深度透视中考错题

合集下载

中考数学常考易错点之视图与投影含答案

中考数学常考易错点之视图与投影含答案

5.3视图与投影易错清单1.由三视图确定小正方体的个数时,因无实物图,导致容易出错.【例1】(2014·宁夏模拟)如图是一个用相同的小立方块搭成的几何体的三视图,则组成这个几何体的小立方块的个数是().A. 2B. 3C. 4D. 5【解析】由俯视图可知,该几何体有一行三列,再由主,左视图可知第一列有1个小立方块;第2列有2个小立方块;第3列有1个小立方块,一共有4个小立方块.【答案】 C【误区纠错】解答此类由视图还原几何体的问题,一般情况下都是由俯视图确定几何体的位置(有几行几列),再由另外两个视图确定第几行第几列处有多少个小正方体,简便的方法是在原俯视图上用标注数字的方法来解答.2.根据视图求几何图形的表面积和体积,因缺乏合理的方法而出错.【例2】(2014·云南模拟)如图所示,是一个几何体的三视图,则这个几何体的侧面积是().A. 18cm2B. 20cm2【解析】根据三视图判断,该几何体是正三棱柱,底边边长为2cm,侧棱长是3cm,所以侧面积是:(3×2)×3=6×3=18(cm2).【答案】 A【误区纠错】由物体的三视图求几何体的侧面积,表面积,体积等,关键是由三视图想象出几何体的形状.名师点拨1.明确常见几何体的展开图,通过几何体的展开与折叠,体会平面图形与立体图形之间的关系.2.三视图是中考必考热点,一般考查由物体确定视图,由视图确定物体较少见,抓住三视图从三个方向观看这个特点,发挥空间想象力,便可做出准确判断.提分策略1.图形的展开与折叠.常见几何体的展开与折叠:①棱柱的平面展开图是由两个相同的多边形和一些长方形组成,按棱柱表面不同的棱剪开,可能得到不同组合方式的平面展开图,特别关注正方体的表面展开图;②圆柱的平面展开图是由两个相同的圆形和一个长方形连成的;③圆锥的平面展开图是由一个圆形和一个扇形组成的.【例1】如图给定的是纸盒的外表面,下面能由它折叠而成的是().【解析】将A,B,C,D分别展开,能和原图相对应的即为正确答案.A项展开得到,不能和原图相对应,故本选项错误;B项展开得到,能和原图相对应,故本选项正确;C项展开得到,不能和原图相对应,故本选项错误;D项展开得到,不能和原图相对应,故本选项错误.【答案】 B2.几何体的三视图三个视图是分别从正面、左面、上面三个方向看同一个物体所得到的平面图形,要注意用平行光去看.画三个视图时应注意尺寸的大小,即三个视图的特征:主视图(从正面看)体现物体的长和高,左视图体现物体的高和宽,俯视图体现物体的长和宽.【例2】如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是().A. 3个或4个或5个B. 4个或5个C. 5个或6个D. 6个或7个【解析】本题考查了由三视图判断几何体,主要考查了考生的空间想象能力以及三视图的相关知识.左视图与主视图相同,可判断出底面最少有2个小正方体,最多有4个小正方体,而第二行则只有1个小正方体,则这个几何体的小立方体可能有3个或4个或5个.根据这个思路可判断出该几何体有多少个小立方体.本题最大误区在于:判断不出左视图与主视图相同时最多有多少个小正方体,最少有多少个小正方体.【答案】 A【例3】如图(1),是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得图(2)所示几何体的视图().A. 主视图改变,俯视图改变B. 主视图不变,俯视图不变C. 主视图不变,俯视图改变D. 主视图改变,俯视图不变【解析】此题考查了简单组合体的三视图,掌握主视图及俯视图的观察方法是解答本题的关键,主视图是从正面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.只有熟练掌握三种视图的画法,本题才不会出现误判.根据图形可得:图(1)及图(2)的主视图一样,俯视图不一样,即主视图不变,俯视图改变.【答案】 C专项训练一、选择题1.(2014·湖北天门模拟)一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是().(第1题)A. 15个B. 13个C. 11个D. 5个2. (2014·江苏苏州高新区一模)如图是一个几何体的三视图,则这个几何体的侧面积是().(第2题)A. 12πcm2B. 8πcm2C. 6πcm2D. 3πcm23.(2014·云南曲靖模拟)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是().(第3题)A. ①②B. ②③C. ②④D. ③④4. (2014·江苏南京二模)若干桶方便面摆放在桌面上,它的三个视图如图,则这一堆方便面共有().(第4题)A. 7桶B. 8.桶C. 9桶D. 10桶5. (2014·天津塘沽区一模)如图是五棱柱形状的几何体,则它的三视图为().(第5题)6.(2013·山西模拟)如图是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数为().(第6题)A. 2B. 3C. 4D. 67. (2013·广西南丹中学一模)如图是由若干个大小相同的正方体搭成的几何体的三视图,则该几何体所用的正方形的个数是( ).(第7题)A. 2B. 3C. 4D. 58. (2013·河北四模)一个几何体的三视图如下:(第8题)其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的侧面展开图的面积为( ). A. 2π B.C. 4πD. 8π二、 解答题9. (2014·四川乐山模拟)如图(1),是由一些棱长都为1cm 的小正方体组合成的简单几何体.(第9题(1))(1)该几何体的表面积(含下底面)为 ;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.(第9题(2))参考答与解析1. A 2. B 3. B 4. C 5. A 6. C 7. C 8. C 9. (1)26cm2(2)如图.(第9题)。

备战中考数学分点透练真题尺规作图与无刻度直尺作图(解析版)

备战中考数学分点透练真题尺规作图与无刻度直尺作图(解析版)

第二十三讲尺规作图与无刻度直尺作图命题点1 五种基本尺规作图类型一判定作图结果1.(2021•广元)观察下列作图痕迹,所作线段CD为△ABC的角平分线的是()A.B.C.D.【答案】C【解答】解:根据基本作图,A、D选项中为过C点作AB的垂线,B选项作AB的垂直平分线得到AB边上的中线CD,C选项作CD平分∠ACB.故选:C.2.(2021•长春)在△ABC中,∠BAC=90°,AB≠AC.用无刻度的直尺和圆规在BC边上找一点D,使△ACD为等腰三角形.下列作法不正确的是()A.B.C.D.【答案】A【解答】解:A、由作图可知AD是△ABC的角平分线,推不出△ADC是等腰三角形,本选项符合题意.B、由作图可知CA=CD,△ADC是等腰三角形,本选项不符合题意.C、由作图可知DA=CD,△ADC是等腰三角形,本选项不符合题意.D、由作图可知DA=CD,△ADC是等腰三角形,本选项不符合题意.故选:A.类型二根据作图步骤进行计算、证明或结论判断3.(2021•贵阳)如图,已知线段AB=6,利用尺规作AB的垂直平分线,步骤如下:①分别以点A,B为圆心,以b的长为半径作弧,两弧相交于点C和D.②作直线CD.直线CD就是线段AB的垂直平分线.则b的长可能是()A.1B.2C.3D.4【答案】D【解答】解:根据题意得b>AB,即b>3,故选:D.4.(2021•杭州)已知线段AB,按如下步骤作图:①作射线AC,使AC⊥AB;②作∠BAC 的平分线AD;③以点A为圆心,AB长为半径作弧,交AD于点E;④过点E作EP⊥AB 于点P,则AP:AB=()A.1:B.1:2C.1:D.1:【答案】D【解答】解:∵AC⊥AB,∴∠CAB=90°,∵AD平分∠BAC,∴∠EAB=×90°=45°,∵EP⊥AB,∴∠APE=90°,∴∠EAP=∠AEP=45°,∴AP=PE,∴设AP=PE=x,故AE=AB=x,∴AP:AB=x:x=1:.故选:D.5.(2021秋•广州期中)如图,在△ABC中,以A为圆心,任意长为半径画弧,分别交AB、AC于点M、N;再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P;连结AP并延长交BC于点D.则下列说法正确的是()A.AD+BD<AB B.AD一定经过△ABC的重心C.∠BAD=∠CAD D.AD是三角形的高【答案】C【解答】解:由题可知AD是∠BAC的角平分线,∴∠BAD=∠CAD.故选:C.6.(2021•怀化)如图,在△ABC中,以A为圆心,任意长为半径画弧,分别交AB、AC于点M、N;再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P;连结AP 并延长交BC于点D.则下列说法正确的是()A.AD+BD<AB B.AD一定经过△ABC的重心C.∠BAD=∠CAD D.AD一定经过△ABC的外心【解答】解:由题可知AD是∠BAC的角平分线,A、在△ABD中,AD+BD>AB,故选项A错误,不符合题意;B、△ABC的重心是三条中线的交点,故选项B错误,不符合题意;C、∵AD是∠BAC的角平分线,∴∠BAD=∠CAD,故选项C正确,符合题意;D、△ABC的外心是三边中垂线的交点,故选项D错误,不符合题意;故选:C.7.(2021•济宁)如图,已知△ABC.(1)以点A为圆心,以适当长为半径画弧,交AC于点M,交AB于点N.(2)分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BAC的内部相交于点P.(3)作射线AP交BC于点D.(4)分别以A,D为圆心,以大于AD的长为半径画弧,两弧相交于G,H两点.(5)作直线GH,交AC,AB分别于点E,F.依据以上作图,若AF=2,CE=3,BD=,则CD的长是()A.B.1C.D.4【答案】C【解答】解:由作法得AD平分∠BAC,EF垂直平分AD,∴∠EAD=∠F AD,EA=ED,F A=FD,∵EA=ED,∴∠EAD=∠EDA,∴∠F AD=∠EDA,∴DE∥AF,同理可得AE∥DF,∴四边形AEDF为平行四边形,∴四边形AEDF为菱形,∴AE=AF=2,∵DE∥AB,∴=,即=,∴CD=.故选:C.8.(2021•河北)如图,等腰△AOB中,顶角∠AOB=40°,用尺规按①到④的步骤操作:①以O为圆心,OA为半径画圆;②在⊙O上任取一点P(不与点A,B重合),连接AP;③作AB的垂直平分线与⊙O交于M,N;④作AP的垂直平分线与⊙O交于E,F.结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.对于结论Ⅰ和Ⅱ,下列判断正确的是()A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对【答案】D【解答】解:如图,连接EM,EN,MF.NF.∵MN垂直平分AB,EF垂直平分AP,由“垂径定理的逆定理”可知,MN和EF都是⊙O 的直径,∴OM=ON,OE=OF,∴四边形MENF是平行四边形,∵EF=MN,∴四边形MENF是矩形,故(Ⅰ)正确,观察图形可知当∠MOF=∠AOB,∴S扇形FOM=S扇形AOB,观察图形可知,这样的点P不唯一(如下图所示),故(Ⅱ)错误,故选:D.9.(2021•鄂州)已知锐角∠AOB=40°,如图,按下列步骤作图:①在OA边取一点D,以O为圆心,OD长为半径画,交OB于点C,连接CD.②以D为圆心,DO长为半径画,交OB于点E,连接DE.则∠CDE的度数为()A.20°B.30°C.40°D.50°【答案】B【解答】解:由作法得OD=OC,DO=DE,∵OD=OC,∴∠OCD=∠ODC=(180°﹣∠COD)=×(180°﹣40°)=70°,∵DO=DE,∴∠DEO=∠DOE=40°,∵∠OCD=∠CDE+∠DEC,∴∠CDE=70°﹣40°=30°.故选:B.10.(2021•本溪)如图,在△ABC中,AB=BC,由图中的尺规作图痕迹得到的射线BD与AC交于点E,点F为BC的中点,连接EF,若BE=AC=2,则△CEF的周长为()A.+1B.+3C.+1D.4【答案】C【解答】解:由图中的尺规作图得:BE是∠ABC的平分线,∵AB=BC,∴BE⊥AC,AE=CE=AC=1,∴∠BEC=90°,∴BC===,∵点F为BC的中点,∴EF=BC=BF=CF,∴△CEF的周长=CF+EF+CE=CF+BF+CE=BC+CE=+1,故选:C.11.(2021•新疆)如图,在△ABC中,AB=AC,∠C=70°,分别以点A,B为圆心,大于AB的长为半径作弧,两弧相交于M,N两点,作直线MN交AC于点D,连接BD,则∠BDC=°.【答案】80【解答】解:∵AB=AC,∠C=70°,∴∠ABC=∠C=70°,∵∠A+∠ABC+∠C=180°,∴∠A=180°﹣∠ABC﹣∠C=40°,由作图过程可知:DM是AB的垂直平分线,∴AD=BD,∴∠ABD=∠A=40°,∴∠BDC=∠A+∠ABD=40°+40°=80°,故答案为:80.12.(2021•长沙)人教版初中数学教科书八年级上册第35﹣36页告诉我们作一个三角形与已知三角形全等的方法:已知:△ABC.求作:△A′B′C′,使得△A′B′C′≌△ABC.作法:如图.(1)画B'C′=BC;(2)分别以点B′,C′为圆心,线段AB,AC长为半径画弧,两弧相交于点A′;(3)连接线段A′B′,A′C′,则△A′B′C′即为所求作的三角形.请你根据以上材料完成下列问题:(1)完成下面证明过程(将正确答案填在相应的空上):证明:由作图可知,在△A′B′C′和△ABC中,∴△A'B'C′≌.(2)这种作一个三角形与已知三角形全等的方法的依据是.(填序号)①AAS②ASA③SAS④SSS【答案】(1)AB,AC,△ABC(SSS).(2)④【解答】解:(1)由作图可知,在△A′B′C′和△ABC中,,∴△A'B'C′≌△ABC(SSS).故答案为:AB,AC,△ABC(SSS).(2)这种作一个三角形与已知三角形全等的方法的依据是SSS,故答案为:④.13.(2021•北京)《淮南子・天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点A处立一根杆,在地面上沿着杆的影子的方向取一点B,使B,A两点间的距离为10步(步是古代的一种长度单位),在点B处立一根杆;日落时,在地面上沿着点B处的杆的影子的方向取一点C,使C,B两点间的距离为10步,在点C处立一根杆.取CA的中点D,那么直线DB表示的方向为东西方向.(1)上述方法中,杆在地面上的影子所在直线及点A,B,C的位置如图所示.使用直尺和圆规,在图中作CA的中点D(保留作图痕迹);(2)在如图中,确定了直线DB表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线CA表示的方向为南北方向,完成如下证明.证明:在△ABC中,BA=,D是CA的中点,∴CA⊥DB()(填推理的依据).∵直线DB表示的方向为东西方向,∴直线CA表示的方向为南北方向.【答案】BC,三线合一【解答】解:(1)如图,点D即为所求.(2)在△ABC中,BA=BC,D是CA的中点,∴CA⊥DB(三线合一),∵直线DB表示的方向为东西方向,∴直线CA表示的方向为南北方向.故答案为:BC,三线合一.类型三依据要求直接作图14.(2021•重庆)如图,四边形ABCD为平行四边形,连接AC,且AC=2AB.请用尺规完成基本作图:作出∠BAC的角平分线与BC交于点E.连接BD交AE于点F,交AC 于点O,猜想线段BF和线段DF的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)【答案】略【解答】解:如图:猜想:DF=3BF,证明:∵四边形ABCD为平行四边形,∴OA=OC,OD=OB,∵AC=2AB,∴AO=AB.∵∠BAC的角平分线与BO交于点F,∴点F是BO的中点,即BF=FO,∴OB=OD=2BF,∴DF=DO+OF=3BF,即DF=3BF.15.(2021•嘉峪关)在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知,C是弦AB上一点,请你根据以下步骤完成这个引理的作图过程.(1)尺规作图(保留作图痕迹,不写作法);①作线段AC的垂直平分线DE,分别交于点D,AC于点E,连接AD,CD;②以点D为圆心,DA长为半径作弧,交于点F(F,A两点不重合),连接DF,BD,BF.(2)直接写出引理的结论:线段BC,BF的数量关系.【答案】(1)略(2)BF=BC.【解答】解:(1)①如图,直线DE,线段AD,线段CD即为所求.②如图,点F,线段CD,BD,BF即为所求作.(2)结论:BF=BC.理由:∵DE垂直平分线段AC,∴DA=DC,∴∠DAC=∠DCA,∵AD=DF,∴DF=DC,=,∴∠DBC=∠DBF,∵∠DFB+∠DAC=180°.∠DCB+∠DCA=180°,∴∠DFB=∠DCB,在△DFB和△DCB中,,∴△DFB≌△DCB(AAS),∴BF=BC.16.(2021•烟台)如图,已知Rt△ABC中,∠C=90°.(1)请按如下要求完成尺规作图(不写作法,保留作图痕迹).①作∠BAC的角平分线AD,交BC于点D;②作线段AD的垂直平分线EF与AB相交于点O;③以点O为圆心,以OD长为半径画圆,交边AB于点M.(2)在(1)的条件下,求证:BC是⊙O的切线;(3)若AM=4BM,AC=10,求⊙O的半径.【答案】略【解答】解:(1)如图所示,①以A为圆心,以任意长度为半径画弧,与AC、AB相交,再以两个交点为圆心,以大于两点之间距离的一半为半径画弧相交于∠BAC内部一点,将点A与它连接并延长,与BC交于点D,则AD为∠BAC的平分线;②分别以点A、点D为圆心,以大于AD长度为半径画圆,将两圆交点连接,则EF为AD的垂直平分线,EF与AB交于点O;③如图,⊙O与AB交于点M;(2)证明:∵EF是AD的垂直平分线,且点O在EF上,∴OA=OD,∴∠OAD=∠ODA,∵AD是∠BAC的平分线,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵AC⊥BC,∴OD⊥BC,故BC是⊙O的切线.(3)根据题意可知OM=OA=OD=AM,AM=4BM,∴OM=2BM,BO=3BM,AB=5BM,∴==,由(2)可知Rt△BOD与Rt△BAC有公共角∠B,∴Rt△BOD∽Rt△BAC,∴=,即=,解得DO=6,故⊙O的半径为6.类型四转化类作图17.(2021•陕西)如图,已知直线l1∥l2,直线l3分别与l1、l2交于点A、B.请用尺规作图法,在线段AB上求作一点P,使点P到l1、l2的距离相等.(保留作图痕迹,不写作法)【答案】略【解答】解:如图,点P为所作.18.(2021•南京)如图,已知P是⊙O外一点.用两种不同的方法过点P作⊙O的一条切线.要求:(1)用直尺和圆规作图;(2)保留作图的痕迹,写出必要的文字说明.【答案】(1)略(2)略【解答】解:方法一:如图1中,连接OP,以OP为直径作圆交⊙O于D,作直线PD,直线PD即为所求.方法二:作P点关于点O的对称点P′,以PO为半径作圆O,连接PP′,设原来的圆O半径为r,以AB(即2r)的长度为半径,P′为圆心画圆,交弧PP′于点Q,连接PQ,交于原来的圆O于点D,点D即为切点(中位线能证明OD是半径且垂直PQ).19.(2021•福建)如图,已知线段MN=a,AR⊥AK,垂足为A.(1)求作四边形ABCD,使得点B,D分别在射线AK,AR上,且AB=BC=a,∠ABC =60°,CD∥AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)设P,Q分别为(1)中四边形ABCD的边AB,CD的中点,求证:直线AD,BC,PQ相交于同一点.【答案】略【解答】(1)解:如图,四边形ABCD为所作;(2)证明:设PQ交AD于G,BC交AD于G′,∵DQ∥AP,∴=,∵DC∥AB,∴=,∵P,Q分别为边AB,CD的中点,∴DC=2DQ,AB=2AP,∴===,∴=,∴点G与点G′重合,∴直线AD,BC,PQ相交于同一点.命题点2无刻度直尺作图20.(2021•天津)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上.(Ⅰ)线段AC的长等于;(Ⅱ)以AB为直径的半圆的圆心为O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P,并简要说明点P的位置是如何找到的(不要求证明).【答案】如图,取BC与网格线的交点D,则点D为BC中点,连接OD并延长OD交⊙O 于点E,连接AE交BC于点G,连接BE,延长AC交BE的延长线于F,则OE为△BF A 的中位线,则AB=AF,连接FG延长FG交AB于点P,则BG=FG,∠AFG=∠ABG,即△F AP≌△BAC,则点P即为所求.【解答】解:(Ⅰ)AC==.故答案为:.(Ⅱ)如图,点P即为所求.故答案为:如图,取BC与网格线的交点D,则点D为BC中点,连接OD并延长OD交⊙O于点E,连接AE交BC于点G,连接BE,延长AC交BE的延长线于F,则OE为△BF A的中位线,则AB=AF,连接FG延长FG交AB于点P,则BG=FG,∠AFG=∠ABG,即△F AP≌△BAC,则点P即为所求.类型一网格中作图21.(2021•吉林)图①、图②均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A,点B均在格点上,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图①中,以点A,B,C为顶点画一个等腰三角形;(2)在图②中,以点A,B,D,E为顶点画一个面积为3的平行四边形.【答案】(1)略(2)略【解答】解:(1)如图①中,△ABC即为所求(答案不唯一).(2)如图②中,四边形ABDE即为所求.22.(2021•武汉)如图是由小正方形组成的5×7网格,每个小正方形的顶点叫做格点,矩形ABCD的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先在边AB上画点E,使AE=2BE,再过点E画直线EF,使EF平分矩形ABCD的面积;(2)在图(2)中,先画△BCD的高CG,再在边AB上画点H,使BH=DH.【答案】(1)略(2)略【解答】解:(1)如图,直线EF即为所求.(2)如图,线段CG,点H即为所求类型二根据图形性质作图23.(2021•湖北)已知△ABC和△CDE都为正三角形,点B,C,D在同一直线上,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)如图1,当BC=CD时,作△ABC的中线BF;(2)如图2,当BC≠CD时,作△ABC的中线BG.【答案】(1)略(2)略【解答】解:(1)如图1中,线段BF即为所求.(2)如图2中,线段BG即为所求.24.(2021•江西)已知正方形ABCD的边长为4个单位长度,点E是CD的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,将直线AC绕着正方形ABCD的中心顺时针旋转45°;(2)在图2中,将直线AC向上平移1个单位长度.【答案】(1)略(2)略【解答】解:(1)如图1,直线l即为所求;(2)如图2中,直线a即为所求.。

2019-2020届初三 中考复习 三视图 综合题 专项练习(含答案解析)教学提纲

2019-2020届初三 中考复习 三视图 综合题 专项练习(含答案解析)教学提纲

三视图综合题专项练习一、选择题1、如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A.200 cm2 B.600 cm2 C.100πcm2 D.200πcm2 2、如图,由高和直径相同的5个圆柱搭成的几何体,其左视图是().A. B. C. D.3、如图是由五个相同的小正方体搭成的几何体,则它的主视图是()A. B. C. D.4、下列几何体中,主视图是三角形的为()A. B. C. D.5、观察下列几何体,主视图、左视图和俯视图都是矩形的是()A. B. C. D.6、如图是某几何体的三视图及相关数据,则判断正确的是()A.a>c B.b>c C.4a2+b2=c2 D.a2+b2=c27、如图是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体个数是( ) A.2个B.3个C.4个D.6个8、如图所示的几何体的俯视图是()9、如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C. D.10、已知某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.二、填空题11、如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:cm),计算出这个立体图形的表面积是________cm2.12、如图,方桌正上方的灯泡(看作一个点)发出的光线照射方桌后,在地面上形成阴影(正方形)示意图,已知方桌边长1.2 m,桌面离地面1.2 m,灯泡离地面3.6 m,则地面上阴影部分的面积为________.13、如图是由几个相同的小立方块组成的三视图,小立方块的个数是 .14、长方体的主视图与俯视图如图297,则这个长方体的体积是________.图29715、三棱柱的三视图如图6226,在△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为____________cm.16、.图11-1是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm).将它们拼成如图11-2的新几何体,则该新几何体的体积为_______________cm3.(计算结果保留)17、一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1分米的正方体摆在课桌上成如图6形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为______.18、一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是_______________.19、如图,分别是由若干个完全相同的小正方体组成的一个物体的主视图和俯视图,则组成这个物体的小正方体的个数是个.20、如图所示是用小立方块搭成的几何体的主视图、俯视图,它最少需要___________个小立方块,最多需要_____________个小立方块.三、简答题21、一个零件的主视图、左视图、俯视图如图所示(尺寸单位:厘米),(1)这个零件是什么几何体?(2)求这个零件的表面积、体积(结果保留π)22、某几何体的主视图、左视图和俯视图分别如图,试求该几何体的体积.23、由6个相同的小立方块搭成的几何体如图所示,请画出从三个方向看所得到的形状图.24、如图,下列是一个机器零件的毛坯,请将这个机器零件的三视图补充完整.25、已知图为一几何体从不同方向看的图形:(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10厘米,三角形的边长为4厘米,求这个几何体的侧面积.26、画图:(1)画出圆锥的三视图.已知∠AOB,用直尺和圆规作∠A′O′B′=∠AOB(要求:不写作法,保留作图痕迹)27、如图是一个几何体的二视图(左图为正视图,右图为俯视图),求该几何体的体积(л取3.14).28、由一些大小相同的小正方体组成的简单几何体的主视图和俯视图(如图11). (1)请你画出这个几何体的一种左视图;(2分)(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.(4分)29、如图是一个由若干个棱长相等的正方体构成的几何体的三视图。

九年级数学圆与相似的专项培优易错难题练习题(含答案)

九年级数学圆与相似的专项培优易错难题练习题(含答案)

九年级数学圆与相似的专项培优易错难题练习题(含答案)、相似AE=EF=FD.(1)求 EG :BG 的值(2)求证: AG=OG(3)设 AG =a ,GH =b, HO =c,求 a : b : c 的值【答案】(1)解:∵四边形 ABCD是平行四边形,∴AO= AC, AD=BC, AD∥ BC,∴△ AEG∽△CBG,∴ = = .∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG: BG=1: 3(2)解:∵ GC=3AG(已证),∴AC=4AG,∴AO= AC=2AG,∴GO=AO﹣AG=AG(3)解:∵ AE=EF=FD,∴BC=AD=3AE,AF=2AE.∵AD∥BC,∴△ AFH∽ △ CBH,= = = ,= ,即 AH= AC.AC=4AG,a=AG= AC,b=AH ﹣AG= AC ﹣ AC= AC ,得△ AEG ∽△CBG ,得出对应边成比例,由 AE=EF=FD 可得 BC=3AE ,就可证得 GB=3EG ,即 可求出 EG :BG 的值。

(2)根据相似三角形的性质可得 GC=3AG ,就可证得 AC=4AG ,从而可得 AO=2AG ,即可证得结论。

(3)根据平行可证得三角形相似,再根据相似三角形的性质可得 AG= AC , AH= AC ,结合AO= AC ,即可得到用含 AC 的代数式分别表示出 a 、b 、c ,就可得到 a :b :c 的值。

2.如图,在 △ABC 中, ∠C=90°, ∠ ABC 的平分线交 AC 于点 E ,过点 E 作 BE 的垂线交 AB 于点 F ,⊙O 是△BEF 的外接圆.1)求证: AC 是⊙O 的切线;2)过点 E 作 EH ⊥AB ,垂足为 H ,求证: CD=HF ;3)已知: CD=1,EH=3,求 AF 的长. 答案】 (1)证明:如图,连接 OE . ∵BE 平分∠ ABC , ∴∠ CBE=∠OBE , ∵OB=OE ,∴∠ OBE=∠OEB , ∴∠ OEB=∠CBE , ∴OE ∥BC ,∴∠ AEO=∠ C=90 ,° ∴AC 是⊙O 的切线;2)解:如图,连结 DE .c=AO ﹣AH= AC ﹣ AC= AC ,a :b :c= : =5:3: 2解析】 【分析】( 1)根据平行四边形的性质可得 AO= AC , AD=BC , AD ∥BC ,从而可证∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠ CDE+∠BDE=180 ,°∠HFE+∠BDE=180 ,°∴∠ CDE=∠ HFE.在△ CDE与△HFE中,,∴△ CDE≌ △HFE( AAS),∴CD=HF.(3)解:由( 2)得, CD=HF.又 CD=1 ∴HF=1在 Rt△HFE中, EF= =∵EF⊥BE∴∠ BEF=90 °∴∠ EHF=∠BEF=90 °∵∠ EFH=∠BFE ∴△ EHF∽ △BEF∴BF=10∴在 Rt△ OHE中,∴在 Rt△ EOA中,【解析】【分析】( 1 )连接 OE.利用角平分线的定义和等腰三角形的性质可证得OE∥ BC,从而得∠ AEO=∠ C=90°,可得到证明;(2)连结 DE.利用 AAS可证△CDE≌ △ HFE,从而得到证明;(3)证△ EHF∽ △BEF,由相似三角形的性质可求得 BF,从而得到 OE,在Rt△OHE 和△EOA 中,由 cos∠EOA可求出 OA,从而求出 AF.3.如图 1,以□ ABCD的较短边 CD为一边作菱形 CDEF使, 点 F落在边 AD 上,连接 BE,交 AF 于点 G.(2)延长 DE,BA交于点 H,其他条件不变,① 如图 2,若∠ADC=60°,求的值;② 如图 3,若∠ADC=α(0°<α<9)0,°直接写出的值 .(用含α的三角函数表示)【答案】(1)解:,理由如下:∵四边形是平行四边形,∴∥,.∵四边形是菱形,∴∥,.∴∥,.∴ . 又∵ ,∴ ≌.∴2)解:方法 1:过点作∥ ,交于点,∴.∵,∴∽.由( 1)结论知.∵四边形为菱形,∴ .∵四边形是平行四边形,∴∥ .∴.∵∥,∴. ∴,即 .∴ 是等边三角形。

备战中考数学分点透练真题视图与投影(解析版)

备战中考数学分点透练真题视图与投影(解析版)

第二十四讲视图与投影命题点1 三视图的判断类型一常见几何体视图的判断1.(2021•苏州)如图,圆锥的主视图是()A.B.C.D.【答案】A【解答】解:圆锥的主视图是一个等腰三角形,故选:A.2.(2021•温州)直六棱柱如图所示,它的俯视图是()A.B.C.D.【答案】C【解答】解:从上面看这个几何体,看到的图形是一个正六边形,因此选项C中的图形符合题意,故选:C.3.(2021•湘潭)下列几何体中,三视图不含圆的是()A.B.C.D.【答案】C【解答】解:A、圆柱的俯视图是圆,故不符合题意;B、球的三视图都是圆,故不符合题意;C、正方体的三视图都是正方形,故符合题意;D、圆锥的俯视图是圆,故不符合答题,故选:C.类型二组合体不规则几何体视图的判断4.(2021•江西)如图,几何体的主视图是()A.B.C.D.【答案】C【解答】解:从正面看该组合体,长方体的主视图为长方形,圆柱体的主视图是长方形,因此选项C中的图形符合题意,故选:C.5.(2021•泰州)如图所示几何体的左视图是()A.B.C.D.【答案】C【解答】解:从左边看,是一列两个矩形.故选:C.6.(2021•聊城)如图所示的几何体,其上半部有一个圆孔,则该几何体的俯视图是()A.B.C.D.【答案】A【解答】解:从上面看该几何体,能看见的轮廓线用实线表示,看不见的轮廓线用虚线表示,因此所看到的图形与选项A中的图形相同,故选:A.7.(2021•本溪)如图,该几何体的左视图是()A.B.C.D.【答案】D【解答】解:从左面看该几何体所得到的图形是一个长方形,被挡住的棱用虚线表示,图形如下:故选:D.8.(2021•福建)如图所示的六角螺栓,其俯视图是()A.B.C.D.【答案】A【解答】解:从上边看,是一个正六边形,六边形内部是一个圆,故选:A.9.(2021•吉林)如图,粮仓可以近似地看作由圆锥和圆柱组成,其主视图是()A.B.C.D.【答案】A【解答】解:粮仓主视图上部视图为等腰三角形,下部视图为矩形.故选:A.类型四小正方体组合体视图的判断10.(2020•北碚区自主招生)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【答案】A【解答】解:从正面看有两层,底层两个正方形,上层左边一个正方形,左齐.故选:A.11.(2021•河南)如图是由8个相同的小正方体组成的几何体,其主视图是()A.B.C.D.【答案】A【解答】解:该几何体的主视图有三层,从上而下第一层主视图为一个正方形,第二层主视图为两个正方形,第三层主视图为三个正方形,且左边是对齐的.故选:A.12.(2021•随州)如图是由4个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同【答案】A【解答】解:如图所示:故该组合体的三视图中完全相同的是主视图和左视图,故选:A.13.(2021•泰安)如图是由若干个同样大小的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.【答案】B【解答】解:从左边看从左到右第一列是两个小正方形,第二列有4个小正方形,第三列有3个小正方形,故选:B.14.(2021•齐齐哈尔)由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体的个数最多为()A.7个B.8个C.9个D.10个【答案】A【解答】解:根据题意得:,则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故选:A.命题点2 三视图还原几何体及其相关计算15.(2021•安徽)几何体的三视图如图所示,这个几何体是()A.B.C.D.【答案】C【解答】解:根据该组合体的三视图发现该几何体为.故选:C.16.(2021•东营)已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为()A.214°B.215°C.216°D.217°【答案】C【解答】解:由三视图可知,该几何体为圆锥;由三视图数据知圆锥的底面圆的直径为6、半径为3,高为4,则母线长为=5,所以则该几何体的侧面展开图圆心角的度数为π×6÷(π×5)×180°=216°.故选:C.17.(2021•眉山)我国某型号运载火箭的整流罩的三视图如图所示,根据图中数据(单位:米)计算该整流罩的侧面积(单位:平方米)是()A.7.2πB.11.52πC.12πD.13.44π【答案】C【解答】解:观察图形可知:圆锥母线长为:=2(米),所以该整流罩的侧面积为:π×2.4×4+π×(2.4÷2)×2=12π(平方米).答:该整流罩的侧面积是12π平方米.故选:C.18.(2021•云南)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为.【答案】3π【解答】解:由三视图知几何体为圆柱,且底面圆的半径是1,高是3,∴这个几何体的体积为:π×12×3=3π.故答案为:3π.命题点3 立体图形的展开与折叠类型一常见几何体的展开图19.(2021•扬州)把如图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱【答案】A【解答】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选:A.20.(2021•金华)将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A.B.C.D.【答案】D【解答】解:选项A、B、C均可能是该直棱柱展开图,不符合题意,而选项D中的两个底面会重叠,不可能是它的表面展开图,符合题意,故选:D.类型二正方体的展开图21.(2021•自贡)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是()A.百B.党C.年D.喜【答案】B【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“迎”与“党”相对,面“建”与面“百”相对,“喜”与面“年”相对.故选:B.22.(2021•河北)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表【答案】A【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是3.故选:A.11。

2023年九年级数学中考复习《中考压轴解答题》专题提升训练(含解析)

2023年九年级数学中考复习《中考压轴解答题》专题提升训练(含解析)

2022-2023学年九年级数学中考复习《中考压轴解答题》专题提升训练(附答案)1.如图,AB是⊙O的直径,点F在⊙O上,∠BAF的平分线AE交⊙O于点E,过点E作ED⊥AF,交AF的延长线于点D,延长DE、AB相交于点C.(1)判断CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,tan∠EAD=,求AE的长.2.如图,点C是以AB为直径的⊙O上一点,过点A作⊙O的切线交BC延长线于点D,取AD中点E,连接EC并延长交AB延长线于点F.(1)试判断EF与⊙O的位置关系,并说明理由;(2)若CF=12,BF=8,求tan D.3.如图,四边形ABCD内接于⊙O,AE⊥CB的延长线于点E,连结AC,BD,AB平分∠EBD,(1)求证:AC=AD.(2)当B为的中点,BC=3BE,AD=6时,求CD的长.4.如图,已知AB是圆O的直径,C是圆O上异于A,B的点,D为中点,且DE⊥AC 于点E,连结CD.(1)求证:DE是圆O的切线;(2)若圆O的半径为5,且CD=6,求AC.5.如图,AB是半圆⊙O的直径,C为半圆上一点,CE⊥AB,垂足为E,F为AB延长线上一点,且∠FCB=∠ECB.(1)求证:CF是⊙O的切线;(2)若EB=3,BF=6,求图中阴影部分的面积.6.如图,以▱ABCD的边BC为直径的⊙O交对角线AC于点E,交CD于点F.连接BF.过点E作EG⊥CD于点G,EG是⊙O的切线.(1)求证:▱ABCD是菱形;(2)已知EG=2,DG=1.求CF的长.7.已知,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D.(1)如图1,求证:BD=CD;(2)如图2,点E在上,连接CE并延长至点F,连接AF交⊙O于点G,若=,求证:∠BAC=2∠F;(3)如图3,在(2)的条件下,连接BF,若CF=5,BF=8,求△ACF的面积.8.已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,∠APB的度数应为多少时,四边形APBC 为菱形?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).9.感知:如图1,AD平分∠BAC,∠B+∠C=180°,∠B=90°.易知:DB=DC.(不需证明)探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°.求证:DB=DC.应用:如图3,四边形ABDC中,∠B=45°,∠C=135°,DB=DC,DE⊥AB,若BE=a,则AB﹣AC的值为.(用a的代数式表示)10.定义:我们把一组对边平行另一组对边相等且不平行的四边形叫做等腰梯形.【性质初探】如图1,已知,▱ABCD,∠B=80°,点E是边AD上一点,连结CE,四边形ABCE恰为等腰梯形.求∠BCE的度数;【性质再探】如图2,已知四边形ABCD是矩形,以BC为一边作等腰梯形BCEF,BF =CE,连结BE、CF.求证:BE=CF;【拓展应用】如图3,▱ABCD的对角线AC、BD交于点O,AB=2,∠ABC=45°,过点O作AC的垂线交BC的延长线于点G,连结DG.若∠CDG=90°,求BC的长.11.如图1,在Rt△ABC中,∠C=90°,AC=9cm,BC=12cm.在Rt△DEF中,∠DFE =90°,EF=6cm,DF=8cm,E、F两点在BC边上,DE,DF两边分别与AB边交于G,H两点.现固定△ABC不动,△DEF从点F与点B重合的位置出发,沿BC以1cm/s的速度向点C运动,点P从点F出发,在折线FD﹣DE上以2cm/s的速度向点E运动.△DEF与点P同时出发,当点E到达点C时,点C时,△DEF与点P同时停止运动.设运动的时间是t(单位:s),t>0.(1)当t=2时,PH=cm,DG=cm;(2)t=秒时点P与点G重合?(3)t为多少秒时△PDG为等腰三角形?请说明理由;(4)直接写出△PDB的面积(可用含t的代数式表示).12.(1)问题探究:如图1,在正方形ABCD中,点E,Q分别在边BC、AB上,DQ⊥AE 于点O,点G,F分别在边CD、AB上,GF⊥AE.①判断DQ与AE的数量关系:DQ AE;②推断:的值为;(无需证明)(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF 折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE 交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M、N分别在边BC、AB上,求的值.13.如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由,(3)填空:若正方形ABCD的边长为10,DE=2,PB=PC,则线段PB的长为.14.【问题情境】(1)如图1,在正方形ABCD中,E,F,G分别是BC,AB,CD上的点,FG⊥AE于点Q.求证:AE=FG.【尝试应用】(2)如图2,正方形网格中,点A,B,C,D为格点,AB交CD于点O.求tan∠AOC 的值;【拓展提升】(3)如图3,点P是线段AB上的动点,分别以AP,BP为边在AB的同侧作正方形APCD 与正方形PBEF,连接DE分别交线段BC,PC于点M,N.①求∠DMC的度数;②连接AC交DE于点H,直接写出的值.15.【操作与发现】如图①,在正方形ABCD中,点N,M分别在边BC、CD上.连接AM、AN、MN.∠MAN=45°,将△AMD绕点A顺时针旋转90°,点D与点B重合,得到△ABE.易证:△ANM≌△ANE,从而可得:DM+BN=MN.(1)【实践探究】在图①条件下,若CN=6,CM=8,则正方形ABCD的边长是.(2)如图②,在正方形ABCD中,点M、N分别在边DC、BC上,连接AM、AN、MN,∠MAN=45°,若tan∠BAN=,求证:M是CD的中点.(3)【拓展】如图③,在矩形ABCD中,AB=12,AD=16,点M、N分别在边DC、BC 上,连接AM、AN,已知∠MAN=45°,BN=4,则DM的长是.16.在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.请直接写出k的值和AC12+(kDD1)2的值.17.如图,已知抛物线y=mx2+4x+n与x轴交于A、B两点,与y轴交于点C.直线y=x﹣3经过B,C两点.(1)求抛物线的函数表达式;(2)抛物线的顶点为M,在该抛物线的对称轴l上是否存在点P,使得以C,M,P为顶点的三角形是等腰三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.18.如图一,在平面直角坐标系中,抛物线的顶点为D(2,8),与x轴交于两点A,B(A在B的左侧),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图二,连接AD,BC,点P是线段BC上方抛物线上的一个动点,过点P作PQ ∥AD交CB于点Q,PQ的最大值及此时点P的坐标;(3)将该抛物线关于直线x=1对称得到新抛物线y1,点E是原抛物线y和新抛物线y1的交点,F是原抛物线对称轴上一点,G为新抛物线上一点,若以E、F、A、G为顶点的四边形是平行四边形,请直接写出点F的坐标.19.抛物线y=ax2+x﹣6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+ PQ的最大值.20.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于A,B两点(点B在点A的右边),点A坐标为(1,0),抛物线与y轴交于点C,S△ABC=3.(1)求抛物线的函数表达式;(2)点P(x,y)是抛物线上一动点,且x>3.作PN⊥BC于N,设PN=d,求d与x 的函数关系式;(3)在(2)的条件下,过点A作PC的平行线交y轴于点F,连接BF,在直线AF上取点E,连接PE,使PE=2BF,且∠PEF+∠BFE=180°,请直接写出P点坐标.参考答案1.解:(1)连接OE,∵OA=OE,∴∠OAE=∠OEA,∵AE平分∠BAF,∴∠OAE=∠DAE,∴∠OEA=∠EAD,∴OE∥AD,∵ED⊥AF,∴OE⊥DE,OA是⊙O的半径,∴CD是⊙O的切线;(2)连接BE,∵AB是⊙O的直径,∴∠AEB=90°=∠D,又∠DAE=∠BAE,∴△ADE∽△AEB,∴==,∵tan∠EAD=,∴==,则AE=2BE,又AB=10,在△ABE中,AE2+BE2=AB2,即(2BE)2+BE2=102,解得:BE=2,则AE=4.2.解:(1)EF是⊙O的切线,理由如下:连接OC,AC,∵AB是⊙O的直径,∴∠ACB=90°=∠ACD,又∴E是AD的中点,∴CE=ED=EA,∴∠EAC=∠ACE,又∵OA=OC,∴∠OAC=∠OCA,∵AD是⊙的切线,AB是直径,∴∠EAB=90°=∠EAC+∠OAC,∴∠ACE+∠OCA=90°,即OC⊥EF,∴EF是⊙O的切线;(2)解法一:设OC=x=OB,在Rt△OFC中,由勾股定理得,OC2+FC2=OF2,即x2+122=(8+x)2,解得x=5,即OC=5,∴AB=2OC=10,∴tan F====,∴AE=,∴DE=2AE=15,在Rt△ABD中,tan D===.解法二:连接AC,∵AB是⊙O的直径,∴∠ACB=90°=∠ACD,∵AD是⊙O的切线,∴∠DAB=90°,∴∠D=∠CAB,∵∠BCF=∠CAB,∠F=∠F,∴△CBF∽△ACF,∴===,∴tan D=tan∠CAB==.3.(1)证明:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,∵∠ABE+∠ABC=180°,∴∠ABE=∠ADC,∵AB平分∠DBE,∴∠ABE=∠DBA,∴∠ADC=∠DBA,∵∠ACD=∠DBA,∴∠ADC=∠ACD,∴AC=AD;(2)解:过A作AF⊥CD于F,∵B为的中点,∴AB=BC,∵BC=3BE,∴AB=3BE,∵四边形ABCD是⊙O的内接四边形,∴∠ADF=∠ABE,∵∠AFD=∠AEB=90°,∴△ABE∽△ADF,∴==,∵AD=6,∴DF=2,∵AC=AD,∴CD=2DF=4.4.(1)证明:连接OD、OC,∵D为中点,∴∠BOD=∠COD=∠BOC,又∵∠BAC=∠BOC,∴∠BAC=∠BOD,∴OD∥AE,∴DE⊥AC,∴OD⊥DE,∵OD是半径,∴DE是⊙O的切线;(2)解:连接BD,∵D为中点,∴BD=CD=6,∵AB是⊙O的直径,∴∠ADB=90°,在Rt△ABD中,AD==8,∵∠DCE=∠B,∴sin B====sin∠DCE==,∴DE=,∴CE==,在Rt△ADE中,由勾股定理得,DE2+AE2=AD2,即()2+(AC+)2=82,∴AC=.5.(1)证明:连接OC,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠CBE=90°,∵OC=OB,∴∠OCB=∠CBE,∴∠OCB+∠ECB=90°,∵∠FCB=∠ECB∴∠FCB+∠OCB=90°,∴∠OCF=90°,∴CF是⊙O的切线;(2)解:∵∠OCF=∠OEC=90°,∠FOC=∠COE,∴△OCE∽△OFC,∴=,即=,解得:OB=6,∴cos∠COF===,∴∠COF=60°,∴CF=OF•sin∠COF=6,∴阴影部分的面积=×6×6﹣=18﹣6π.6.(1)证明:如图,连接OE,∵EG是⊙O的切线,∴OE⊥EG,∵EG⊥CD,∵四边形ABCD是平行四边形,∴OE∥CD∥AB,∴∠CEO=∠CAB,∵OC=OE,∴∠CEO=∠ECO,∴∠ACB=∠CAB,∴AB=BC,∴▱ABCD是菱形;(2)如图,连接BD,由(1)得,OE∥CD,OC=OB,∴AE=CE,∴CE:AC=1:2,∴点E是AC的中点,∵四边形ABCD是菱形,∴BD经过点E,∵BC是⊙O的直径,∴BF⊥CD,∵EG⊥CD,∴EG∥BF,∴△DGE∽△DFB,∴DG:DF=GE:BF=DE:BD=1:2,∴DF=2,BF=4,在Rt△BFC中,设CF=x,则BC=x+2,由勾股定理得,x2+42=(x+2)2,解得:x=3,∴CF=3.7.(1)证明:如图1,连接AD,∵AC是⊙O的直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)证明:如图2,连接AD,CG,∵AC是⊙O的直径,∴∠CGF=∠AGC=90°,∠ADC=90°,∴∠ADC=∠CGF,∵=,∴∠DCG=∠ACE,∴∠DCG﹣∠ACG=∠ACE﹣∠ACG,∴∠ACD=∠FCG,∴∠F=∠CAD,∵AB=AC,AD⊥BC,∴∠BAC=2∠DAC,∴∠BAC=2∠F;(3)解:如图3,取CF的中点H,连接DH,GH,DG,由(1)知:BD=CD,∴DH==4,∵∠CGF=90°,CH=FH,∴GH=FH==,∠GFC+∠GCF=90°,∴∠FGH=∠GFC,∴∠FGH+∠GCF=90°,∵=,∴∠AGD=∠ACD,由(2)知:∠DAC=∠GFC,∴∠AGD=∠GFC,∴∠FGH+∠AGD=90°,∴∠DGH=90°,∴DG===,∵=,∴∠CDG=∠CAF,由(2)知:∠DCG=∠ACE,∴△CDG∽△CAF,∴,∴CG•AF=CF•DG=5×=,∴,∴S△ACF=.8.解:(1)如图1,连接OA,OB,∵P A,PB为⊙O的切线,∴∠P AO=∠PBO=90°,∵∠APB+∠P AO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB=120°,∴∠ACB=60°=∠APB,∵点C运动到PC距离最大,∴PC经过圆心,∵P A,PB为⊙O的切线,∴P A=PB,∠APC=∠BPC=30°,又∵PC=PC,∴△APC≌△BPC(SAS),∴∠ACP=∠BCP=30°,AC=BC,∴∠APC=∠ACP=30°,∴AP=AC,∴AP=AC=PB=BC,∴四边形APBC是菱形;(3)∵⊙O的半径为r,∴OA=r,OP=2r,∴AP=r,PD=r,∵∠AOP=90°﹣∠APO=60°,∴的长度==,∴阴影部分的周长=r+r+r=(+1+)r.9.感知证明:如图1,∵∠B+∠C=180°,∠B=90°,∴∠C=90°,∴∠B=∠C,∵∠BAD=∠CAD,AD=AD,∴△BAD≌△CAD(AAS),∴DB=DC.探究证明:如图2,延长AC到点F,使AF=AB,连接DF,∵∠F AD=∠BAD,AD=AD,∴△F AD≌△BAD(SAS),∴∠F=∠ABD,DF=DB,∵∠ABD+∠ACD=180°,∴∠F+∠ACD=180°,∵∠DCF+∠ACD=180°,∴∠F=∠DCF,∴DF=DC,∴DB=DC.应用解:如图3,作DG⊥AC交AC的延长线于点G,连接AD,∵DE⊥AB,∠B=45°,∴∠BED=∠G=∠AED=90°,∠EDB=∠B=45°,∴DE=BE=a,∵∠ACD=135°,∴∠GCD=45°,∵∠B=∠GCD,DB=DC,∴△BED≌△CGD(AAS),∴DE=DG,CG=BE=a,∵AD=AD,∴Rt△AED≌Rt△AGD(HL),∴AE=AG=AC+a,∴AC=AE﹣a,∴AB﹣AC=AB﹣(AE﹣a)=AB﹣AE+a=BE+a=2a,故答案为:2a.10.【性质初探】解:过点A作AG⊥BC交于G,过点E作EH⊥BC交于H,∵▱ABCD,∴AE∥BC,∴AG=EH,∵四边形ABCE恰为等腰梯形,∵AB=EC,∴Rt△ABG≌Rt△ECG(HL),∴∠B=∠ECH,∵∠B=80°,∴∠BCE=80°;【性质再探】证明:∵四边形ABCD是矩形,∴AE∥BC,∵四边形BCEF是等腰梯形,∴BF=CE,由(1)可知,∠FBC=∠ECB,∴△BFC≌△CEB(SAS),∴BE=CF;【拓展应用】解:连接AC,过G点作GM⊥AD交延长线于点M,∵四边形ABCD是平行四边形,∴O是AC的中点,∵GO⊥AC,∴AC=CG,∵AB∥CD,∠ABC=45°,∴∠DCG=45°,∴∠CDG=90°,∴CD=DG,∴BA=DG=2,∵∠CDG=90°,∴CG=2,∴AG=2,∵∠ADC=∠DCG=45°,∴∠CDM=135°,∴∠GDM=45°,∴GM=DM=,在Rt△AGM中,(2)2=(AD+)2+()2,∴AD=﹣,∴BC=﹣.11.解:(1)当t=2时,BF=2cm,PF=4cm,BE=8cm.∵∠C=90°,∠DFE=90°,∴∠C+∠DFE=180°.∴AC∥DF.∴△BHF∽△BAC.∴BF:BC=HF:AC,即2:12=HF:9.∴HF=.∴PH=4﹣=.∵tan B===,tan D=,∴∠B=∠D,∴∠BGE=90°,∴△BEG∽△BAC,∴=,即=,解得,EG=(cm),∴DG=10﹣EG=(cm),故答案为:;;(2)设当△DEF和点P运动的时间是t时,点P与点G重合,此时点P一定在DE边上,DP=DG.由(1)知,∠B=∠D.又∵∠D+∠DEB=90°,∴∠B+∠DEB=90°,∴∠DGH=∠BFH=90°.∴FH=BF•tan B=t,DH=DF﹣FH=8﹣t,DG=DH•cos D=(8﹣t)•=﹣t+,∵DP+DF=2t,∴DP=2t﹣8.由DP=DG得,2t﹣8=﹣t+,解得t=,∵4<<6,则此时点P在DE边上.∴t的值为时,点P与点G重合.故答案为:;(3)只有点P在DF边上运动时,△PDE才能成为等腰三角形,且PD=PE.(如图1)∵BF=t,PF=2t,DF=8,∴PD=DF﹣PF=8﹣2t.在Rt△PEF中,PE2=PF2+EF2=4t2+36=PD2.即4t2+36=(8﹣2t)2.解得t=.∴t为时△PDE为等腰三角形;(4)当0<t≤4时,点P在DF边上运动,如图1,S△PDB=PD•BF=(8﹣2t)•t=﹣t2+4t;当4<t≤6时,点P在DE边上运动,如图2,过点P作PS⊥BC于S,则tan∠PBF=.可得PE=DE﹣DP=10﹣(2t﹣8)=18﹣2t.此时PS=PE•cos∠EPS=PE•cos D=•(18﹣2t)=﹣t+,S△PDB=S△DEB﹣S△BPE=BE•DF﹣BE•PS=×(6+t)×8﹣×(6+t)(﹣t+)=t2+t﹣.综上所述,△PDB的面积为﹣t2+4t(0<t≤4)或t2+t﹣(4<t≤6).12.解:(1)①证明:∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DH,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.故答案为:=.②结论:=1.理由:∵DQ⊥AE,FG⊥AE,∴DQ∥FG,∵FQ∥DG,∴四边形DQFG是平行四边形,∴FG=DQ,∵AE=DQ,∴FG=AE,∴=1.故答案为:1.(2)结论:=k.理由:如图2,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴,∵∠AMG=∠D=∠DAM=90°,∴四边形AMGD是矩形,∴GM=AD,∴=k.(3)如图3,过点D作EF⊥BC,交BC的延长线于点F,过点A作AE⊥EF,连接AC,∵∠ABC=90°,AE⊥EF,EF⊥BC,∴四边形ABFE是矩形,∴∠E=∠F=90°,AE=BF,EF=AB=10,∵AD=AB,BC=CD,AC=AC,∴△ACD≌△ACB(SSS),∴∠ADC=∠ABC=90°,∴∠ADE+∠CDF=90°,且∠ADE+∠EAD=90°,∴∠EAD=∠CDF,且∠E=∠F=90°,∴△ADE∽△DCF,∴,∴AE=2DF,DE=2CF,∵DC2=CF2+DF2,∴25=CF2+(10﹣2CF)2,∴CF=5(不合题意,舍去),CF=3,∴BF=BC+CF=8,由(2)的结论可知:.13.解:(1)证明:如图a,∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS);(2)①如图b,∵△BCP≌△DCQ,∴∠CBF=∠EDF,又∵∠BFC=∠DFE,∴∠DEF=∠BCF=90°,∴BE⊥DQ;②如图c,∵△BCP为等边三角形,∴∠BCP=60°,∴∠PCD=30°,又∵CP=CD,∴∠CPD=∠CDP=75°,又∵∠BPC=60°,∠CDQ=60°,∴∠EPD=45°,∠EDP=45°,∴△DEP为等腰直角三角形;(3)如图b,由∠CBF=∠EDF,∠DEF=∠BCF,可得△DEF∽△BCF,∴=,即=,设DF=x,则BF=5x,CF=10﹣x,∵Rt△BCF中,BF2=BC2+CF2,∴(5x)2=102+(10﹣x)2,解得x1=,x2=﹣(舍去),∴BF=5x=,∵PB=PC,∴∠PBC=∠PCB,又∵∠PBC+∠PFC=∠PCB+∠PCF=90°,∴∠PFC=∠PCF,∴PF=PC,∴BP=PF=BF=;如图d,延长BE、CD,交于点F,由∠CBF=∠CDQ=∠EDF,∠DEF=∠BCF,可得△DEF∽△BCF,∴=,即=,设DF=x,则BF=5x,CF=10+x,∵Rt△BCF中,BF2=BC2+CF2,∴(5x)2=102+(10+x)2,解得x1=﹣(舍去),x2=,∴BF=5x=,∵PB=PC,∴∠PBC=∠PCB,又∵∠PBC+∠PFC=∠PCB+∠PCF=90°,∴∠PFC=∠PCF,∴PF=PC,∴BP=PF=BF=.故答案为:或.14.(1)证明:方法1,平移线段FG至BH交AE于点K,如图1﹣1所示:由平移的性质得:FG∥BH,∵四边形ABCD是正方形,∴AB∥CD,AB=BC,∠ABE=∠C=90°,∴四边形BFGH是平行四边形,∴BH=FG,∵FG⊥AE,∴BH⊥AE,∴∠BKE=90°,∴∠KBE+∠BEK=90°,∵∠BEK+∠BAE=90°,∴∠BAE=∠CBH,在△ABE和△BCH中,,∴△ABE≌△BCH(ASA),∴AE=BH,∴AE=FG;方法2:平移线段BC至FH交AE于点K,如图1﹣2所示:则四边形BCHF是矩形,∠AKF=∠AEB,∴FH=BC,∠FHG=90°,∵四边形ABCD是正方形,∴AB=BC,∠ABE=90°,∴AB=FH,∠ABE=∠FHG,∵FG⊥AE,∴∠HFG+∠AKF=90°,∵∠AEB+∠BAE=90°,∴∠BAE=∠HFG,在△ABE和△FHG中,,∴△ABE≌△FHG(ASA),∴AE=FG;(2)解:将线段AB向右平移至FD处,使得点B与点D重合,连接CF,如图2所示:∴∠AOC=∠FDC,设正方形网格的边长为单位1,则AC=2,AF=1,CE=2,DE=4,FG=3,DG=4,由勾股定理可得:CF===,CD===2,DF===5,∵()2+(2)2=52,∴CF2+CD2=DF2,∴∠FCD=90°,∴tan∠AOC=tan∠FDC===;(3)解:①平移线段BC至DG处,连接GE,如图3﹣1所示:则∠DMC=∠GDE,四边形DGBC是平行四边形,∴DC=GB,∵四边形ADCP与四边形PBEF都是正方形,∴DC=AD=AP,BP=BE,∠DAG=∠GBE=90°∴DC=AD=AP=GB,∴AG=BP=BE,在△AGD和△BEG中,,∴△AGD≌△BEG(SAS),∴DG=EG,∠ADG=∠EGB,∴∠EGB+∠AGD=∠ADG+∠AGD=90°,∴∠EGD=90°,∴∠GDE=∠GED=45°,∴∠DMC=∠GDE=45°;②如图3﹣2所示:∵AC为正方形ADCP的对角线,∴AD=CD,∠DAC=∠P AC=∠DMC=45°,∴△ACD是等腰直角三角形,∴AC=AD,∵∠HCM=∠BCA,∴∠AHD=∠CHM=∠ABC,∴△ADH∽△ACB,∴===.15.(1)解:∵四边形ABCD是正方形,∴AB=CD=AD,∠BAD=∠C=∠D=90°,由旋转的性质得:△ABE≌△ADM,∴BE=DM,∠ABE=∠D=90°,AE=AM,∠BAE=∠DAM,∴∠BAE+∠BAM=∠DAM+∠BAM=∠BAD=90°,即∠EAM=90°,∵∠MAN=45°,∴∠EAN=90°﹣45°=45°,∴∠MAN=∠EAN,在△AMN和△AEN中,,∴△AMN≌△AEN(SAS),∴MN=EN,∵EN=BE+BN=DM+BN,∴MN=BN+DM,在Rt△CMN中,由勾股定理得:MN===10,则BN+DM=10,设正方形ABCD的边长为x,则BN=BC﹣CN=x﹣6,DM=CD﹣CM=x﹣8,∴x﹣6+x﹣8=10,解得:x=12,即正方形ABCD的边长是12;故答案为:12;(2)证明:设BN=m,DM=n,由(1)可知,MN=BN+DM=m+n,∵∠B=90°,tan∠BAN=,∴tan∠BAN==,∴AB=3BN=3m,∴CN=BC﹣BN=2m,CM=CD﹣DM=3m﹣n,在Rt△CMN中,由勾股定理得:(2m)2+(3m﹣n)2=(m+n)2,整理得:3m=2n,∴CM=2n﹣n=n,∴DM=CM,即M是CD的中点;(3)解:延长AB至P,使BP=BN=4,过P作BC的平行线交DC的延长线于Q,延长AN交PQ于E,连接EM,如图③所示:则四边形APQD是正方形,∴PQ=DQ=AP=AB+BP=12+4=16,设DM=a,则MQ=16﹣a,∵PQ∥BC,∴△ABN∽△APE,∴===,∴PE=BN=,∴EQ=PQ﹣PE=16﹣=,由(1)得:EM=PE+DM=+a,在Rt△QEM中,由勾股定理得:()2+(16﹣a)2=(+a)2,解得:a=8,即DM的长是8;故答案为:8.16.(1)①证明:如图1,∵四边形ABCD是正方形,∴OC=OA=OD=OB,AC⊥BD,∴∠AOB=∠COD=90°,∵△COD绕点O按逆时针方向旋转得到△C1OD1,∴OC1=OC,OD1=OD,∠COC1=∠DOD1,∴OC1=OD1,∠AOC1=∠BOD1=90°+∠AOD1,在△AOC1和△BOD1中,∴△AOC1≌△BOD1(SAS);②AC1⊥BD1;(2)AC1⊥BD1.理由如下:如图2,∵四边形ABCD是菱形,∴OC=OA=AC,OD=OB=BD,AC⊥BD,∴∠AOB=∠COD=90°,∵△COD绕点O按逆时针方向旋转得到△C1OD1,∴OC1=OC,OD1=OD,∠COC1=∠DOD1,∴OC1=OA,OD1=OB,∠AOC1=∠BOD1,∴,∴△AOC1∽△BOD1,∴∠OAC1=∠OBD1,又∵∠AOB=90°,∴∠OAB+∠ABP+∠OBD1=90°,∴∠OAB+∠ABP+∠OAC1=90°,∴∠APB=90°∴AC1⊥BD1;∵△AOC1∽△BOD1,∴====,∴k=;(3)如图3,与(2)一样可证明△AOC1∽△BOD1,∴===,∴k=;∵△COD绕点O按逆时针方向旋转得到△C1OD1,∴OD1=OD,而OD=OB,∴OD1=OB=OD,∴△BDD1为直角三角形,在Rt△BDD1中,BD12+DD12=BD2=100,∴(2AC1)2+DD12=100,∴AC12+(kDD1)2=25.17.解:(1)y=x﹣3中,令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则x=3,∴B(3,0),将C(0,﹣3),B(3,0)代入y=mx2+4x+n中,∴,解得,∴y=﹣x2+4x﹣3;(2)存在点P,使得以C,M,P为顶点的三角形是等腰三角形,理由如下:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴M(2,1),对称轴为直线x=2,设P(2,t),∴MP=|t﹣1|,MC=2,CP=,①当MP=MC时,|t﹣1|=2,∴t=2+1或t=﹣2+1,∴P(2,2+1)或(2,﹣2+1);②当MP=CP时,|t﹣1|=,解得t=﹣,∴P(2,﹣);③当MC=CP时,2=,解得t=1(舍)或t=﹣7,∴P(2,﹣7);综上所述:P点坐标为(2,2+1)或(2,﹣2+1)或(2,﹣)或(2,﹣7).18.解:(1)∵抛物线的顶点为D(2,8),∴﹣=2,=8,解得b=2,c=6,∴y=﹣x2+2x+6;(2)令y=0,则﹣x2+2x+6=0,解得x=﹣2或x=6,∴A(﹣2,0),B(6,0),令x=0,则y=6,∴C(0,6),设直线AD的解析式为y=kx+d,∴,解得,∴y=2x+4,设直线BC的解析式为y=k'x+d',∴,解得,∴y=﹣x+6,设P(t,﹣t2+2t+6),∵QP∥AD,∴直线QP的解析式为y=2x﹣t2+6,当2x﹣t2+6=﹣x+6时,x=t2,∴Q(t2,6﹣t2),∴PQ=|t2﹣t|,∵0<t<6,∴PQ=(﹣t2+t)=﹣(t﹣3)2+,当t=3时,PQ有最大值,此时P(3,);(3)D点关于直线x=1的对称点为(0,8),∴新抛物线y1=﹣x2+8,当﹣x2+2x+6=﹣x2+8时,x=1,∴E(1,),∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴抛物线的对称轴为直线x=2,设F(2,m),G(n,﹣n2+8),当EF为平行四边形的对角线时,,解得,∴F(2,﹣12);当EA为平行四边形的对角线时,,解得,∴F(2,4);当EG为平行四边形的对角线时,,解得,∴F(2,15);综上所述:F点坐标为(2,﹣12)或(2,4)或(2,15).19.解:(1)将B(8,0)代入y=ax2+x﹣6,∴64a+22﹣6=0,∴a=﹣,∴y=﹣x2+x﹣6,当y=0时,﹣t2+t﹣6=0,解得t=3或t=8(舍),∴t=3,∵B(8,0)在直线y=kx﹣6上,∴8k﹣6=0,解得k=,∴y=x﹣6;(2)作PM⊥x轴交于M,∵P点横坐标为m,∴P(m,﹣m2+m﹣6),∴PM=m2﹣m+6,AM=m﹣3,在Rt△COA和Rt△AMP中,∵∠OAC+∠P AM=90°,∠APM+∠P AM=90°,∴∠OAC=∠APM,∴△COA∽△AMP,∴=,即OA•MA=CO•PM,3(m﹣3)=6(m2﹣m+6),解得m=3(舍)或m=10,∴P(10,﹣);(3)作PN⊥x轴交BC于N,过点N作NE⊥y轴交于E,∴PN=﹣m2+m﹣6﹣(m﹣6)=﹣m2+2m,∵PN⊥x轴,∴PN∥OC,∴∠PNQ=∠OCB,∴Rt△PQN∽Rt△BOC,∴==,∵OB=8,OC=6,BC=10,∴QN=PN,PQ=PN,由△CNE∽△CBO,∴CN=EN=m,∴CQ+PQ=CN+NQ+PQ=CN+PN,∴CQ+PQ=m﹣m2+2m=﹣m2+m=﹣(m﹣)2+,当m=时,CQ+PQ的最大值是.20.解:(1)∵抛物线y=ax2+bx+3与y轴交于点C,当x=0时,y=3,∴C(0,3),即OC=3,∵S△ABC=3,∴×AB×OC=3,即AB×3=3,∴AB=2,又∵A(1,0)且点B在点A的右边,∴B(3,0),把A点和B点坐标代入抛物线y=ax2+bx+3,得,解得,∴抛物线的解析式为y=x2﹣4x+3;(2)由(1)知,C(0,3),B(3,0),设直线BC的解析式为y=kx+t,代入B点和C点的坐标得,解得,∴直线BC的解析式为y=﹣x+3,过点P作PD⊥x轴交BC延长线于点E,交x轴于点D,∵OC=OB,∴∠CBO=45°,又∵∠COB=∠PDO=90°,且∠CBO=∠DBE=45°,∴∠PEC=45°,且PN⊥CB,∴∠NPE=45°,∴PN=PE,设P(m,m2﹣4m+3),则E(m,﹣m+3),∴PE=m2﹣4m+3﹣(﹣m+3)=m2﹣3m,∴PN=d=PE=(m2﹣3m)=m2﹣m,∴d=x2﹣x;(3)如下图,过点P作PH⊥FE于点H,过点C作CI⊥FE于点I,过点B作BJ⊥FE 于点J,设FE交BC于点K,∵∠PEF+∠BFE=180°,且∠PEF+∠PEH=180°,∴∠BFE=∠PEH,∵∠PHE=∠CIJ=∠BJH=90°,又∵PE=2BF,∴△PEH∽△BJF,∴BJ=PH,又∵CP∥AH,且CI∥PH,∴四边形CPHI是矩形,∴CJ=PH,又∵∠CJI=∠BKJ,∴BJ=CI,∴BK=CK,∴K(2,1),设直线AF的解析式为y=sx+n,代入K点和A点的坐标得,解得,∴直线AF的解析式为y=x﹣1,设直线PC的解析式为y=x+g,代入C点坐标得g=3,∴直线PC的解析式为y=x+3,联立直线PC和抛物线的解析式得,解得或,∴P(5,8).。

初三期中考试分析反思(33篇)

初三期中考试分析反思(33篇)

初三期中考试分析反思(33篇)初三期中考试分析反思(精选33篇)初三期中考试分析反思篇1九年级期中语文试卷,从命题的角度来看,能按照新的课程理念,语文学科考试说明来命制,试卷结构合理,覆盖面广,突出主干知识考查,考点明确,有较强的导向性。

试卷分汉字、阅读、写作三个板块。

试题以学生发展为本,在考查基础知识和基本技能的同时,以能力测试为主导,注重体现科学态度和人文精神,注重对学生思维方式、科学素养的考查,注重课内知识巩固,注重综合应用,能激励学生进行探究创新。

从各版块试题来看,经典诗文默写,诗歌阅读《水调歌头·重上井冈山》、书信阅读有刘墉的《给女儿的一封信》具有典范性,引导学生在学习中重视名家作品;文言文阅读选自课外,郑板桥的《板桥家书两则》,两封书信告诉学生们一个共同的道理:爱护大自然中的一切生命,与它们和谐相处。

考查内容倾向重点实词和重点句式;作文采用一题制,——走进了我的青春为半命题作文,为学生写作提供了多种话题,有利于活化学生的思维,让学生在青春的道路上不断的认识自己、反省自己、完美自己。

作文从形式上看又在文体和表达方式上做了特定限制,促使学生写细节精妙、情感细的记叙文。

下面,我结合本次考试阅卷情况,谈一下考试中学生答卷存在的主要问题:1、汉字的书写欠规范。

诗文默写中叶、灼、碾、迹等字词的错误率较高。

更重要的是全卷的书写,如果依据中考说明的要求,属于一类卷的考试微乎其微,相当一部分学生显得浮躁,书写狂乱。

2、文言文阅读能力较差。

次文言文与中考此题的命题要求相比,难度不是很大,但从学生出现的问题来看,实词图倏解释不出,摘取的句子固非一笼一羽之乐而已翻译不出,都能反映出课内的文言文知识巩固还很不到位。

3、现代文阅读缺少整体感知。

第31小题关于《高贵的生命不卑微》中第一段在文章结构上所起的作用,大部分学生就文段内容雨后文的联系来答题,未能把这一情节隐含的人物心理及与文章结尾联系起来,这种只见树木不见森林的理解,充分暴露出学生欠缺现代文的整体感知能力,也能透视出我们教学中存在着肢解课文的现象,导致学生未能更好地把握住局部与整体的关系。

《易错题》九年级数学下册第二十九章《投影与视图》综合经典测试题(含答案)(1)

《易错题》九年级数学下册第二十九章《投影与视图》综合经典测试题(含答案)(1)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.下面几何体的左视图是( )A.B.C.D.2.由7个相同的棱长为1的小立方块拼成的几何体如图所示,它的表面积为()A.23B.24C.26D.283.如图由5个相同的小正方体组成的-个立体图形,其俯视图是()A.B.C.D.4.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.5.下列几何体中,三视图有两个相同而另一个不同的是()A.(1)(2)B.(2)(3)C.(2)(4)D.(3)(4)6.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.7.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时刻,一根长为l米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.米B.12米C.米D.10米8.如图是由五个相同的小正方体搭成的一个几何体,它的主视图是()A.B.C.D.9.已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.6个B.7个C.8个D.9个10.如图,水杯的俯视图是()A.B.C.D.11.如图,用八个同样大小的小立方体粘成一个大正方体,得到的几何体从正面、从左面和从上面看到的形状图如图,若小明从八个小立方体中取走若干个,剩余小立方体保持位置不动,并使得到的新几何体从三个方向看到的形状图不变,则他取走的小立方体最多可以是()A.0个B.1个C.4个D.3个12.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.13.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是().A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是414.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.二、填空题15.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60 角时,第二次是阳光与地面成30角时,两次测量的影长相差8米,则树高______米.(结果保留根号)16.如图是由一些相同的小正方体构成的立体图形从三个方向看到的图形,那么构成这个立体图形的小正方体有_______个.17.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.5m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),她先测得留在墙壁上的影高为1m,又测得地面的影长为1.5m,请你帮她算一下,树高为______.18.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.19.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是_____m.20.已知一个物体由x个相同的正方体堆成,它的正视图和左视图如图所示,那么x的最大值是_____.21.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图. 已知桌面直径为1.2米,桌面离地面1米. 若灯泡离地面3米,则地面上阴影部分的面积为__________(结果保留π)22.若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x+y=_____.23.甲同学的身高为1.5m,某一时刻它的影长为1m,此时一塔影长为20m,则该塔高为____________m。

九年级数学下册常考点微专题提分精练(投影与视图最新中考真题与模拟精练(解析版)

九年级数学下册常考点微专题提分精练(投影与视图最新中考真题与模拟精练(解析版)

专题28 投影与视图最新中考真题与模拟精练1.(2022·安徽·定远县育才学校一模)学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6 m 的小明(AB )的影子BC 长是3 m,而小颖(EH )刚好在路灯灯泡的正下方H 点,并测得HB=6 m . (1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G ; (2)求路灯灯泡的垂直高度GH ;(3)如果小明沿线段BH 向小颖(点H )走去,当小明走到BH 的中点B 1处时,其影子长为B 1C 1;当小明继续走剩下路程的13到B 2处时,其影子长为B 2C 2;当小明继续走剩下路程的14到B 3处,…,按此规律继续走下去,当小明走剩下路程的11n +到Bn 处时,其影子BnCn 的长为 m .(直接用含n 的代数式表示)【答案】(1)详见解析;(2)路灯灯泡的垂直高度GH 是4.8 m ;(3)BnCn=31n +. 【分析】(1)确定灯泡的位置,可以利用光线可逆可以画出;(2)要求垂直高度GH 可以把这个问题转化成相似三角形的问题,图中△ABC△△GHC 由它们对应成比例可以求出GH ;(3)的方法和(2)一样也是利用三角形相似,对应相等成比例可以求出,然后找出规律. 【详解】解:(1)形成影子的光线如图所示,路灯灯泡所在的位置为点G.(2)根据题意,得△ABC △△GHC ,∴AB BC GH HC =,∴1.6363GH =+,解得GH=4.8 m . 答:路灯灯泡的垂直高度GH 是4.8 m .(3)提示:同理可得△A 1B 1C 1△△GHC 1,∴11111A B B C GH HC=, 设B 1C 1长为x m,则1.64.83xx =+, 解得x=1.5,即B 1C 1=1.5 m . 同理22221.64.82B C B C =+,解得B 2C 2=1 m,∴1.614.861n n n n B C B C n =+⨯+,解得BnCn=31n +. 【点睛】本题主要考查相似三角形的应用及中心投影,只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例解题.2.(2019·江苏扬州·中考真题)如图,平面内的两条直线l 1、l 2,点A 、B 在直线l 2上,过点A 、B 两点分别作直线l 1的垂线,垂足分别为A 1、B 1,我们把线段A 1B 1叫做线段AB 在直线l 2上的正投影,其长度可记作T (AB ,CD )或T (AB ,l 2),特别地,线段AC 在直线l 2上的正投影就是线段A 1C ,请依据上述定义解决如下问题.(1)如图1,在锐角△ABC 中,AB=5,T (AC ,AB )=3,则T (BC ,AB )= ;(2)如图2,在Rt△ABC 中,△ACB=90°,T (AC ,AB )=4,T (BC ,AB )=9,求△ABC 的面积; (3)如图3,在钝角△ABC 中,△A=60°,点D 在AB 边上,△ACD=90°,T (AD ,AC )=2,T (BC ,AB )=6,求T (BC ,CD ).【答案】(1)2 ;(2)△ABC 的面积=39;(3)T (BC ,CD )=732【分析】(1)如图1,过C 作CH△AB ,根据正投影的定义求出BH 的长即可;(2)如图2,过点C 作CH△AB 于H ,由正投影的定义可知AH=4,BH=9,再根据相似三角形的性质求出CH 的长即可解决问题;(3)如图3,过C 作CH△AB 于H ,过B 作BK△CD 于K ,求出CD 、DK 即可得答案. 【详解】(1)如图1,过C 作CH△AB ,垂足为H , △T (AC ,AB)=3, △AH=3, △AB=5, △BH=AB-AH=2, △T (BC ,AB)=BH=2, 故答案为2;(2)如图2,过点C 作CH△AB 于H , 则△AHC=△CHB=90°, △△B+△HCB=90°, △△ACB=90°, △△B+△A=90°△△A=△HCB,△△ACH△△CBH,△CH:BH=AH:CH,△CH2=AH·BH,△T(AC,AB)=4,T(BC,AB)=9,△AH=4,BH=9,△AB=AH+BH=13,CH=6,△S△ABC=(AB·CH)÷2=13×6÷2=39;(3)如图3,过C作CH△AB于H,过B作BK△CD于K,△△ACD=90°,T(AD,AC)=2,△AC=2,△△A=60°,△△ADC=△BDK=30°,△CD=AC·tan60°=23,AD=2AC=4,AH=12AC=1,△DH=4-1=3,△T(BC,AB)=6,CH△AB,△BH=6,△DB=BH-DH=3,在Rt△BDK中,△K=90°,BD=3,△BDK=30°,△DK=BD·cos30°=332,△T(BC,CD)=CK=CD+DK=3+332=73 2.【点睛】本题是三角形综合题,考查了正投影的定义,解直角三角形,相似三角形的判定与性质等知识,理解题意,正确添加辅助线,构建直角三角形是解题问题的关键. 3.(2020·四川攀枝花·中考真题)实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN的距离皆为100cm.王诗嬑观测到高度90cm矮圆柱的影子落在地面上,其长为72cm;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线MN互相垂直,并视太阳光为平行光,测得斜坡坡度1:0.75i=,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为150cm,且此刻她的影子完全落在地面上,则影子长为多少cm?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为100cm,则高圆柱的高度为多少cm?【答案】(1)120cm;(2)正确;(3)280cm【分析】(1)根据同一时刻,物长与影从成正比,构建方程即可解决问题.(2)根据落在地面上的影子皆与坡脚水平线MN互相垂直,并视太阳光为平行光,结合横截面分析可得;(3)过点F作FG△CE于点G,设FG=4m,CG=3m,利用勾股定理求出CG和FG,得到BG,过点F作FH△AB于点H,再根据同一时刻身高与影长的比例,求出AH的长度,即可得到AB.【详解】解:(1)设王诗嬑的影长为xcm,由题意可得:90150 72x=,解得:x=120,经检验:x=120是分式方程的解,王诗嬑的的影子长为120cm;(2)正确,因为高圆柱在地面的影子与MN垂直,所以太阳光的光线与MN垂直,则在斜坡上的影子也与MN垂直,则过斜坡上的影子的横截面与MN垂直,而横截面与地面垂直,高圆柱也与地面垂直,△高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内;(3)如图,AB为高圆柱,AF为太阳光,△CDE为斜坡,CF为圆柱在斜坡上的影子,过点F作FG△CE于点G,由题意可得:BC=100,CF=100,△斜坡坡度1:0.75i=,△140.753DE FG CE CG ===, △设FG=4m ,CG=3m ,在△CFG 中,()()22243100m m +=,解得:m=20, △CG=60,FG=80, △BG=BC+CG=160, 过点F 作FH△AB 于点H ,△同一时刻,90cm 矮圆柱的影子落在地面上,其长为72cm , FG△BE ,AB△BE ,FH△AB , 可知四边形HBGF 为矩形, △9072AH AH HF BG==, △AH=90901607272BG ⨯=⨯=200,△AB=AH+BH=AH+FG=200+80=280, 故高圆柱的高度为280cm.【点睛】本题考查了解分式方程,解直角三角形,平行投影,矩形的判定和性质等知识,解题的关键是理解实际物体与影长之间的关系解决问题,属于中考常考题型.4.(2011·全国·中考模拟)如图所给的A 、B 、C 三个几何体中,按箭头所示的方向为它们的正面,设A 、B 、C 三个几何体的主视图分别是A 1、B 1、C 1;左视图分别是A 2、B 2、C 2;俯视图分别是A3、B3、C3.(1)请你分别写出A 1、A 2、A 3、B 1、B 2、B 3、C 1、C 2、C 3图形的名称;(2)小刚先将这9个视图分别画在大小、形状完全相同的9张卡片上,并将画有A 1、A 2、A 3的三张卡片放在甲口袋中,画有B 1、B 2、B 3的三张卡片放在乙口袋中,画有C 1、C 2、C 3的三张卡片放在丙口袋中,然后由小亮随机从这三个口袋中分别抽取一张卡片. ①画出树状图,求出小亮随机抽取的三张卡片上的图形名称都相同的概率;②小亮和小刚做游戏,游戏规则规定:在小亮随机抽取的三张卡片中只有两张卡片上的图形名称相同时,小刚获胜;三张卡片上的图形名称完全不同时,小亮获胜.这个游戏对双方公平吗?为什么?【答案】(1)见解析;(2)①49;②不公平,详见解析.【分析】(1)通过观察几何体,直接写出它们三种视图的名称则可; (2)按照题意画出树状图,获胜的概率相同游戏就公平.【详解】(1)由已知可得A 1、A 2是矩形,A 3是圆;B 1、B 2、B 3都是矩形;C 1是三角形,C 2、C 3是矩形;(2)①补全树状图如下:由树状图可知,共有27种等可能结果,其中三张卡片上的图形名称都相同的结果有12种,△三张卡片上的图形名称都相同的概率是124=279;②游戏对双方不公平.由①可知,三张卡片中只有两张卡片上的图形名称相同的概率是124=279,即P (小刚获胜)=49,三张卡片上的图形名称完全不同的概率是31=279,即P (小亮获胜)=19,△49>19, △这个游戏对双方不公平.【点睛】本题比较容易,考查三视图和考查立体图形的三视图和学生的空间想象能力.还考查了通过画树状图求随机事件的概率.用到的知识点为:三视图分别是从物体的正面,左面,上面看得到的图形;概率=所求情况数与总情况数之比.5.(2022·陕西·中考真题)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB 的影长OC 为16米,OA 的影长OD 为20米,小明的影长FG 为2.4米,其中O 、C 、D 、F 、G 五点在同一直线上,A 、B 、O 三点在同一直线上,且AO △OD ,EF △FG .已知小明的身高EF 为1.8米,求旗杆的高AB .【答案】旗杆的高AB 为3米.【分析】证明△AOD △△EFG ,利用相似比计算出AO 的长,再证明△BOC △△AOD ,然后利用相似比计算OB 的长,进一步计算即可求解. 【详解】解:△AD △EG , △△ADO =△EGF . 又△△AOD =△EFG =90°, △△AOD △△EFG . △AO ODEF FG=. △ 1.820152.4EF OD AO FG ⋅⨯===. 同理,△BOC △△AOD . △BO OC AO OD=. △15161220AO OC BO OD ⋅⨯===. △AB =OA −OB =3(米). △旗杆的高AB 为3米.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.6.(2022·江西·模拟预测)如图1所示的是一户外遮阳伞支架张开的状态,图1可抽象成图2,在图2中,点A 可在BD 上滑动,当伞完全折叠成图3时,伞的下端点F 落在F '处,点C 落在C '处,AE EF =,90cm AC BC CE ===,70cm DF '=.(1)BD 的长为______. (2)如图2,当54cm AB =时.①求ACB ∠的度数;(参考数据:sin17.50.30︒≈,tan16.70.30︒≈,sin36.90.60︒≈,tan31.00.60︒≈)②求伞能遮雨的面积(伞的正投影可以看作一个圆). 【答案】(1)250cm (2)①35°;②29484π【分析】(1)根据题意可得BD BF F D ''=+,当伞完全折叠成图3时,伞的下端点F 落在F '处,点C 落在C '处,可得BF EF AC CE '==+,代入数据求解即可;(2)①过点C 作CG AG ⊥,根据BC AC =,可得127cm 2AG GB ACG ACB ==∠=∠,,根据sin 0.3ACG ∠=,sin17.50.30︒≈,即可求解;②根据题意可知CG AF ∥,则17.5EAH ∠=︒,根据sin17.5EH AE =︒⋅求得EH ,根据勾股定理可得222AH AE EH =-,根据正投影是一个圆,根据圆的面积公式求解即可. (1)解:△BD BF F D ''=+当伞完全折叠成图3时,伞的下端点F 落在F '处,点C 落在C '处,可得BF EF AC CE '==+△BD BF F D ''=+909070250EF F D AC CE F D ''=+=++=++=cm (2)①如图,过点C 作CG AG ⊥90BC AC ==cm ,54cm AB =27AG GB ∴==cm ,12ACG ACB ∠=∠273sin 0.39010AG ACG AC ∠===≈17.5ACG ∴∠=︒ 235ACB ACG ∴∠=∠=︒②如图,连接AF ,过点E 作EH AF ⊥,AE EF =AH HF ∴=根据题意可知CG AF ∥ 17.5EAH ∴∠=︒ 180cm AE =sin17.50.318054EH AE ∴=︒⋅=⨯=222221280598444AH AE EH ∴=-=-= ∴伞能遮雨的面积为29484π【点睛】本题考查了解直角三角形的应用,正投影,理解题意是解题的关键.7.(2018·江苏扬州·中考模拟)如图 1,在平面直角坐标系中,图形 W 在坐标轴上的投影长度定义如下:设点 P (1x , 1y ) ,Q (2x , 2y ) 是图形 W 上的任意两点,若12x x -的最大值为 m ,则图形 W 在 x 轴上的投影长度为 lx = m ;若12y y -的最大值为 n ,则图形 W 在 y 轴上的投影长度为 ly = n .如图 1,图形 W 在 x 轴上的投影长度为 lx =40- = 4 ;在 y 轴上的 投影长度为 ly =30-= 3 .(1)已知点 A (1, 2) , B (2, 3) , C (3,1) ,如图 2 所示,若图形 W 为四边形 OABC , 则 lx = , ly = ;(2)已知点 C (-32, 0) ,点 D 在直线 y =12x - 1(x < 0) 上,若图形 W 为 ∆OCD ,当 lx =ly时,求点 D 的坐标;(3 )若图形 W 为函数 y = x 2(a ≤ x ≤ b ) 的图象,其中 (0 ≤ a < b ) ,当该图形满足 lx = ly ≤ 1时,请直接写出 a 的取值范围.图 1 图 2【答案】(1)4,3;(2)(-23,143)或(-10,-14);(3) 102a ≤<.【分析】(1)确定出点A 在y 轴的投影的坐标、点B 在x 轴上投影的坐标,于是可求得问题的答案;(2)过点P 作PD△x 轴,垂足为P .设D (x ,2x+6),则PD=|2x+6|.PC=|3-x|,然后依据l x =l y ,列方程求解即可;(3)设A (a ,a 2)、B (b ,b 2).分别求得图形在y 轴和x 轴上的投影,由l x =l y 可得到b+a=1,然后根据0≤a <b 可求得a 的取值范围. 【详解】解:(1)△A (3,3),△点A 在y 轴上的正投影的坐标为(0,3). △△OAB 在y 轴上的投影长度l y =3. △B (4,1),△点B 在x 轴上的正投影的坐标为(4,0). △△OAB 在x 轴上的投影长度l x =4. 故答案为4;3.(2)如图1所示;过点P 作PD△x 轴,垂足为P .设D (x ,2x+6),则PD=2x+6.△PD△x 轴,△P (x ,0).△PC=4-x .△l x =l y ,△2x+6=4-x ,解得;x=-23.△D (-23,143). 如图2所示:过点D 作DP△x 轴,垂足为P .设D (x ,2x+6),则PD=-2x-6.△PD△x 轴,△P (x ,0).△PC=4-x .△l x =l y ,△-2x-6=4-x ,解得;x=-10.△D (-10,-14).综上所述,点D 的坐标为(-23,143)或(-10,-14). (3)如图3所示:设A (a ,a 2)、B (b ,b 2).则CE=b-a ,DF=b 2-a 2=(b+a )(b-a ).△l x =l y ,△(b+a )(b-a )=b-a ,即(b+a-1)(b-a )=0.△b≠a ,△b+a=1.又△0≤a <b ,△a+a <1,△0≤a <12. 【点睛】本题主要考查的是二次函数的综合应用、解答本题主要应用了图形W 在坐标轴上的投影长度定义、一次函数、二次函数图象上点的坐标与函数解析式的关系,依据l x =l y 列出关于x 的方程和不等式是解题的关键.8.(2022·江苏无锡·模拟预测)测量金字塔高度:如图1,金字塔是正四棱锥S ABCD -,点O 是正方形ABCD 的中心SO 垂直于地面,是正四棱锥S ABCD -的高,泰勒斯借助太阳光.测量金字塔影子PBC 的相关数据,利用平行投影测算出了金字塔的高度,受此启发,人们对甲、乙、丙三个金字塔高度也进行了测量.甲、乙、丙三个金字塔都用图1的正四棱锥S ABCD -表示.(1)测量甲金字塔高度:如图2,是甲金字塔的俯视图,测得底座正方形ABCD 的边长为80m ,金字塔甲的影子是50m PBC PC PB ==,,此刻,1米的标杆影长为0.7米,则甲金字塔的高度为______m .(2)测量乙金字塔高度:如图1,乙金字塔底座正方形ABCD 边长为80m ,金字塔乙的影子是PBC ,75,402m PCB PC ∠=︒=,此刻1米的标杆影长为0.8米,请利用已测出的数据,计算乙金字塔的高度.【答案】(1)100;(2)506.【分析】(1)如图2中,连接OP 交BC 于T ,勾股定理求得OP ,再根据物体的长度与影子的长度成比例,即可求得OS ;(2)如图1中,连接OP ,OC ,过点O 作OR PC ⊥交PC 的延长线于R ,勾股定理求得OP ,再根据物体的长度与影子的长度成比例,即可求得OS .【详解】(1)如图2中,连接OP 交BC 于T ,四边形ABCD 是正方形,,OC OB AC BD ∴=⊥,80BC CD == ,50PC PB ==,OP ∴垂直平分BC ,1140,4022OT CD TC TB BC ∴=====, 2222504030PT PC CT ∴=-=-=,403070OP OT PT ∴=+=+=,设金子塔的高度为h ,物体的长度与影子的长度成比例,10.7h OP =, 100h ∴=,故答案为:100.(2)如图,根据图1作出俯视图,连接OP ,OC ,过点O 作OR PC ⊥交PC 的延长线于R ,4575120OCP OCB PCB∠=∠+∠=︒+︒=︒,60OCR∴∠=︒,80BC=,四边形ABCD是正方形,22221118080402222OC AC AB BC∴==+=+=,cos60202CR OC∴=⨯︒=,3sin604022062OR OC=⨯︒=⨯=,402202602PR PC CR∴=+=+=,2222(206)(602)406OP OR PR∴=+=+=,10.8SOOP=,506SO∴=.∴乙金字塔的高度为506.【点睛】本题考查了正方形的性质,解直角三角形,俯视图,物长与影长成正比等知识,正确的添加辅助线构造直角三角形是解题的关键.9.(2021·全国·九年级专题练习)如图是某校校史荣誉室的正方形网格平面图,实线表示墙体或门.在点A处安装了360度旋转摄像头,由于墙体的的遮挡,阴影部分无法监控,这部分无法监控到的区域通常称为监控盲区.(1)小红同学进入校史荣誉室随意参观,站在监控盲区的概率是多少?(2)为了监控效果更好,使得监控盲区最小,请你帮助学校在墙体AB上重新设计摄像头安装的位置,画出示意图,并说明理由.【答案】(1)320;(2)见详解【分析】(1)分别求出荣誉室面积和盲区面积,再利用概率公式,即可求解;(2)把摄像头安装在AB的中点处,计算出监控盲区的面积,然后把摄像头安装在AB的其他位置,表达出监控盲区的面积,即可得到结论.【详解】解:(1)设小正方形的边长为1,△荣誉室面积=2×2+2×2+2×6=20,盲区面积=2×2-12×2×1=3,△站在监控盲区的概率=3÷20=320;(2)如图所示:摄像头安装在AB的中点处,监控盲区的面积最小,此时,监控盲区面积=2×12×1×2=2,若摄像头不安装在AB的中点处,则监控盲区面积=12×(CM+2)×2>2.【点睛】本题主要考查几何概率,掌握概率公式和方格纸的面积的计算,是解题的关键.10.(2019·陕西西安·中考模拟)如图,小华在晚上由路灯A走向路灯B.当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.(1)求两个路灯之间的距离.(2)当小华走到路灯B的底部时,他在路灯A下的影长是多少?【答案】(1)18米;(2)3.6米【分析】(1)如图1,先证明△APM△△ABD,利用相似比可得AP=16AB,即得BQ=16AB,则16AB+12+16AB=AB,解得AB=18(m);(2)如图2,他在路灯A下的影子为BN,证明△NBM△△NAC,利用相似三角形的性质得1.6189.6BNBN=+,然后利用比例性质求出BN即可.【详解】解:(1)如图1,△PM△BD,△△APM△△ABD,AP PMAB BD=,即1.69.6APAB=,△AP=16AB,△QB=AP,△BQ=16AB,而AP+PQ+BQ=AB,△16AB+12+16AB=AB,△AB=18.答:两路灯的距离为18m;(2)如图2,他在路灯A下的影子为BN,△BM△AC,△△NBM△△NAC,△BN BMAN AC=,即1.6189.6BNBN=+,解得BN=3.6.答:当他走到路灯B时,他在路灯A下的影长是3.6m.【点睛】本题考查了相似三角形的判定与性质,要求学生能根据题意画出对应图形,能判定出相似三角形,以及能利用相似三角形的性质即相似三角形的对应边的比相等的原理解决求线段长的问题等,蕴含了数形结合的思想方法.11.(2021·全国·九年级专题练习)小华想用学过的测量知识来测量家门前小河BC 的宽度:如图所示,他们在河岸边的空地上选择一点C ,并在点C 处安装了测倾器CD ,选择了河对岸边的一棵大树,将其底部作为点B ,顶部作为点A ,现测得古树的项端A 的仰角为37°,再在BC 的延长线上确定一点F ,使CF =5米,小华站在F 处,测得小华的身高EF =1.8米,小华在太阳光下的影长FG =3米,此时,大树AB 在太阳光下的影子为BF .已知测倾器的高度CD =1.5米,点G 、F 、C 、B 在同一水平直线上,且EF 、CD 、AB 均垂直于BG ,求小河的宽度BC .(参考数据:sin 37°≈0.6,cos 37°≈0.8,tan 37°≈0.75)【答案】10米【分析】过点D 作DH △AB 所在直线于点H ,可得四边形DCBH 是矩形,BC =DH ,BH =CD =1.5,设BC =DH =x ,在Rt △ADH 中,用x 表示出AH ,再根据同一时刻物高与影长的比相等,列出等式即可求出小河的宽度BC .【详解】解:如图,过点D 作DH △AB 所在直线于点H ,可得四边形DCBH 是矩形,△BC =DH ,BH =CD =1.5,设BC =DH =x ,根据题意可知:在Rt △ADH 中,△ADH =37°,△AH =DH •tan 37°≈0.75x ,△AB =AH +BH =0.75x +1.5,BF =FC +CB =5+x ,根据同一时刻物高与影长的比相等,△EF AB FG BF=, △1.80.75 1.535x x+=+,解得x=10,所以BC=10(米),答:小河的宽度BC为10米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题、平行投影,解决本题的关键是设出未知数,利用同一时刻物高与影长的比相等建立方程.12.(2021·全国·九年级专题练习)在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学测量树的高度时,发现树的影子有一部分0.2米落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是4.62米”;小强说:“要是没有台阶遮挡的话,树的影子长度肯定比4.62米要长”.(1)你认为小玲和小强的说法对吗?(2)请根据小玲和小强的测量数据计算树的高度;(3)要是没有台阶遮挡的话,树的影子长度是多少?【答案】(1)小玲的说法不对,小强的说法对;(2)树的高度为8米;(3)树的影子长度是4.8米.【分析】(1)根据题意可得小玲的说法不对,小强的说法对;(2)根据题意可得DEEH=10.6,DE=0.3,EH=0.18,进而可求大树的影长AF,所以可求大树的高度;(3)结合(2)即可得树的影长.【详解】(1)小玲的说法不对,小强的说法对,理由如下(2)可得; (2)根据题意画出图形,如图所示,根据平行投影可知:DEEH=10.6,DE=0.3,∴EH=0.3×0.6=0.18,∵四边形DGFH是平行四边形,∴FH=DG=0.2,∵AE=4.42,∴AF=AE+EH +FH=4.42+0.18+0.2=4.8,∵ABAF =10.6,∴AB=4.80.6=8(米).答:树的高度为8米.(3)由(2)可知:AF=4.8(米),答:树的影子长度是4.8米.【点睛】考查了相似三角形的应用、平行投影,解题关键是掌握并运用平行投影.13.(2021·全国·九年级专题练习)为方便住校生晚自习后回到宿舍就寝,新安装了一批照明路灯;一天上午小刚在观看新安的照明灯时,发现在太阳光的正面照射下,照明灯的灯杆的投影的末端恰好落在2.5米高文化走廊墙的顶端,小刚测得照明灯的灯杆的在太阳光下的投影从灯杆的杆脚到文化走廊的墙脚的影长为4.6米,同一时刻另外一个前来观看照明路灯小静测得身高1.5米小刚站立时在太阳光下的影长恰好为1米,请同学们画出与问题相关联的线条示意图并求出新安装的照明路灯的灯杆的高度?【答案】线条示意图见解析,新安装的照明路灯的灯杆的高度为9.4m.【分析】利用同一时刻投影的性质得出1.51 4.6AB ABBE==,进而得出答案.【详解】解:如图所示:过点E作EB△AC于点B,由题意可得:DC=BE=4.6m ,DE=BC=2. 5m,△同一时刻身高1.5米小刚站立时在太阳光下的影长恰好为1米,1.51 4.6AB AB BE == 解得: AB=6.9,△AC=AB+BC=6.9+2.5=9.4 (m),答:新安装的照明路灯的灯杆的高度为9.4m .【点睛】此题主要考查了投影的应用,利用同一时刻影子与高度的关系得出比例式是解题关键.14.(2011·四川达州·中考模拟)已知:如图,AB 和DE 是直立在地面上的两根立柱,AB =5m ,某一时刻,AB 在阳光下的投影BC =4m .(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影长时,同时测出DE 在阳光下的投影长为6m ,请你计算DE 的长.【答案】(1)答案见解析;(2)7.5m【详解】解:(1)作法:连接AC ,过点D 作DF△AC ,交直线BE 于F ,则EF 就是DE 的投影.(2)△太阳光线是平行的,△AC△DF .△△ACB=△DFE .又△△ABC=△DEF=90°,△△ABC△△DEF .△AB BC DE EF=, △AB=5m ,BC=4m ,EF=6m ,△546DE =, △DE=7.5(m) .【点睛】本题难度中等,主要考查学生对投影问题与相似三角形相结合解决实际问题的能力.15.(2021·全国·九年级专题练习)某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB 的影长AC 为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB ;(2)因水土流失,此时树AB 沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)【答案】(1)树AB 的高约为43m ;(2)83m .【分析】(1)在直角△ABC 中,已知△ACB =30°,AC =12米.利用三角函数即可求得AB 的长;(2)在△AB 1C 1中,已知AB 1的长,即AB 的长,△B 1AC 1=45°,△B 1C 1A =30°.过B 1作AC 1的垂线,在直角△AB 1N 中根据三角函数求得AN ,BN ;再在直角△B 1NC 1中,根据三角函数求得NC 1的长,再根据当树与地面成60°角时影长最大,根据三角函数即可求解.【详解】解:(1)AB =AC tan30°=12× 33= 43(米).答:树高约为43 米.(2)如图(2),B 1N =AN =AB 1sin45°=43×22=26(米).NC 1=NB 1tan60°=26 ×3 =62 (米).AC 1=AN +NC 1=26 +62 .当树与地面成60°角时影长最大AC 2(或树与光线垂直时影长最大或光线与半径为AB 的△A 相切时影长最大)AC 2=2AB 2=83 ;16.(2015·江苏镇江·中考真题)某兴趣小组开展课外活动.如图,A ,B 两地相距12米,小明从点A 出发沿AB 方向匀速前进,2秒后到达点D ,此时他(CD )在某一灯光下的影长为AD ,继续按原速行走2秒到达点F ,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H ,此时他(GH )在同一灯光下的影长为BH (点C ,E ,G 在一条直线上).(1)请在图中画出光源O 点的位置,并画出他位于点F 时在这个灯光下的影长FM (不写画法);(2)求小明原来的速度.【答案】(1)作图见试题解析;(2)1.5m /s .【分析】(1)利用中心投影的定义作图;(2)设小明原来的速度为xm /s ,则CE =2xm ,AM =(4x ﹣1.2)m ,EG =3xm ,BM =13.2﹣4x ,由△OCE △△OAM ,△OEG △△OMB ,得到CE EG AM BM,即代入解方程即可. 【详解】解:(1)如图,(2)设小明原来的速度为xm /s ,则CE =2xm ,AM =AF ﹣MF =(4x ﹣1.2)m ,EG =2×1.5x =3xm ,BM =AB ﹣AM =12﹣(4x ﹣1.2)=13.2﹣4x ,△点C ,E ,G 在一条直线上,CG △AB ,△△OCE △△OAM ,△OEG △△OMB ,△CE OE AM OM =,EG OE BM OM=, △CE EG AM BM =,即234 1.213.24x x x x=--, 解得x =1.5,经检验x =1.5为方程的解,△小明原来的速度为 1.5m /s .答:小明原来的速度为1.5m /s .【点睛】本题考查相似三角形的应用以及中心投影,掌握中心投影的定义以及相似三角形的判定与性质是解题关键.17.(2015·甘肃兰州·中考真题)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB 和一根高度未知的电线杆CD ,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF 的长度为2米,落在地面上的影子BF 的长为10米,而电线杆落在围墙上的影子GH 的长度为3米,落在地面上的影子DH 的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是 投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【答案】(1) 平行;(2)电线杆的高度为7米.【分析】(1)有太阳光是平行光线可得利用的是平行投影;(2)连接AM 、CG ,过点E 作EN△AB 于点N ,过点G 作GM△CD 于点M ,根据平行投影时同一时刻物体与他的影子成比例求出电线杆的高度.【详解】(1)平行;(2)连接AM 、CG ,过点E 作EN△AB 于点N ,过点G 作GM△CD 于点M ,则BN=EF=2,GH=MD=3,EN=BF=10,DH=MG=5所以AN=10-2=8,由平行投影可知:即解得CD=7所以电线杆的高度为7m.18.(2020·甘肃白银·二模)如图,一棵被大风吹折的大树在B处断裂,树梢着地.经测量,折断部分AB与地面的夹角33α︒=,树干BC在某一时刻阳光下的影长6CD=米,而在同时刻身高1.8米的人的影子长为2.7米.求大树未折断前的高度(精确到0.1米).(参考数据:330. 54,330. 84,330.65sin cos tan︒︒︒≈≈≈)【答案】11.4米【分析】利用比例式求得BC的长,然后在Rt△ACB中求得AB的长,两者相加即可得到铁塔的高度.【详解】解:依题意,得1.82.7BCCD=即263BC=4BC∴=在Rt ACB∆中,47.4sin0.54BCABα==≈(米)47.411.4∴+=(米)答:大树未折断前的高度为11.4米【点睛】本题考查了解直角三角形的知识,解题的关键是正确的构造直角三角形并求解.19.(2019·台湾·中考真题)在公园有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一堵与地面互相垂直的墙,且圆柱与墙的距离皆为120公分.敏敏观察到高度90公分矮圆柱的影子落在地面上,其影长为60公分;而高圆柱的部分影子落在墙上,如图所示.已知落在地面上的影子皆与墙面互相重直,并视太阳光为平行光,在不计圆柱厚度与影子宽度的情况下,请回答下列问题:(1)若敏敏的身高为150公分,且此刻她的影子完全落在地面上,则影长为多少公分? (2)若同一时间量得高圆柱落在墙上的影长为150公分,则高圆柱的高度为多少公分?请详细解释或完整写出你的解题过程,并求出答案.【答案】(1)敏敏的影长为100公分;(2)高圆柱的高度为330公分.【分析】(1)根据同一时刻,物长与影从成正比,构建方程即可解决问题.(2)如图,连接AE ,作//FB EA .分别求出AB ,BC 的长即可解决问题.【详解】解:(1)设敏敏的影长为x 公分.由题意:1509060x =, 解得100x =(公分),经检验:100x =是分式方程的解.△敏敏的影长为100公分.(2)如图,连接AE ,作//FB EA .//AB EF ,△四边形ABFE 是平行四边形,150AB EF ∴==公分,设BC y =公分,由题意BC 落在地面上的影从为120公分.9012060y ∴=, 180y ∴=(公分),150180330AC AB BC ∴=+=+=(公分),答:高圆柱的高度为330公分.。

《易错题》九年级数学下册第二十九章《投影与视图》综合经典复习题(含解析)

《易错题》九年级数学下册第二十九章《投影与视图》综合经典复习题(含解析)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.桌面上放着长方体和圆柱体各1个,按下图所示的方式摆放在一起,其左视图是()A.B.C.D.2.如图,下面是由一些相同的小正方体构成的立体图形的三视图,这些相同的正方体的个数是()A.6 B.7 C.8 D.93.如图由5个相同的小正方体组成的-个立体图形,其俯视图是()A.B.C.D.4.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6 B.5 C.4 D.35.一个几何体由若干大小相同的小立方块搭成,从它的正面、左面看到的形状图完全相同(如下图所示),则组成该几何体的小立方块的个数至少有()A.3个B.4个C.5个D.6个6.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时30分C.上午10时D.上午12时7.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变8.如图所示是某几何体从三个方向看到的图形,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥9.如图,是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是().A.B.C.D.10.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:911.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A .B .C .D . 12.如图所示的几何体的左视图是( )A .B .C .D . 13.路边有一根电线杆AB 和一块长方形广告牌,有一天,小明突然发现在太阳光照射下,电线杆顶端A 的影子刚好落在长方形广告牌的上边中点G 处,而长方形广告牌的影子刚好落在地面上E 点(如图),已知5BC =米,长方形广告牌的长4HF =米,高3HC =米,4DE =米,则电线杆AB 的高度是( )A .6.75米B .7.75米C .8.25米D .10.75米 14.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是( )A .6个B .7个C .8个D .9个第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题15.如图所示,是由一些相同的小立方体搭成的几何体分别从正面、左面、上面看到的该几何体的形状图,那么构成这个立体图形的小正方形有________个.16.10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是____________.17.用小立方体搭一个几何体,其主视图和俯视图如下图,搭这样的集合体最多需要__________个小立方体,最少需要__________个小立方体.18.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是________.19.长方体的主视图与左视图如图所示,则这个长方体的表面积是________cm2.20.如图,用棱长为1cm的小立方块组成一个几何体,从正面看和从上面看得到的图形如图所示,则这样的几何体的表面积的最小值是__cm2.21.一个几何体由一些完全相同的小立方块搭成,从正面和从上面看到的这个几何体的形状如下,那么搭成这样一个几何体,最少需要_____个这样的小立方块,最多需要_____个这样的小立方块.22.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是_______23.如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为_____.24.如图,是一个几何体的三视图(含有数据)则这个几何体的侧面展开图的面积等于__.25.一个几何体由若干大小相同的小正方体搭成,从上面看到的这个几何体的形状如图所示,其中小正方形中的数字表示在该位置小正方体的个数.在不破坏原几何体的前提下,再添加一些小正方体,使其搭成一个大正方体,则至少还需要添加______个这样的小正方体.26.由一些完全相同的小正方体组成的几何体,从正面看和左面看的图形如图所示,则组成这个几何体的小正方体的个数至少是_____个.三、解答题27.如图是某几何体从三个不同方向看到的形状图.(1)这个几何体的名称是;(2)若从正面看到的图形的宽为4cm,长为6cm,从左面看到的图为3cm,从上面看到的图形是直角三角形,其中斜边长为5m,求这个几何体的表面积为多少;它的体积为多少.28.如图所示,一透明的敞口正方体容器ABCD﹣A'B'C'D'装有一些液体,棱AB始终在水平桌面上,液面刚好过棱CD,并与棱BB'交于点Q.此时液体的形状为直三棱柱,其三视图及尺寸见下图所示请解决下列问题:(1)CQ与BE的位置关系是,BQ的长是dm:(2)求液体的体积;(提示:直棱柱体积=底面积×高)(3)若容器底部的倾斜角∠CBE=α,求α的度数.(参考数据:sin49°=cos41°=34,tan37°=34)29.(1)2tan602sin30cos453︒︒-︒+;(2)已知一个几何体的三视图如图所示,求该几何体的体积.30.画出下图几何体的三视图【参考答案】一、选择题1.C2.B3.C4.B5.B6.A7.D8.D9.B10.B11.A12.B13.C14.D二、填空题15.5【分析】易得这个几何体共有2层由俯视图可得第一层正方体的个数由主视图和左视图可得第二层正方体的个数相加即可【详解】解:由从上面看到的图形易得最底层有4个正方体第二层有1个正方体那么共有4+1=5(16.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的17.1410【分析】根据几何体三视图的性质分析即可【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形最少有3个正方形∵主视图第三层有1个正方形∴第三层最多18.09m【分析】根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB∥CD∴△PAB∽△PCD∴假设P到AB距离为x则=x=09故答案为09m【点睛19.94【解析】【分析】由所给的视图判断出长方体的长宽高根据长方体的表面积公式计算即可【详解】由主视图可知这个长方体的长和高分别为5和3由左视图可知这个长方体的宽和高分别为4和3因此这个长方体的长宽高分20.34【分析】易得这个几何体共有3层由俯视图可得第一层正方体的个数由主视图可得第二层和第三层最少或最多的正方体的个数相加即可【详解】搭这样的几何体最少需要6+2+1=9个小正方体最多需要6+5+2=121.68【解析】【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】综合主视图和俯视图这个几何体的底层有4个小正方体第二层最少有2个最多有4个22.5【解析】试题分析:根据三视图该几何体的主视图以及俯视图可确定该几何体共有两行3列故可得出该几何体的小正方体的个数综合三视图我们可得出这个几何体的底层应该有4个小正方体第二层应该有1个小正方体因此搭23.12+15π【解析】试题分析:由几何体的三视图可得:该几何体是长方体两个扇形和一个矩形的组合体该组合体的表面积为:S=2×2×3+×2+×3=12+15π故答案为12+15π24.【解析】易得此几何体为圆柱底面直径为1高为2圆柱侧面积=底面周长×高代入相应数值求解即可解:主视图和左视图为长方形可得此几何体为柱体俯视图为圆可得此几何体为圆柱故侧面积=π×1×2=2π故答案为2π25.110【分析】根据题意可知最小的大正方体为边长是5个小正方体组成从而可求得大正方体总共需要多少小正方体进而得出需要添加多少小正方体【详解】∵立体图形中有一处是由5个小正方体组成∴最小的大正方体为边长26.4【分析】根据图示可知该几何体有2层由俯视图可得第一层小正方图的个数由主视图可得第二层小正方体的可能的个数即可解决问题【详解】由俯视图易得最底层有3个小正方体由主视图易得第二层最少有1个最多有2个小三、解答题27.28.29.30.【参考解析】一、选择题1.C解析:C【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查三视图的知识,左视图是从物体的左面看得到的视图.2.B解析:B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从左视图可看出每一行小正方体的层数和个数,从而算出总的个数.【详解】由左视图知该立体图形有两层,由俯视图知,最底层有5个小正方体,结合三视图知,最上面一层有2个小正方体,故这些相同的小正方体共有7个,故选B.【点睛】本题主要考查由三视图判断几何体,利用三视图的定义得出几何体的形状是解题关键.3.C解析:C【分析】根据立体图形三视图的性质进行判断即可.【详解】根据立体图形三视图的性质,该立体图形的俯视图为故答案为:C.【点睛】本题考查了立体图形的三视图,掌握立体图形三视图的性质是解题的关键.4.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.5.B解析:B【分析】从主视图上弄清物体的上下和左右形状,从左视图上弄清楚物体的上下和前后形状,综合分析,即可得出答案.【详解】解:根据主视图和左视图可得:搭这样的几何体最少需要4个小正方体;故选:B.【点睛】此题考查三视图,解题关键在于掌握其定义.6.A解析:A【分析】根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长可知.【详解】解:根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.可知影子最长的时刻为上午8时.故选A.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.7.D解析:D【解析】试题分析:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【考点】简单组合体的三视图.8.D解析:D【解析】试题∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故选D.9.B解析:B【分析】根据题意,满足条件的空间几何体的三视图中含有圆和正方形.然后分别进行判断即可.【详解】A.正方体的正视图为正方形,侧视图为正方形,俯视图也为正方形,不满足条件.B.圆柱的正视图和侧视图为相同的矩形,俯视图为圆,满足条件.C.圆锥的正视图为三角形,侧视图为三角形,俯视图为圆,不满足条件.D.球的正视图,侧视图和俯视图相同的圆,不满足条件.故选B.【点睛】本题主要考查三视图的识别和判断,解题关键在于熟练掌握常见空间几何体的三视图,比较基础.10.B解析:B【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.11.A解析:A【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.12.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.13.C解析:C【解析】【分析】延长AG交DE于N,则四边形GNEF为平行四边形,所以NE=GF=2,BN=11米,然后根据实际高度和影长成正比例列式求解即可.【详解】如图,延长AG 交BE 于N 点,则四边形GNEF 是平行四边形,故NE=GF=2,BN=5+4+4-2=11米, ∴AB DF BE DE =, ∴3114AB =, ∴AB=8.25米.故选C.【点睛】此题考查的平行投影及平行四边形的判定与性质,是较简单题目.在平行光线下,不同时刻,同一物体的影子长度不同;同一时刻,不同物体的影子长度与它们本身的高度成比例.14.D解析:D【解析】由俯视图可得得最底层有5个立方体,由左视图可得第二层最少有1个立方体,最多有3个立方体,所以小立方体的个数可能是6个或7个或8个,小立方体的个数不可能是9.故选D .点睛:本题主要考查了三视图的应用,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个立方体.二、填空题15.5【分析】易得这个几何体共有2层由俯视图可得第一层正方体的个数由主视图和左视图可得第二层正方体的个数相加即可【详解】解:由从上面看到的图形易得最底层有4个正方体第二层有1个正方体那么共有4+1=5(解析:5【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【详解】解:由从上面看到的图形易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5(个)正方体组成.故答案为5.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案. 16.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的 解析:2236a cm【分析】先画出这个图形的三视图,从而可得上下面、前后面、左右面的小正方形的个数,再根据正方形的面积公式即可得.【详解】由题意,画出这个图形的三视图如下:则这个图形的表面积是()()22226262636a a cm ⨯+⨯+⨯=, 故答案为:2236a cm .【点睛】本题考查了求几何体的表面积,正确画出图形的三视图是解题关键.17.1410【分析】根据几何体三视图的性质分析即可【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形最少有3个正方形∵主视图第三层有1个正方形∴第三层最多 解析:14 10【分析】根据几何体三视图的性质分析即可.【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形,最少有3个正方形∵主视图第三层有1个正方形∴第三层最多有2个正方形,最少有1个正方形∴搭这样的集合体最多需要66214++=个小立方体,最少需要63110++=个小立方体 故答案为:14,10.【点睛】本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.18.09m 【分析】根据AB ∥CD 易得△PAB ∽△PCD 根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB ∥CD ∴△PAB ∽△PCD ∴假设P 到AB 距离为x 则=x=09故答案为09m 【点睛解析:0.9m【分析】根据AB ∥CD ,易得,△PAB ∽△PCD ,根据相似三角形对应高之比等于对应边之比,列出方程求解即可.【详解】∵AB ∥CD ,∴△PAB ∽△PCD ,∴ 2.7AB x CD= , 假设P 到AB 距离为x ,则2.7x = 26, x=0.9. 故答案为0.9m .【点睛】考查了相似三角形的性质和判定.本题考查了相似三角形的判定和性质,常用的相似判定方法有:平行线,AA ,SAS ,SSS ;常用到的性质:对应角相等;对应边的比值相等;相似三角形对应高之比等于对应边之比;面积比等于相似比的平方.解此题的关键是把实际问题转化为数学问题(三角形相似问题).19.94【解析】【分析】由所给的视图判断出长方体的长宽高根据长方体的表面积公式计算即可【详解】由主视图可知这个长方体的长和高分别为5和3由左视图可知这个长方体的宽和高分别为4和3因此这个长方体的长宽高分 解析:94【解析】【分析】由所给的视图判断出长方体的长、宽、高,根据长方体的表面积公式计算即可.【详解】由主视图可知,这个长方体的长和高分别为5和3,由左视图可知,这个长方体的宽和高分别为4和3,因此这个长方体的长、宽、高分别为5、4、3,因此这个长方体的表面积为253243254294cm ⨯⨯+⨯⨯+⨯⨯=.故答案为:94.【点睛】本题是由两种视图考查长方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高.20.34【分析】易得这个几何体共有3层由俯视图可得第一层正方体的个数由主视图可得第二层和第三层最少或最多的正方体的个数相加即可【详解】搭这样的几何体最少需要6+2+1=9个小正方体最多需要6+5+2=1解析:34【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层最少或最多的正方体的个数,相加即可.【详解】搭这样的几何体最少需要6+2+1=9个小正方体,最多需要6+5+2=13个小正方体;故最多需要13个小正方体,最少需要9个小正方体.最少的小正方体搭成几何体的表面积是(6+6+5)×2=34.故答案为34;【点睛】本题考查由三视图判断几何体,做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.21.68【解析】【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】综合主视图和俯视图这个几何体的底层有4个小正方体第二层最少有2个最多有4个解析:6 8【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】综合主视图和俯视图,这个几何体的底层有4个小正方体,第二层最少有2个,最多有4个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:4+2=6个,至多需要小正方体木块的个数为:4+4=8个,故答案为6,8.【点睛】此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.22.5【解析】试题分析:根据三视图该几何体的主视图以及俯视图可确定该几何体共有两行3列故可得出该几何体的小正方体的个数综合三视图我们可得出这个几何体的底层应该有4个小正方体第二层应该有1个小正方体因此搭解析:5【解析】试题分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个考点:由三视图判断几何体.23.12+15π【解析】试题分析:由几何体的三视图可得:该几何体是长方体两个扇形和一个矩形的组合体该组合体的表面积为:S=2×2×3+×2+×3=12+15π故答案为12+15π解析:12+15π【解析】试题分析:由几何体的三视图可得:该几何体是长方体、两个扇形和一个矩形的组合体,该组合体的表面积为:S=2×2×3+22702360π⨯×2+2702180π⨯×3=12+15π,故答案为12+15π.24.【解析】易得此几何体为圆柱底面直径为1高为2圆柱侧面积=底面周长×高代入相应数值求解即可解:主视图和左视图为长方形可得此几何体为柱体俯视图为圆可得此几何体为圆柱故侧面积=π×1×2=2π故答案为2π解析:【解析】易得此几何体为圆柱,底面直径为1,高为2.圆柱侧面积=底面周长×高,代入相应数值求解即可.解:主视图和左视图为长方形可得此几何体为柱体,俯视图为圆可得此几何体为圆柱,故侧面积=π×1×2=2π.故答案为2π.25.110【分析】根据题意可知最小的大正方体为边长是5个小正方体组成从而可求得大正方体总共需要多少小正方体进而得出需要添加多少小正方体【详解】∵立体图形中有一处是由5个小正方体组成∴最小的大正方体为边长解析:110【分析】根据题意可知,最小的大正方体为边长是5个小正方体组成,从而可求得大正方体总共需要多少小正方体,进而得出需要添加多少小正方体.【详解】∵立体图形中,有一处是由5个小正方体组成∴最小的大正方体为边长是5个小正方体组成则大正方体需要小正方体的个数为:5×5×5=125个现有小正方体:1+2+3+4+5=15个∴还需要添加:125-15=110个故答案为:110.【点睛】本题考查空间想象能力,解题关键是得出大正方体的边长.26.4【分析】根据图示可知该几何体有2层由俯视图可得第一层小正方图的个数由主视图可得第二层小正方体的可能的个数即可解决问题【详解】由俯视图易得最底层有3个小正方体由主视图易得第二层最少有1个最多有2个小 解析:4【分析】根据图示可知,该几何体有2层,由俯视图可得第一层小正方图的个数,由主视图可得第二层小正方体的可能的个数,即可解决问题.【详解】由俯视图易得,最底层有3个小正方体,由主视图易得,第二层最少有1个,最多有2个小正方体,那么搭成这个几何体的小正方体最少为3+1=4个,最多为3+2=5个 故答案为:4【点睛】本题考查了从不同方向观察几何体,难度适中,熟练掌握根据主视图和俯视图确定小正方体的个数是解题关键.三、解答题27.(1)直三棱柱;(2)284cm ;336cm .【分析】(1)直接利用三视图可得出几何体的形状;(2)利用已知各棱长分别得出表面积和体积.【详解】(1)这个几何体是直三棱柱;故答案为:直三棱柱(2)由题意可得:它的表面积为:()21234463656842cm ⎛⎫⨯⨯⨯+⨯+⨯+⨯= ⎪⎝⎭, 它的体积为:()31346362cm ⨯⨯⨯=. 【点睛】此题主要考查了由三视图判断几何体的形状,正确得出物体的形状是解题关键. 28.(1)平行,3;(2)V 液=24(dm 3);(3)α=37°.。

中考数学真题分类解析汇编 39操作探究

中考数学真题分类解析汇编 39操作探究

操作探究一、选择题1.(2019•德州,第12题3分)如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的有()个.∴四边形CFHE是菱形,故①正确;∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,故②错误;点H与点A重合时,设BF=x,则AF=FC=8﹣x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,故③正确;过点F作FM⊥AD于M,则ME=(8﹣3)﹣3=2,由勾股定理得,EF===2,故④正确;综上所述,结论正确的有①③④共3个.故选C.二.填空题三.解答题1. (2014•福建泉州,第25题12分)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.(1)已知:DE∥AC,DF∥B C.①判断四边形DECF一定是什么形状?②裁剪当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;(2)折叠请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.解答:解:(1)①∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形.②作AG⊥BC,交BC于G,交DF于H,∵∠ACB=45°,AC=24cm∴AG==12,设DF=EC=x,平行四边形的高为h,则AH=12h,∵DF∥BC,∴=,∵BC=20cm,即:=∴x=×20,∵S=xh=x•×20=20h﹣h2.∴﹣=﹣=6,∵AH=12,∴AF=FC,∴在AC中点处剪四边形DECF,能使它的面积最大.(2)第一步,沿∠ABC的对角线对折,使C与C1重合,得到三角形ABB1,第二步,沿B1对折,使DA1⊥BB1.理由:对角线互相垂直平分的四边形是菱形.2. (2014•福建泉州,第26题14分)如图,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=.分析:(1)设反比例函数的关系式y=,然后把点P的坐标(2,1)代入即可.(2)①先求出直线y=﹣x+3与x、y轴交点坐标,然后运用勾股定理即可求出△A′BC 的周长;过点C作CD⊥AB,垂足为D,运用面积法可以求出CD长,从而求出sin∠BA′C 的值.②由于BC=2,sin∠BMC=,因此点M在以BC为弦,半径为m的⊙E上,因而点M应是⊙E与x轴的交点.然后对⊙E与x轴的位置关系进行讨论,只需运用矩形的判定与性质、勾股定理等知识就可求出满足要求的点M的坐标.解答:解:(1)设反比例函数的关系式y=.∵点P(2,1)在反比例函数y=的图象上,∴k=2×1=2.∴反比例函数的关系式y=.(2)①过点C作CD⊥AB,垂足为D,如图1所示.当x=0时,y=0+3=3,则点B的坐标为(0,3).OB=3.当y=0时,0=﹣x+3,解得x=3,则点A的坐标为(3,0),OA=3.∵点A关于y轴的对称点为A′,∴OA′=OA=3.∵PC⊥y轴,点P(2,1),∴OC=1,PC=2.∴BC=2.∵∠AOB=90°,OA′=OB=3,OC=1,∴A′B=3,A′C=.∴△A′BC的周长为3++2.∵S△ABC=BC•A′O=A′B•CD,∴BC•A′O=A′B•C D.∴2×3=3×C D.∴CD=.∵CD⊥A′B,∴sin∠BA′C===.∴△A′BC的周长为3++2,sin∠BA′C的值为.②当1<m<2时,作经过点B、C且半径为m的⊙E,连接CE并延长,交⊙E于点P,连接BP,过点E作EG⊥OB,垂足为G,过点E作EH⊥x轴,垂足为H,如图2①所示.∵CP是⊙E的直径,∴∠PBC=90°.∴sin∠BPC===.∵sin∠BMC=,∴∠BMC=∠BP C.∴点M在⊙E上.∵点M在x轴上∴点M是⊙E与x轴的交点.∵EG⊥BC,∴BG=GC=1.∴OG=2.∵∠EHO=∠GOH=∠OGE=90°,∴四边形OGEH是矩形.∴EH=OG=2,EG=OH.∵1<m<2,∴EH>E C.∴⊙E与x轴相离.∴x轴上不存在点M,使得sin∠BMC=.②当m=2时,EH=E C.∴⊙E与x轴相切.Ⅰ.切点在x轴的正半轴上时,如图2②所示.∴点M与点H重合.∵EG⊥OG,GC=1,EC=m,∴EG==.∴OM=OH=EG=.∴点M的坐标为(,0).Ⅱ.切点在x轴的负半轴上时,同理可得:点M的坐标为(﹣,0).③当m>2时,EH<E C.∴⊙E与x轴相交.Ⅰ.交点在x轴的正半轴上时,设交点为M、M′,连接EM,如图2③所示.∵∠EHM=90°,EM=m,EH=2,∴MH===.∵EH⊥MM′,∴MH=M′H.∴M′H═.∵∠EGC=90°,GC=1,EC=m,∴EG===.∴OH=EG=.∴OM=OH﹣MH=﹣,∴OM′=OH+HM′=+,∴M(﹣,0)、M′(+,0).Ⅱ.交点在x轴的负半轴上时,同理可得:M(﹣+,0)、M′(﹣﹣,0).综上所述:当1<m<2时,满足要求的点M不存在;当m=2时,满足要求的点M的坐标为(,0)和(﹣,0);当m>2时,满足要求的点M的坐标为(﹣,0)、(+,0)、(﹣+,0)、(﹣﹣,0).高,考查了通过构造辅助圆解决问题,综合性比较强,难度系数比较大.由BC=2,sin∠BMC=联想到点M在以BC为弦,半径为m的⊙E上是解决本题的关键.3.(2014•浙江宁波,第25题12分)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值;(3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.解:(1)如图2作图,(2)如图3 ①、②作△AB C.①当AD=AE时,∵2x+x=30+30,∴x=20.②当AD=DE时,∵30+30+2x+x=180,∴x=40.(3)如图4,CD、AE就是所求的三分线.设∠B=a,则∠DCB=∠DCA=∠EAC=a,∠ADE=∠AED=2a,此时△AEC∽△BDC,△ACD∽△ABC,设AE=AD=x,BD=CD=y,∵△AEC∽△BDC,∴x:y=2:3,∵△ACD∽△ABC,∴2x=(x+y):2,所以联立得方程组,解得,即三分线长分别是和.第11页共11页。

期中考试试卷分析总结11篇

期中考试试卷分析总结11篇

期中考试试卷分析总结11篇总结是事后对某一阶段的学习或工作情况作加以回顾检查并分析评价的书面材料,他能够提升我们的书面表达能力,让我们抽出时间写写总结吧。

总结你想好怎么写了吗?下面是小编收集整理的期中考试试卷分析总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

期中考试试卷分析总结1本次期中考试已经结束,我就本次我班的考试情况做以下分析和总结,希望在以后的教学中继续努力,使学生成绩稳中求进,再上一个新台阶!(1)语文:本次二年级语文试卷共四大题,整个试题难易程度适中,试卷基本体现了:注重基础,突出能力,联系生活的原则。

1、重基础知识和能力的培养。

试题主要从字词句、按课文内容填空等方面来命题,基本技能则是从课文理解,各种句式的灵活运用等方面来考查。

因此试卷无论是广度还是深度,都很好地涵盖了基础知识和基本技能的要点,因此能客观准确地检测出学生的语文能力。

2、看图写话重生活性。

语文来自于生活,语文的学习最终服务于生活。

本次看图写话清楚明了,选材接近孩子们的生活,学生写作起来比较容易。

3、试卷得分数据分析此科目学生的成绩如下,平均分:85.31(排名6)。

及格人数:24,及格率92%(排名10)。

优秀人数19,优秀率73%(排名4)。

总名次:第7。

学生对一些基础知识的掌握和运用还是很扎实的,例如学生的看拼音写字、选择正确的读音、按原文填空、连线题做题情况良好,说明学生的基础知识掌握的比较好。

此次阅读理解题短文篇幅不长,也教容易,学生做题情况较好。

另外学生看图写话水平也有了较大的提高。

4、学生失分主要原因可以归为以下三类:(1)本次考试,有部分同学在做题时出现错别字,因错别字而扣了分。

(3)第二题第2小题整理句子顺序,并加上标点这题全部做对的同学不多,有不少同学因为忘记加标点而失分,有些同学不清楚句子词语的正确搭配。

今后的改进措施:1、重视字词教学,夯实语文基础试卷中考查的字、词都是本册教材学生必须掌握的,看来要想提高学生的成绩,首先应重视字、词的过关。

透视学习题

透视学习题

透视学习题一1、根据已知条件做基面上的线的透视图
2、根据已知条件作高度为h的水平线的透视图以及铅垂线的透视图
透视学习题二1、根据已知条件做基面上水平面的透视图。

2、根据已知条件做基面上水平面的透视图。

3、根据已知条件作高度为h的水平面的透视图。

透视学习题三1、利用所给条件画出物体的透视图
2、利用所给条件画出物体的透视图
3、利用所给条件画出物体的透视图
4、利用所给条件画出物体的透视图
透视学习题四
1、已知长方体的透视图,请在这个长方体上沿着左方水平分出3个全等的矩形,沿着右方水平方向分出3:3:1比例的三个矩形。

2、已知长方体的三点透视图,请在该长方体左侧面上沿垂直方向分出3个全等矩形,右侧面上沿垂直方向分出4个全等矩形。

3、已知立方体的透视图,将其垂直方向和水平方向分别扩大1倍。

4、在透视图中按图示方向和距离向左再画三个全等的长方形。

5、在透视图中按图示方向和距离向左再画二个全等的长方体。

透视学习题五1、绘制下面物体的透视图
2、按照室内透视图的简易画法绘制尺寸为宽5米、进深4米、高为3米的房间的透视图,室内家具和细节自己设计。

透视学习题六
1、自选透视条件,绘出下列物体的透视图。

2、 已知光线条件,绘出下列物体的阴影。


3、自选透视条件,绘出物体的透视图,并自定正光和逆光光线的灭点,绘出其的阴影。

4、绘出物体在水平面上的倒影。

5、绘出房间物体在墙面镜子中的虚像。

备战中考数学——相似的综合压轴题专题复习及答案解析

备战中考数学——相似的综合压轴题专题复习及答案解析

备战中考数学——相似的综合压轴题专题复习及答案解析一、相似真题与模拟题分类汇编(难题易错题)1.如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P 是MN上一点,求△PDC周长的最小值.【答案】(1)解:结论:CF=2DG.理由:∵四边形ABCD是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴ = = ,∴CF=2DG(2)解:作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.由题意:CD=AD=10,ED=AE=5,DG= ,EG= ,DH= = ,∴EH=2DH=2 ,∴HM= =2,∴DM=CN=NK= =1,在Rt△DCK中,DK= = =2 ,∴△PCD的周长的最小值为10+2 .【解析】【分析】(1)结论:CF=2DG.理由如下:根据正方形的性质得出AD=BC=CD=AB,∠ADC=∠C=90°,根据中点的定义得出AD=CD=2DE,根据同角的余角相等得出∠CDF=∠DEG,从而判断出△DEG∽△CDF,根据相似三角形对应边的比等于相似比即可得出结论;(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK,由题意得CD=AD=10,ED=AE=5,DG=,EG=,根据面积法求出DH的长,然后可以判断出△DEH相似于△GDH,根据相似三角形对应边的比等于相似比得出EH=2DH=,再根据面积法求出HM的长,根据勾股定理及矩形的性质及对称的性质得出DM=CN=NK= 1,在Rt△DCK中,利用勾股定理算出DK的长,从而得出答案。

人教版九年级下册数学考试试题:29.2 三视图 经典题和易错题(含解析)

人教版九年级下册数学考试试题:29.2 三视图 经典题和易错题(含解析)

一 物体的三种视图 经典题+易错题1.如图,一个碗摆放在桌面上,则它的俯视图是( )分析:从上面往下看物体所得到的图形叫俯视图. 答案:C2.下图中所示的几何体的主视图是( )分析:从正面看物体所得到的图形叫正视图,也叫主视图. 答案:D3.在学校开展的“为灾区儿童过六一”的活动中,晶晶把自己最喜爱的铅笔盒送给了一位灾区儿童.这个铅笔盒的左视图是( )分析:从左面往右看物体所得到的图形叫左视图. 答案:B4.如图1所示的几何体的俯视图是( )分析:根据“H ”形图案中的数据示数,知该字母模型的俯视图是C 中图形,故答案应选C. 答案:C5.图2中几何体的主视图是( )错解一: A 错解二: B 错解三: D剖析:观察已知物体,它是由下面是一个长方体,上面是一个球体组合而成的,其中球的直径小于长方体的长和宽,从正面看观察该物体可以看到一个长方形,左上方有一个小圆.错解一和错解二没有观察清楚物体的位置,错解三混淆了主视图和俯视图的概念. 正解:C应对攻略:几何体的三视图需认真观察物体摆放的具体位置,根据物体的长短和大小作图.A .B .C .D . a a a 图1A .B .C .D . 正面图26.由4个相同的小立方块搭成的几何体如图所示,它的左视图是( )分析: 错解一:A 错解二:B 错解三:D剖析:本题要求的是几何体的左视图,错解一看成了正视图,错解二看成了俯视图,错解三对三视图的概念认识不清楚,以上错误的原因都是混淆了主视图、俯视图和左视图三者的概念. 正解:C应对攻略:三视图都是对于观察者而言的,位于物体不同方向的观察者,他们所画的三视图可能是不一样的.所以一定要分清主视图、俯视图和左视图的区别和联系.二 简单几何体的三视图经典题1.形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是( )分析:两个长方体小木块的主视图都是长方形,但后面的小木块一部分被挡住,看不到,但客观存在,故用虚线. 答案:D2.某同学把下图所示的几何体的三种视图画出如下(不考虑尺寸);在这三种是图中,其正确的是:A.①②B.①③C.②③D.②分析:本题重在考查对三视图的理解。

(专题精选)初中数学投影与视图真题汇编及答案解析

(专题精选)初中数学投影与视图真题汇编及答案解析

(专题精选)初中数学投影与视图真题汇编及答案解析一、选择题1.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是()A.B.C.D.【答案】C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图2.如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.【答案】B【解析】【分析】【详解】解:正六棱柱的俯视图为正六边形.故选B.考点:简单几何体的三视图.3.如图是某几何体的三视图及相关数据,则下面判断正确的是()A.a>c B.b>c C.a2+4b2=c2D.a2+b2=c2【答案】D【解析】【分析】由三视图可知该几何体是圆锥,圆锥的高是a,母线长是c,底面圆的半径是b,刚好组成一个以c为斜边的直角三角形,由勾股定理,可得解.【详解】由题意可知该几何体是圆锥,根据勾股定理得,a2+b2=c2故选:D.【点睛】本题考查三视图和勾股定理,关键是由三视图判断出几何体是圆锥.4.如图,是由若干个相同的小正方形搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方形的个数不可能是()A.3 B.4 C.5 D.6【答案】D【解析】【分析】根据主视图和左视图画出可能的俯视图即可解答.【详解】由主视图和左视图得到俯视图中小正方形的个数可能为:∴这个几何体的小正方形的个数可能是3个、4个或5个,故选:D.【点睛】此题考查由三视图判断几何体,正确掌握各种简单几何体的三视图是解题的关键.5.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()A.B.C.D.【答案】A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.6.如图是某几何体的三视图,则这个几何体可能是()A.B.C.D.【答案】B【解析】【分析】根据主视图和左视图判断是柱体,再结合俯视图即可得出答案.【详解】解:由主视图和左视图可以得到该几何体是柱体,由俯视图是圆环,可知是空心圆柱.故答案选:B.【点睛】此题主要考查由几何体的三视图得出几何体,熟练掌握常见几何体的三视图是解题的关键.7.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A.B.C.D.【答案】A【解析】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选A.8.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A.B.C.D.【答案】C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C9.如图所示,该几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据几何体的三视图求解即可.【详解】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.【点睛】本题考查的是几何体的三视图,熟练掌握几何体的三视图是解题的关键. 10.图是由四个完全相同的正方体组成的几何体,这个几何体的左视图是 ( )A.B.C.D.【答案】C【解析】【分析】根据物体的左视图是从左边看到的图形判断即可.【详解】解:从左边看是竖着叠放的2个正方形,故选C.【点睛】本题主要考查了简单组合体的三视图,属于基础题型,掌握简单几何体的三视图是解题的关键.11.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】C【解析】【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.【详解】解:从左面看可得到从左到右分别是3,1个正方形.故选C.【点睛】查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.12.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.两人的影子长度不确定【答案】D【解析】【分析】在同一路灯下由于位置不确定,根据中心投影的特点判断得出答案即可.【详解】在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.故选D.【点睛】本题综合考查了平行投影和中心投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.13.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!14.如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A.B.C.D.【答案】B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,故选B.【点睛】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.15.由若干个相同的小正方体摆成的几何体的主视图和左视图均为如图所示的图形,则最多使用小正方体的个数为()A.8个B.9个C.10个D.11个【答案】C【解析】【分析】由主视图和左视图可还原该几何体每层的小正方体个数.【详解】解:由主视图可得该几何体有3列正方体,高有2层,最底层最多有9个正方体,第二层最多有1个正方体,则最多使用小正方形的个数为10.故选C【点睛】本题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多的正方体个数.16.如图所示的几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.17.如图,这是一个机械模具,则它的主视图是()A.B.C.D.【答案】C【解析】【分析】根据主视图的画法解答即可.【详解】A.不是三视图,故本选项错误;B.是左视图,故本选项错误;C.是主视图,故本选项正确;D.是俯视图,故本选项错误.故答案选C.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图的画法判断.18.如图是某几何体得三视图,则这个几何体是()A.球B.圆锥C.圆柱D.三棱体【答案】B【解析】分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于俯视图为圆形可得为球、圆柱、圆锥.主视图和左视图为三角形可得此几何体为圆锥.故选B.19.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.20.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.【答案】C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.。

中考数学总复习《投影与视图》专项提升训练题-附答案

中考数学总复习《投影与视图》专项提升训练题-附答案

中考数学总复习《投影与视图》专项提升训练题-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.(2023·枣庄)榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,下图是某个部件“卯”的实物图,它的主视图是()A.B.C.D.2.(2023·衡阳)作为中国非物质文化遗产之一的紫砂壶,成型工艺特别,造型式样丰富,陶器色泽古朴典雅,从一个方面鲜明地反映了中华民族造型审美意识.如图是一把做工精湛的紫砂壶“景舟石瓢”,下面四幅图是从左面看到的图形的是()A.B.C.D.3.(2023·烟台)如图,对正方体进行两次切割,得到如图⑤所示的几何体,则图⑤几何体的俯视图为()A.B.C.D.4.(2023·苏州)今天是父亲节,小东同学准备送给父亲一个小礼物.已知礼物外包装的主视图如图所示,则该礼物的外包装不可能...是()A.长方体B.正方体C.圆柱D.三棱锥5.(2023·天津市)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(2023·温州)截面为扇环的几何体与长方体组成的摆件如图所示,它的主视图是()A.B.C.D.7.(2023·绍兴)由8个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.8.(2023·台州)如图是由5个相同的正方体搭成的立体图形,其主视图是().A.B.C.D.9.(2023·宁波)如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是()A.B.C.D.10.(2023·嘉兴)如图的几何体由3个同样大小的正方体搭成,它的俯视图是()A.B.C.D.11.(2023·金华)某物体如图所示,其俯视图是()A.B.C.D.12.(2023·泸州)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.三棱柱13.(2023·重庆)四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.14.(2023·丽水)如图,箭头所指的是某陶艺工作室用于垫放陶器的5块相同的耐火砖搭成的几何体,它的主视图是()A.B.C.D.15.(2023·随州)如图是一个放在水平桌面上的圆柱体,该几何体的三视图中完全相同的是()A.主视图和俯视图B.左视图和俯视图C.主视图和左视图D.三个视图均相同16.(2023·武汉)如图是由4个相同的小正方体组成的几何体,它的左视图是()A.B.C.D.17.(2023·广安)如图,由5个大小相同的小正方体搭成的几何体,它的俯视图是()A.B.C.D.18.(2023·眉山)由相同的小正方体搭成的立体图形的部分视图如图所示,则搭成该立体图形的小正方体的最少个数为()A.6 B.9 C.10 D.14 19.(2023·遂宁)生活中一些常见的物体可以抽象成立体图形,以下立体图形中三视图形状相同的可能是()A.正方体B.圆锥C.圆柱D.四棱锥20.(2023·连云)下列水平放置的几何体中,主视图是圆形的是()A.B.C.D.21.(2023·凉山)如图是由4个相同的小立方体堆成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,则这个几何体的主视图是()A.B.C.D.22.(2023·自贡)如图中六棱柱的左视图是()A.B.C.D.23.(2023·重庆)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是()A.B.C.D.二、填空题24.(2023·成都)一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有个.参考答案一、选择题1.(2023·枣庄)榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,下图是某个部件“卯”的实物图,它的主视图是()A.B.C.D.【答案】C【解析】【解答】A、∵不是几何体的主视图,∴A不符合题意;B、∵不是几何体的主视图,∴B不符合题意;C、∵是几何体的主视图,∴C符合题意;D、∵不是几何体的主视图,∴D不符合题意;故答案为:C.【分析】利用三视图的定义逐项判断即可。

2023年中考数学一轮复习:投影与视图(含解析)

2023年中考数学一轮复习:投影与视图(含解析)

2023年中考数学一轮复习:投影与视图一、单选题1.如图,用一个平面去截正方体,截掉了正方形的一个角,且截面经过原正方体三条棱的中点,剩下几何体的展开图应该是()A.B.C.D.2.如图是由5个相同小正方形搭成的几何体,若将小正方体A放到小正方体B的正上方,则关于该几何体变化前后的三视图,下列说法正确的是()A.主视图不变B.俯视图改变C.左视图不变D.以上三种视图都改变3.两个完全相同的长方体,按如图方式摆放,其主视图为()A.B.C.D.二、填空题4.一个几何体是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图所示,要摆成这样的几何体,至少需用个正方体,最多需用个正方体;5.如图,是正方体的一种平面展开图,各面都标有数字,则数字为-4的面与它对面的数字之积是.6.如图所示,水平放置的长方体的底面是长为4 cm、宽为2 cm的长方形,它的主视图的面积为12 2cm,则长方体的体积等于3cm.三、综合题7.下面图(1),图(2)分别是两种不同情形下旗杆和木杆的影子.(1)哪个图反映了阳光下的情形?(2)若同一时刻阳光下,木杆的影子长为0.8米,旗杆的影子长为7.2米,木杆的高为1.5米,求旗杆的高度.8.如图是由10个同样大小的小正方体搭成的物体,(1)请分别画出它的主视图和俯视图.(2)在主视图和俯视图不变的情况下,你认为最多还可以添加个小正方体.9.如图是小明用10块棱长都为3cm的正方体搭成的几何体.(1)分别画出从正面、从左面、从上面看到的所搭几何体的形状图;(2)小明所搭几何体的表面积(包括与桌面接触的部分)是.10.李明同学设计了某个产品的正方体包装盒如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有种弥补方法;(2)任意画出一种成功的设计图(在图中补充);(3)在你帮忙设计成功的图中,要把-6,8,10,-10,-8,6这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加得0.(直接在图中填上)11.如图是一个正方体纸盒的表面展开图,纸盒中相对两个面上的数互为倒数.(1)填空:a=,b=;(2)先化简,再求值:()()2223252ab a b ab a ab⎡⎤------⎣⎦.12.有若干个完全相同的小正方体堆成一个如图所示几何体.(1)图中共有个小正方体.(2)画出该几何体的主视图、左视图、俯视图.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加个小正方体.13.我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是.(2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列图形中,可能是该长方体表面展开图的有(填序号)(3)下列图是题(2)中长方体的一种表面展开图,它的外围周长为52,事实上,题(2)中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.14.小彬做了探究物体投影规律的实验,并提出了一些数学问题请你解答:(1)如图1,白天在阳光下,小彬将木杆AB水平放置,此时木杆在水平地面上的影子为线段A B''.①若木杆AB的长为1m,则其影子A B''的长为m;②在同一时刻同一地点,将另一根木杆CD直立于地面,请画出表示此时木杆CD在地面上影子的线段DM;(2)如图2,夜晚在路灯下,小彬将木杆EF水平放置,此时木杆在水平地面上的影子为线段E F''.①请在图中画出表示路灯灯泡位置的点P;②若木杆EF的长为1m,经测量木杆EF距离地面1m,其影子E F''的长为1.5m,则路灯P距离地面的高度为m.15.如图,在平整的地面上,用10个棱长都为2cm的小正方体堆成一个几何体.(1)画出这个几何体的三视图;(2)求这个几何体的表面积;(3)如果现在你还有一些棱长都为2cm的小正方体,要求保持俯视图和左视图都不变,最多可以再添加个小正方体.16.用若干个完全相同的小正方体搭成一个几何体,使它从正面和左面看到的形状图如图所示.(1)搭这样一个几何体最多需要多少个小正方体?(2)画出(1)中所搭几何体从上面看到的形状图,并标出各个小正方形所在位置的小正方体的个数. 17.如图,是由6个大小相同的小正方体块搭建的几何体,其中每个小正方体的棱长为l厘米.(1)如果在这个几何体上再添加一些小立方体块,并保持俯视图和左视图不变,最多可以再添加个小立方块.(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.18.晚上,小亮在广场乘凉,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小亮在照明灯P照射下的影子BC(请保留作图痕迹,并把影子描成粗线);(2)如果小亮的身高 1.6AB m=,测得小亮影长2BC m=,小亮与灯杆的距离13BO m=,请求出灯杆的高PO.19.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无.盖.纸盒.操作探究:(1)若准备制作一个无盖..的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖..正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖..正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无.盖.长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高以及底面积,当小正方形边长为4cm时,求纸盒的容积.20.如图所示,一透明的敞口正方体容器ABCD﹣A'B'C'D'装有一些液体,棱AB始终在水平桌面上,液面刚好过棱CD,并与棱BB'交于点Q.此时液体的形状为直三棱柱,其三视图及尺寸见下图所示请解决下列问题:(1)CQ与BE的位置关系是,BQ的长是dm:(2)求液体的体积;(提示:直棱柱体积=底面积×高)(3)若容器底部的倾斜角∠CBE=α,求α的度数.(参考数据:sin49°=cos41°=34,tan37°=34)21.【问题情境】小圣所在的综合实践小组准备制作一些无盖纸盒收纳班级讲台上的粉笔.【操作探究】(1)图1中的哪些图形经过折叠能围成无盖正方体纸盒?(填序号).(2)小圣所在的综合实践小组把折叠成6个棱长都为2dm的无盖正方体纸盒摆成如图2所示的几何体.①请计算出这个几何体的体积;②如果在这个几何体上再添加一些相同的正方体纸盒,并保持从上面看到的形状和从左面看到的形状不变,最多可以再添加个正方体纸盒.22.阅读以下文字并解答问题:在“物体的高度”活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高度.在同一时刻的阳光下,他们分别做了以下工作:小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1).小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米.小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m.(1)在横线上直接填写甲树的高度为米.(2)求出乙树的高度(画出示意图).(3)请选择丙树的高度为()A.6.5米B.5.75米C.6.05米D.7.25米(4)你能计算出丁树的高度吗?试试看.23.如图1是边长为20cm的正方形薄铁片,小明将其四角各剪去一个相同的小正方形(图中阴影部分)后,发现剩余的部分能折成一个无盖的长方体盒子,图2为盒子的示意图(铁片的厚度忽略不计).(1)设剪去的小正方形的边长为 (cm)x ,折成的长方体盒子的容积为 ()3cm V ,直接写出用只含字母x 的式子表示这个盒子的高为 cm ,底面积为 2cm ,盒子的容积 V 为3cm ,(2)为探究盒子的体积与剪去的小正方形的边长 x 之间的关系,小明列表分析:填空:①m = , n = ;②由表格中的数据观察可知当 x 的值逐渐增大时, V 的值 .(从“逐渐增大”,“逐渐减小”“先增大后减小”,“先减小后增大”中选一个进行填空)24.如图,A 、B 、C 分别表示甲、乙、丙三个物体的顶端,甲物体高3米,影长2米,乙物体高2米,影长3米,甲乙两物体相距4米.(1)请在图中画出光源灯的位置及灯杆,并画出物体丙的影子.(2)若甲、乙、丙及灯杆都与地面垂直,且在同一直线上,求灯杆的高度.25.测量金字塔高度:如图1,金字塔是正四棱锥 S ABCD -,点O是正方形 ABCD 的中心 SO 垂直于地面,是正四棱锥 S ABCD - 的高,泰勒斯借助太阳光.测量金字塔影子 PBC 的相关数据,利用平行投影测算出了金字塔的高度,受此启发,人们对甲、乙、丙三个金字塔高度也进行了测量.甲、乙、丙三个金字塔都用图1的正四棱锥 S ABCD - 表示.(1)测量甲金字塔高度:如图2,是甲金字塔的俯视图,测得底座正方形 ABCD 的边长为 80m ,金字塔甲的影子是 50m PBC PC PB ==, ,此刻,1米的标杆影长为0.7米,则甲金字塔的高度为m.(2)测量乙金字塔高度:如图1,乙金字塔底座正方形 ABCD 边长为 80m ,金字塔乙的影子是PBC , 75PCB PC ∠=︒=, ,此刻1米的标杆影长为0.8米,请利用已测出的数据,计算乙金字塔的高度.答案解析部分1.【答案】B【解析】【解答】将A、C、D折叠,发现都不能合成切口,只有B选项折叠后两个剪去的三角形与另一个剪去的三角形交于一点,与题目中的题设一致,故答案为:B.【分析】利用正方体的展开图定义和特征逐项判断即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深度透视中考错题
1. 题目呈现
23.(9分)(2015•广元)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB.
(1)求证:BC是⊙O的切线;
(2)连接AF、BF,求∠ABF的度数;
(3)如果CD=15,BE=10,sinA=,求⊙O的半径.
记得在前年秋季学期和去年春季学期,曾有几位老师在Q群上提到此题,表示对此题第(3)问产生了困惑与不解。

笔者清楚地记得第一位提出来的是武鸣的刘强老师,刘老师酷爱钻研,笔者心中一直对刘老师充满敬意。

当时刘老师在Q群上说,按照这2种方法计算的出来结果不一样,用方法
一求得x=457150,方法二求得x=407
130,刘老师产生了疑问。

2.初步分析
当时笔者在Q 群上这样分析(为了方便计算,条件BE=10,sinA=不变):
如图所示,由已知条件易求CE=13,DE=2,AE=5.2,则AB=15.2。

而又AD=4.8,AO=9.6,则AB=2AG=2×9.6×1312,两次算得的AB 的值不同,从而得出题目所给的条件有问题。

再进一步分析,设DE=5x ,由AB=AE+BE=2AG 可得到方程13x+10=2×24x ×1312,解得x=407130,DE=5x=407
650≠2,即得出CD ≠15,所以第(3)小题的条件与题干中的条件CE=CB 相矛盾。

3.深度透视
近日,笔者荣幸地参加了以农学宁老师为组长的《广西北部湾四市同城背景下中考数学命题的研究》课题组,由于
自己的爱好与课题的需要,笔者对近年的中考题进行研究,以对怎样才能命好中考题提出自己的一点点建议和看法。

以此为契机,笔者对这道题再度进行深入研究。

(其实笔者还在Q群上抛出几道题,供各位同仁思考。


经研究,笔者发现:这题为什么出错可用作图原理去进行分析说明。

这道题是求半径,反过来逆向推理,若半径确定,即圆确定,又sinA=,即∠OAB确定,如图,作出OA 后,假设AB在OA右侧,则B点也确定。

作DE垂直平分OA于点D,按照题目的意思,点C为BE的垂直平分线和射线DE的交点,即点C也是确定的。

当BE=10时,CD恰好等于15吗?若等,则题目没有问题,若不等,则题目出错。

在用作图原理分析的过程中,笔者又有意外的发现:如果半径确定,∠OAB确定,则BE也就确定。

如下图所示,
sinA=,BE=10,对此图进行放缩,即半径变化,则BE也跟着变化,就不再等于10。

反过
来,若∠OAB确定、BE确定,则半径也就确定,否则DE不再垂直AO。

如下面2个图,sinA=,BE=10,但DE不垂直AO。

所以,通过上面的分析可知,只要知道∠OAB和BE,即可求出半径。

计算过程如下:
如下图所示,设DE=5x,由AB=AE+BE=2AG可得到方程
13x+10=2×24x ×1312,解得x=407130,所以AO=24x=407
3120。

因此,原题中的条件CD=15不仅错误,而且多余,且此题提供的数据不符合“多思少算”的原则,若改成sinA=53,BE=39或7.8就好算多了。

4.启示与反思
就命题的角度而言,根据罗增儒教授提出的6条逻辑性要求:条件的真实性、条件的充分性、条件的相容性、条件与结论的相容性、条件的独立性和条件的最少性,这道题违背了条件的相容性。

但我们可以思考得更深一些,为什么此题在命题形成之后能躲过众多命题和审题专家的“法眼”,说明我们在解题过程中反思与批判意识的薄弱性。

事实上,如果我们能在解题之后带着结论返回原题进行分析,不难发现错误所在,刘老师就做到了这一点。

当然,在命题时利用“几何画板”等辅助工具进行准确作图也有助于发现问题,
但我们从理论上讲或者夸张一点说,当点与点、线与线无限接近时,我们就无法通过作图来用眼睛观察发现问题;况且,如果不是几何和数形结合的题目,即不是与图形有关的题目,那么我们也不能通过作图去发现问题,需要通过演绎推理去分析。

由此可知,命题不仅需要技术,更需要较高的数学素养。

愿本文能成为引玉之砖,让大家都来关注命题、研究命题。

谨以此文表示笔者对沈副和农老师的衷心感谢!。

相关文档
最新文档