换热器换热面积选型计算方法

合集下载

换热器的换热面积计算

换热器的换热面积计算

换热器热量及面积计算
一、热量计算1、
一般式
Q=Wh(Hh,1- Hh,2)= Wc(Hc,2- Hc,1)
式中:
Q为换热器的热负荷,kj/h或kw;
W为流体的质量流量,kg/h;
H为单位质量流体的焓,kj/kg;
下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。

2、无相变化
Q=Whcp,h(T1-T2)=Wccp,c(t2-t1)
式中
cp为流体平均定压比热容,kj/(kg.℃);
T为热流体的温度,℃;
T为冷流体的温度,℃
二、面积计算
1、总传热系数K
管壳式换热器中的K值如下表
注:
1w=1J/s=3.6kj/h=0.86kcal/h
1kcal=4.18kj 2、
温差
(1)逆流
热流体温度T:T1→T2
冷流体温度t:t2←t1
温差△t:△t1→△t2
△tm=(△t2-△t1)/㏑(△t2/△t1)(2)并流
热流体温度T:T1→T2
冷流体温度t:t1→t2
温差△t:△t2→△t1
△tm=(△t2-△t1)/㏑(△t2/△t1)3、面积计算
S=Q/(K. △tm)
三、管壳式换热器面积计算
S=3.14ndL
其中,S为传热面积m2、n为管束的管数、d为管径,m;L为管长,m。

四、注意事项
冷凝段:潜热(根据汽化热计算)
冷却段:显热(根据比热容计算
(素材和资料部分来自网络,供参考。

可复制、编制,期待您的好评与关注)。

换热器换热面积的计算公式

换热器换热面积的计算公式

换热器换热面积的计算公式
换热器的换热面积是影响其换热效果的重要参数,因此需要通过计算得出合理的换热面积。

其计算公式一般为:
A = Q / (U ×ΔTm)
其中,A表示换热面积,单位为平方米;Q表示传热量,单位为千瓦;U表示传热系数,单位为W/(m·K),可以根据具体情况选择不同的值;ΔTm表示平均温差,单位为摄氏度。

在实际应用中,计算换热面积还需要考虑其它因素,如流体流速、管道尺寸、换热管数量等。

因此,在使用该公式进行计算时,需要根据具体情况加以改进和调整,以确保计算结果的准确性和可靠性。

- 1 -。

换热器的换热面积计算

换热器的换热面积计算

换热器热量及面积计算
一、热量计算1、
一般式
Q=Wh(Hh,1-Hh,2)=Wc(Hc,2-Hc,1)
式中:
Q为换热器的热负荷,kj/h或kw;
W为流体的质量流量,kg/h;
H为单位质量流体的焓,kj/kg;
下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。

2、无相变化
Q=Whcp,h(T1-T2)=Wccp,c(t2-t1)
式中
cp为流体平均定压比热容,kj/(kg.℃);
T为热流体的温度,℃;
T为冷流体的温度,℃
二、面积计算
1、总传热系数K
管壳式换热器中的K值如下表
注:
1w=1J/s=3.6kj/h=0.86kcal/h
1kcal=4.18kj2、
温差
(1)逆流
热流体温度T:T1→T2
冷流体温度t:t2←t1
温差△t:△t1→△t2
△tm=(△t2-△t1)/㏑(△t2/△t1)(2)并流
热流体温度T:T1→T2
冷流体温度t:t1→t2
温差△t:△t2→△t1
△tm=(△t2-△t1)/㏑(△t2/△t1)
3、面积计算
S=Q/(K.△tm)
三、管壳式换热器面积计算
S=3.14ndL
其中,S为传热面积m2、n为管束的管数、d为管径,m;L为管长,m。

四、注意事项
冷凝段:潜热(根据汽化热计算)
冷却段:显热(根据比热容计算
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。

换热器换热面积是如何计算

换热器换热面积是如何计算

换热器换热面积是如何计算以夹套式换热器换热面积计算,计算过程如下:1、加热器计算共9个参数1热流量、2传热系数与换热面积、3对数平均温差、4冷侧流体质量流量与比热容、5热侧流体质量流量与比热容、67热侧流体进出口温度、89冷侧流体进出口温度,需要知道其中5个就可以计算。

2、基本计算原理是热平衡。

假设你的水是常压,从20℃加热到100℃零界点就可以,无须汽化,温升控制1.3℃/min,需要时间=80℃÷1.3℃/min=62min,按1个小时处理,内胆水容积按1m3常压计算,即1小时要把1m3水从20℃加热到100℃。

热侧流体放热量×热效率(设计一般按100%考虑)=冷侧流体吸热量,从20℃加热到100℃,平均温度60℃,密度1000kg/m3,比热容4.2kJ/(kg.℃),则水的吸热量=1000kg/h*80℃*4.2kJ/(kg.℃)=336000kJ/h。

蒸汽假设为0.2MPa.g饱和水蒸气,温度133℃,焓值2726kJ/kg,冷凝水温度105℃,焓值440kJ/kg,需要蒸汽流量=336000kJ/h÷(2726-440)kJ/kg=147kg/h,可以取150kg/h。

现在有了换热量336000kJ/h,水进口温度20℃,水出口温度100℃,水流量1m3/h,蒸汽进口温度133℃,冷凝水出口温度105℃,蒸汽流量150kg/h。

5、蒸汽和水都从上面进,下面出,为顺流,对数平均温差= ((133-20)- (105-100))/ln((133-20)/(105-100))=34.6381℃304不锈钢材质,圆筒、水-水蒸气换热,总传热系数按2000W/(m2.℃)计算,换热面积=换热量÷对数平均温差÷传热系数= (336000kJ/h÷3600kJ/kW)÷(34.6381℃*2kW/(m2.℃))=1.35m2假设中这个热侧是水蒸气变为过冷水,存在相变和过冷,所以应该分段考虑,按上述流程原理,先计算冷凝段放热量及换热面积,再计算过冷段放热量及换热面积;若实际不过冷不必分段计算。

板式换热器换热面积的计算

板式换热器换热面积的计算
(7)取板片数N(Nmin≤N≤Nmax)
若N已达Nmax,做(5)。
(8)取N的流程组合形式,若组合形式取完则做(7)。
(9)求Re,Nu
Re =W.de/
ν
Nu =a1.Rea2.Pra3
?
(10)求a,K传热面积F
a =Nu.λ/
de
K=1 / 1/ah+1/ac+γc+γc+δ/λ0
F=?Q /K.Δtm.β
Δtm=(T1-t2)-(T2-t1)/In(T1-t2)/(T2-t1)或Δtm=(T1-t2)+(T2-t1)/2
(5)选择板型
若所有的板型选择完,则进行结果分析。
(6)由K值范围,计算板片数范围Nmin,Nmax
Nmin =?Q / Kmax.Δtm.F P.β
Nmax =?Q / Kmin.Δtm.F P.β
板式换热器换热面积的计算
板式换热器选型计算的方法及公式
(1)求热负荷Q:Q=G.ρ.CP.Δt
Q—换热量(取冷热流体换热量的平均值),w;
Δt—流体进出口温差,K。
(2)求冷热流体进出口温度:t2=t1+?Q /G.ρ.CP
(3)冷热流体流量:G=?Q / ρ.CP.(t2-t1)
(4)求平均温度差Δtm
(11)由传热面积F求所需板片数NN
NN=F/ Fp+ 2
(12)若N<NN,做(8)。
(13)求压降Δp
Eu= a4.Rea5
Δp= Eu.ρ.W2.ф
(14)若Δp>Δ允,做(8);
若Δp≤Δ允,记录结果,做(8)。
注:1.(1)、(2)、(3)根据已知条件的情况进行计算。
2.当T1-t2=T2-t1时采用Δtm=(T1-t2)+(T2-t1)/2

板式换热器选型计算

板式换热器选型计算

板式换热器选型计算板式换热器是一种高效紧凑型热交换设备,它具有传热效率高、阻力损失小、结构紧凑、拆装方便、操作灵活等优点,目前广泛应用于冶金、机械、电力、石油、化工、制药、纺织、造纸、食品、城镇小区集中供热等各个行业和领域,因此掌握板式换热器的选型计算对每个工程设计人员都是非常重要的。

目前板式换热器的选型计算一般分为手工简易算法、手工标准算法及计算机算法三种,以下就三种算法的特点进行简要的说明。

一、手工简易算法二、手工标准算法计算方法与步骤(一)工艺条件热介质进出口温度℃Th1 Th2流量m3/h Qh压力损失(允许值)MPa △Ph冷介质进出口温度℃Tc1 Tc2流量m3/h Qc压力损失(允许值)MPa △Pc(二)物性参数物性温度℃Th=(Th1+Th2)/2 Tc=(Tc1+Tc2)/2介质重度Kg/m3γh γc介质比热KJ/kg·℃Cph Cpc导热系数W/m·℃λh λc运动粘度m2/s νh νc普朗特数Prh Prc(三)平均对数温差(逆流)△T=((Th1-Tc2)-(Th2-Tc1))/ln((Th1-Tc2)/(Th2-Tc1))或△T=((Th1-Tc2)+(Th2-Tc1))/2 (分子等于零)(四)计算换热量Wq=Qh*γh*Cph*(Th1-Th2)=Qc*γc*Cpc*(Tc2-Tc1) W(五)设备选型根据样本提供的型号结合流量定型号,主要依据于角孔流速。

即:Wl=4*Q/(3600*π*D2) ≤3.5~4.5m/sWl—角孔流速m/sQ —介质流量m3/hD —角孔直径m(六)定型设备参数(样本提供)单板换热面积s m2单通道横截面积 f m2板片间距l m平均当量直径de m (d≈2*l)传热准则方程式Nu=a*Re b*Pr m压降准则方程式Eu=x*Re yNu—努塞尔数Eu—欧拉数a.b.x.y—板形有关参数、指数Re—雷诺数Pr—普朗特数m —指数热介质m=0.3 冷介质m=0.4(七)拟定板间流速初值Wh 或WcWc=Wh*Qc/Qh (纯逆流时)W取0.1~0.4m/s(八)计算雷诺数Re=W*de/νW —计算流速m/sde—当量直径mν—运动粘度m2/s(九)计算努塞尔数Nu=a*Re b*Pr m(十)计算放热系数α=Nu*λ/deα—放热系数W/m2·℃λ—导热系数W/m·℃分别得出αh、αc热冷介质放热系数(十一)计算传热系数K=1/(1/αh+1/αc+r p+r h+r c) W/m2·℃r p—板片热阻0.0000459m2·℃/Wr h—热介质污垢热阻0.0000172~0.0000258m2·℃/W r c—冷介质污垢热阻0.0000258~0.0000602m2·℃/W (十二)计算理论换热面积Fm=Wq/(K*△T)(十三)计算换热器单组程流道数n=Q/(3600*f*W) (圆整为整数)Q—流量m3/hf—单通道横截面积m2W—板间流速m/s(十四)计算换热器程数N=(Fm/s+1)/(2*n)N为≥1的整数s—单板换热面积m2(十五)计算实际换热面积F=(2*N*n-1)*s (纯逆流)(十六)计算欧拉数Eu=x*Re y(十七)计算压力损失△P=Eu*γ*W2*N*10-6 MPaγ—介质重度Kg/m3W—板间流速m/sN—换热器程数选定厂家,根据角孔流速确定换热器型号,从手册查出在设计工况下冷、热介质的各种物理参数,根据厂家样本提供的传热经验公式及流阻经验公式,初步设定流体的板间流速,求出雷诺数,经计算得出传热系数及压力损失,在实际换热面积不小于理论换热面积的前提下,若压力损失大于许用值,则应进一步降低初定的板间流速,重新计算。

换热器换热面积选型计算方法

换热器换热面积选型计算方法
数下降。
系列标准中,采用的h(mm)值为: • 固定管板式:150,300,600; • 浮头式:150,200,300,480和600.
七、外壳直径的确定
要求:壳体内径等于或稍大于管板的直径。
单程管壳体内径:
D t(nc 1) 2b' 式中: t—管心距,m;nc —横过管束中心线的管数; b’—管束中心线上最外层管的中心至壳体内壁的距离.
的原则,决定壳程数。 ⑤ 依据总传热系数的经验值范围,或按生产实际情况,
选定总传热系数K值。 ⑥ 由传热速率方程,初步算出传热面积,并确定换热器
的基本尺寸。
2、计算管程、壳程压强降
根据初定的设备规格,计算管程、壳程流体的流速和压 强降。验算结果是否满足工艺要求。若压强降不符合要求, 要调整流速,再确定管程数或折流板间距,或选择另一规 格的换热器,重新计算压强降直至满足要求。
管程数m计算: m u u'
u——管程内流体的适宜流速;u’——管程内流体的实际流体。
2.壳程数
当温差校正系数 t 低于0.8,可采用壳方多程。
如:在壳体内安装一块与管束平行的隔板,流体在壳体 内流经两次,称为两壳程。
但由于隔板在制造、安装和检修等方面都有困难,故一 般不采用壳方多程的换热器,而是几个换热器串联使用
介质
植物油 井水
性质
热流体 冷流体
主要物性参数表
密度 kg/m3
950 995.7
比热 kJ//(kg·℃)
2.261 4.174
粘度 Pa·s
0.742× 10-3 0.801× 10-3
热导率 W/(m·
℃)
0.172
0.618
三、估算传热面积
1.热流量

板式换热器选型计算

板式换热器选型计算

板式换热器选型计算1.确定换热量首先需要确定板式换热器的换热量,也就是两种介质之间需要传递的热量。

根据实际工程需求和介质的热物性参数,计算出换热量的大小。

换热量的计算公式如下:Q = m * cp * ΔT其中,Q为换热量,m为流体的质量流量,cp为流体的平均比热容,ΔT为介质的温度差。

2.确定换热面积换热面积是决定换热器性能的重要参数之一、根据换热量和换热系数的关系,可以求得所需的换热面积。

换热面积的计算公式如下:A=Q/U其中,A为换热面积,U为换热系数。

3.确定换热器尺寸根据换热器的设计要求和性能参数,可以确定换热器的尺寸。

主要包括板片的长度和宽度,以及换热器的厚度。

根据实际工程需求和制造工艺的限制,确定合适的尺寸。

4.确定板片数量根据换热面积和单片换热面积,可以确定所需的板片数量。

根据实际工程需求和制造工艺的限制,确定合适的板片数量,通常采用偶数个板片。

5.确定流体通道确定流体通道是板式换热器选型计算的重要步骤。

根据介质的性质和换热条件,选择适合的流体通道方式,例如并流式、逆流式或交叉流式。

6.确定板片间距板片间距是决定流体通道宽度的参数,对换热器的性能具有很大的影响。

根据实际工程需求和制造工艺的限制,确定合适的板片间距。

7.确定流体速度流体速度是板式换热器选型计算中的关键参数之一、根据换热器设计要求和流体性质,确定合适的流体速度,通常根据实际工程经验进行估算。

8.确定板片材料根据介质的性质和工艺要求,选择合适的板片材料。

常见的板片材料有不锈钢、钛合金、镍合金等,需要根据介质的腐蚀性和温度要求进行选择。

以上是板式换热器选型计算的主要内容和方法。

在实际工程中,需要根据具体的需求和工艺要求,进行详细的计算和分析,以确定最适合的板式换热器规格和参数。

同时,还需要考虑工艺的可行性和经济性,选择合适的设备。

板式换热器换热面积选型计算

板式换热器换热面积选型计算

板式换热器换热面积选型计算板式换热器是一种常用的换热设备,广泛应用于石油化工、化肥、冶金、医药、食品、造纸等行业中。

选用合适的换热面积对于保证换热器的正常工作和提高换热效果至关重要。

下面将详细介绍板式换热器换热面积的选型计算。

首先,我们需要明确一些基本概念和参数。

1.热传导方程热传导方程描述了热量传递的基本原理。

对于板式换热器而言,可以简化为以下形式:Q = U * A * ΔTlm其中,Q为换热器的换热量,U为整体换热系数,A为换热面积,ΔTlm为对数平均温差。

2.对数平均温差对数平均温差是计算换热器换热面积的重要参数。

对于共流、逆流和交叉流三种流体流向情况,计算公式如下:对于共流:ΔTlm = (ΔT1 - ΔT2) / ln(ΔT1 / ΔT2)对于逆流:ΔTlm = (ΔT1 - ΔT2) / ln(ΔT1 / ΔT2)对于交叉流:ΔTlm = (ΔT1 - ΔT2) / ΔT3 = (ΔT1 - ΔT2) / ln(ΔT1 /ΔT2)3.整体换热系数整体换热系数U是指在一定流量、温度条件下,单位换热面积上的热量传递量与平均温差之比。

换热器的整体换热系数由传热面的材料、换热介质、流体流速等因素决定。

一般在选型计算中,根据具体工艺要求和经验值确定整体换热系数。

4.温差温差指的是进出口流体的温度差,能够直观地展示换热器的换热效果。

温差越大,热传导速率越快,换热效果越好。

在进行板式换热器换热面积选型计算时,可以按照以下步骤进行:1.确定换热介质及其物性参数首先,需要明确换热的介质是什么,包括名称、流量、进出口温度等参数。

然后,根据介质的物性参数如比热容、导热系数等,计算出介质的换热特性。

2.确定换热方式和流体流向根据具体工艺要求和换热效果需求,确定换热方式是共流、逆流还是交叉流。

根据实际工艺条件,确定流体的流向。

3.确定整体换热系数根据具体工艺要求和经验值,确定整体换热系数。

4.计算对数平均温差根据确定的换热方式和流体流向,利用对数平均温差计算公式,计算出对数平均温差ΔTlm。

换热器的换热面积计算

换热器的换热面积计算

换热器热量及面积计算一、热量计算 1、一般式Q=Wh(Hh,1- Hh,2)= Wc(Hc,2- Hc,1)式中:Q为换热器的热负荷,kj/h或kw;W为流体的质量流量,kg/h;H为单位质量流体的焓,kj/kg;下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。

2、无相变化Q=Whcp,h(T1-T2)=Wccp,c(t2-t1)式中cp为流体平均定压比热容,kj/(kg.℃);T为热流体的温度,℃;T为冷流体的温度,℃二、面积计算1、总传热系数K管壳式换热器中的K值如下表冷流体热流体总传热系数K,w/(m2.℃)水水850-1700水气体17-280水有机溶剂280-850水轻油340-910水重油60-280有机溶剂有机溶剂115-340水水蒸气冷凝1420-4250气体水蒸气冷凝30-300水低沸点烃类冷凝455-1140水沸腾水蒸气冷凝2000-4250轻油沸腾水蒸气冷凝455-1020注:1w=1J/s=3.6kj/h=0.86kcal/h1kcal=4.18kj 2、温差(1)逆流热流体温度T:T1→T2冷流体温度t:t2←t1温差△t:△t1→△t2△tm=(△t2-△t1)/㏑(△t2/△t1)(2)并流热流体温度T:T1→T2冷流体温度t:t1→t2温差△t:△t2→△t1△tm=(△t2-△t1)/㏑(△t2/△t1)3、面积计算S=Q/(K.△tm)三、管壳式换热器面积计算S=3.14ndL其中,S为传热面积m2、n为管束的管数、d为管径,m;L为管长,m。

四、注意事项冷凝段:潜热(根据汽化热计算)冷却段:显热(根据比热容计算【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

换热器换热面积选型计算方法

换热器换热面积选型计算方法

换热器换热面积选型计算方法换热器是广泛应用于化工、石油、电力、制药等领域的一种热交换设备。

换热器的性能与换热面积密切相关,正确选择和计算换热器的换热面积是确保其正常运行和高效工作的重要步骤。

换热器的换热面积选型计算方法包括以下几个步骤:1.确定热负荷:首先需要确定需要换热的流体(冷介质和热介质)的热负荷,即需要传递的热量。

热负荷的计算通常通过流体质量流量、温度差以及流体的物性参数来进行。

2.确定换热方式:根据实际情况选择合适的换热方式,常见的换热方式有对流换热、辐射换热和传导换热。

3.确定传热系数:传热系数是换热器换热性能的关键参数,它取决于流体的性质、流态、管道的形状结构等因素。

根据实际情况,可以通过测量、实验或者查阅相关资料来确定传热系数。

4.确定温度差:换热器的效率与流体的温度差密切相关,确定温度差可以根据实际情况估算或者通过测量得到。

5.确定换热面积:根据换热原理和所选换热器的类型,可以利用经验公式、换热器设计手册或者数值模拟等方法来计算换热面积。

根据不同的换热器类型,具体的计算方法会有所差异。

下面以常见的壳管换热器为例,介绍其换热面积选型计算方法。

壳管换热器换热面积计算方法:1.根据热负荷确定总传热系数U,U的计算公式为:U = 1 / (1/Uc + 1/Uh + Σ((1/(hdo*do)) + (ln(do/di)/2πλm) + (to - ti)/(2πλm*do)))其中,Uc为壳程流体的对流传热系数,Uh为管程流体的对流传热系数,hdo为壳程流体在管束上的对流传热系数,do为管束的外径,di为管束的内径,λm为管束的平均导热系数,to是壳程流体的出口温度,ti 是管程流体的进口温度。

2.根据总传热系数U和温度差ΔT计算估算换热面积A,A的计算公式为:A=Q/(U*ΔT)其中,Q为热负荷,ΔT为温度差。

3.根据设计要求和实际情况,考虑到换热器的排污、防腐等问题,适量增加换热面积,得到最终的换热面积选型。

板式换热器选型计算书

板式换热器选型计算书

板式换热器选型计算书板式换热器选型计算2、选型公式热负荷计算公式为Q=cmΔt,其中Q表示热负荷(kcal/h),c表示介质比热(Kcal/ Kg.℃),m表示介质质量流量(Kg/h),Δt表示介质进出口温差(℃)。

水的比热为1.0 ___℃。

换热面积计算公式为A=Q/K.Δt,其中A表示换热面积(m2),K表示传热系数(Kcal/ m2.℃),Δt表示对数平均温差。

板间流速计算公式为V=q/ASn(T2’T1’)/(T2-T1),其中V表示板间流速(m/s),q表示体积流量,A和___表示单通道截面积,n表示流道数。

3、选型实例一(水-水)假设需要将水从20℃加热到70℃,流量为10m3/h。

根据公式Q=cmΔt,可以计算出热负荷Q=1.0×10^3×(70-20)×10=5×10^5kcal/h。

根据公式K=175,Δt=50,可以计算出换热面积A=5×10^5/175×50=114.3m2.根据公式V=q/ASn(T2’T1’)/(T2-T1),可以计算出板间流速V=10×10^3/114.3×2×(70-20)/(70-20)=0.48m/s。

因此,可以选择BR0.5型号的板式换热器。

4、选型实例二(汽-水)假设需要将汽水混合物从100℃冷却至50℃,流量为10m3/h。

根据公式Q=cmΔt,可以计算出热负荷Q=0.5×10^3×(100-50)×10=2.5×10^5kcal/h。

根据公式K=1300,Δt=50,可以计算出换热面积A=2.5×10^5/1300×50=38.5m2.根据公式V=q/ASn(T2’T1’)/(T2-T1),可以计算出板间流速V=10×10^3/38.5×2×(100-50)/(100-50)=1.04m/s。

板式换热器选型计算

板式换热器选型计算

板式换热器选型计算板式换热器是一种高效紧凑型热交换设备,它具有传热效率高、阻力损失小、结构紧凑、拆装方便、操作灵活等优点,目前广泛应用于冶金、机械、电力、石油、化工、制药、纺织、造纸、食品、城镇小区集中供热等各个行业和领域,因此掌握板式换热器的选型计算对每个工程设计人员都是非常重要的。

目前板式换热器的选型计算一般分为手工简易算法、手工标准算法及计算机算法三种,以下就三种算法的特点进行简要的说明。

一、手工简易算法计算公式:F=Wq/(K*△T)式中F —换热面积m2Wq—换热量WK —传热系数W/m2·℃△T—平均对数温差℃根据选定换热系统的有关参数,计算换热量、平均对数温差,设定传热系数,求出换热面积。

选定厂家及换热器型号,计算板间流速,通过厂家样本提供的传热特性曲线及流阻特性曲线,查出实际传热系数及压降。

若实际传热系数小于设定传热系数,则应降低设定传热系数,重新计算。

若实际传热系数大于设定传热系数,而实际压降大于设定压降,则应进一步降低设定传热系数,增大换热面积,重新计算。

经过反复校核,直到计算结果满足换热系统的要求,最终确定换热器型号及换热面积大小。

这种算法的优点是计算简单,步骤少,时间短;缺点是结果不准确,应用范围窄。

造成结果不准确的原因主要是样本所提供的传热特性曲线及流阻特性曲线是一定工况条件下的曲线,而设计工况可能与之不符。

此外样本所提供的传热特性曲线及流阻特性曲线仅为水―水换热系统,在使用中有很大的局限性。

以下给出佛山显像管厂总装厂房低温冷却水及40℃热水两套换热系统实例加以说明采用手工简易算法得出的计算结果与实测结果的差别:二、手工标准算法计算方法与步骤(一)工艺条件热介质进出口温度℃Th1 Th2流量m3/h Qh压力损失(允许值)MPa △Ph冷介质进出口温度℃Tc1 Tc2流量m3/h Qc压力损失(允许值)MPa △Pc(二)物性参数物性温度℃Th=(Th1+Th2)/2 Tc=(Tc1+Tc2)/2介质重度Kg/m3γh γc介质比热KJ/kg·℃Cph Cpc导热系数W/m·℃λh λc运动粘度m2/s νh νc普朗特数Prh Prc(三)平均对数温差(逆流)△T=((Th1-Tc2)-(Th2-Tc1))/ln((Th1-Tc2)/(Th2-Tc1))或△T=((Th1-Tc2)+(Th2-Tc1))/2 (分子等于零)(四)计算换热量Wq=Qh*γh*Cph*(Th1-Th2)=Qc*γc*Cpc*(Tc2-Tc1) W(五)设备选型根据样本提供的型号结合流量定型号,主要依据于角孔流速。

太阳能热水系统换热器面积计算

太阳能热水系统换热器面积计算

太阳能热水系统换热器面积计算一、换热器换热面积F 的计算:jr t Δε×××=K Q C F Z式中:F ——换热面积(㎡);Z Q --集热系统换热量(W );K -—传热系数,根据换热器厂家技术参数确定ε-—结垢影响系数,0.6~0.8,r C --集热系统热损失系数,1。

1~1.2,j t ∆——计算温度差,宜取5~10℃,集热性能好,温差取高值,否则取低值。

假设,集热系统换热量为50757。

14 W ,传热系数为5000,结垢影响系数取0.7,集热系统热损失系数取1.2,计算温度差取8℃,经计算换热面积2.175㎡。

二、推荐换热器换热面积集热系统换热量Z Q 的计算YL Z S C Q ⨯⨯⨯⨯⨯⨯⨯=36001000t -t ρq f k e r rd t )(式中:Z Q ——集热系统换热量(W);t k -—太阳辐照度时变系数,一般取1.5~1。

8,取高限对太阳能利用率有利;f -—太阳能保证率,按照太阳能实际保证率计算;rd q ——日均用水量,kg ;C ——工质的定压比热容,4.18KJ/(㎏·℃);r ρ——工质密度1(kg/L ); e t ——贮水箱内水的设计温度,℃;L t -— 水的初始温度,℃;Y S ——年平均日日照小时数,h.假设,太阳辐照度时变系数取1.7,太阳能保证率取60%,日均用水量为10吨,工质的定压比热容为4.18KJ/(㎏·℃),工质(水)密度为1(kg/L ),贮水箱内水的设计温度为45℃,水的初始温度为15℃,年平均日日照小时数为7h/d 的条件下,经计算集热系统换热量Z Q =50757。

14 W 。

不同面积的参数取值及换热量:。

换热器的换热面积计算

换热器的换热面积计算

换热器热量及面积计算一、热量计算1、一般式Q=Wh (Hh,1- Hh,2 )= Wc (Hc,2- Hc,1 )式中:Q 为换热器的热负荷,kj/h 或kw;W 为流体的质量流量,kg/h ;H 为单位质量流体的焓,kj/kg ;下标c 和h 分别表示冷流体和热流体,下标 1 和2 分别表示换热器的进口和出口。

2、无相变化Q=Whcp,h(T1-T2)=Wccp,c(t2-t1)式中cp 为流体平均定压比热容,kj/(kg. ℃);T 为热流体的温度,℃;T 为冷流体的温度,℃二、面积计算1、总传热系数K管壳式换热器中的K 值如下表冷流体热流体总传热系数K,w/(m2. ℃)水水850-1700水气体17-280水有机溶剂280-850 水轻油340-910 水重油60-280有机溶剂有机溶剂115-340 水水蒸气冷凝1420-4250 气体水蒸气冷凝30-300水低沸点烃类冷凝455-1140 水沸腾水蒸气冷凝2000-4250 轻油沸腾水蒸气冷凝455-1020注:1w=1J/s=3.6kj/h=0.86kcal/h1kcal=4.18kj 2、温差(1)逆流热流体温度T:T1→T2冷流体温度t:t2←t1温差△t:△t1→△t2△tm= (△t2- △t1)/㏑(△t2/△t1)(2)并流热流体温度T:T1→T2冷流体温度t:t1→t2温差△t:△t2→△t1△tm= (△t2- △t1)/㏑(△t2/△t1)3、面积计算S=Q/(K. △tm)三、管壳式换热器面积计算S=3.14ndL其中,S 为传热面积m2 、n 为管束的管数、d 为管径,m;L 为管长,m。

四、注意事项冷凝段:潜热(根据汽化热计算)冷却段:显热(根据比热容计算Welcome To Download !!!欢迎您的下载,资料仅供参考!。

换热机组换热面积

换热机组换热面积

换热机组换热面积
换热面积的计算涉及到许多参数,包括传热介质的物性参数、传热系数、被传热介质的流量及物性参数、流体状态参数等。

具体来说,不同的换热设备有不同的计算方法。

1. 管壳式换热器:换热面积A可以通过公式A=Q/(U×ΔT)来计算,其中A为换热面积,Q为热量,U为传热系数,ΔT为传热介质的温度差。

2. 换热管式换热器:换热面积A可以通过公式A=(π×d×l×n)/(e×N)来计算,其中d为管子外径,l为管长,n为管数,e为管子壁厚度,N为管板孔数。

3. 板式换热器:换热面积A可以通过公式A=Q/(U×ΔT)来计算,其中Q为传热量,U为传热系数,ΔT为介质温差。

以上是几种常见的换热设备的换热面积计算方法,更多类型的换热设备的换热面积计算方法需要参照具体的专业资料和手册。

另外,在计算换热面积时,需要注意确定传热系数及被传热介质的物性参数、确定传热介质流量、采用比较简单的计算方法以及根据实际工艺数据进行检验和验证。

板式换热器选型计算的方法与公式

板式换热器选型计算的方法与公式

板式换热器选型计算的方法及公式(1)求热负荷QQ=G.ρ.CP.Δt(2)求冷热流体进出口温度t2=t1+ Q /G .ρ .CP(3)冷热流体流量G= Q / ρ .CP .(t2-t1(4)求平均温度差ΔtmΔtm=(T1-t2)-(T2-t1)/In(T1-t2)/(T2-t1)或Δtm=(T1-t2)+(T2-t1)/2(5)选择板型若所有的板型选择完,则进行结果分析。

(6)由K值范围,计算板片数范围Nmin,NmaxNmin = Q / Kmax .Δtm .F P .βNmax = Q / Kmin .Δtm .F P .β(7)取板片数N(Nmin≤N≤Nmax )若N已达Nmax,做(5)。

(8)取N的流程组合形式,若组合形式取完则做(7)。

(9)求Re,NuRe = W .de / νNu =a1.Re a2.Pr a3(10)求a ,K传热面积Fa = Nu .λ/ deK =1 / 1/a h+1/a c+γc+γc+δ/λ0F = Q /K .Δtm .β(11)由传热面积F求所需板片数NN NN= F/ Fp + 2(12)若N <NN ,做(8)。

(13)求压降Δp Eu = a 4.Re a5Δp = Eu .ρ.W 2.ф(14) 若Δp >Δ允 ,做(8); 若Δp ≤Δ允 ,记录结果 ,做(8)。

注: 1.(1)、(2)、(3)根据已知条件的情况进行计算。

2.当T 1-t 2=T 2-t 1时采用Δtm = (T 1-t2)+(T2-t1)/23.修正系数β一般~。

板式换热器的优化选型1 平均温差△tm从公式Q=K△tmA,△tm=1/A∫A(t1-t2)dA中可知,平均温差△tm是传热的驱动力,对于各种流动形式,如能求出平均温差,即板面两侧流体间温差对面积的平均值,就能计算出换热器的传热量。

平均温差是一个较为直观的概念,也是评价板式换热器性能的一项重要指标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
先流体的压强、防腐蚀和清洗等要求,再校核对流传热系数和压强降。
二、流体流速的选择 •增加流速
对流传热系数↑ ,污垢热阻↓→总传热系数 ↑ →传热面积↓ 流动阻力↑和动力消耗↑
还需考虑结构上:
一定传热面积
高流速→管子数目↓→较长管子或增加程数
管子太长不易清洗,且管长都有一定标准; 程数增加使平均温度差下降
管壳式换热器结构
• 管箱(封头) • 壳体 • 内部结构(包括管束等)
接管 壳体 壳程
折流挡板
封头( 端盖、管箱)
管程
管束
管板
单管程固定管板换热器
一、流体流径的选择-冷、热流体走管程或壳程
① 不洁净和易结垢的液体宜在管内-清洗比较方便 ② 腐蚀性流体宜在管内-避免壳体和管子同时腐蚀,便于清 洗 ③ 压强高的流体宜在管内-免壳体受压,节省壳程金属消耗 量 ④ 饱和蒸汽宜走管间-便于及时排除冷凝液 ⑤ 有毒流体宜走管内,使泄露机会较少 ⑥ 被冷却的流体宜走管间-可利用外壳向外的散热作用 ⑦ 流量小或粘度大的液体,宜走管间-提高对流传热系数 ⑧ 若两流体的温差较大,对流传热系数较大者宜走管间-减 少热应力 上述各点若不能同时兼顾,应视具体情况抓主要矛盾。
主要物性参数表
介质 植物油 井水 性质 热流体 冷流体 密度 kg/m3 950 995.7 比热 kJ//(kg· ℃) 2.261 4.174 粘度 Pa· s 0.742× 10-3 0.801× 10-3 热导率 W/(m· ℃) 0.172 0.618
三、估算传热面积
1.热流量
Q1 m1c p1t1 6000 2.261 140 40 1.3566 106 kJ / h 376.8kW
换热器课程设计
第三节 换热器计算方法
换热器:在不同温度的流体间传递热能的装置
称为换热器。 在化工、石油、动力、制冷、食品等行业中 广泛使用各种换热器,且它们是上述行业的通用 设备,占有十分重要的地位。
1、热力设计 根据使用单位提出的基本要求,合理地选择运 行参数,并进行传热计算。 计算出总传热系数、传热面积 2、流动设计 计算压降,为换热器的辅助设备提供选择参数 3、结构设计 根据传热面积的大小计算其主要零部件的尺寸 4、强度设计 应力计算。考虑换热器的受力情况,特别是在 高温高压下换热器的受压部件应按照国家压力容 器的标准设计。
便于清洗,适 于壳程流体易 结垢的场合; 但对流传热系 数较正三角形 的低。
介于正三角 形和正方形 之间。
4. 管间距t
管间距:两相邻换热管中心的距离。其值的确定需要考虑 以下几个因素: ① 管板强度; ② 清洗管子外表面时所需要的空隙; ③ 换热管在管板上的固定方法。 通常,胀管法取t =(1.3~1.5)d0,且相邻两管外壁间距不 应小于6mm,即t≥6+d0 焊接法取t =1.25d0。
① 确定流体在换热器中流动途径。
② 根据传热任务计算热负荷Q。
③ 确定流体在换热器两端的温度,选择列管换热器的形 式;计算定性温度,并确定在定性温度下的流体物性。 ④ 计算平均温差,并根据温度差校正系数不应小于0.8 的原则,决定壳程数。 ⑤ 依据总传热系数的经验值范围,或按生产实际情况, 选定总传热系数K值。 ⑥ 由传热速率方程,初步算出传热面积,并确定换热器 的基本尺寸。
考虑到外界因素的影响,根据经验取实际传热面积为估算 值的1.15倍,则实际传热面积为:
Ap 1.15 A 22.07m2
4.井水用量
m= Q1 c pi ti
376.8 103 = 4.51kg / s 16250.8kg / h 3 4.174 10 40 20
2.平均传热温差 先按照逆流计算,得
tm逆
(140 40) (40 20) 49.7C 140 40 ln 40 20
3.传热面积 由于壳程植物油的压力较高,故可选取较大的K值。假设 K=395W/ (m2· ℃)则估算的传热面积为:
Q1 376.8 103 A 19.19m2 K tm 395 49.7
九、材料选用
材料应根据操作压力、温度及流体的腐蚀性等来选用。
目前常用的金属材料有:碳钢、不锈钢、低合金钢、 铜和铝等。
非金属材料有:石墨、聚四氟乙烯和玻璃等。
十、流体流动阻力(压强降)的计算
1.管程流动阻力
总阻力等于各程直管阻力、回弯阻力及进、出口之和。 一般进、出口阻力可忽略不计,管程总阻力的计算式为:
nc 横过管束中心线的管子数; N B 折流挡板数; h 折流挡板间距,m; D 壳体内径,m; u0 按壳程流通截面积A0 计算的流速,m / s, 而A0 h( D nc d 0 )
液体流经换热器的压强降为10~100kPa,气体为1~10kPa。
设计步骤
1、试算并初选设备规格
Ns 串联的壳程数。
p1' Ff 0 nc ( N B 1)
2 u0
2
2 u 2 h ' p2 N B (3.5 ) 0 D 2
F 管子排列方法对压强降的校正因素, 正三角为0.5,转角正方形为0.4,正方形为0.3;
f0 壳程流体的摩擦系数,当Re0 500时,f0 5Re00.228
p2 3(
u 2
2
)
2.壳程流动阻力
用埃索法计算壳程压强降,即
' ' p ( p p 0 1 2 )F s Ns
p1' 流体横过管束的压强降,Pa;
' p2 流体通过折流板缺口的压强降,Pa;
Fs 壳程压强降的结垢校正系数,液体可取1.15,气体可取1.0
u m u'
u——管程内流体的适宜流速;u’——管程内流体的实际流体。
2.壳程数
当温差校正系数 t 低于0.8,可采用壳方多程。 如:在壳体内安装一块与管束平行的隔板,流体在壳体 内流经两次,称为两壳程。 但由于隔板在制造、安装和检修等方面都有困难,故一 般不采用壳方多程的换热器,而是几个换热器串联使用
12 14
八、主要附件
1.封头
方形:用于直径小的壳体(<400mm); 圆形:用于大直径的壳体。
2.缓冲挡板
为防止壳程流体进入换热器时对管束的冲击,可在进 料管口装设缓冲挡板
3.导流筒
壳程流体的进、出口与管板间存在一段流体不能流动 的空间(死角),为了提高传热效果,常在管束外增设导 流筒。
4.放气孔、排液孔
二、确定物性数据
1.定性温度
对于粘度低的流体,其定性温度可取流体进出口温度的平 均值。所以, 壳程流体的定性温度为: 管程流体的定性温度为: 2.物性参数
T 140 40 90C 2
20 40 t 30C 2
定性温度下,管程流体(井水)、壳程流体(植物油)有关 物性参数由《主要物性参数表》得出。
• 板间距过大,流体难于垂直地流过管束,使对流传热系 数下降。
系列标准中,采用的h(mm)值为: • 固定管板式:150,300,600;
• 浮头式:150,200,300,480和600.
七、外壳直径的确定
要求:壳体内径等于或稍大于管板的直径。 单程管壳体内径:
D t (nc 1) 2b'
p
i
(p1 p2 )Ft Ns N p
p1、p2 分别为直管及回弯管中因摩擦阻力引起的压强降,Pa;
Ft 结垢校正因数,对 25mm 2.5mm取1.4,对19mm 2mm取1.5 ;
N p 管程数;Ns 串联的壳程数。
l u 2 p1 d 2
若冷、热流体的温度都由工艺条件所规定,就不存在确 定两端温度的问题。 若其中一个流体已知进口温度,则出口温度应由设计者 来确定。
例如:用冷水冷却某热流体,冷却水进口温度可根据当地 气温条件作出估计,出口温度需根据经济衡算来决定。
为节省水量,出口温度提高,则传热面积要大些;
为减少传热面积,出口温度降低,则要增加水量。
五、管程和壳程数的确定
1.管程数
当流体的流量较小或传热面积较大而需管数很多时, 有时会使管内流速较低,对流系数较小。 为提高管内流速,可采用多管程。 但管程数过多,管程流动阻力加大,增加动力费用;多程 会使平均温度差下降;多程隔板使管板上可利用面积减少 标准中管程数有:1、2、4和6程,多程时应使每程管子数 大致相等。 管程数m计算:
六、折流挡板
作用: ①提高壳程内流体的流速;
②加强湍流强度; ③提高传热效率; ④支撑换热管。
形式:
圆缺形
圆盘形
最常用的为圆缺形挡板,切去的弓形高度约为外壳内 径的10%~40%,一般取20%~25%。
两相邻挡板的距离(板间距)h为外壳内径D的(0.2~1)倍。
• 板间距过小,不便于制造和维修,阻力较大;
正三角形排列 ——2管程:0.7-0.85; >4管程:0.6-0.8 正方形排列 —— 2管程:0.55-0.7 ; >4管程:0.45-0.65
计算得到的壳内径应圆整。
壳体标准尺寸
壳体外径 /mm
最小壁厚 /mm
325
8
400 500 600 700
10
800 900 1000 1100 1200
实例
设计任务书
将6000kg/h的植物油从140℃冷却到40℃,井水进、
出口温度分别为20℃和40℃。要求换热器的管程和壳
程压强降均不大于35kPa。
工艺设计计算
一、确定设计方案
1.选择换热器的类型 两流体的变化情况:热流体进口温度140℃,出口温度40℃; 冷流体进口温度20℃,出口温度40℃。 考虑冷热流体间温差大于50℃,初步确定选用浮头式换热器。 2.流程安排 与植物油相比,井水易于结垢,如果其流速太小,会加快 污垢增长速度使换热器传热速率下降。植物油被冷却,走壳 程便于散热。因此,冷却水走管程,植物油走壳程。
相关文档
最新文档