹣2)2﹣1,解得a=1,∴抛物线的函数表达式为y=(x﹣2)2﹣1,即y=x2﹣4x+3;(3)在y=x2﹣4x+3中,令y=0可得0=x2﹣4x+3,解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∵ON=3,OM=4,PD=1,∴S四边形OPMN =S△OMP+S△OMN=OM•PD+OM•ON=×4×1+×4×3=8=8S△QAB,∴S△QAB=1,设Q点纵坐标为y,则×2×|y|=1,解得y=1或y=﹣1,当y=1时,则△QAB为钝角三角形,而△OBN为直角三角形,不合题意,舍去,当y=﹣1时,可知P点即为所求的Q点,∵D为AB的中点,∴AD=BD=QD,∴△QAB为等腰直角三角形,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,综上可知存在满足条件的点Q,其坐标为(2,﹣1).。

山东省日照市中考数学试卷含答案解析

山东省日照市中考数学试卷含答案解析

山东省日照市中考数学试卷一、选择题:本大题共12小题,其中1-8小题,每小题3分,9-12小题,每小题3分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.1.以下选项中比|﹣|小的数是()A.1 B.2 C.D.2.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B. C.D.3.下列各式的运算正确的是()A.B.a2+a=2a3C.(﹣2a)2=﹣2a2D.(a3)2=a64.小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为()A.38°B.42°C.48°D.52°5.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105 B.0.105×10﹣4C.1.05×10﹣5D.105×10﹣76.正比例函数y1=k1x(k1>0)与反比例函数y2=图象如图所示,则不等式k1x的解集在数轴上表示正确的是()A.B.C.D.7.积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整理如下:节水量(单位:0.5 1 1.5 2吨)家庭数(户) 2 3 4 1请你估计该200户家庭这个月节约用水的总量是()A.240吨B.360吨C.180吨D.200吨8.某县GDP总量为1000亿元,计划到全县GDP总量实现1210亿元的目标.如果每年的平均增长率相同,那么该县这两年GDP总量的平均增长率为()A.1.21% B.8% C.10% D.12.1%9.下列命题:①若a<1,则(a﹣1)=﹣;②平行四边形既是中心对称图形又是轴对称图形;③的算术平方根是3;④如果方程ax2+2x+1=0有两个不相等的实数根,则实数a<1.其中正确的命题个数是()A.1个B.2个C.3个D.4个10.如图,P为平行四边形ABCD边AD上一点,E、F分别是PB、PC(靠近点P)的三等分点,△PEF、△PDC、△PAB的面积分别为S1、S2、S3,若AD=2,AB=2,∠A=60°,则S1+S2+S3的值为()A.B.C.D.411.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是()A.①②B.②③C.②④D.①③④12.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为()A.420 B.434 C.450 D.465二、填空题:本大题共4小题,每小题4分,共16分,不需写出解答过程,请将答案直接写在答题卡相应位置上.13.关于x的方程2x2﹣ax+1=0一个根是1,则它的另一个根为.14.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为米.15.如图,△ABC是一张直角三角形纸片,∠C=90°,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为EF,则tan∠CAE=.16.如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是.三、解答题:本大题共6小题,满分64分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(1)已知﹣与x n y m+n是同类项,求m、n的值;(2)先化简后求值:(),其中a=.18.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.19.未参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了依次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计.以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.组别分组频数频率1 50≤x<60 9 0.182 60≤x<70 a3 70≤x<80 20 0.404 80≤x<90 0.085 90≤x≤100 2 b合计请根据以上频率分布表和频率分布直方图,回答下列问题:(1)求出a、b、x、y的值;(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内?(3)若要从小明、小敏等五位成绩优秀的同学中随机选取两位参加竞赛,请用“列表法”或“树状图”求出小明、小敏同时被选中的概率.(注:五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)20.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B 型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?21.阅读理解:我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹.问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF于点P,那么动点P为线段AM中点.理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点.由此你得到动点P的运动轨迹是:.知识应用:如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC 的边长为8,求线段EF中点Q的运动轨迹的长.拓展提高:如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.(1)求∠AQB的度数;(2)若AB=6,求动点Q运动轨迹的长.22.如图1,抛物线y=﹣ [(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.(1)求m、n的值;(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC 面积的最大值;(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.山东省日照市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,其中1-8小题,每小题3分,9-12小题,每小题3分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.1.以下选项中比|﹣|小的数是()A.1 B.2 C.D.【考点】有理数大小比较;绝对值.【分析】先求出|﹣|的值,再根据有理数的大小比较法则比较即可.【解答】解:∵|﹣|=,A、1>,故本选项错误;B、2>,故本选项错误;C、=,故本选项错误;D、﹣<,故本选项正确;故选D.2.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】根据组合图形的俯视图,对照四个选项即可得出结论.【解答】解:由题意得:俯视图与选项B中图形一致.故选B.3.下列各式的运算正确的是()A.B.a2+a=2a3C.(﹣2a)2=﹣2a2D.(a3)2=a6【考点】幂的乘方与积的乘方;合并同类项;约分.【分析】A选项中分子分母同时约去公因式a可得a2,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变可得B错误;根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘可得C错误;根据幂的乘方法则:底数不变,指数相乘可得D错误.【解答】解:A、=a2,故原题计算错误;B、a2和a不是同类项,不能合并,故原题计算错误;C、(﹣2a)2=4a4,故原题计算错误;D、(a3)2=a6,故原题计算正确;故选:D.4.小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为()A.38°B.42°C.48°D.52°【考点】平行线的性质.【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=48°,∴∠3=90°﹣∠1=90°﹣48°=42°.∵直尺的两边互相平行,∴∠2=∠3=42°.故选B.5.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105 B.0.105×10﹣4C.1.05×10﹣5D.105×10﹣7【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000105=1.05×10﹣5,故选:C.6.正比例函数y1=k1x(k1>0)与反比例函数y2=图象如图所示,则不等式k1x的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;反比例函数与一次函数的交点问题.【分析】由图象可以知道,当x=﹣2或x=2时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k1x的解集,即可得出结论.【解答】解:两个函数图象的另一个交点坐标为(﹣2,﹣1),当﹣2<x<0或x>2时,直线y=k1x在y2=图象的上方,故不等式k1x的解集为x<﹣1或x>2.故选:B.7.积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整理如下:节水量(单位:0.5 1 1.5 2吨)家庭数(户) 2 3 4 1请你估计该200户家庭这个月节约用水的总量是()A.240吨B.360吨C.180吨D.200吨【考点】用样本估计总体.【分析】先根据10户家庭一个月的节水情况,求得平均每户节水量,再计算200户家庭这个月节约用水的总量即可.【解答】解:根据10户家庭一个月的节水情况可得,平均每户节水:(0.5×2+1×3+1.5×4+2×1)÷(2+3+4+1)=1.2(吨)∴200户家庭这个月节约用水的总量是:200×1.2=240(吨)故选(A)8.某县GDP总量为1000亿元,计划到全县GDP总量实现1210亿元的目标.如果每年的平均增长率相同,那么该县这两年GDP总量的平均增长率为()A.1.21% B.8% C.10% D.12.1%【考点】一元二次方程的应用.【分析】设该县这两年GDP总量的平均增长率为x,根据:某县GDP总量×(1+增长百分率)2=全县GDP总量,列一元二次方程求解可得.【解答】解:设该县这两年GDP总量的平均增长率为x,根据题意,得:1000(1+x)2=1210,解得:x1=﹣2.1(舍),x2=0.1=10%,即该县这两年GDP总量的平均增长率为10%,故选:C.9.下列命题:①若a<1,则(a﹣1)=﹣;②平行四边形既是中心对称图形又是轴对称图形;③的算术平方根是3;④如果方程ax2+2x+1=0有两个不相等的实数根,则实数a<1.其中正确的命题个数是()A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分别根据平方根的定义、平行四边形的性质、一元二次方程根与判别式的关系对各小题进行逐一判断即可.【解答】解:①∵a<1,1﹣a>0,∴(a﹣1)=﹣,故本小题正确;②平行四边形既是中心对称图形但不是轴对称图形,故本小题错误;③的算术平方根是,故本小题错误;④∵方程ax2+2x+1=0有两个不相等的实数根,∴△=4﹣4a>0,解得a<1且a≠0,故本小题错误.故选A.10.如图,P为平行四边形ABCD边AD上一点,E、F分别是PB、PC(靠近点P)的三等分点,△PEF、△PDC、△PAB的面积分别为S1、S2、S3,若AD=2,AB=2,∠A=60°,则S1+S2+S3的值为()A.B.C.D.4【考点】相似三角形的判定与性质;平行四边形的性质.【分析】先作辅助线DH⊥AB于点D,然后根据特殊角的三角函数值可以求得DH的长度,从而可以求得平行四边形的面积,然后根据三角形的相似可以求得S1+S2+S3的值.【解答】解:作DH⊥AB于点H,如右图所示,∵AD=2,AB=2,∠A=60°,∴DH=AD•sin60°=2×=,∴S▱ABCD=AB•DH=2=6,∴S2+S3=S△PBC=3,又∵E、F分别是PB、PC(靠近点P)的三等分点,∴,∴S△PEF=×3=,即S1=,∴S1+S2+S3=+3=,故选A.11.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是()A.①②B.②③C.②④D.①③④【考点】二次函数图象与系数的关系.【分析】由抛物线开口方向得到a<0,有对称轴方程得到b=﹣2a>0,由∵抛物线与y轴的交点位置得到c>0,则可对①进行判断;由b=﹣2a可对②进行判断;利用抛物线的对称性可得到抛物线与x轴的另一个交点为(3,0),则可判断当x=2时,y>0,于是可对③进行判断;通过比较点(﹣)与点()到对称轴的距离可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵抛物线与x轴的一个交点为(﹣1,0),抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣)到对称轴的距离比点()对称轴的距离远,∴y1<y2,所以④正确.故选C.12.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为()A.420 B.434 C.450 D.465【考点】规律型:数字的变化类.【分析】在类比推理中,200的所有正约数之和可按如下方法得到:根据200=23×52,可得200的所有正约数之和为(1+2+22+23)(1+5+52),即可得出答案.【解答】解:200的所有正约数之和可按如下方法得到:因为200=23×52,所以200的所有正约数之和为(1+2+22+23)×(1+5+52)=465.故选(D).二、填空题:本大题共4小题,每小题4分,共16分,不需写出解答过程,请将答案直接写在答题卡相应位置上.13.关于x的方程2x2﹣ax+1=0一个根是1,则它的另一个根为.【考点】根与系数的关系.【分析】设方程的另一个根为t,根据根与系数的关系得到1•t=,然后解关于t的方程即可.【解答】解:设方程的另一个根为t,根据题意得1•t=,解得t=.故答案为.14.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为2米.【考点】二次函数的应用.【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:如图,建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2米,故答案为:2米.15.如图,△ABC是一张直角三角形纸片,∠C=90°,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为EF,则tan∠CAE=.【考点】翻折变换(折叠问题);解直角三角形.【分析】根据题意可以求得CE的长,从而可以求得tan∠CAE的值.【解答】解:设CE=x,则BE=AE=8﹣x,∵∠C=90°,AC=6,∴62+x2=(8﹣x)2,解得,x=,∴tan∠CAE===,故答案为:.16.如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是.【考点】切线的性质;一次函数图象上点的坐标特征.【分析】过点C作CP⊥直线AB与点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,由点到直线的距离求出CP的长度,再根据勾股定理即可求出PQ的长度.【解答】解:过点C作CP⊥直线AB与点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.直线AB的解析式为y=﹣,即3x+4y﹣12=0,∴CP==.∵PQ为⊙C的切线,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ==.故答案为:.三、解答题:本大题共6小题,满分64分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(1)已知﹣与x n y m+n是同类项,求m、n的值;(2)先化简后求值:(),其中a=.【考点】分式的化简求值;同类项;解二元一次方程组.【分析】(1)根据同类项的定义可以得到关于m、n的二元一次方程组,从而可以解答m、n的值;(2)先对原式化简,再将a=代入化简后的式子即可解答本题.【解答】解:(1)∵﹣与x n y m+n是同类项,∴,解得,,即m的值是2,n的值是3;(2)()==,当a=时,原式==.18.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.【考点】旋转的性质;正方形的性质.【分析】(1)直接利用旋转的性质得出对应线段关系进而得出答案;(2)直接利用旋转的性质得出△AQE≌△AFE(SAS),进而利用勾股定理得出答案.【解答】证明:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴∠QAF=90°,∵∠EAF=45°,∴∠QAE=45°,∴EA是∠QED的平分线;(2)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴QB=DF,AQ=AF,∠ABQ=∠ADF=45°,在△AQE和△AFE中,∴△AQE≌△AFE(SAS),∴QE=EF,在Rt△QBE中,QB2+BE2=QE2,则EF2=BE2+DF2.19.未参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了依次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计.以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.组别分组频数频率1 50≤x<60 9 0.182 60≤x<70 a3 70≤x<80 20 0.404 80≤x<90 0.085 90≤x≤100 2 b合计请根据以上频率分布表和频率分布直方图,回答下列问题:(1)求出a、b、x、y的值;(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内?(3)若要从小明、小敏等五位成绩优秀的同学中随机选取两位参加竞赛,请用“列表法”或“树状图”求出小明、小敏同时被选中的概率.(注:五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)【考点】列表法与树状图法;频数(率)分布表;频数(率)分布直方图;中位数.【分析】(1)先利用第1组的频数除以它的频率得到样本容量,再计算出第4组的频数,则用样本容量分别减去其它各组的频数得到a的值,接着用第5组的频数除一样本容量得到b 的值,用b的值除以组距10得到y的值,然后计算第2组的频率,再把第2组的频率除以组距得到x的值;(2)根据中位数的定义求解;(3)画树状图(五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)展示所有20种等可能的结果数,再找出小明、小敏同时被选中的结果数,然后根据概率公式求解.【解答】解:(1)9÷0.18=50,50×0.08=4,所以a=50﹣9﹣20﹣4﹣2=15,b=2÷50=0.04,x=15÷50÷10=0.03,y=0.04÷10=0.004;(2)小王的测试成绩在70≤x≤80范围内;(3)画树状图为:(五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)共有20种等可能的结果数,其中小明、小敏同时被选中的结果数为2,所以小明、小敏同时被选中的概率==.20.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B 型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.【解答】解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得=,解得:x=2000.经检验,x=2000是原方程的根.答:去年A型车每辆售价为2000元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得y=a+(60﹣a),y=﹣300a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣300a+36000.∴k=﹣300<0,∴y随a的增大而减小.=30000元.∴a=20时,y最大∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.21.阅读理解:我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹.问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF于点P,那么动点P为线段AM中点.理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点.由此你得到动点P的运动轨迹是:线段EF.知识应用:如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC 的边长为8,求线段EF中点Q的运动轨迹的长.拓展提高:如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.(1)求∠AQB的度数;(2)若AB=6,求动点Q运动轨迹的长.【考点】三角形综合题.【分析】阅读理解:根据轨迹的定义可知,动点P的运动轨迹是线段EF.知识应用:如图1中,作△ABC的中位线MN,作EG∥AC交NM的延长线于G,EF与MN交于点Q′,△GQ′E≌△NQ′F,推出Q、Q′重合即可解决问题.拓展提高:如图2中,(1)只要证明△APD≌△CPB,推出∠DQG=∠BPG=60°结论解决问题.(2)由(1)可知点P的运动轨迹是,设弧AB所在圆的圆心为O,Z 圆上任意取一点M,连接AM,BM,则∠M=60°,作OH⊥AB于H,则AH=BH=3,OH=,OB=2,利用弧长公式即可解决.【解答】阅读理解:根据轨迹的定义可知,动点P的运动轨迹是线段EF.故答案为线段EF.知识应用:如图1中,作△ABC的中位线MN,作EG∥AC交NM的延长线于G,EF与MN交于点Q′∵△ABC是等边三角形,MN是中位线,∴AM=BM=AN=CN,∵AF=BE,∴EM=FN,∵MN∥BC,∴∠AMN=∠B=∠GME=60°,∵∠A=∠GEM=60°,∴△GEM是等边三角形,∴EM=EG=FN,在△GQ′E和△NQ′F中,,∴△GQ′E≌△NQ′F,∴EQ′=FQ′,∵EQ=QF,′点Q、Q′重合,∴点Q在线段MN上,∴段EF中点Q的运动轨迹是线段MN,MN=BC=×8=4.∴线段EF中点Q的运动轨迹的长为4.拓展提高:如图2中,(1)∵△APC,△PBD都是等边三角形,∴AP=PC,PD=PB,∠APC=∠DPB=60°,∴∠APD=∠CPB,在△APD和△CPB中,,∴△APD≌△CPB,∴∠ADP=∠CBP,设BC与PD交于点G,∵∠QGD=∠PGB,∴∠DQG=∠BPG=60°,∴∠AQB=180°﹣∠DQG=120°(2)由(1)可知点P的运动轨迹是,设弧AB所在圆的圆心为O,Z 圆上任意取一点M,连接AM,BM,则∠M=60°,∴∠AOB=2∠M=120°,作OH⊥AB于H,则AH=BH=3,OH=,OB=2,∴弧AB的长==π.∴动点Q运动轨迹的长π.22.如图1,抛物线y=﹣ [(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.(1)求m、n的值;(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC 面积的最大值;(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)利用抛物线的解析式确定对称轴为直线x=2,再利用对称性得到2﹣(m﹣2)=2m+3﹣2,解方程可得m的值,从而得到A(﹣1,0),B(5,0),然后把A点坐标代入y=﹣ [(x﹣2)2+n]可求出n的值;(2)作ND∥y轴交BC于D,如图2,利用抛物线解析式确定C(0,3),再利用待定系数法求出直线BC的解析式为y=﹣x+3,设N(x,﹣x2+x+3),则D(x,﹣x+3),根据三角形面积公式,利用S△NBC=S△NDC+S△NDB可得S△BCN=﹣x2+x,然后利用二次函数的性质求解;(3)先利用勾股定理计算出BC=,再分类讨论:当∠PMB=90°,则∠PMC=90°,△PMC 为等腰直角三角形,MP=MC,设PM=t,则CM=t,MB=﹣t,证明△BMP∽△BOC,利用相似比可求出BP的长,再计算OP后可得到P点坐标;当∠MPB=90°,则MP=MC,设PM=t,则CM=t,MB=﹣t,证明△BMP∽△BCO,利用相似比可求出BP的长,再计算OP后可得到P点坐标.【解答】解:(1)∵抛物线的解析式为y=﹣ [(x﹣2)2+n]=﹣(x﹣2)2﹣n,∴抛物线的对称轴为直线x=2,∵点A和点B为对称点,∴2﹣(m﹣2)=2m+3﹣2,解得m=1,∴A(﹣1,0),B(5,0),把A(﹣1,0)代入y=﹣ [(x﹣2)2+n]得9+n=0,解得n=﹣9;(2)作ND∥y轴交BC于D,如图2,抛物线解析式为y=﹣ [(x﹣2)2﹣9]=﹣x2+x+3,当x=0时,y=3,则C(0,3),设直线BC的解析式为y=kx+b,把B(5,0),C(0,3)代入得,解得,∴直线BC的解析式为y=﹣x+3,设N(x,﹣x2+x+3),则D(x,﹣x+3),∴ND=﹣x2+x+3﹣(﹣x+3)=﹣x2+3x,∴S△NBC=S△NDC+S△NDB=•5•ND=﹣x2+x=﹣(x﹣)2+,当x=时,△NBC面积最大,最大值为;(3)存在.∵B(5,0),C(0,3),∴BC==,当∠PMB=90°,则∠PMC=90°,△PMC为等腰直角三角形,MP=MC,设PM=t,则CM=t,MB=﹣t,∵∠MBP=∠OBC,∴△BMP∽△BOC,∴==,即==,解得t=,BP=,∴OP=OB﹣BP=5﹣=,此时P点坐标为(,0);当∠MPB=90°,则MP=MC,设PM=t,则CM=t,MB=﹣t,∵∠MBP=∠CBO,∴△BMP∽△BCO,∴==,即==,解得t=,BP=,∴OP=OB﹣BP=5﹣=,此时P点坐标为(,0);综上所述,P点坐标为(,0)或(,0).8月12日。

山东r日照中考数学试题及答案

山东r日照中考数学试题及答案

山东r日照中考数学试题及答案山东日照中考数学试题及答案一、选择题1. 已知a+b=5,a-b=1,求a与b的值。

A) a=2, b=3B) a=3, b=2C) a=4, b=1D) a=1, b=42. 某数的一半减去1等于它的1/3,求这个数。

A) 2B) 3C) 4D) 63. 化简:[(-3)×(-5)×(-7)] ÷ [(-6)×(-9)]A) 5/2B) -5/2C) -5/3D) 5/34. 甲乙两人一起清扫教室,甲清扫一小时,乙清扫两小时,两人合作清扫了10小时,求甲、乙两人分别清扫了多少小时。

A) 4小时和6小时B) 3小时和7小时C) 5小时和5小时D) 6小时和4小时5. 现有一双边长为6cm和8cm的直角三角形,求斜边的长。

A) √28B) √52C) 7D) 10二、填空题1. 如果x^2-5x+6=0的两个根分别为m和n,则m+n的值为________。

2. 锐角三角形的两个角的比是2:3,那么较小的角是________度。

3. 2000 ÷ 10÷ 2% 的结果是________。

4. 若 a:b=2:3,b:c=4:5,则a:c= ________ 。

5. 甲、乙两个班级的学生总数相差15人,乙班比甲班多出的人数是200%,如果甲班有x人,那么乙班有________人。

三、解答题1. 甲、乙、丙三个人合伙做某项工程,甲1天做1/5的工程量,乙1天做1/6的工程量,丙1天做1/7的工程量。

问他们一起做这项工程,需要多少天才能做完?答:设一起做完这项工程需要x天。

则有:1/x + 1/x + 1/x = 1/5 +1/6 + 1/7求得x的值为______天。

2. 一辆汽车行驶300km需要2小时,行驶到一半时速度减半,求整个行驶时间。

答:设整个行驶时间为t小时。

则有:50km/h × t + 100km/h × t =300km求得t的值为______小时。

日照市重点名校2024届中考联考数学试卷含解析

日照市重点名校2024届中考联考数学试卷含解析

日照市重点名校2024届中考联考数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(共10小题,每小题3分,共30分)1.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是()月用电量(度)25 30 40 50 60户数 1 2 4 2 1A.极差是3 B.众数是4 C.中位数40 D.平均数是20.52.四个有理数﹣1,2,0,﹣3,其中最小的是()A.﹣1 B.2 C.0 D.﹣33.如图,AB是定长线段,圆心O是AB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在EF上取动点G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,则y与x所满足的函数关系式为()A.正比例函数y=kx(k为常数,k≠0,x>0)B.一次函数y=kx+b(k,b为常数,kb≠0,x>0)C.反比例函数y=kx(k为常数,k≠0,x>0)D.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,x>0)4.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°5.如图,在中,,,,将折叠,使点与的中点重合,折痕为,则线段的长为()A .B .C .D .6.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x ,则( ) A .这两组数据的波动相同 B .数据B 的波动小一些 C .它们的平均水平不相同D .数据A 的波动小一些7.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )A .0.1B .0.2C .0.3D .0.48.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .14B .12C .34D .569.将二次函数y =x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ) A .y =(x -1)2+2B .y =(x +1)2+2C .y =(x -1)2-2D .y =(x +1)2-210.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( ) A .154B .14C .1515D .1717二、填空题(本大题共6个小题,每小题3分,共18分)11.从﹣2,﹣1,2,0这四个数中任取两个不同的数作为点的坐标,该点不在第三象限的概率是_____.12.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为______. 13.在Rt △ABC 中,∠C =90°,AB =2,BC =3,则sin 2A=_____. 14.函数12y x=,当x <0时,y 随x 的增大而_____. 15.一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1,E 1,E 2,C 2,E 3,E 4,C 3……在x 轴上,已知正方形A 1B 1C 1D 1的顶点C 1的坐标是(﹣12,0),∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3……则正方形A 2018B 2018C 2018D 2018的顶点D 2018纵坐标是_____.16.分解因式:= .三、解答题(共8题,共72分)17.(8分)先化简,再求值:2121111a a a a -⎛⎫-÷ ⎪+-+⎝⎭,其中31a = 18.(8分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A ,B 两种树木共100棵进行校园绿化升级,经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元.(1)求A 种,B 种树木每棵各多少元;(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.19.(8分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题:⑴补全条形统计图,“体育”对应扇形的圆心角是 度;⑵根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有人;⑶在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或者画树状图的方法求所抽取的2人来自不同班级的概率20.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?21.(8分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.(1)图1中3条弧的弧长的和为,图2中4条弧的弧长的和为;(2)求图m中n条弧的弧长的和(用n表示).22.(10分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?23.(12分)(1)计算:3tan30°+|2|+(13)﹣1﹣(3﹣π)0﹣(﹣1)2018.(2)先化简,再求值:(x﹣22xy yx-)÷222x yx xy-+,其中,﹣1.24.在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/2m下降到12月份的11340元/2m.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/2m请说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【题目详解】解:A、这组数据的极差是:60-25=35,故本选项错误;B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;故选:C.【题目点拨】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.2、D【解题分析】解:∵-1<-1<0<2,∴最小的是-1.故选D.3、C【解题分析】延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,由AE与BF为圆的切线,利用切线的性质得到AE与EO 垂直,BF与OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE与直角BOF全等,利用全等三角形的对应角相等得到∠A=∠B ,利用等角对等边可得出三角形QAB 为等腰三角形,由O 为底边AB 的中点,利用三线合一得到QO 垂直于AB ,得到一对直角相等,再由∠FQO 与∠OQB 为公共角,利用两对对应角相等的两三角形相似得到三角形FQO 与三角形OQB 相似,同理得到三角形EQO 与三角形OAQ 相似,由相似三角形的对应角相等得到∠QOE=∠QOF=∠A=∠B ,再由切线长定理得到OD 与OC 分别为∠EOG 与∠FOG 的平分线,得到∠DOC 为∠EOF 的一半,即∠DOC=∠A=∠B ,又∠GCO=∠FCO ,得到三角形DOC 与三角形OBC 相似,同理三角形DOC 与三角形DAO 相似,进而确定出三角形OBC 与三角形DAO 相似,由相似得比例,将AD=x ,BC=y 代入,并将AO 与OB 换为AB 的一半,可得出x 与y 的乘积为定值,即y 与x 成反比例函数,即可得到正确的选项. 【题目详解】延长AD ,BC 交于点Q ,连接OE ,OF ,OD ,OC ,OQ ,∵AE ,BF 为圆O 的切线, ∴OE ⊥AE ,OF ⊥FB , ∴∠AEO=∠BFO=90°, 在Rt △AEO 和Rt △BFO 中,∵{AE BF OE OF= ,∴Rt △AEO ≌Rt △BFO (HL ), ∴∠A=∠B ,∴△QAB 为等腰三角形,又∵O 为AB 的中点,即AO=BO , ∴QO ⊥AB ,∴∠QOB=∠QFO=90°, 又∵∠OQF=∠BQO , ∴△QOF ∽△QBO , ∴∠B=∠QOF ,同理可以得到∠A=∠QOE , ∴∠QOF=∠QOE ,根据切线长定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=12∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴AD AO OB BC,∴AD•BC=AO•OB=14AB2,即xy=14AB2为定值,设k=14AB2,得到y=kx,则y与x满足的函数关系式为反比例函数y=kx(k为常数,k≠0,x>0).故选C.【题目点拨】本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识.4、B【解题分析】要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.【题目详解】解:∵要使木条a与b平行,∴∠1=∠2,∴当∠1需变为50 º,∴木条a至少旋转:70º-50º=20º.故选B.【题目点拨】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角. 5、C【解题分析】设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解. 【题目详解】 设,则.由折叠的性质,得.因为点是的中点,所以. 在中,由勾股定理,得,即,解得, 故线段的长为4.故选C. 【题目点拨】此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键. 6、B 【解题分析】试题解析:方差越小,波动越小.22,A B s s数据B 的波动小一些. 故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 7、B 【解题分析】∵在5.5~6.5组别的频数是8,总数是40, ∴=0.1.故选B . 8、C【解题分析】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【题目详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=123 164=,故选C.【题目点拨】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.9、A【解题分析】试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是y=(x﹣1)2+2,故选A.考点:二次函数图象与几何变换.10、A【解题分析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC2241-15,则cos B=BCAB15,故选A二、填空题(本大题共6个小题,每小题3分,共18分)11、5 6【解题分析】列举出所有情况,看在第四象限的情况数占总情况数的多少即可.【题目详解】如图:共有12种情况,在第三象限的情况数有2种,故不再第三象限的共10种,不在第三象限的概率为105= 126,故答案为56.【题目点拨】本题考查了树状图法的知识,解题的关键是列出树状图求出概率.12、1【解题分析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x个,根据题意得:88x+=2/3解得:x=1.∴黄球的个数为1.13、1 2【解题分析】根据∠A的正弦求出∠A=60°,再根据30°的正弦值求解即可.【题目详解】解:∵3 sinBCAAB==∴∠A=60°,∴1 sin sin3022A︒==.故答案为12.【题目点拨】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.14、减小【解题分析】 先根据反比例函数的性质判断出函数12y x =的图象所在的象限,再根据反比例函数的性质进行解答即可. 【题目详解】 解:∵反比例函数12y x =中,102k =>, ∴此函数的图象在一、三象限,在每一象限内y 随x 的增大而减小.故答案为减小.【题目点拨】 考查反比例函数的图象与性质,反比例函数()0,k y k x=≠ 当0k >时,图象在第一、三象限.在每个象限,y 随着x 的增大而减小,当k 0<时,图象在第二、四象限.在每个象限,y 随着x 的增大而增大.15、12×(3)2 【解题分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【题目详解】解:∵∠B 1C 1O=60°,C 1O=12, ∴B 1C 1=1,∠D 1C 1E 1=30°, ∵sin ∠D 1C 1E 1=111112D E D C =, ∴D 1E 1=12, ∵B 1C 1∥B 2C 2∥B 3C 3∥…∴60°=∠B 1C 1O=∠B 2C 2O=∠B 3C 3O=…∴B 2C 2=222221B E sin B C E ==∠,B 3C 3=233331B E sin B C O ⨯==∠. 故正方形AnBnCnDn 的边长=n-1.∴B 2018C 2018=(33)2. ∴D 2018E 2018=12×(33)2, ∴D 的纵坐标为12×(33)2, 故答案为12×(33)2. 【题目点拨】此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键16、【解题分析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。

日照中考数学试题及答案

日照中考数学试题及答案

日照中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 7B. 2x - 3 = 7C. 2x + 3 = 5D. 2x - 3 = 5答案:B2. 如果一个数的平方等于9,那么这个数是?A. 3B. -3C. 3或-3D. 以上都不是答案:C3. 以下哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C4. 以下哪个选项表示的是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 3/xD. y = √x5. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B6. 以下哪个选项是正确的比例关系?A. 3:4 = 6:8B. 3:4 = 6:9C. 3:4 = 9:12D. 3:4 = 9:10答案:C7. 一个等差数列的首项是2,公差是3,那么它的第五项是多少?A. 17B. 14C. 11D. 8答案:A8. 以下哪个选项是正确的不等式?A. 2x + 3 > 7B. 2x - 3 > 7C. 2x + 3 < 7D. 2x - 3 < 7答案:A9. 一个长方体的长、宽、高分别是5、3、2,那么它的体积是多少?B. 15C. 10D. 6答案:A10. 以下哪个选项是正确的三角函数关系?A. sin(30°) = 1/2B. cos(60°) = 1/2C. tan(45°) = √2D. sin(90°) = √3/2答案:A二、填空题(每题2分,共20分)11. 一个数的相反数是-5,那么这个数是______。

答案:512. 一个数的绝对值是8,那么这个数可能是______或______。

答案:8或-813. 一个等腰三角形的底角是45°,那么它的顶角是______。

山东省日照市中考数学真题试题(解析版)

山东省日照市中考数学真题试题(解析版)

一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.第1~8小题每小题得3分,第9~12小题每小题得4分,选错、不选或选出的答案超过一个均记零分.1、(2011•日照)(﹣2)2的算术平方根是()A、2B、±2C、﹣2D、考点:算术平方根;有理数的乘方。

分析:首先求得(﹣2)2的值,然后由4的算术平方根为2,即可求得答案.解答:解:∵(﹣2)2=4,4的算术平方根为2,∴(﹣2)2的算术平方根是2.故选A.点评:此题考查了平方与算术平方根的定义.题目比较简单,解题要细心.2、(2011•日照)下列等式一定成立的是()A、a2+a3=a5B、(a+b)2=a2+b2C、(2ab2)3=6a3b6D、(x﹣a)(x﹣b)=x2﹣(a+b)x+ab考点:多项式乘多项式;合并同类项;幂的乘方与积的乘方;完全平方公式。

专题:综合题。

分析:根据合并同类项法则,完全平方公式,幂的乘方与积的乘方法则,多项式乘以多项式的法则解答.解答:解:A、不是同类项,不能合并,故本选项错误;B、(a+b)2=a2+2ab+b2,故本选项错误;C、(2ab2)3=8a3b6,故本选项错误;D、(x﹣a)(x﹣b)=x2﹣(a+b)x+ab,故本选项正确.故选D.点评:本题综合考查合并同类项法则,完全平方公式,幂的乘方与积的乘方法则,多项式乘以多项式的法则,是基础题型,需要熟练掌握.3、(2011•日照)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A、70°B、80°C、90°D、100°考点:三角形内角和定理;平行线的性质。

专题:计算题。

分析:根据两直线平行,同位角相等,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.解答:解:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.故选B.点评:本题应用的知识点为:两直线平行,同位角相等;三角形内角和定理.4、(2011•日照)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A、54盏B、55盏C、56盏D、57盏考点:一元一次方程的应用。

2023年日照市中考数学考试卷及答案解析

2023年日照市中考数学考试卷及答案解析

2023年日照市中考数学考试卷及答案解析第I 卷(选择题36分)一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题目要求选项的字母代号填涂在答题卡相应位置上.1.计算:()23--的结果是()A.5B.1C.-1D.-5【答案】A【解析】【分析】把减法化为加法,即可求解。

【详解】解:()23--=235+=,故选A .【点睛】本题主要考查有理数的减法运算,掌握有理数的减法法则是关键.2.窗花是贴在窗子或窗户上的剪纸,是中国古老的传统民间艺术之一.下列窗花作品既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.【详解】解:A 、既是轴对称图形,也是中心对称图形,故此选项符合题意;B 、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;C 、不是轴对称图形,是中心对称图形,故此选项不符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选A .【点睛】本题主要考查了轴对称图形和中心对称图形的识别,熟知二者的定义是解题的关键.3.芯片内部有数以亿计的晶体管,为追求更高质量的芯片和更低的电力功耗,需要设计4积更小的晶体管.目前,某品牌手机自主研发了最新型号芯片,其晶体管栅极的宽度为0.000000014米,将数据0.000000014用科学记数法表示为()A.81.410-⨯ B.71410-⨯ C.60.1410-⨯ D.91.410-⨯【答案】A【解析】【分析】科学计数法的记数形式为:10n a ⨯,其中1a 10≤<,当数值绝对值大于1时,n 是小数点向右移动的位数;当数值绝对值小于1时,n 是小数点向左移动的位数的相反数.【详解】解:80.000000014 1.410-=⨯,故选A .【点睛】本题考查科学计数法,掌握科学计数法的记数形式是解题的关键.4.如图所示的几何体的俯视图可能是()A. B. C. D.【答案】C【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看,是一个六边形和圆形.故选:C.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图是解题关键.5.在数学活动课上,小明同学将含30︒角的直角三角板的一个顶点按如图方式放置在直尺上,测得∠=︒,则2∠的度数是().123A.23︒B.53︒C.60︒D.67︒【答案】B【解析】【分析】根据平行线的性质和三角形的外角性质即可求解.【详解】解:如图:∥,∵BC DE∠=∠,∴2BCD在ABC 中,1BCD A =+∠∠∠,∵30A ∠=︒,故21233053BCD A ==+=︒+︒=︒∠∠∠∠,故选:B .【点睛】本题考查了平行线的性质,三角形的外角性质,熟练掌握以上性质是解题的关键.6.下列计算正确的是()A.236a a a ⋅= B.()32628m m -=- C.222()x y x y +=+ D.232235ab a b a b +=【答案】B【解析】【分析】根据整式乘法运算法则及加法法则逐一判断即可.【详解】A 、235a a a ⋅=,故错误;B 、()32628m m -=-,故正确;C 、222()2x y x xy y +=++,故错误;D 、223ab a b 、不是同类项,不能合并,故错误;故选:B .【点睛】本题考查整式乘法与加法运算法则,熟记基本的运算法则是解题关键.7.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,可列方程为()A.911616x x +=+ B.911616x x -=- C.911616x x +=- D.911616x x -=+【答案】D【解析】【分析】设人数为x ,根据每人出9钱,会多出11钱,可得鸡的价格为()911x -钱,根据每人出6钱,又差16钱,可得鸡的价格为()616x +钱,由此列出方程即可.【详解】解:设人数为x ,由题意得,911616x x -=+,故选D .【点睛】本题主要考查了从实际问题中抽象出一元一次方程,正确理解题意找到等量关系是解题的关键.8.日照灯塔是日照海滨港口城市的标志性建筑之一,主要为日照近海及进出日照港的船舶提供导航服务.数学小组的同学要测量灯塔的高度,如图所示,在点B 处测得灯塔最高点A 的仰角45ABD ∠=︒,再沿BD 方向前进至C 处测得最高点A 的仰角60ACD ∠=︒,15.3m BC =,则灯塔的高度AD 大约是()(结果精确到1m 1.41≈ 1.73≈)A.31mB.36mC.42mD.53m【答案】B【解析】【分析】在Rt ADB 中,得出AD BD =,设AD x =,则BD x =,15.3CD x =-,在Rt ADC 中,根据正切得出tan 15.3AD x ACD CD x ∠===-,求解即可得出答案.【详解】解:在Rt ADB 中,45ABD ∠=︒,AD BD ∴=,设AD x =,则BD x =,15.3CD x =-,在Rt ADC 中,60ACD ∠=︒,tan15.3AD x ACD CD x ∴∠===-,36x ∴≈,∴灯塔的高度AD 大约是36m .故选:B .【点睛】本题考查了解直角三角形中的仰俯角问题,解题的关键是弄清有关的直角三角形中的有关角的度数.9.已知直角三角形的三边,,a b c 满足c a b >>,分别以,,a b c 为边作三个正方形,把两个较小的正方形放置在最大正方形内,如图,设三个正方形无重叠部分的面积为1S ,均重叠部分的面积为2S ,则()A.12S S > B.12S S < C.12S S = D.12,S S 大小无法确定【答案】C【解析】【分析】根据题意,由勾股定理可得222+=a b c ,易得222c a b -=,然后用,,a b c 分别表示1S 和2S ,即可获得答案.【详解】解:如下图,∵,,a b c 为直角三角形的三边,且c a b >>。

山东省日照市中考数学试题(含答案)

山东省日照市中考数学试题(含答案)

试卷类型:A日照市初中学生学业考试数 学 试 题(总分120分 考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷3页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共11页.2. 答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.31-的相反数是 ( ) A .31B . -31C . 3D . -32. 下列运算正确的是( )A .523x x x =⋅B .336()x x =C .5510x x x +=D .336x x x =-3. 下列图形中,是中心对称图形的是 ()A .B .C .D .4、下图能说明∠1>∠2的是( )12)A. 21)D.12) )B.12 )) C.5、根据下图所示程序计算函数值,若输入的x 的值为52,则输出的函数值为( ) A .32B .25C .425D .2546.将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(2,3) B .(2,-1)C .(4,1)D. (0,1)7. 小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是6πcm ,那么这个的圆锥的高是( )A . 4cmB . 6cmC . 8cmD . 2cm8.若43=x ,79=y,则y x 23-的值为( )A .74B .47C .3-D .729. 方程0411)1(2=+---x k x k 有两个实数根,则k 的取值范围是( ). A . k ≥1 B . k ≤1 C . k >1D . k <110. 小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线x y 6=上的概率为( ) A .118B .112OBA(第7题图)5cm输入x 值y =x -1 (-1≤x <0) 1y x=(2≤x ≤4)y =x 2(0≤x <2)输出y 值C .19D .1611. 如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,那么点B ′的坐标是( ) A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)12. 如图,一次函数3+=x y 的图象与x 轴,y 轴交于A ,B 两点,与反比例函数x y 4=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①△CEF 与△DEF 的面积相等;②△AOB ∽△FOE ;③△DCE ≌△CDF ; ④AC BD =.其中正确的结论是( )A .①②B . ①②③C .①②③④D . ②③④A BCO xy -46(第11题图)yxDCA BOF E(第12题图)试卷类型:A2014年日照市初中学生学业考试数 学 试 题第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.题号 二 三总分 18 19 20 21 22 23 24 得分二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13、南海是我国固有领海,她的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法可表示为 .14.分解因式:x x 93= .15. 某校篮球班21名同学的身高如下表:身高/cm 180 185 187 190201 人数/名46542则该校篮球班21名同学身高的中位数是______________cm .16. 某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD 垂直平分BC ,AD=BC=48cm ,则圆柱形饮水桶的底面半径的最大值是 cm .得 分评 卷 人BDCA(第16题图2)(第16题图1)17. 在平面直角坐标系xOy 中,点1A ,2A ,3A ,…和1B ,2B ,3B ,…分别在直线y kx b =+和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,… 都是等腰直角三角形,如果A 1(1,1),A 2(23,27),那么点n A 的纵坐标是_ _____.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:()122160tan 33101+-+︒-⎪⎭⎫⎝⎛--;(2)先化简,再求代数式212312+-÷⎪⎭⎫ ⎝⎛+-x x x 的值,其中x 是不等式组⎩⎨⎧<+>-812,02x x 的整数解.yxy=kx+bOB3B2B1A3A 2 A 1 (第17题图)得 分 评 卷 人19. (本题满分9分)某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A 、B 两组捐款人数的比为1 : 5.请结合以上信息解答下列问题.(1) a = ,本次调查样本的容量是 ; (2) 先求出C 组的人数,再补全“捐款人数分组统计图1”;(3) 若任意抽出1名学生进行调查,恰好是捐款数不少于30元的概率是多少?捐款人数分组统计表 组别 捐款额x /元 人数 A 1≤x <10 a B 10≤x <20 100 C 20≤x <30 D30≤x <40捐款人数分组统计图1捐款人数分组统计图2座号得 分评 卷 人20. (本题满分9分)如图,AB 是⊙O 的直径,AM 和BN 是它的两条切线,DE 切⊙O 于点E ,交AM 于点D ,交BN 于点C ,(1)求证:OD ∥BE ;(2)如果OD =6cm ,OC =8cm ,求CD 的长.得 分评 卷 人(第20题图)A DNEBC OM得分评卷人21.(本题满分9分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?22.(本题满分9分)如图某天上午9时,向阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西36.9°方向,求此时轮船所处位置B与城市P的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)(第22题图)APCB36.9°67.5°23.(本题满分10分)(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE .求证:CE =CF ;(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果∠GCE =45°,请你利用(1)的结论证明:GE =BE +GD .(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC ,E 是AB 上一点,且∠DCE =45°,BE =4,DE =10, 求直角梯形ABCD 的面积.(第23题图1)AE BCDF(第23题图3)B CA DE(第23题图2)AEBCDG24.(本题满分11分)已知抛物线36232++=bx x y 经过 A (2,0). 设顶点为点P ,与x 轴的另一交点为点B .(1)求b 的值,求出点P 、点B 的坐标; (2)如图,在直线 y=3x 上是否存在点D ,使四边形OPBD 为平行四边形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)在x 轴下方的抛物线上是否存在点M ,使△AMP ≌△AMB ?如果存在,试举例验证你的猜想;如果不存在,试说明理由.得 分评 卷 人A PB xyO (第24题图)x y 3=试卷类型:A2014年日照市初中学生学业考试 数学试题参考答案与评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见进行评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BABCBDAADCDC二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分. 13.3.6×106; 14.x (x +3)(x -3); 15. 187; 16. 30;17.123-⎪⎭⎫ ⎝⎛n三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分,第⑴题3分,第⑵题4分)(1)解:原式=-3-33+1+23…………………………2分 =-2-3…………………………3分 (2)原式=122(1)(1)x x x x x -+·++-11x =+, ………………1分解不等式组⎩⎨⎧<+>-812,02x x 得722x <<,………………………2分因为x 是整数,所以3x =,……………………3分 当3x =时,原式=14.……………………4分19. 解:(1)20,500;…………………………2分 (2)500×40%=200,C 组的人数为200. … 4分补图见图. …………………………5分 (3)∵D 、E 两组的人数和为:500×(28%+8%)=180,………………7分 ∴捐款数不少于30元的概率是:1800.36.500=……………………………… 9分 20.(1)证明:连接OE ,∵AM 、DE 是⊙O 的切线,OA 、OE 是⊙O 的半径,∴∠ADO=∠EDO , ∠DAO=∠DEO =90°, ……………………2分∴∠AOD=∠EOD=12∠AOE , ∵∠ABE=12∠AOE ∴∠AOD=∠ABE ,∴OD ∥BE …………………5分(2)由(1)得:∠AOD=∠EOD=12∠AOE , 同理,有:∠BOC=∠EOC=12∠BOE∴∠AOD +∠EOD +∠BOC +∠EOC=180° ∴∠EOD +∠EOC =90°,∴△DOC 是直角三角形,…………………………7分∴ CD=cm )(10643622=+=+OC OD ……………………9分21.解:(1)设工厂从A 地购买了x 吨原料,制成运往B 地的产品y 吨.则依题意,得:⎩⎨⎧=+=+.97200)120110(2.1,15000)1020(5.1x y x y …………………………4分 解这个方程组,得:⎩⎨⎧==.300,400y x∴工厂从A 地购买了400吨原料,制成运往B 地的产品300吨. ………7分 (2)依题意,得:300×8000-400×1000-15000-97200=1887800∴批产品的销售款比原料费与运输费的和多1887800元. ………………9分 22.解:过点P 作PC ⊥AB ,垂足为C ,设PC =x 海里.在Rt △APC 中,∵tan ∠A =PC AC ,∴AC =5tan 67.512PC x=︒.…………3分在Rt △PCB 中,∵tan ∠B =PC BC ,∴BC =4tan 36.93x x=︒.…………5分∵AC +BC =AB =21×5,∴54215123x x +=⨯,解得60x =. (第20题答案图)A DNEBC OM∵sin PC B PB ∠=,∴60560100sin sin 36.93PC PB B ===⨯=∠︒(海里). ∴向阳号轮船所处位置B 与城市P 的距离为100海里.………………9分23. 解答:(1)证明:在正方形ABCD 中, ∵BC =CD ,∠B =∠CDF ,BE =DF , ∴△CBE ≌△CDF .∴CE =CF . …………………………2分(2)证明: 如图2,延长AD 至F ,使DF =BE .连接CF . 由(1)知△CBE ≌△CDF ,∴∠BCE =∠DCF .∴∠BCE +∠ECD =∠DCF +∠ECD 即∠ECF =∠BCD =90°,又∠GCE =45°,∴∠GCF =∠GCE =45°.∵CE =CF ,∠GCE =∠GCF ,GC =GC ,∴△ECG ≌△FCG .…………………………5分 ∴GE =GF∴GE =DF +GD =BE +GD . ……………6分(3)解:如图3,过C 作CG ⊥AD ,交AD 延长线于G .在直角梯形ABCD 中, ∵AD ∥BC ,∴∠A =∠B =90°,又∠CGA =90°,AB =BC ,∴四边形ABCD 为正方形.∴AG =BC .…………………………7分 已知∠DCE =45°,根据(1)(2)可知,ED =BE +DG .……8分所以10=4+DG ,即DG =6.设AB =x ,则AE =x -4,AD =x -6 在Rt △AED 中, ∵222AE AD DE +=,即()()2224610-+-=x x . 解这个方程,得:x =12,或x =-2(舍去).…………………………9分 ∴AB =12.所以梯形ABCD 的面积为S=.10812)126(21)(21=⨯+=+AB BC AD答:梯形ABCD 的面积为108. …………………………10分 24.解:(1)由于抛物线36232++=bx x y 经过A (2,0), 所以3624230++⨯=b , 解得34-=b .…………………………1分 所以抛物线的解析式为3634232+-=x x y . (*) 将(*)配方,得()324232--=x y , (第23题答案图1)A EBCD F(第23题答案图2) A EBC D G F B C A D E G (第23题答案图3)所以顶点P 的坐标为(4,-23)…………………………2分 令y =0,得()0324232=--x , 解得6,221==x x . 所以点B 的坐标是(6,0). ………………3分(2)在直线 y=3x 上存在点D ,使四边形OPBD 为平行四边形. ……4分理由如下:设直线PB 的解析式为kx y =+b ,把B (6,0),P (4,-23)分别代入,得⎪⎩⎪⎨⎧-=+=+.324,06b k b k 解得⎪⎩⎪⎨⎧-==.36,3b k 所以直线PB 的解析式为363-=x y .…………………………5分 又直线OD 的解析式为x y 3=所以直线P B ∥OD . …………………………6分设设直线OP 的解析式为mx y =,把P (4,-23)代入,得324-=m 解得23-=m .如果OP ∥BD ,那么四边形OPBD 为平行四边形.…………7分设直线BD 的解析式为n x y +-=23,将B (6,0)代入,得0=n +-33,所以33=n 所以直线BD 的解析式为n x y +-=23, 解方程组⎪⎩⎪⎨⎧+-==.3323,3x y x y 得⎪⎩⎪⎨⎧==.32,2y x 所以D 点的坐标为(2,23)…………………8分(3)符合条件的点M 存在.验证如下:过点P 作x 轴的垂线,垂足为为C ,则PC =23,AC =2,由勾股定理,可得AP =4,PB =4,又AB =4,所以△APB 是等边三角形,只要作∠PAB 的平分线交抛物线于M 点,连接PM ,BM ,由于AM =AM , ∠PAM =∠BAM ,AB =AP ,可得△AMP ≌△AMB.因此即存在这样的点M ,使△AMP ≌△AMB.…………………………11分A PB xyO第24题答案图C M Dx y 3=。

2023年山东省日照市中考数学试卷(含答案)022508

2023年山东省日照市中考数学试卷(含答案)022508

2023年山东省日照市中考数学试卷试卷考试总分:120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )1. 计算的结果等于( )A.B.C.D.2. 下列交通标志中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D.3. 把用科学记数法表示为 A.B.C.D.4.两个长方体按图示方式摆放,其主视图是( ) A. B.C.(−2)−(−2)−4410.00000503()0.503×1075.03×10750.3×10−65.03×10−6D.5. 如图,将一块含有角的直角三角板的两个顶点放在矩形直尺的一组对边上,如果,那么的度数为( )A.B.C.D.6. 下列运算正确的是A.B.C.D.7. 在中国数学名著《九章算术》中,有这样一个问题:“今有共买牛,七家共出一百九十,不足三百三十;九家共出二百七十,盈三十.问家数、牛价各几何?”大意是:几家人凑钱合伙买牛,如果每家共出元,那么还缺少元钱;如果每家共出元,又多了元钱.问共有多少人家,每头牛的价钱是多少元?若设有户人家,则可列方程为( )A.B.C.D.8. 数学兴趣小组的同学们要测量某大桥主架顶端离水面的高.在桥外一点测得大桥主架与水面的交汇点的俯角为,大桥主架的顶端的仰角为,测得与大桥主架的水平距离为米,则大桥主架顶端离水面的高为( )A.()米B.米C.米30∘∠1=32∘∠262∘60∘58∘50∘()2+3=5a 2a 3a 5÷=a 6a 3a 2(−=a 3)2a 6(x+y =+)2x 2y 27190330927030x x+330=x−3019072709x−330=x+3019072709+330=−307×190x 9×270x−330=+307×190x 9×270x CD A C αD 45∘AB 100CD 100+100⋅sinα(100+100⋅tanα)(100+)100sinα100+)100D.米9. 如图,在正方形网格中,每个小正方形的边长都为,的顶点都在格点上,则的边长为无理数的条数是( )A.条B.条C.条D.条10. 已知关于的方式方程的解是非负数,那么的取值范围是( )A.B.且C.且D.11. 已知两点,均在抛物线上,点是抛物线的顶点,若,则的取值范围是( )A.B.C.D.12. 如图是某台阶的一部分,每级台阶的高和宽都是.在平面直角坐标系中,点,的坐标分别为,,则点的坐标为( )A. )B.C.D.二、 填空题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )13. 分解因式:________.(100+)100tanα1△ABC △ABC 0123x =3x−a x−313a a >1a ≥1a ≠3a ≥1a ≠9a ≤1M(6,)y 1N (2,)y 2y =a +bx+c(a ≠0)x 2P (,)x 0y 0≤<y 0y 2y 1x 0<4x 0>−2x 0−6<<−2x 0−2<<2x 01A A 1(−1,0)(0,1)A 2021(2021,2021(2021,2020)(1010,2021)(2020,2021)a −4a =x 214. 已知点的坐标为在第二象限,则的取值范围是_______.15. 一次函数 与反比例函数的图象交于点.要使,则的取值范围是________.16. 如图,在边长为的等边中,折叠,使点落在边的 处,折痕分别交,于点,,当点 为边的三等分点时,的长为________A B‘ )第题图三、 解答题 (本题共计 6 小题 ,每题 12 分 ,共计72分 )17.求值:;解方程: .18. 某市五中倡议七年级学生利用双休日在各自社区参加义务劳动.为了解学生们的劳动情况,学校随机调查了部分学生的劳动时间,并用得到的数据绘制成不完整的统计图表.如下图所示劳动时间(时)频数(人数)频率合计统计表中的________;被调查学生劳动时间的中位数是________;请将频数分布直方图补充完整;若学校七年级学生有人,估计该校七年级学生的劳动时间不少于小时的有多少人?19. 如图,在中,对角线与相交于点,=,过点作交于点.(1)求证:;(2)若=,,求线段的长. 20. 如图,有一个形如六边形的点阵,它的中心是一个点(作为第一层),第二层每边有两个点,该层共包含个点;第三层每边有三个点,该层共包含个点;以此类推.P (a −2,3a)a =−x−1y 1=−y 22x A(−2,1),B(1,−2)<y 1y 2x 6△ABC ∠B B AC B ′DEAB BC D E B ′AC BE D/B ′C E15(1)|−2|+−+3tan 3–√20090(−)13−130∘(2)4x(3x−2)=6x−40.5120.121300.31.5x 0.42180.18m 1(1)x =(2)(3)(4)1000 1.5▱ABCD AC BD O ∠CAB ∠ACB B BE ⊥AB AC E AC ⊥BD AB 14cos ∠CAB =78OE 612试写出第 层所包含的点数;试写出层六边形点阵的总点数;如果一个六边形点阵共有个点,那么它一共有几层?21. 如图,在四边形中,,为中点,过作交于点,连接交于点,连接交于点,若,求证:.22.如图,抛物线与轴交于,两点,与轴交于点.求抛物线的解析式;点在轴下方的抛物线上,过点的直线与直线交于点,与轴交于点,求的最大值;已知点为抛物线对称轴上一点.①当为直角三角形时,求点的坐标;②若是锐角三角形,直接写出点的纵坐标的取值范围.(1)n(n ≥2)(2)n(n ≥2)(3)169ABFC ∠BAC =∠BFC =∠BCN =90∘E BC C CN ⊥BC AF N EN BF M CM AN G AB =AF MG =GC y =+bx+c x 2x A B(3,0)y C(0,3)(1)(2)P x P y =x+m BC E y F PE+EF (3)D △BCD D △BCD D参考答案与试题解析2023年山东省日照市中考数学试卷试卷一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )1.【答案】B【考点】有理数的减法【解析】原式利用减法法则变形,计算即可求出值.【解答】原式==,2.【答案】D【考点】中心对称图形轴对称图形【解析】此题暂无解析【解答】此题暂无解答3.【答案】D【考点】科学记数法—表示较小的数【解析】此题暂无解析【解答】解:根据科学记数法的定义,应表示为.故选.4.−2+20∴0.00000503 5.03×10−6DC【考点】简单组合体的三视图【解析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看有两层,底层是一个矩形,上层是一个长度较小的矩形.故选.5.【答案】A【考点】平行线的性质三角形的外角性质【解析】根据三角形的一个外角等于与它不相邻的两个内角的和求出,再根据两直线平行,内错角相等可得.【解答】解:如图,由三角形的外角性质可得,,∵,∴.故选.6.【答案】C【考点】同底数幂的除法完全平方公式幂的乘方与积的乘方合并同类项幂的乘方及其应用【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.C ∠3∠2=∠3∠3=+∠1=+=30∘30∘32∘62∘AB//CD ∠2=∠3=62∘A解:. 和 不是同类项,故本选项错误;.,故本选项错误;. ,故本选项正确;. ,故本选项错误.故选.7.【答案】A【考点】由实际问题抽象出一元一次方程数学常识【解析】设有户人家,根据题意可得每头牛的价钱是,由每头牛的价钱不变可得方程.【解答】设有户人家,则.8.【答案】B【考点】解直角三角形的应用-仰角俯角问题【解析】【解答】解:在中, ,∴.在中, ∴,∴米.故选.9.【答案】C【考点】勾股定理A 2a 23a 3B ÷==a 6a 3a 6−3a 3C (−=a 3)2a 6D (x+y =+2xy+)2x 2y 2C x x+330x−3019072709x x+330=x−3019072709Rt △ABC tanα=BC ABBC =AB ⋅tanαRt △ABD tan =,45∘BD AB BD =AB ⋅tan =AB 45∘CD =a =BC +BD =AB ⋅tanα+AB=(100+100⋅tanα)B根据图形和勾股定理来解答即可.【解答】解:∵,,,的边长有两条是无理数.故选.10.【答案】C【考点】分式方程的解解一元一次不等式【解析】根据分式方程的解法即可求出的取值范围.【解答】,,∴,由于该分式方程有解,令代入,∴,∵该方程的解是非负数解,∴,∴,∴的范围为:且,11.【答案】A【考点】二次函数图象上点的坐标特征【解析】此题暂无解析【解答】解:∵点是抛物线的顶点,,∴抛物线有最小值,函数图象开口向上,∴,当对称轴位于及其左侧,且时,符合题意,,当对称轴位于,之间时,,AB ==+1242−−−−−−√17−−√BC ==+1232−−−−−−√10−−√AC ==5+3242−−−−−−√∴△ABC C a 3(3x−a)=x−39x−3a =x−38x =3a −3x =3a −38x =3a −38x−3≠0a ≠9≥03a −38a ≥1a a ≥1a ≠9P(,)x 0y 0>≥y 1y 2y 0a >0x =2a >0∴≤2x 0x =2x =6∵>y 1y 2<=42+6,即.综上,.故选.12.【答案】D【考点】规律型:点的坐标【解析】根据点的规律可知,第的纵坐标为,横坐标比纵坐标少,故.【解答】解:观察可知,第的纵坐标为,横坐标比纵坐标少,故,则.故选.二、 填空题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )13.【答案】【考点】提公因式法与公式法的综合运用【解析】此题暂无解析【解答】解:.故答案为:.14.【答案】【考点】点的坐标解一元一次不等式组【解析】根据第二象限的横坐标小于零,纵坐标大于零,可得不等式组,根据解不等式组,可得答案.【解答】解:由点在第二象限,得∴<=4x 02+622<<4x 0<4x 0A A n n 1(n−1,n)A n A n n 1(n−1,n)A n (2020,2021)A 2021D a(x+2)(x−2)a −4a =a(−4)=x 2x 2a(x+2)(x−2)a(x+2)(x−2)0<a <2P (a −2,3a){a −2<0,3a >0,解得.故答案为:.15.【答案】或【考点】反比例函数与一次函数的综合【解析】此题暂无解析【解答】此题暂无解答16.【答案】【考点】翻折变换(折叠问题)相似三角形的性质与判定勾股定理相似三角形的判定与性质平行线分线段成比例【解析】【解答】三、 解答题 (本题共计 6 小题 ,每题 12 分 ,共计72分 )17.【答案】解:原式.,,.其中,,,则,∴,.【考点】特殊角的三角函数值零指数幂、负整数指数幂0<a <20<a <2−2<x <0x >1(1)=2−+1+3+3×=63–√3–√3(2)12−8x =6x−4x 212−14x+4=0x 26−7x+2=0x 2a =6b =−7c =2Δ==1−4ac b 2−−−−−−−√==x 1−b +Δ−−√2a 23==x 1−b −Δ−−√2a 12实数的运算绝对值解一元二次方程-公式法【解析】此题暂无解析【解答】解:原式.,,.其中,,,则,∴,.18.【答案】根据得出的数据补图如下:该校七年级学生的劳动时间不少于小时的有:(人).【考点】频数(率)分布表频数与频率中位数条形统计图用样本估计总体【解析】先根据半小时的频数和频率求出总数,进而即可得出答案.把这组数据按大小排列后,找到第第和个数,求出它们的平均数即可.根据中的数据补全即可.用总数乘样本中大于等于小时的频率即可.【解答】解:调查的总人数是: (人),则(人),故答案为:.∵共有名学生,处于中间位置的是第和个数的平均数,又因劳动时间小时的有人,劳动时间小时的有人,劳动时间小时有的人,∴第和个数都是,∴被调查同学劳动时间的中位数是小时.(1)=2−+1+3+3×=63–√3–√3(2)12−8x =6x−4x 212−14x+4=0x 26−7x+2=0x 2a =6b =−7c =2Δ==1−4ac b 2−−−−−−−√==x 1−b +Δ−−√2a 23==x 1−b −Δ−−√2a 12401.5(3)(1)(4) 1.51000×(0.4+0.18)=5805051(1) 1.5(1)12÷0.12=100x =100×0.4=4040(2)10050510.512130 1.5405051 1.5 1.5故答案为:小时.根据得出的数据补图如下:该校七年级学生的劳动时间不少于小时的有:(人).19.【答案】∵=,∴=,∴是菱形.∴;在中,,=,∴=,在中,,=,∴=,∴==.【考点】平行四边形的性质解直角三角形菱形的判定与性质【解析】(1)根据=利用等角对等边得到=,从而判定平行四边形是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在中和在中求得和,从而利用=求解即可.【解答】∵=,∴=,∴是菱形.∴;在中,,=,∴=,在中,,=,∴=,∴==.20.【答案】解:第一层上的点数为;第二层上的点数为,第三层上的点数为,1.5(3)(1)(4) 1.51000×(0.4+0.18)=580∠CAB ∠ACB AB CB ▱ABCD AC ⊥BD Rt △AOB cos ∠CAB ==AO AB 78AB 14AO 14×=78494Rt △ABE cos ∠EAB ==AB AE 78AB 14AE =AB 8716OE AE−AO 16−=494154∠CAB ∠ACB AB CB ABCD Rt △AOB Rt △ABE AO AE OE AE−AO ∠CAB ∠ACB AB CB ▱ABCD AC ⊥BD Rt △AOB cos ∠CAB ==AO AB 78AB 14AO 14×=78494Rt △ABE cos ∠EAB ==AB AE 78AB 14AE =AB 8716OE AE−AO 16−=494154(1)16=1×66+6=2×6第四层上的点数为,……第层上的点数为.第二层开始,每增加一层就增加六个点,即层六边形点阵的总点数为:.由题意可得,,解得或(舍去),故如果一个六边形点阵共有个点,那么它一共有层.【考点】规律型:图形的变化类【解析】根据六边形有六条边,则第一层有个点,第二层有(个)点,第三层有(个)点,进一步得出第层有个点,由此解答即可;将每一层的点数相加后即可得到答案.由题意可得,解方程即可.【解答】解:第一层上的点数为;第二层上的点数为,第三层上的点数为,第四层上的点数为,……第层上的点数为.第二层开始,每增加一层就增加六个点,即层六边形点阵的总点数为:.由题意可得,,解得或(舍去),故如果一个六边形点阵共有个点,那么它一共有层.21.【答案】证明:如图,过点作于,连接,则有.∵,∴,,∴、、、四点共圆,、、、四点共圆,∴,,∴,∴,∴.∵、、、四点共圆,,∴是该圆的直径.∵为中点,∴,点为该圆的圆心.∵,∴根据垂径定理可得.6+6+6=3×6n (n−1)×6=6n−6(2)n 1+1×6+2×6+3×6+…+(n−1)×6=1+6[1+2+3+4+…+(n−1)]=1+6×n(n−1)2=3−3n+1n 2(3)3−3n+1=169n 23−3n−168=0n 2n =8−71698(1)12×6−6=63×6−6=12π6(n−1)(2)(3)3−3n+1=169n 2(1)16=1×66+6=2×66+6+6=3×6n (n−1)×6=6n−6(2)n 1+1×6+2×6+3×6+…+(n−1)×6=1+6[1+2+3+4+…+(n−1)]=1+6×n(n−1)2=3−3n+1n 2(3)3−3n+1=169n 23−3n−168=0n 2n =8−71698E EH ⊥AF H CH ∠EHN =90∘∠BAC =∠BFC =∠BCN =90∘∠BAC +∠BFC =180∘∠EHN =∠ECN =90∘A B F C E H C N ∠CAF =∠CBF ∠CHN =∠CEN ∠AHC =∠BEM △AHC ∽△BEM =AC BM AH BE A B F C ∠BAC =90∘BC E BC BE =EC =BC 12E EH ⊥AF AH =HF =AF 12=AC AH AF∴.又∵,∴,∴.∵、、、四点共圆,∴.∵,∴.∵,∴,∴,∴.∵,∴,,∴,∴,∴.【考点】四点共圆圆的综合题【解析】如图,过点作于,连接,易证、、、四点共圆,、、、四点共圆,根据圆周角定理可得,,从而可得,即可得到,则有.易证点为过、、、的圆的圆心,根据垂径定理可得.即可得到,由此可证到,则有.根据圆内接四边形对角互补可得,根据平角的定义可得,根据等角的补角相等可得.由可得,从而可得,则有.由可得,,根据等角的余角相等可得,则有,即可得到.【解答】证明:如图,过点作于,连接,则有.∵,∴,,∴、、、四点共圆,、、、四点共圆,∴,,∴,∴,∴.∵、、、四点共圆,,∴是该圆的直径.∵为中点,∴,点为该圆的圆心.∵,∴根据垂径定理可得.∴.又∵,∴,∴.∵、、、四点共圆,∴.∵,∴.∵,==AC BM AH BE AF BC ∠CAF =∠MBC △CAF ∽△MBC ∠ACF =∠BMC A B F C ∠ACF +∠ABF =180∘∠BMC +∠FMC =180∘∠ABF =∠FMC AB =AF ∠ABF =∠AFB ∠FMC =∠AFB GM =GF ∠MFC =90∘∠MFG+∠GFC =90∘∠FMC +∠FCM =90∘∠GFC =∠FCM GF =GC GM =GF =GC E EH ⊥AF H CH A B F C E H C N ∠CAF =∠CBF ∠CHN =∠CEN ∠AHC =∠BEM △AHC ∽△BEM =AC BM AH BE E A B F C AH =HF =AF 12==AC BM AH BE AF BC △CAF ∽△MBC ∠ACF =∠BMC ∠ACF +∠ABF =180∘∠BMC +∠FMC =180∘∠ABF =∠FMC AB =AF ∠ABF =∠AFB ∠FMC =∠AFB GM =GF ∠MFC =90∘∠MFG+∠GFC =90∘∠FMC +∠FCM =90∘∠GFC =∠FCM GF =GC GM =GF =GC E EH ⊥AF H CH ∠EHN =90∘∠BAC =∠BFC =∠BCN =90∘∠BAC +∠BFC =180∘∠EHN =∠ECN =90∘A B F C E H C N ∠CAF =∠CBF ∠CHN =∠CEN ∠AHC =∠BEM △AHC ∽△BEM =AC BM AH BE A B F C ∠BAC =90∘BC E BC BE =EC =BC 12E EH ⊥AF AH =HF =AF 12==AC BM AH BE AF BC ∠CAF =∠MBC △CAF ∽△MBC ∠ACF =∠BMC A B F C ∠ACF +∠ABF =180∘∠BMC +∠FMC =180∘∠ABF =∠FMC AB =AF∴,∴,∴.∵,∴,,∴,∴,∴.22.【答案】解:把,代入,得解得∴抛物线的解析式为.易得的解析式为,∵直线与直线平行,∴直线与直线垂直,∴,∴为等腰直角三角形,作轴于,轴交于,如图,为等腰直角三角形,,设,则,∴,,∴,∴,当时,的最大值为;①如图,抛物线的对称轴为直线,设(),则,,,当是以为斜边的直角三角形时,,即,解得,此时点坐标为;当是以为斜边的直角三角形时,,即,解,此时坐标为;当是以为斜边的直角三角形时,,即,解得,,∠ABF =∠AFB ∠FMC =∠AFB GM =GF ∠MFC =90∘∠MFG+∠GFC =90∘∠FMC +∠FCM =90∘∠GFC =∠FCM GF =GC GM =GF =GC (1)(3,0)(0,3)y =+bx+c x 2{9+3b +c =0,c =3,{b =−4,c =3,y =−4x+3x 2(2)BC y =−x+3y =x+m y =x y =−x+3y =x+m ∠CEF =90∘△ECF PH ⊥y H PG//y BC G 1△EPG PE =PG 2–√2P(t,−4t+3)(1<t <3)t 2G(t,−t+3)PF =PH =t 2–√2–√PG =−t+3−(−4t+3)=−+3tt 2t 2PE =PG =−+t2–√22–√2t 232–√2PE+EF =PE+PE+PF =2PE+PF =−+3t+t 2–√t 22–√2–√=−+4t 2–√t 22–√=−(t−2+42–√)22–√t =2PE+EF 42–√(3)2x =−=2−42D 2,y B =+=18C 23232D =4+C 2(y−3)2B =+=1+D 2(3−2)2y 2y 2△BCD BD B +D =B C 2C 2D 218+4+(y−3=1+)2y 2y =5D (2,5)△BCD CD B +C =D C 2D 2C 218+1+=4+y 2(y−3)2y =−1D (2,−1)△BCD BC D +B =B C 2D 2C 24++1+=18(y−3)2y 2=y 13+17−−√2=y 23−17−−√22,)3+17−−√2,)3−17−−√此时点坐标为或;②是锐角三角形,综合①可得点的纵坐标的取值范围为:或.【考点】二次函数综合题【解析】此题暂无解析【解答】解:把,代入,得解得∴抛物线的解析式为.易得的解析式为,∵直线与直线平行,∴直线与直线垂直,∴,∴为等腰直角三角形,作轴于,轴交于,如图,为等腰直角三角形,,设,则,∴,,∴,∴,当时,的最大值为;①如图,抛物线的对称轴为直线,设(),则,,,当是以为斜边的直角三角形时,,即,解得,此时点坐标为;当是以为斜边的直角三角形时,,即,解,此时坐标为;当是以为斜边的直角三角形时,D (2,)3+17−−√2(2,)3−17−−√2△BCD D <y <51+17−−√2−1<y <3−17−−√2(1)(3,0)(0,3)y =+bx+c x 2{9+3b +c =0,c =3,{b =−4,c =3,y =−4x+3x 2(2)BC y =−x+3y =x+m y =x y =−x+3y =x+m ∠CEF =90∘△ECF PH ⊥y H PG//y BC G 1△EPG PE =PG 2–√2P(t,−4t+3)(1<t <3)t 2G(t,−t+3)PF =PH =t 2–√2–√PG =−t+3−(−4t+3)=−+3tt 2t 2PE =PG =−+t 2–√22–√2t 232–√2PE+EF =PE+PE+PF =2PE+PF =−+3t+t 2–√t 22–√2–√=−+4t 2–√t 22–√=−(t−2+42–√)22–√t =2PE+EF 42–√(3)2x =−=2−42D 2,y B =+=18C 23232D =4+C 2(y−3)2B =+=1+D 2(3−2)2y 2y 2△BCD BD B +D =B C 2C 2D 218+4+(y−3=1+)2y 2y =5D (2,5)△BCD CD B +C =D C 2D 2C 218+1+=4+y 2(y−3)2y =−1D (2,−1)△BCD BC D +B =B 2224++1+=1822,即,解得,,此时点坐标为或;②是锐角三角形,综合①可得点的纵坐标的取值范围为:或.D +B =B C 2D 2C 24++1+=18(y−3)2y 2=y 13+17−−√2=y 23−17−−√2D (2,)3+17−−√2(2,)3−17−−√2△BCD D <y <51+17−−√2−1<y <3−17−−√2。

山东日照中考数学试卷真题

山东日照中考数学试卷真题

山东日照中考数学试卷真题一、选择题1. 设实数集合 $A=\{x \mid -2 \leqslant x<10\}$,则 $n(A)=$ _______。

A. 11B. 12C. 13D. 142. 甲、乙两人从A、B两地同时出发相对而行,他们每人每小时行驶 $10 \mathrm{km}$,则甲离开起 $n \mathrm{h}$ 后两人相遇,这时乙离开起还有 $3 \mathrm{h}$。

则 $n=$ _______。

A. $4 \mathrm{h}$B. $5 \mathrm{h}$C. $6 \mathrm{h}$D. $7\mathrm{h}$3. 若一矩形的长是宽的 $3$ 倍,且宽增加 $5 \mathrm{cm}$ 后,其面积增加 $60 \mathrm{cm}^2$,则原矩形的长是多少?A. $4 \mathrm{cm}$B. $6 \mathrm{cm}$C. $8 \mathrm{cm}$D. $10 \mathrm{cm}$4. 下面对正整数 $x$ 和 $y$ 的一些表述进行了编码:P:$y$ 是 $x$ 的约数;Q:$y$ 是 $x$ 的因数;R:$y=x+3$;S:$y=x+4$。

已知 $7$ 是一个优秀数的约数。

下列表述中,与题目不矛盾的是_______。

A. PQSB. PSC. PRSD. R5. $\sqrt{\left(x-y\right)^{2}}=$ _______。

A. $x-y$B. $y-x$C. $\left|x-y\right|$D. $x+y$二、填空题1. 下列不等式:$\frac{15}{x+1} - \frac{x-3}{6} < \frac{9}{2x-2}$ 的解集是:_______。

2. 正方体的棱长为 $a$,其中一只角放锥体,其高为 $h$,底面直径 $\sqrt{3} a$,则锥体的体积为 _______。

3. 设 $F(x)=a x^{2}+ b x+c$,当 $x=1,2,3$ 时,有 $F(1)=F(2)$,$F(2)=F(3)$,且 $F(1) \neq F(3)$,则 $a+b+c=$ _______。

2022年山东省日照市中考数学试卷(解析版)

2022年山东省日照市中考数学试卷(解析版)
【详解】解:由题意可得 ,
设直线AB的解析式为y=kx+b
则 解得:
∴直线AB的解析式为:y=x-4,
∴x=y+4,
设直线AC的解析式为y=mx+n
则 解得:
∴直线AC的解析式为: ,
∴ ,
∴点F的横坐标为:y+4,点E的坐标为: ,
∴ ,
∵EP=3PF,
∴ ,
∴点P的横坐标为: ,
∵ ,
∴ .

故答案为:A.
【解析】
【分析】根据二次根式有意义的条件:被开方数大于或等于0,列不等式求解.
【详解】解:根据题意,得

解得: ,
故答案是: .
【点睛】本题考查了二次根式有意义的条件,解题的关键是掌握被开方数大于或等于0.
14.一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为__________.
【详解】解:A、a6÷a2=a4,故A不符合题意;
B、a4•a2=a6,故B符合题意;
C、(a2)3=a6,故C不符合题意;
D、a3+a3=2a3,故D不符合题意;
故选:B.
【点睛】本题考查了同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.
5.在实数 ,x0(x≠0),cos30°, 中,有理数的个数是()
故选:C.
【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.下列运算正确的是()
A.a6÷a2=a3B.a4•a2=a6C. (a2)3=a5D.a3+a3=a6

山东省日照市中考数学试卷及答案解析

山东省日照市中考数学试卷及答案解析

2020年山东省日照市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求的的选项选出来.1.2020的相反数是( )A .−12020B .12020C .﹣2020D .20202.单项式﹣3ab 的系数是( )A .3B .﹣3C .3aD .﹣3a3.“扶贫”是新时期党和国家的重点工作之一,为落实习近平总书记提出的“精准扶贫”战略构想,某省预计三年内脱贫1020000人,数字1020000用科学记数法可表示为( )A .1.02×106B .1.02×105C .10.2×105D .102×1044.下列调查中,适宜采用全面调查的是( )A .调查全国初中学生视力情况B .了解某班同学“三级跳远”的成绩情况C .调查某品牌汽车的抗撞击情况D .调查2019年央视“主持人大赛”节目的收视率5.将函数y =2x 的图象向上平移3个单位,则平移后的函数解析式是( )A .y =2x +3B .y =2x ﹣3C .y =2(x +3)D .y =2(x ﹣3)6.下列各式中,运算正确的是( )A .x 3+x 3=x 6B .x 2•x 3=x 5C .(x +3)2=x 2+9D .√5−√3=√27.已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为( )A .8√3B .8C .4√3D .2√38.不等式组{x +1≥23(x −5)<−9的解集在数轴上表示为( ) A . B .C .D .9.如图,几何体由5个相同的小正方体构成,该几何体三视图中为轴对称图形的是( )A.主视图B.左视图C.俯视图D.主视图和俯视图10.如图,AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,若CD=6√3,AE=9,则阴影部分的面积为()A.6π−92√3B.12π﹣9√3C.3π−94√3D.9√311.用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59B.65C.70D.7112.如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=﹣1,下列结论:①abc<0;②3a<﹣c;③若m为任意实数,则有a﹣bm≤am2+b;④若图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1﹣x2=5.其中正确的结论的个数是()A.4个B.3个C.2个D.1个二、填空题:本大题共4小题,每小题4分,共16分.不需写解答过程,只要求填写最后结果.13.(4分)分解因式:mn +4n = .14.(4分)如图,有一个含有30°角的直角三角板,一顶点放在直尺的一条边上,若∠2=65°,则∠1的度数是 .15.(4分)《孙子算经》记载:今有3人共车,二车空;二人共车,九人步,问人与车各几何?译文:今有若干人乘车,若每三人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?多少辆车?若设有x 人,y 辆车,则可列方程组为 .16.(4分)如图,在平面直角坐标系中,▱ABCD 的顶点B 位于y 轴的正半轴上,顶点C ,D 位于x 轴的负半轴上,双曲线y =k x (k <0,x <0)与▱ABCD 的边AB ,AD 交于点E 、F ,点A 的纵坐标为10,F (﹣12,5),把△BOC 沿着BC 所在直线翻折,使原点O 落在点G 处,连接EG ,若EG ∥y 轴,则△BOC 的面积是 .三、解答题:本大题共6小题,共68分.解答要写出必要的文字说明、证明过程或演算步骤.17.(10分)(1)计算:√−83+(23)﹣1−√3×cos30°; (2)解方程:x−3x−2+1=32−x. 18.(10分)如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD ,为美化环境,用总长为100m 的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE =3BE ;(2)在(1)的条件下,设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.19.(10分)为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x<80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是;众数是;(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D的概率是;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明.20.(10分)如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE.(1)求证:△ABC≌△BDF;(2)P,N分别为AC,BE上的动点,连接AN,PN,若DF=5,AC=9,求AN+PN的最小值.21.(14分)阅读理解:如图1,Rt△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠C=90°,其外接圆半径为R.根据锐角三角函数的定义:sin A=ac,sin B=bc,可得asinA=bsinB=c=2R,即:asinA =bsinB=csinC=2R,(规定sin90°=1).探究活动:如图2,在锐角△ABC中,a,b,c分别是∠A,∠B,∠C的对边,其外接圆半径为R,那么:asinAbsinBcsinC(用>、=或<连接),并说明理由.事实上,以上结论适用于任意三角形.初步应用:在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠A=60°,∠B=45°,a=8,求b.综合应用:如图3,在某次数学活动中,小凤同学测量一古塔CD的高度,在A处用测角仪测得塔顶C的仰角为15°,又沿古塔的方向前行了100m到达B处,此时A,B,D三点在一条直线上,在B处测得塔顶C的仰角为45°,求古塔CD的高度(结果保留小数点后一位).(√3≈1.732,sin15°=√6−√24)22.(14分)如图,函数y=﹣x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2﹣2x﹣3=0的两个实数根,且m<n.(Ⅰ)求m,n的值以及函数的解析式;(Ⅱ)设抛物线y=﹣x2+bx+c与x轴的另一个交点为C,抛物线的顶点为D,连接AB,BC,BD,CD.求证:△BCD∽△OBA;(Ⅲ)对于(Ⅰ)中所求的函数y=﹣x2+bx+c,(1)当0≤x≤3时,求函数y的最大值和最小值;(2)设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p﹣q=3,求t的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年山东日照初中学业数学试卷第Ⅰ卷(选择题40分)一、选择题:本大题共12小题,其中1-8题每小题3分,9-12题每小题4分,满分40分.1.计算-22+3的结果是A.7 B.5 C.1-D.5-2.下面所给的交通标志图中是轴对称图形的是3.如图,H7N9病毒直径为30纳米(1纳米=10-9米),用科学计数法表示这个病毒直径的大小,正确的是A.30×10-9米B. 3.0×10-8米C. 3.0×10-10米D. 0.3×10-9米4.下列计算正确的是A.222)2(aa=- B.632a a a÷= C.aa22)1(2-=-- D.22aaa=⋅5.下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误..的是()A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占该学校总人数的20% C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组6.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()7.四个命题:①三角形的一条中线能将三角形分成面积相等的两部分;②有两边和其中一边的对角对应相等的两个三角形全等;③点P(1,2)关于原点的对称点坐标为(-1,-2);④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则.71<<d其中正确的是8.A. ①② B.①③ C.②③ D.③④8.已知一元二次方程032=--xx的较小根为1x,则下面对1x的估计正确的是A.121-<<-x B.231-<<-x C.321<<x D.011<<-x9. 甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是46A.8B.7C.6D.510. 如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是 A.BD ⊥AC B.AC 2=2AB·AEC.△ADE 是等腰三角形D. BC =2AD.11.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是A . M=mnB . M=n(m+1)C .M=mn+1D .M=m(n+1)12.如图,已知抛物线x x y 421+-=和直线x y 22=.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2. 下列判断: ①当x >2时,M=y 2; ②当x <0时,x 值越大,M 值越大; ③使得M 大于4的x 值不存在; ④若M=2,则x= 1 .其中正确的有A .1个B .2个C . 3个D .4个第Ⅱ卷(非选择题80分)二、填空题:本大题共4小题,每小题4分,满分16分.不需写出解答过程,请将答案直接写在答题卡相应位置上.13.要使式子2x -有意义,则x 的取值范围是 .14.已知62=-m m ,则.____________2212=+-m m15. 如右图,直线AB 交双曲线xky =于A、B ,交x 轴于点C,B 为线段AC 的中点,过点B 作BM ⊥x 轴于M ,连结OA.若OM=2MC,S ⊿OAC =12.则k 的值为___________. 16.如图(a ),有一张矩形纸片ABCD ,其中AD=6cm ,以AD 为直径的半圆,正好与对边BC 相切,将矩形纸片ABCD 沿DE 折叠,使点A 落在BC 上,如图(b ).则半圆还露在外面的部分(阴影部分)的面积为_____________.三、解答题:本大题有6小题,满分64分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本题满分10分,(1)小题4分,(2)小题6分) (1)计算:001)3(30tan 2)21(3π-+--+-.(2)已知,关于x 的方程x m mx x 2222+-=-的两个实数根1x 、2x 满足12x x =,求实数m 的值. 18.(本题满分10分)如图,已知四边形ABDE 是平行四边形,C 为边B D 延长线上一点,连结AC 、CE ,使AB=AC.⑴求证:△BAD ≌△AEC ; ⑵若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE 的面积.19.(本题满分10分)“端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为31;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为52. (1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)20. (本题满分10分) 问题背景:如图(a ),点A 、B 在直线l 的同侧,要在直线l 上找一点C ,使AC 与BC 的距离之和最小,我们可以作出点B 关于l 的对称点B′,连接A B′与直线l 交于点C ,则点C 即为所求.(1)实践运用:如图(b),已知,⊙O 的直径CD 为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P 为直径CD 上一动点,则BP+AP 的最小值为__________. (2)知识拓展:如图(c),在Rt △ABC 中,AB=10,∠BAC=45°,∠BAC 的平分线交BC 于点D ,E 、F 分别是线段AD 和AB上的动点,求BE+EF的最小值,并写出解答过程.21. (本小题满分10分)一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:x 3000 3200 3500 4000y 100 96 90 80(1y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:租出的车辆数未租出的车辆数租出每辆车的月收益所有未租出的车辆每月的维护费(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.22. (本小题满分14分)已知,如图(a),抛物线y=ax2+bx+c经过点A(x1,0),B(x2,0),C(0,-2),其顶点为D.以AB为直径的⊙M 交y轴于点E、F,过点E作⊙M的切线交x轴于点N.∠ONE=30°,|x1-x2|=8.(1)求抛物线的解析式及顶点D的坐标;(2)连结AD、BD,在(1)中的抛物线上是否存在一点P,使得⊿ABP与⊿ADB相似?若存在,求出P 点的坐标;若不存在,说明理由;(3)如图(b),点Q为上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:AH·AQ是否为定值?若是,请求出这个定值;若不是,请说明理由.数学试题答案及评分标准一、选择题:本题共12小题,1-8题每小题3分,9-12题每小题4分,共40分.1.C2.A3.B4.C5.D6.C7.B8.A9.A 10.D 11.D 12.B二、填空题:本题共有4小题,每小题4分,共16分. 13.x≤2; 14.-11;15.8;16. 2)439π3(cm -. 三、解答题:17.本题共10分,其中第(1)小题4分,第(2)小题6分) (1)(本小题满分4分)分分解:4 (13)32................. .1332(-2)3 )3(30tan 2)21(3 001-=+⨯-+=-+--+-π(2)(本小题满分6分)解:原方程可变形为:0)1(222=++-m x m x . …………………5分 ∵1x 、2x 是方程的两个根,∴△≥0,即:4(m +1)2-4m 2≥0, ∴ 8m+4≥0, m≥21-. 又1x 、2x 满足12x x =,∴1x =2x 或1x =-2x , 即△=0或1x +2x =0, …………………8分 由△=0,即8m+4=0,得m=21-. 由1x +2x =0,即:2(m+1)=0,得m=-1,(不合题意,舍去) 所以,当12x x =时,m 的值为21-. ……………10分 18.(本题满分10分)(1)证明:∵AB=AC,∴∠B=∠ACB.又 ∵四边形ABDE 是平行四边形 ∴AE ∥BD , AE=BD ,∴∠ACB=∠CAE=∠B , ∴⊿DBA ≌⊿AEC(SAS) ………………4分 (2)过A 作AG ⊥BC,垂足为G.设AG=x ,在Rt △AGD 中,∵∠ADC=450,∴AG=DG=x ,在Rt △AGB 中,∵∠B=300,∴BG=x 3,………………6分又∵BD=10.∴BG-DG=BD,即103=-x x ,解得AG=x=5351310+=-.…………………8分∴S平行四边形ABDE=BD·AG=10×(535+)=50350+.………………10分19.(本题满分10分) 解:(1)设爸爸买的火腿粽子和豆沙粽子分别为x 只、y 只, ……1分根据题意得:⎪⎪⎩⎪⎪⎨⎧=-+--=+.52733,31y x x y x x …………………………………4分 解得: ⎩⎨⎧==.10,5y x 经检验符合题意,所以爸爸买了火腿粽子5只、豆沙粽子10只. ……………6分(2)由题可知,盒中剩余的火腿粽子和豆沙粽子分别为2只、3只,我们不妨把两只火腿粽子记为a 1、a 2;3只豆沙粽子记为b 1、b 2、b 3,则可列出表格如下:a 1 a 2b 1 b 2 b 3 a 1 a 1 a 2 a 1b 1 a 1b 2 a 1b 3 a 2 a 2 a 1 a 2 b 1 a 2 b 2 a 2 b 3 b 1 b 1 a 1 b 1a 2 b 1 b 2 b 1 b 3 b 2 b 2 a 1 b 2a 2 b 2b 1 b 2 b 3 b 3b 3 a 1b 3a 2b 3b 1b 3b 2…………8分∴53106)(==A P …………………10分 20.(本题满分10分)22 )1( …………………4分(2)解:如图,在斜边AC 上截取AB′=AB,连结BB′. ∵AD 平分∠BAC ,∴点B 与点B ′关于直线AD 对称. …………6分 过点B′作B′F ⊥AB,垂足为F,交AD 于E ,连结BE,则线段B ′F 的长即为所求.(点到直线的距离最短) ………8分 在Rt △AFB /中,∵∠BAC=450, AB /=AB= 10,25221045sin 45sin 00=⨯=⋅=⋅'='∴AB B A F B , ∴BE+EF 的最小值为25. ………………10分 21. (本题满分10分)解:(1)由表格数据可知y 与x 是一次函数关系,设其解析式为b kx y +=.由题:⎩⎨⎧=+=+.963200,1003000b k b k 解之得:⎪⎩⎪⎨⎧=-=.160,501b k∴y 与x 间的函数关系是160501+-=x y . ……………………………3分分元。

相关文档
最新文档