中考数学专题复习(3) 特殊四边形

合集下载

2020年中考数学总复习训练特殊的四边形矩形菱形含解析

2020年中考数学总复习训练特殊的四边形矩形菱形含解析

特殊的四边形(矩形、菱形)一、选择题1.如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是()A.B.C.D.不确定2.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是()A.20° B.40° C.80° D.100°3.如图,矩形ABCD中,AB=8,BC=6,E、F是AC上的三等分点,则S△BEF为()A.8 B.12 C.16 D.244.把一张长方形的纸片按如图所示的方式折叠,EM、FM为折痕,折叠后的C点落在B′M或B′M的延长线上,那么∠EMF的度数是()A.85° B.90° C.95° D.100°5.如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的四边形有()A.3对B.4对C.5对D.6对6.如图,矩形ABCD的周长为68,它被分成7个全等的矩形,则矩形ABCD的面积为()A.98 B.196 C.280 D.2847.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A. B.C.D.68.如图所示,把一长方形纸片沿MN折叠后,点D,C分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD′等于()A.144°B.126°C.108°D.72°9.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A.1 B.2 C.D.10.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°.现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为()A.4 B.3 C.2 D.111.如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A′、D′处,则整个阴影部分图形的周长为()A.18cm B.36cm C.40cm D.72cm12.下列识别图形不正确的是()A.有一个角是直角的平行四边形是矩形B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形D.对角线互相平分且相等的四边形是矩形13.四边形ABCD的对角线相交于点O,下列条件不能判定它是矩形的是()A.AB=CD,AB∥CD,∠BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°,∠BCD+∠ADC=180°D.∠BAD=∠BCD,∠ABC=∠ADC=90°14.直角三角形中,两条直角边边长分别为12和5,则斜边中线的长是()A.26 B.13 C.30 D.6.515.将一个矩形的纸对折两次,沿图中虚线将一角剪掉再打开后,得到的图形为()A.B.C.D.16.菱形一条对角线长为8m,周长为20m,则其面积为()A.40m2B.20m2C.48m2D.24m217.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形18.已知DE∥AC、DF∥AB,添加下列条件后,不能判断四边形DEAF为菱形的是()A.AD平分∠BAC B.AB=AC且BD=CD C.AD为中线D.EF⊥AD二、填空题19.矩形ABCD中,对角线AC=10cm,AB:BC=3:4,则它的周长是cm.20.矩形ABCD的两条对角线相交于点O,如果矩形的周长是34cm,又△AOB的周长比△ABC的周长少7cm,则AB= cm,BC= cm.21.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=110°,则∠OAB= 度.22.如图所示,把两个大小完全一样的矩形拼成“L”形图案,则∠FAC= 度,∠FCA= 度.23.如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F,线段DF与图中的哪一条线段相等?先将猜想出的结论填写在下面的横线上,然后再加以证明.即DF= .(写出一条线段即可)24.将矩形ABCD沿AE折叠,得到如图所示图形.若∠CED′=56°,则∠AED的大小是°.25.菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为.26.已知菱形的两条对角线长为6cm和8cm,菱形的周长是cm,面积是cm2.27.如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是.28.已知菱形的两条对角线的长分别是4cm和8cm,则它的边长为cm.29.若四边形ABCD是平行四边形,使四边形ABCD是菱形,请补充条件(写一个即可).30.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为.31.已知四边形ABCD为菱形,∠BAD=60°,E为AD中点,AB=6cm,P为AC上任一点.求PE+PD的最小值是.32.如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是.33.已知四边形ABCD为平行四边形,要使四边形ABCD为菱形,还应添加条件.34.用两张对边平行的纸条交叉重叠放在一起,则四边形ABCD为;两张纸条互相垂直时,四边形ABCD 为;若两张纸条的宽度相同,则四边形ABCD为.三、解答题35.如图1中的矩形ABCD,沿对角线AC剪开,再把△ABC沿着AD方向平行移动,得到图2.在图2中,△ADC≌△C′BA′,AC∥A′C′,A′B∥DC.除△DAC与△C′BA′外,指出有哪几对全等的三角形(不能添加辅助线和字母)?选择其中一对加以证明.36.如图,在▱ABCD的纸片中,AC⊥AB,AC与BD相交于点O,将△ABC沿对角线AC翻转180°,得到△AB′C.(1)以A,C,D,B′为顶点的四边形是矩形吗(请填“是”、“不是”或“不能确定”);(2)若四边形ABCD的面积S=12cm2,求翻转后纸片重叠部分的面积,即S△ACE= cm2.37.如图,四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,那么MN⊥BD成立吗?试说明理由.38.如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A点开始按ABCDEFCGA的顺序沿菱形的边循环运动,行走2020厘米后停下,则这只蚂蚁停在点.39.如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.特殊的四边形(矩形、菱形)参考答案与试题解析一、选择题1.如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是()A.B.C.D.不确定【考点】矩形的性质;相似三角形的判定与性质.【专题】压轴题;动点型.【分析】过P点作PE⊥AC,PF⊥BD,由矩形的性质可证△PEA∽△CDA和△PFD∽△BAD,根据和,即和,两式相加得PE+PF=,即为点P到矩形的两条对角线AC和BD的距离之和.【解答】解:法1:过P点作PE⊥AC,PF⊥BD∵矩形ABCD∴AD⊥CD∴△PEA∽△CDA∴∵AC=BD==5∴…①同理:△PFD∽△BAD∴∴…②∴①+②得:∴PE+PF=即点P到矩形的两条对角线AC和BD的距离之和是.法2:连结OP.∵AD=4,CD=3,∴AC==5,又∵矩形的对角线相等且互相平分,∴AO=OD=2.5cm,∴S△APO+S△POD=×2.5•PE+×2.5•PF=×2.5(PE+PF)=×3×4,∴PE+PF=.故选:A.【点评】根据矩形的性质,结合相似三角形求解.2.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是()A.20° B.40° C.80° D.100°【考点】矩形的性质.【专题】计算题.【分析】根据矩形的性质,得△BOC是等腰三角形,再由等腰三角形的性质进行答题.【解答】解:图形中∠1=40°,∵矩形的性质对角线相等且互相平分,∴OB=OC,∴△BOC是等腰三角形,∴∠OBC=∠1,则∠AOB=2∠1=80°.故选C.【点评】本题主要考查了矩形的性质,对角线相等且互相平分,矩形被对角线分成四个等腰三角形.3.如图,矩形ABCD中,AB=8,BC=6,E、F是AC上的三等分点,则S△BEF为()A.8 B.12 C.16 D.24【考点】矩形的性质.【专题】压轴题.【分析】要求S△BEF只要求出底边EF以及EF边上的高就可以,高可以根据△ABC的面积得到,EF=AC,根据勾股定理得到AC,就可以求出EF的长,从而求出△EFG的面积.【解答】解:S△ABC=×8×6=24.又E、F是AC上的三等分点.∴S△BEF=S△ABC=8.故选A.【点评】本题运用了勾股定理,已知直角三角形的两直角边,求斜边上的高,这类题的解决方法是需要熟记的内容.4.把一张长方形的纸片按如图所示的方式折叠,EM、FM为折痕,折叠后的C点落在B′M或B′M的延长线上,那么∠EMF的度数是()A.85° B.90° C.95° D.100°【考点】翻折变换(折叠问题).【分析】根据折叠的性质:对应角相等,对应的线段相等,可得.【解答】解:根据图形,可得:∠EMB′=∠EMB,∠FMB′=∠FMC,∵∠FMC+∠FMB′+∠EMB′+∠BME=180°,∴2(∠EMB′+∠FMB′)=180°,∵∠EMB′+∠FMB′=∠FME,∴∠EMF=90°.故选B.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.5.如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的四边形有()A.3对B.4对C.5对D.6对【考点】矩形的性质.【专题】压轴题.【分析】本题考查了矩形的性质,得出△EPD≌△HDP,则S△EPD=S△HDP,通过对各图形的拼凑,得到的结论.【解答】解:在矩形ABCD中,∵EF∥AB,AB∥DC,∴EF∥DC,则EP∥DH;故∠PED=∠DHP;同理∠DPH=∠PDE;又PD=DP;所以△EPD≌△HDP;则S△EPD=S△HDP;同理,S△GBP=S△FPB;则(1)S梯形BPHC=S△BDC﹣S△HDP=S△ABD﹣S△EDP=S梯形ABPE;(2)S□AGPE=S梯形ABPE﹣S△GBP=S梯形BPHC﹣S△FPB=S□FPHC;(3)S梯形FPDC=S□FPHC+S△HDP=S□AGPE+S△EDP=S梯形GPDA;(4)S□AGHD=S□AGPE+S□HDPE=S□PFCH+S□PHDE=S□EFCD;(5)S□ABFE=S□AGPE+S□GBFP=S□PFCH+S□GBFP=S□GBCH故选C.【点评】本题是一道结论开放题,掌握矩形的性质,很容易得到答案.6.如图,矩形ABCD的周长为68,它被分成7个全等的矩形,则矩形ABCD的面积为()A.98 B.196 C.280 D.284【考点】矩形的性质.【专题】计算题.【分析】等量关系为:5个小矩形的宽等于2个小矩形的长;6个小矩形的宽加一个小矩形的长等于大长方形周长的一半.【解答】解:设小矩形宽为x,长为y.则大矩形长为5x或2y,宽为x+y.依题意有x+y+5x==34;5x=2y.解得:x=4,y=10.则大矩形长为20,宽为14.所以大矩形面积为280.故选C.【点评】本题考查了矩形的面积和一种很重要的思想:方程思想.7.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A. B.C.D.6【考点】翻折变换(折叠问题);勾股定理.【分析】先根据图形翻折变换的性质求出AC的长,再由勾股定理及等腰三角形的判定定理即可得出结论.【解答】解:∵△CEO是△CEB翻折而成,∴BC=OC,BE=OE,∠B=∠COE=90°,∴EO⊥AC,∵O是矩形ABCD的中心,∴OE是AC的垂直平分线,AC=2BC=2×3=6,∴AE=CE,在Rt△ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3,在Rt△AOE中,设OE=x,则AE=3﹣x,AE2=AO2+OE2,即(3﹣x)2=32+x2,解得x=,∴AE=EC=3﹣=2.故选:A.【点评】本题考查的是翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.8.如图所示,把一长方形纸片沿MN折叠后,点D,C分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD′等于()A.144°B.126°C.108°D.72°【考点】翻折变换(折叠问题);矩形的性质.【专题】计算题.【分析】根据∠A MD′=36°和折叠的性质,得∠NMD=∠NMD′=72°;根据平行线的性质,得∠BNM=∠NMD=72°;根据折叠的性质,得∠D′=∠D=90°;根据四边形的内角和定理即可求得∠NFD′的值.【解答】解:∵∠AMD′=36°,∴∠NMD=∠NMD′=72°.∵AD∥BC,∴∠BNM=∠NMD=72°.又∵∠D′=∠D=90°,∴∠NFD′=360°﹣72°×2﹣90°=126°.故选B.【点评】此题综合运用了折叠的性质、平行线的性质、四边形的内角和定理.9.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A.1 B.2 C.D.【考点】菱形的性质;勾股定理.【专题】计算题.【分析】根据题意可知,AC=2BC,∠B=90°,所以根据勾股定理可知AC2=AB2+BC2,即(2BC)2=32+BC2,从而可求得BC的长.【解答】解:∵AC=2BC,∠B=90°,∴AC2=AB2+BC2,∴(2BC)2=32+BC2,∴BC=.故选:D.【点评】此题主要考查学生对菱形的性质及勾股定理的理解及运用.10.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°.现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为()A.4 B.3 C.2 D.1【考点】翻折变换(折叠问题).【分析】连BH,根据折叠的性质得到∠1=∠2,EB=EH,BH⊥EG,则∠EBH=∠EHB,又点E是AB的中点,得EH=EB=EA,于是判断△AHB为直角三角形,且∠3=∠4,根据等角的余角相等得到∠1=∠3,因此有∠1=∠2=∠3=∠4.【解答】解:连BH,如图,∵沿直线EG将纸片折叠,使点B落在纸片上的点H处,∴∠1=∠2,EB=EH,BH⊥EG,而∠1>60°,∴∠1≠∠AEH,∵EB=EH,∴∠EBH=∠EHB,又∵点E是AB的中点,∴EH=EB=EA,∴△AHB为直角三角形,∠AHB=90°,∠3=∠4,∴∠1=∠3,∴∠1=∠2=∠3=∠4.故选B.【点评】本题考查了折叠的性质:折叠前后的两个图形全等,即对应角相等,对应线段相等.也考查了若三角形一边上的中线等于这边的一半,则此三角形为直角三角形.11.如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A′、D′处,则整个阴影部分图形的周长为()A.18cm B.36cm C.40cm D.72cm【考点】翻折变换(折叠问题).【专题】压轴题.【分析】延长A1E交CD于点G,由题意知GE=EH,FH=GF,则阴影部分的周长与原矩形的周长相等.【解答】解:延长A1E交CD于点G,由题意知,GE=EH,FH=GF,四边形EHD1A1≌四边形EGDA,∴AD=A1D1,AE=A1E,DG=D1H,FH=FG,∴阴影部分的周长=矩形的周长=(12+6)×2=36cm.故选:B.【点评】本题利用了翻折的性质:对应图形全等,对应边相等.12.下列识别图形不正确的是()A.有一个角是直角的平行四边形是矩形B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形D.对角线互相平分且相等的四边形是矩形【考点】矩形的判定.【专题】证明题.【分析】矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形,据此判定.【解答】解:A、有一个角是直角的平行四边形是矩形,正确;B、有三个角是直角的四边形是矩形,正确;C、对角线相等的四边形不一定是矩形,对角线相等的平行四边形才是矩形,错误;D、对角线互相平分且相等的四边形是矩形,正确.故选C.【点评】本题主要考查的是矩形的判定定理.(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形,据此判定.13.四边形ABCD的对角线相交于点O,下列条件不能判定它是矩形的是()A.AB=CD,AB∥CD,∠BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°,∠BCD+∠ADC=180°D.∠BAD=∠BCD,∠ABC=∠ADC=90°【考点】矩形的判定.【分析】矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.据此判断.【解答】解:A、一个角为直角的平行四边形为矩形,故A正确.B、矩形的对角线平分且相等,故B正确.C、∠BCD+∠ADC=180°,但∠BCD不一定与∠ADC相等,根据矩形的判定定理,故C不正确.D、因为∠BAD=∠BCD,故AB∥CD,又因为,∠ABC=∠ADC=90°,根据矩形的判定(有一个角是直角的平行四边形是矩形),故D正确.故选C.【点评】本题考查的是矩形的判定定理,但考生应注意的是由矩形的判定引申出来的各图形的判定.难度一般.14.直角三角形中,两条直角边边长分别为12和5,则斜边中线的长是()A.26 B.13 C.30 D.6.5【考点】勾股定理;直角三角形斜边上的中线.【分析】由勾股定理可以求出斜边,再根据直角三角形中斜边上的中线等于斜边的一半可以求出斜边中线的长.【解答】解:由勾股定理知,斜边c==13,∵直角三角形中斜边上的中线等于斜边的一半知,∴斜边中线的长=×13=6.5.故选D.【点评】本题考查了勾股定理和直角三角形的性质:斜边上的中线等于斜边的一半.15.将一个矩形的纸对折两次,沿图中虚线将一角剪掉再打开后,得到的图形为()A.B.C.D.【考点】剪纸问题.【分析】根据题意知,对折实际上就是对称,对折两次的话,剪下应有4条边,并且这4条边还相等,从而可以得到剪下的图形展开后一定是菱形.【解答】解:根据题意折叠剪图可得,剪下的四边形四条边相等,根据四边形等的四边形是菱形可得剪下的图形是菱形,故选:A.【点评】此题考查了剪纸问题,关键是掌握菱形的判定方法:四边形等的四边形是菱形.16.菱形一条对角线长为8m,周长为20m,则其面积为()A.40m2B.20m2C.48m2D.24m2【考点】菱形的性质.【专题】几何图形问题.【分析】菱形对角线互相垂直平分,所以OA2+OB2=AB2,根据已知可得AB=5,BO=4,利用勾股定理求得AO,即可求得AC的长,根据AC、BD即可求菱形ABCD的面积,即可解题.【解答】解:根据题意可得:BD=8m,则BO=DO=4m,∵菱形周长为20m,∴AB=5m,∵菱形对角线互相垂直平分,∴OA2+OB2=AB2,∴AO==3(m),∴AC=6(m),故菱形的面积S=×6×8=24(m2).故选D..【点评】本题考查了菱形对角线互相垂直平分的性质,菱形面积的计算,本题中根据勾股定理求AO的值是解题的关键.17.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形【考点】菱形的判定;作图—复杂作图.【分析】关键菱形的判定定理(有四边都相等的四边形是菱形)判断即可.【解答】解:由图形作法可知:AD=AB=DC=BC,∴四边形ABCD是菱形,故选:B.【点评】本题主要考查对作图﹣复杂作图,菱形的判定等知识点的理解和掌握,能熟练地运用性质进行推理是解此题的关键.18.已知DE∥AC、DF∥AB,添加下列条件后,不能判断四边形DEAF为菱形的是()A.AD平分∠BAC B.AB=AC且BD=CD C.AD为中线D.EF⊥AD【考点】菱形的判定.【专题】几何图形问题.【分析】首先根据题意画出图形,然后由DE∥AC、DF∥AB,判定四边形DEAF为平行四边形,再由菱形的判定定理求解即可求得答案;注意掌握排除法在选择题中的应用.【解答】解:如图,∵DE∥AC、DF∥AB,∴四边形DEAF为平行四边形,A、∵AD平分∠BAC,DF∥AB,∴∠BAD=∠CAD,∠BAD=∠ADF,∴∠CAD=∠ADF,∴AF=DF,∴四边形DEAF为菱形;B、∵AB=AC且BD=CD,∴AD平分∠BAC,同理可得:四边形DEAF为菱形;C、∵由AD为中线,得不到AD平分∠BAC,证不出四边形DEAF的邻边相等,∴不能判断四边形DEAF为菱形;D、∵AD⊥EF,∴▱DEAF是菱形.故选C.【点评】此题考查了菱形的判定.此题难度不大,注意掌握数形结合思想的应用.二、填空题19.矩形ABCD中,对角线AC=10cm,AB:BC=3:4,则它的周长是28 cm.【考点】矩形的性质;勾股定理.【专题】计算题.【分析】根据矩形的一组邻边和一条对角线组成一个直角三角形,解题即可.【解答】解:根据矩形的性质得到△ABC是直角三角形,因为对角线AC=10cm,AB:BC=3:4,根据勾股定理得到BC2=AC2﹣(BC)2=100﹣BC2解得BC=8,AB=6,故它的周长=2×8+2×6=28cm.故答案为28.【点评】本题考查对矩形的性质以及勾股定理的运用.20.矩形ABCD的两条对角线相交于点O,如果矩形的周长是34cm,又△AOB的周长比△ABC的周长少7cm,则AB= 10 cm,BC= 7 cm.【考点】矩形的性质;勾股定理.【专题】计算题.【分析】根据矩形的对边相等以及所给的三角形的周长可得到和所求线段相关的两个式子,进而求解.【解答】解:设AB=a,BC=b.∴2OA=2OB=AC=,2a+2b=34,即a+b=17.由题意可知△AOB的周长+7=△ABC的周长.∴AB+OA+OB+7=AB+BC+AC.∴a++7=a+b+.即b=7,a=17﹣7=10.即AB=10,BC=7.故答案为,10,7.【点评】本题综合考查了矩形的性质及勾股定理的运用.21.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=110°,则∠OAB= 35 度.【考点】矩形的性质;三角形内角和定理.【专题】计算题.【分析】根据矩形对角线的性质得到△OAB的形状,进而求得底角的度数.【解答】解:∵矩形的对角线相等且互相平分.∴OA=OC.∴△AOB是等腰三角形.∴∠OAB=∠OBA.∵∠OAB+∠OBA+∠AOB=180°.∴2∠OAB+110°=180°.∴∠O AB=35°.故答案为35.【点评】本题考查矩形的性质以及三角形内角和定理.22.如图所示,把两个大小完全一样的矩形拼成“L”形图案,则∠FAC= 90 度,∠FCA= 45 度.【考点】矩形的性质;全等三角形的判定与性质.【专题】计算题.【分析】两个大小完全一样的矩形拼成“L”形图案所构成的△AFG≌△CAB,所以AF=AC,∠FAC=90°,∠FCA=45度.【解答】解:由已知△AFG≌△CAB,∴∠AFG=∠CAB,AF=AC∵∠AFG+∠FAG=90°,∴∠CAB+∠FA G=90°,∴∠FAC=90°.又∵AF=AC,∴∠FCA=(180°﹣90°)×=45°.故答案为:90;45.【点评】根据矩形的性质得到全等三角形,进而求得△AFC是等腰直角三角形.23.如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F,线段DF与图中的哪一条线段相等?先将猜想出的结论填写在下面的横线上,然后再加以证明.即DF= BE .(写出一条线段即可)【考点】矩形的性质;全等三角形的判定与性质.【专题】几何图形问题.【分析】根据矩形的性质得出AD∥BC,推出∠AFD=∠B,推出∠DAF=∠AEB,根据全等三角形的判定推出△AFD≌△EBA即可.【解答】解:DF=BE,理由是:∵四边形ABCD是矩形,DF⊥AE,∴∠B=∠AFD=90°,AD∥BC,∴∠DAF=∠AEB,在△AFD和△EBA中∴△AFD≌△EBA(AAS),∴DF=BE,故答案为:DF=BE.【点评】本题考查了全等三角形的性质和判定,平行线的性质,全等三角形的性质和判定的应用,关键是推出△AFD≌△EBA,注意:矩形的四个角都是直角,矩形的对边平行.24.将矩形ABCD沿AE折叠,得到如图所示图形.若∠CED′=56°,则∠AED的大小是62 °.【考点】翻折变换(折叠问题).【专题】压轴题;操作型.【分析】易得∠DED′的度数,除以2即为所求角的度数.【解答】解:∵∠CED′=56°,∴∠DED′=180°﹣56°=124°,∵∠AED=∠AED′,∴∠AED=∠DED′=62°.故答案为:62.【点评】考查翻折变换问题;用到的知识点为:翻折前后得到的角相等.25.菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为40.5 .【考点】菱形的性质.【分析】根据相邻两内角的度数比为1:5,可求出一个30°角,根据周长为36,求出菱形的边长,根据直角三角形里30°角的性质求出高,从而求出面积.【解答】解:作AE⊥BC于E点,∵其相邻两内角的度数比为1:5,∴∠B=180°×=30°,∵菱形ABCD的周长为36,∴AB=BC=×36=9.∴AE=×9=.∴菱形的面积为:BC•AE=9×=40.5.故答案为:40.5.【点评】本题考查菱形的性质,菱形的邻角互补,四边相等.26.已知菱形的两条对角线长为6cm和8cm,菱形的周长是20 cm,面积是24 cm2.【考点】菱形的性质;勾股定理.【分析】根据菱形的面积等于两对角线乘积的一半可得到其面积,根据菱形的性质可求得其边长,从而可得到其周长.【解答】解:如图,四边形ABCD是菱形,BD,AC分别是其对角线且BD=6,AC=8,求其面积和周长.∵四边形ABCD是菱形,BD,AC分别是其对角线,∴BD⊥AC,BO=OD=3cm,AO=CO=4cm,∴AB=5cm,∴菱形的周长=5×4=20cm;S菱形=×6×8=24cm2.故本题答案为:20cm;24cm2.【点评】此题主要考查学生对菱形的性质及勾股定理的理解及运用.27.如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是AC⊥BD .【考点】中点四边形.【分析】根据三角形的中位线定理,可以证明所得四边形的两组对边分别和两条对角线平行,所得四边形的两组对边分别是两条对角线的一半,再根据平行四边形的判定就可证明该四边形是一个平行四边形;所得四边形要成为矩形,则需有一个角是直角,故对角线应满足互相垂直.【解答】解:如图,∵E,F分别是边AB,BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形;要使四边形EFGH是矩形,则需EF⊥FG,即AC⊥BD;故答案为:AC⊥BD.【点评】此题主要考查了三角形的中位线定理的运用.同时熟记此题中的结论:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形.28.已知菱形的两条对角线的长分别是4cm和8cm,则它的边长为2cm.【考点】菱形的性质.【专题】计算题.【分析】根据菱形的性质及勾股定理即可求得其边长的值.【解答】解:菱形的两条对角线分别是4cm,8cm,得到两条对角线相交所构成的直角三角形的两直角边是×4=2和×8=4,那么根据勾股定理得到它的斜边即菱形的边长=2cm.故答案为2【点评】本题考查菱形的性质以及勾股定理.29.若四边形ABCD是平行四边形,使四边形ABCD是菱形,请补充条件此题答案不唯一,如AC⊥BD或AB=AD 等(写一个即可).【考点】菱形的判定.【专题】开放型.【分析】由四边形ABCD是平行四边形,根据菱形的判定定理求解即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴当AC⊥BD或AB=AD时,四边形ABCD是菱形.故答案为:此题答案不唯一,如AC⊥BD或AB=AD等.【点评】此题考查了菱形的判定.此题难度不大,注意熟记定理是解此题的关键.30.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为或.【考点】菱形的性质.【专题】压轴题;分类讨论.【分析】根据题意得,应分P与A在BD的同侧与异侧两种情况进行讨论.【解答】解:当P与A在BD的异侧时:连接AP交BD于M,∵AD=AB,DP=BP,∴AP⊥BD(到线段两端距离相等的点在垂直平分线上),在直角△ABM中,∠BAM=30°,∴AM=AB•cos30°=3,BM=AB•sin30°=3,∴PM==,∴AP=AM+PM=4;当P与A在BD的同侧时:连接AP并延长AP交BD于点MAP=AM﹣PM=2;当P与M重合时,PD=PB=3,与PB=PD=2矛盾,舍去.AP的长为4或2.故答案为4或2.【点评】本题注意到应分两种情况讨论,并且注意两种情况都存在关系AP⊥BD,这是解决本题的关键.31.已知四边形ABCD为菱形,∠BAD=60°,E为AD中点,AB=6cm,P为AC上任一点.求PE+PD的最小值是3.【考点】轴对称﹣最短路线问题;菱形的性质.【专题】几何图形问题.【分析】根据菱形的性质,可得AC是BD的垂直平分线,可得AC上的点到D、B点的距离相等,连接BE交AC与P,可得答案.【解答】解:∵菱形的性质,∴AC是BD的垂直平分线,AC上的点到B、D的距离相等.连接BE交AC于P点,PD=PB,PE+PD=PE+PB=BE,在Rt△ABE中,由勾股定理得BE==3,故答案为:3.【点评】本题考查了轴对称,对称轴上的点到线段两端点的距离相等是解题关键.32.如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是 5 .【考点】轴对称﹣最短路线问题;勾股定理;菱形的性质.【专题】计算题.【分析】AC交BD于O,作E关于AC的对称点N,连接NF,交AC于P,则此时EP+FP的值最小,根据菱形的性质推出N是AD中点,P与O重合,推出PE+PF=NF=AB,根据勾股定理求出AB的长即可.【解答】解:AC交BD于O,作E关于AC的对称点N,连接NF,交AC于P,则此时EP+FP的值最小,∴PN=PE,∵四边形ABCD是菱形,∴∠DAB=∠BCD,AD=AB=BC=CD,OA=OC,OB=OD,AD∥BC,∵E为AB的中点,∴N在AD上,且N为AD的中点,∵AD∥CB,∴∠ANP=∠CFP,∠NAP=∠FCP,。

2022年中考数学专题复习:四边形

2022年中考数学专题复习:四边形

板块八【四边形中考】2022年长沙中考板块精炼【高频考点】1.多边形的内角和与外角和的关系与计算;2.特殊四边形:平行四边形、矩形、菱形、正方形的性质与判定,以及综合应用;【真题训练】一、选择题1.(2021常德)一个多边形的内角和为1800°,则这个多边形的边数为()A.9B.10C.11D.122.(2021株洲)如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=()A.38°B.48°C.58°D.66°3. (2021北京)下列多边形中,内角和最大的是()A.B.C.D.4.(2021株洲)如图所示,在正六边形ABCDEF内,以AB为边作正五边形ABGHI,则∠F AI=()A.10°B.12°C.14°D.15°5.(2021娄底)如图,点E、F在矩形ABCD的对角线BD所在的直线上,BE=DF,则四边形AECF是()A.平行四边形B.矩形C.菱形D.正方形6. (2021福建)如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于()A.108°B.120°C.126°D.132°7.(2021湘西)如图,在菱形ABCD中,E是AC的中点,EF∥CD,交AD于点F,如果EF=5.5,那么菱形ABCD的周长是()A.11B.22C.33D.448. (2021安徽)如图,在菱形ABCD中,AB=2,∠A=120°,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为()A.3B.2+23C.3D.1+239.(2021常德)如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF交于P.则下列结论成立的是()A.BE=12AE B.PC=PD C.∠EAF+∠AFD=90°D.PE=EC10.(2021怀化)如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,AE⊥BC于E点,交BD于M点,反比例函数33yx(x>0)的图象经过线段DC的中点N,若BD=4,则ME的长为()A.ME=53B.ME=43C.ME=1D.ME=2311.(2021郴州)如图,在边长为4的菱形ABCD中,∠A=60°,点P从点A出发,沿路线A→B→C→D运动.设P点经过的路程为x,以点A,D,P为顶点的三角形的面积为y,则下列图象能反映y与x的函数关系的是()A.B.C.D.12.(2021衡阳)如图,矩形纸片ABCD,AB=4,BC=8,点M、N分别在矩形的边AD、BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①四边形CMPN是菱形;②点P与点A重合时,MN=5;③△PQM的面积S的取值范围是4≤S≤5.其中所有正确结论的序号是()A.①②③B.①②C.①③D.②③二、填空题13.(2021益阳)如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是(限填序号).14.(2021长沙)如图,菱形ABCD的对角线AC,BD相交于点O,点E是边AB的中点,若OE=6,则BC的长为.15. (2021邵阳)如图,在矩形ABCD中,DE⊥AC,垂足为点E.若sin∠ADE=45,AD=4,则AB的长为.16.(2021衡阳)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q两点同时从O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P的运动路线为O—A—D —O,点Q的运动路线为O—C—B—O.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,当点P在A—D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为厘米.17.(2021张家界)如图,在正方形ABCD外取一点E,连接DE,AE,CE,过点D作DE的垂线交AE于点P,若DE=DP=1,PC=6.下列结论:①△APD≌△CED;②AE⊥CE;③点C到直线DE的距离为6;④S正方形ABCD=5+22,其中正确结论的序号为.18.(2021北京)如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是(写出一个即可).19.(2021湘潭)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,点E 是边AB 的中点.已知BC =10,则OE = .20.(2021兰州)如图,在矩形ABCD 中,AB =1,AD =3.①以点A 为圆心,以不大于AB 长为半径作弧,分别交边AD ,AB 于点E ,F ,再分别以点E ,F 为圆心,以大于12EF 长为半径作弧,两弧交于点P ,作射线AP 分别交BD ,BC 于点O ,Q ;②分别以点C ,Q 为圆心,以大于12CQ 长为半径作弧,两弧交于点M ,N ,作直线MN 交AP 于点G ,则OG 长为 .三、解答题21.(2021长沙)如图,□ABCD 的对角线AC ,BD 相交于点O ,△OAB 是等边三角形,AB =4.(1)求证:□ABCD 是矩形; (2)求AD 的长.O QP E D22.(2021怀化)已知:如图,四边形ABCD为平行四边形,点E、A、C、F在同一直线上,AE=CF.求证:(1)△ADE≌△CBF;(2)ED∥BF.23. (2021湘潭)如图,矩形ABCD中,E为边BC上一点,将△ABE沿AE翻折后,点B 恰好落在对角线AC的中点F上.(1)证明:△AEF≌△CEF;(2)若AB=3,求折痕AE的长度.23.(2021株洲)如图所示,在矩形ABCD中,点E在线段CD上,点F在线段AB的延长线上,连接EF交线段BC于点G,连接BD,若DE=BF=2.(1)求证:四边形BFED是平行四边形;(2)若tan∠ABD=23,求线段BG的长度.24.(2021郴州)如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF.连接BE,DF,若BE=DF.证明:四边形ABCD是平行四边形.25. (2021衡阳)如图,点E为正方形ABCD外一点,∠AEB=90°,将Rt△ABE绕A点逆时针方向旋转90°得到△ADF,DF的延长线交BE于H点.(1)试判定四边形AFHE的形状,并说明理由;(2)已知BH=7,BC=13,求DH的长.26.(2021邵阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,且AE=CF.连接DE,DF,BE,BF.(1)证明:△ADE≌△CBF.(2)若AB=4,AE=2,求四边形BEDF的周长.27.(2021岳阳)如图,在四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为点E,F.(1)请你只添加一个条件(不另加辅助线),使得四边形AECF为平行四边形,你添加的条件是;(2)添加了条件后,证明四边形AECF为平行四边形.28.(2021张家界)如图,在矩形ABCD中,对角线AC与BD相交于点O,∠AOB=60°,对角线AC所在的直线绕点O顺时针旋转角α(0°<α <120°),所得的直线l分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当旋转角α为多少度时,四边形AFCE为菱形?试说明理由.29.(2020长沙)在矩形ABCD中,E为DC边上一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=23,AD=4,求EC的长;(3)若AE-DE=2EC,记∠BAF=α,∠F AE=β.求tanα+tanβ的值.板块八【四边形中考】2022年长沙中考板块精炼【答案或简析】【高频考点】1.多边形的内角和与外角和的关系与计算;2.特殊四边形:平行四边形、矩形、菱形、正方形的性质与判定,以及综合应用;【真题训练】一、选择题1.(2021常德)一个多边形的内角和为1800°,则这个多边形的边数为()A.9B.10C.11D.12【答案或简析】D.2.(2021株洲)如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=()A.38°B.48°C.58°D.66°【答案或简析】B.3. (2021北京)下列多边形中,内角和最大的是()A.B.C.D.【答案或简析】D.4.(2021株洲)如图所示,在正六边形ABCDEF内,以AB为边作正五边形ABGHI,则∠F AI=()A.10°B.12°C.14°D.15°【答案或简析】B.5.(2021娄底)如图,点E、F在矩形ABCD的对角线BD所在的直线上,BE=DF,则四边形AECF是()A.平行四边形B.矩形C.菱形D.正方形【答案或简析】A.6. (2021福建)如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于()A.108°B.120°C.126°D.132°【答案或简析】C.7.(2021湘西)如图,在菱形ABCD中,E是AC的中点,EF∥CD,交AD于点F,如果EF=5.5,那么菱形ABCD的周长是()A.11B.22C.33D.44【答案或简析】D.8. (2021安徽)如图,在菱形ABCD中,AB=2,∠A=120°,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为()A.3+3B.2+23C.2+3D.1+23【答案或简析】B.9.(2021常德)如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF交于P.则下列结论成立的是()A.BE=12AE B.PC=PD C.∠EAF+∠AFD=90°D.PE=EC【答案或简析】C.10.(2021怀化)如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,AE⊥BC于E点,交BD于M点,反比例函数33yx(x>0)的图象经过线段DC的中点N,若BD=4,则ME的长为()A.ME=53B.ME=43C.ME=1D.ME=23【答案或简析】D.解:过N作y轴和x轴的垂线NG,NH,设N(b,a),∵反比例函数y=33x(x>0)的图象经过点N,∴ab 3,∵四边形ABCD是菱形,∴BD⊥AC,DO=12BD=2,∵NH⊥x轴,NG⊥y轴,∴四边形NGOH是矩形,∴NG∥x轴,NH∥y轴,∵N为CD的中点,∴DO•CO=2a•2b=4ab43∴CO23∴tan∠CDO=33 OCDO.∴∠CDO=30°,∴∠DCO=60°,∵四边形ABCD是菱形,∴∠ADC=∠ABC=2∠CDO=60°,∠ACB=∠DCO=60°,∴△ABC是等边三角形,∵AE⊥BC,BO⊥AC,∴AE=BO=2,∠BAE=30°=∠ABO,∴AM=BM,∴OM=EM,∵∠MBE=30°,∴BM=2EM=2OM,∴3EM=OB=2,∴ME=23,故选:D.11.(2021郴州)如图,在边长为4的菱形ABCD中,∠A=60°,点P从点A出发,沿路线A→B→C→D运动.设P点经过的路程为x,以点A,D,P为顶点的三角形的面积为y,则下列图象能反映y与x的函数关系的是()A.B.C.D.【答案或简析】A.12.(2021衡阳)如图,矩形纸片ABCD,AB=4,BC=8,点M、N分别在矩形的边AD、BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①四边形CMPN是菱形;②点P与点A重合时,MN=5;③△PQM的面积S的取值范围是4≤S≤5.其中所有正确结论的序号是()A.①②③B.①②C.①③D.②③【答案或简析】C.二、填空题13.(2021益阳)如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是(限填序号).【答案或简析】①.14.(2021长沙)如图,菱形ABCD的对角线AC,BD相交于点O,点E是边AB的中点,若OE=6,则BC的长为.【答案或简析】12.15. (2021邵阳)如图,在矩形ABCD中,DE⊥AC,垂足为点E.若sin∠ADE=45,AD=4,则AB的长为.【答案或简析】3.16.(2021衡阳)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q两点同时从O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P的运动路线为O—A—D —O,点Q的运动路线为O—C—B—O.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,当点P在A—D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为厘米.【答案或简析】23317.(2021张家界)如图,在正方形ABCD外取一点E,连接DE,AE,CE,过点D作DE的垂线交AE于点P,若DE=DP=1,PC=6.下列结论:①△APD≌△CED;②AE⊥CE;③点C到直线DE的距离为6;④S正方形ABCD=5+22,其中正确结论的序号为.【答案或简析】B.18.(2021北京)如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是(写出一个即可).【答案或简析】例如AE=EC.19.(2021湘潭)如图,在▱ABCD中,对角线AC,BD相交于点O,点E是边AB的中点.已知BC=10,则OE=.【答案或简析】5.20.(2021兰州)如图,在矩形ABCD中,AB=1,AD=3.①以点A为圆心,以不大于AB长为半径作弧,分别交边AD,AB于点E,F,再分别以点E,F为圆心,以大于12EF 长为半径作弧,两弧交于点P,作射线AP分别交BD,BC于点O,Q;②分别以点C,Q为圆心,以大于12CQ长为半径作弧,两弧交于点M,N,作直线MN交AP于点G,则OG长为.【答案或简析】524三、解答题21.(2021长沙)如图,□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:□ABCD是矩形;(2)求AD的长.【答案或简析】(1)证明:∵△AOB为等边三角形,OQPE D∴∠BAO =∠AOB =60°,OA =OB , ∵四边形ABCD 是平行四边形 ∴OB =OD =12BD ,OA =OC =12AC , ∴BD =AC ,∴▱ABCD 是矩形;(2)解:∵▱ABCD 是矩形, ∴∠BAD =90°, ∵∠ABO =60°,∴∠ADB =90°﹣60°=30°, ∴AD =3AB =43.22. (2021怀化)已知:如图,四边形ABCD 为平行四边形,点E 、A 、C 、F 在同一直线上,AE =CF .求证:(1)△ADE ≌△CBF ;(2)ED ∥BF .【答案或简析】证明:(1)∵四边形ABCD 为平行四边形, ∴DA =BC ,DA ∥BC , ∴∠DAC =∠BCA ,∵∠DAC +∠EAD =180°,∠BCA +∠FCB =180°, ∴∠EAD =∠FCB , 在△ADE 和△CBF 中,,,,AE CF EAD FCB AD CB , ∴△ADE ≌△CBF (SAS );(2)由(1)知,△ADE ≌△CBF , ∴∠E =∠F , ∴ED ∥BF .23. (2021湘潭)如图,矩形ABCD 中,E 为边BC 上一点,将△ABE 沿AE 翻折后,点B恰好落在对角线AC 的中点F 上. (1)证明:△AEF ≌△CEF ;(2)若AB =3,求折痕AE 的长度. 【答案或简析】(1)证明:∵四边形ABCD 是矩形,∴∠B =90°,∵将△ABE 沿AE 翻折后,点B 恰好落在对角线AC 的中点F 上,∴∠AFE =∠B =90°,AF =CF , ∵∠AFE +∠CFE =180°,∴∠CFE =180°﹣∠AFE =90°, 在△AEF 和△CEF 中,,,,AF CF AFE CFE EF EF ∠∠, ∴△AEF ≌△CEF (SAS ).(2)解:由(1)知,△AEF ≌△CEF , ∴∠EAF =∠ECF ,由折叠性质得,∠BAE =∠EAF , ∴∠BAE =∠EAF =∠ECF , ∵∠B =90°,∴∠BAC +∠BCA =90°, ∴3∠BAE =90°, ∴∠BAE =30°,在Rt △ABE 中,AB =3,∠B =90°,∴AE =32cos3032AB .23.(2021株洲)如图所示,在矩形ABCD 中,点E 在线段CD 上,点F 在线段AB 的延长线上,连接EF 交线段BC 于点G ,连接BD ,若DE =BF =2. (1)求证:四边形BFED 是平行四边形; (2)若tan ∠ABD =23,求线段BG 的长度.【答案或简析】证明:(1)∵四边形ABCD 是矩形, ∴DC ∥AB , 又∵DE =BF ,∴四边形DEFB 是平行四边形; (2)∵四边形DEFB 是平行四边形, ∴DB ∥EF , ∴∠ABD =∠F ,∴tan ∠ABD =tan F =23, ∴23BG BF , 又∵BF =2, ∴BG =43.24.(2021郴州)如图,四边形ABCD 中,AB =DC ,将对角线AC 向两端分别延长至点E ,F ,使AE =CF .连接BE ,DF ,若BE =DF .证明:四边形ABCD 是平行四边形.【答案或简析】证明:在△BEA 和△DFC 中,,,,AB DC AE CF BE DF ∴△BEA ≌△DFC (SSS ), ∴∠EAB =∠FCD , ∴∠BAC =∠DCA , ∴AB ∥DC , ∵AB =DC ,∴四边形ABCD 是平行四边形.25. (2021衡阳)如图,点E 为正方形ABCD 外一点,∠AEB =90°,将Rt △ABE 绕A 点逆时针方向旋转90°得到△ADF ,DF 的延长线交BE 于H 点. (1)试判定四边形AFHE 的形状,并说明理由; (2)已知BH =7,BC =13,求DH 的长.【答案或简析】(1)四边形AFHE 是正方形,理由如下:由旋转得∠AEB =∠AED =90°,AE =AF ,∠DAF =∠EAB. ∴∠AFH =90°.∵四边形ABCD 是正方形, ∴∠DAB =90°,∴∠F AE =∠F AB +∠BAE =∠F AB +∠DAF =∠DAB =90°, ∴∠AEB =∠AFB =∠F AE =90°,∴四边形AFHE 是矩形. 又∵AE =AF ,∴四边形AFHE 是正方形. (2)连接BD ,由题意得,BC =CD =13, ∴在Rt △BCD 中,BD =22132CD CB .∵四边形AFHE 是正方形, ∴∠EHD =90°,∴∠DHB =90°, 在Rt △DHB 中,DH =22,BD BH又∵BH =7,∴DH =17.26.(2021邵阳)如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 是对角线AC 上的两点,且AE =CF .连接DE ,DF ,BE ,BF . (1)证明:△ADE ≌△CBF . (2)若AB =4,AE =2,求四边形BEDF 的周长.【答案或简析】(1)证明:由正方形对角线平分每一组对角可知:∠DAE =∠BCF =45°, 在△ADE 和△CBF 中,,,,AD BC DAE BCF AE CF ∠∠ ∴△ADE ≌△CBF (SAS ). (2)解:∵AB =AD =42, ∴BD =228AB AD ,由正方形对角线相等且互相垂直平分可得:AC =BD =8,DO =BO =4,OA =OC =4, 又AE =CF =2,∴OA ﹣AE =OC ﹣CF , 即OE =OF =4﹣2=2, 故四边形BEDF 为菱形. ∵∠DOE =90°, ∴DE =22224225DO EO .∴4DE =85,故四边形BEDF 的周长为85.27.(2021岳阳)如图,在四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为点E ,F . (1)请你只添加一个条件(不另加辅助线),使得四边形AECF 为平行四边形,你添加的条件是 ;(2)添加了条件后,证明四边形AECF 为平行四边形.【答案或简析】解:(1)添加条件为:AE =CF , 故答案为:AE =CF ;(2)证明:∵AE ⊥BD ,CF ⊥BD , ∴AE ∥CF , ∵AE =CF ,∴四边形AECF 为平行四边形.28.(2021张家界)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,∠AOB =60°,对角线AC 所在的直线绕点O 顺时针旋转角α(0°< α <120°),所得的直线l 分别交AD ,BC 于点E ,F . (1)求证:△AOE ≌△COF ;(2)当旋转角α为多少度时,四边形AFCE 为菱形?试说明理由.【答案或简析】 证明:(1)∵四边形ABCD 是矩形, ∴AD ∥BC ,AO =CO , ∴∠AEO =∠CFO , 在△AOE 和△COF 中,,,,AEO CFO AOE COF AO CO ∠∠∠∠, ∴△AOE ≌△COF (AAS );(2)当α=90°时,四边形AFCE 为菱形, 理由:∵△AOE ≌△COF , ∴OE =OF , 又∵AO =CO ,∴四边形AFCE 为平行四边形, 又∵∠AOE =90°,∴四边形AFCE 为菱形.29.(2020长沙)在矩形ABCD 中,E 为DC 边上一点,把△ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F . (1)求证:△ABF ∽△FCE ;(2)若AB =23,AD =4,求EC 的长;(3)若AE -DE =2EC ,记∠BAF =α,∠F AE =β.求tan α+tan β的值.【答案或简析】(1)证明:∵四边形ABCD 是矩形, ∴∠B =∠C =∠D =90°, ∴∠CEF +∠EFC =90°, ∵△AEF 由△AED 翻折得到, ∴∠AFE =∠D =90°, ∴∠AFB +∠EFC =90°, ∴∠CEF =∠AFB , ∴△ABF ∽△FCE ; (2)∵四边形ABCD 是矩形, ∴AB =CD =23,AD =BC =4,设CE =x ,则DE =23-x , ∵△AEF 由△AED 翻折得到, ∴AD =AF =4,DE =EF =23-x ,在Rt △ABF 中,BF =AF 2-AB 2=42-(23)2=2, ∴CF =BC -BF =4-2=2,在Rt △CEF 中,EF 2=CE 2+CF 2,即(23-x )2=x 2+22, 解得x =233,即EC =233;(3)如解图,设EC =x ,DE =a ,则易得EF =a ,AB =a +x , ∵AE -DE =2EC ,∴AE -a =2x ,即AE =2x +a ,由勾股定理得:AF =AE 2-EF 2=(2x +a )2-a 2=4ax +4x 2, CF =EF 2-CE 2=a 2-x 2,由(1)知∠CEF =∠AFB ,∴∠BAF =∠CFE =α,∴cos ∠BAF =AB AF =a +x 4ax +4x 2,cos ∠CFE =CFEF =a 2-x 2a ,∴a +x 4ax +4x2=a 2-x 2a , a +x4x (a +x )=(a +x )(a -x )a,a (a +x )=(a +x )4x (a -x ), a =4ax -4x 2, 整理得(a -2x )2=0, ∴a =2x ,∴sin ∠CFE =CE EF =x a =x 2x =12,即∠CFE =∠BAF =α=30°,∴∠DAF =60°, ∴∠EAF =β=30°.∴tan α+tan β=tan 30°+tan 30°=233.。

2023年九年级中考数学复习:二次函数(特殊四边形问题)综合题(Word版,含答案)

2023年九年级中考数学复习:二次函数(特殊四边形问题)综合题(Word版,含答案)

2023年九年级中考数学复习:二次函数(特殊四边形问题)综合题1.已知抛物线()21=++4(0)2y a x m m am -≠过点()0,4A(1)若=2m ,求a 的值;(2)如图,顶点M 在第一象限内,B 、C 是抛物线对称轴l 上的两点,且MB MC =,在直线l 右侧以BC 为边作正方形BCDE ,点E 恰好在抛物线上.①求am 的值;①试判断点E 和点A 是否关于直线l 对称,如果对称,请说明理由,如果不对称,请举出反例.2.如图,抛物线y =ax 2-2x +c (a ≠0)与直线y =x +3交于A ,C 两点,与x 轴交于点B .(1)求抛物线的解析式.(2)点P 是抛物线上一动点,且在直线AC 下方,当①ACP 的面积为6时,求点P 的坐标.(3)D 为抛物线上一点,E 为抛物线的对称轴上一点,请直接写出以A ,C ,D ,E 为顶点的四边形为平行四边形时点D 的坐标.3.如图1,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A (﹣1,0)、B (3,0),与y 轴交于点C ,连接AC 和BC ,①OAC =60°.(1)求二次函数的表达式.(2)如图2,线段BC 上有M 、N 两动点(N 在M 上方),且MN 3P 是直线BC 下方抛物线上一动点,连接PC 、PB ,当①PBC 面积最大时,连接PM 、AN ,当MN 运动到某一位置时,PM +MN +NA 的值最小,求出该最小值.(3)如图3,在(2)的条件下,连接AP ,将AP 绕着点A 逆时针旋转60°至AQ .点E 为二次函数对称轴上一动点,点F 为平面内任意一点,是否存在这样的点E 、F ,使得四边形AEFQ 为菱形,若存在,请直接写出点E 的坐标,若不存在,请说明理由.4.直线3y x =-+与x 轴相交于点A ,与y 轴相交于点B ,抛物线2y ax 2x c =++经过点A ,B ,与x 轴的另一个交点为C .(1)求抛物线的解析式;(2)如图1,若点P为直线AB上方的抛物线上的一动点,求四边形APBO的面积的最大值;D为抛物线上的一点,直线CD与AB相交于点M,点H在抛物线上,(3)如图2,(2,3)∥轴,交直线CD于点K.P是平面内一点,当以点M,H,K,P为顶点的四过H作HK y边形是正方形时,请直接写出点P的坐标.5.综合与探究如图1所示,直线y=x+c与x轴交于点A(-4,0),与y轴交于点C,抛物线y=-x2+bx+c经过点A,C.(1)求抛物线的解析式;(2)点E在抛物线的对称轴上,求CE+OE的最小值为______.(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N①当ANC面积最大时的P点坐标为______;最大面积为______.①点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D、F、B、C为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.。

2023年九年级中考数学:二次函数综合题压轴题(特殊四边形问题)(含答案)

2023年九年级中考数学:二次函数综合题压轴题(特殊四边形问题)(含答案)
2.如图,已知在平面直角坐标系 中,抛物线 的图象与 轴交于 点,与 轴交于点 .抛物线的顶点为 ,若点 的坐标是 ,点 是该抛物线在第二象限图象上的一个动点.
(1)求该抛物线的解析式和顶点 的坐标;
(2)设点 的横坐标是 ,问当 取何值时,四边形 的面积最大;
(3)如图,若直线 的解析式是 ,点 和点 分别在抛物线上和直线 上,问:是否存在以点 为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点 的坐标
3.综合与探究
如图,在平面直角坐标系中,抛物线 与 轴交于 、 两点,与 轴交于点 ,点 为抛物线顶点.
(1)求抛物线解析式;
(2)点 在此抛物线的对称轴上,当 最大时,点 的坐标为_____,此时 的面积为_____;
(3)点 在抛物线上,平面内存在点 使四边形 为菱形时,请直接写出点 的坐标.
4.如图,在平面直角坐标系中,抛物线 和直线 交于 、 两点,直线 交 轴于点 .
20.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上, , ,抛物线 经过点B,且与x轴交于点 和点E.
(1)求抛物线的表达式:
(2)若P是第一象限抛物线上的一个动点,连接CP,PE,当四边形OCPE的面积最大时,求点P的坐标,此时四边形OCPE的最大面积是多少;
(3)若N是抛物线对称轴上一点,在平面内是否存在一点M,使以点C,D,M,N为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,说明理由.
(1)求点 的坐标与 的值;
(2)当点 恰好是 的中点时,求点 的坐标;
(3)连结 ,作点 关于直线 的对称点 ,当点 落在线段 上时,则点 的坐标为______ 直接写出答案
6.已知抛物线 与x轴有公共点.

2022年中考数学:几何专题复习之特殊四边形专题(较难)

2022年中考数学:几何专题复习之特殊四边形专题(较难)

2022年中考数学:几何专题复习之特殊四边形专题(较难)一.选择题1.如图,在▱ABCD中,AB=6,AD=8,将△ACD沿对角线AC折叠得到△ACE,AE与BC交于点F,则下列说法正确的是()A.当∠B=90°时,则EF=2B.当F恰好为BC的中点时,则▱ABCD的面积为12C.在折叠的过程中,△ABF的周长有可能是△CEF的2倍D.当AE⊥BC时,连接BE,四边形ABEC是菱形2.如图,E为正方形ABCD边CD上一点,连接BE,AC.若EC=1,2∠ABE=3∠ACB,则AB=()A.B.C.D.3.如图,点A、B在函数y=(x>0,k>0且k是常数)的图象上,且点A在点B的左侧过点A作AM⊥x轴,垂足为M,过点B作BN⊥y轴,垂足为N,AM与BN的交点为C,连接AB、MN.若△CMN和△ABC的面积分别为1和4,则k的值为()A.4 B.4C.D.64.如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB 的中点,DE,AB相交于点G.连接EF,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④△DBF≌△EFA.则正确结论的序号是()A.①③B.②④C.①③④D.②③④5.如图,在正方形ABCD中,AB=4,E为边BC的中点,P为BD的一个动点,则PC+PE 的最小值是()A.B.C.D.6.已知点M是平行四边形ABCD内一点(不含边界),设∠MAD=θ1,∠MBA=θ2,∠MCB=θ3,∠MDC=θ4.若∠AMB=110°,∠CMD=90°,∠BCD=60°.则()A.θ1+θ4﹣θ2﹣θ3=10°B.θ2+θ4﹣θ1﹣θ3=30°C.θ1+θ4﹣θ2﹣θ3=30°D.θ2+θ4﹣θ1﹣θ3=40°7.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.188.矩形ABCD与矩形CEFG如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH.若BC=EF=3,CD=CE=1,则GH=()A.B.C.2 D.二.填空题9.如图,▱ABCD的面积为32,E,F分别为AB、AD的中点,则△CEF的面积为.10.如图,正方形ABCD的边长为4,E为边AD上一动点,连接BE,CE,以CE为边向右侧作正方形CEFG.(1)若BE=5,则正方形CEFG的面积为;(2)连接DF,DG,则△DFG面积的最小值为.11.如图,菱形ABCD的边长为2,点E,F分别是边AD,CD上的两个动点,且满足AE+CF =BD=2,设△BEF的面积为S,则S的取值范围是.12.如图,在四边形ABCD中,AB=2,CD=6,E,F,M分别为边BC,AD和对角线BD的中点.连接EF,FM,则FM=;线段EF的最大值为.13.如图,在矩形ABCD中,AB=5,AD=7,连接BD,把线段BD绕点D逆时针方向旋转90°得线段DQ.在BC边上取点P,使BP=2,连接PQ交DC延长线于点E,则线段DE长为.14.在三角形ABC中,点D,E,F分别是BC,AB,AC的中点,AH⊥BC于点H,若∠DEF=50°,则∠CFH=.15.如图是一张三角形纸片,其中∠C=90°,∠A=30°,BC=3,从纸片上裁出一矩形,要求裁出的矩形的四个顶点都在三角形的边上,其面积为2,则该矩形周长的最小值=.16.已知:如图,在△ABC中,∠ACB=60°,AC=3,BC=5,分别以AB,AC为边向外侧作等边三角形ABM和等边三角形ACN,连接MN,D,E,F,G分别是MB,BC,CN,MN的中点,则四边形DEFG的周长为.17.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为.18.直线y=a分别与直线y=x和双曲线y=交于D、A两点,过点A、D分别作x轴的垂线段,垂足为点B,C.若四边形ABCD是正方形,则a的值为.19.如图,矩形ABCD中,E为CD上一点,F为AB上一点,分别沿AE,CF折叠,D,B两点刚好都落在矩形内一点P,且∠APC=120°,则AB:AD=.20.如图,矩形ABCD中,点G是AD的中点,GE⊥CG交AB于E,BE=BC,连接CE 交BG于F,则∠BFC等于.三.解答题21.如图①,已知正方形ABCD中,E,F分别是边AD,CD上的点(点E,F不与端点重合),且AE=DF,BE,AF交于点P,过点C作CH⊥BE交BE于点H.(1)求证:AF∥CH.(2)若AB=2,AE=2,试求线段PH的长.(3)如图②,连接CP并延长交AD于点Q,若点H是BP的中点,试求的值.22.如图,在矩形ABCD中,已知AB=4,BC=2,E为AB的中点,设点P是∠DAB平分线上的一个动点(不与点A重合).(1)证明:PD=PE.(2)连接PC,求PC的最小值.(3)设点O是矩形ABCD的对称中心,是否存在点P,使∠DPO=90°?若存在,请直接写出AP的长.23.当k值相同时,我们把正比例函数y=x与反比例函数y=叫做“关联函数”.(1)如图,若k>0,这两个函数图象的交点分别为A,B,求点A,B的坐标(用k表示);(2)若k=1,点P是函数y=在第一象限内的图象上的一个动点(点P不与B重合),设点P的坐标为(m,),其中m>0且m≠2.作直线PA,PB分别与x轴交于点C,D,则△PCD是等腰三角形,请说明理由;(3)在(2)的基础上,是否存在点P使△PCD为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.24.如图,矩形ABCD中,BC>AB,E是AD上一点,△ABE沿BE折叠,点A恰好落在线段CE上的点F处.(1)求证:CF=DE.(2)设=m.①若m=,试求∠ABE的度数;②设=k,试求m与k满足的关系.25.如图,正方形ABCD中,G是对角线BD上一个动点,连接AG,过G作GE⊥CD,GF⊥BC,E、F分别为垂足(1)求证:GE+GF=AB;(2)①写出GE、GF、AG三条线段满足的等量关系,并证明;②求当AB=6,AG=时,BG的长.26.如图,E是正方形ABCD的对角线BD上的一个动点(不与B、D两点重合),连接AE,作EF⊥AE于E,交直线CB于F.(1)如图1,当点F在线段CB上时,通过观察或测量,猜想△AEF的形状,并证明你的猜想;(2)如图2,当点F在线段CB的延长线上时,其它条件不变,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由;(3)若AE将△ABD的面积分成1:2的两部分,求AF:CF的值.27.如图,在正方形ABCD中,对角线AC上有一点E,连接BE,作EF⊥BE交AD于点F.过点E作直线CD的对称点G,连接CG,DG,EG.(1)求证:△BEC≌△DGC;(2)求证:四边形FEGD为平行四边形;(3)若AB=4,▱FEGD有可能成为菱形吗?如果可能,此时CE长;如果不可能,请说明理由.28.矩形ABCD中,AB=3,BC=4.点E,F在对角线AC上,点M,N分别在边AD,BC上.(1)如图1,若AE=CF=1,M,N分别是AD,BC的中点.求证:四边形EMFN为矩形.(2)如图2,若AE=CF=0.5,AM=CN=x(0<x<2),且四边形EMFN为矩形,求x的值.29.如图,在平行四边形ABCD中,点E为AC上一点,点E,点F关于CD对称.(1)若ED∥CF,①求证:四边形ECFD是菱形.②若点E为AC的中点,求证:AD=EF.(2)连接BD,BE,BF,若四边形ABCD是正方形,△BDF是直角三角形,求的值.30.(1)如图1,将一矩形纸片ABCD沿着EF折叠,CE交AF于点G,过点G作GH∥EF,交线段BE于点H.①判断EG与EH是否相等,并说明理由.②判断GH是否平分∠AGE,并说明理由.(2)如图2,如果将(1)中的已知条件改为折叠三角形纸片ABC,其它条件不变.①判断EG与EH是否相等,并说明理由.②判断GH是否平分∠AGE,如果平分,请说明理由;如果不平分,请用等式表示∠EGH,∠AGH与∠C的数量关系,并说明理由.参考答案一.选择题1.解:A、如图1中,∵∠B=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB,∵∠DAC=∠CAE,∴∠ACF=∠CAF,∴AF=CF,设AF=CF=x,在Rt△ABF中,则有x2=62+(8﹣x)2,解得x=,∴EF=8﹣=,故选项A不符合题意.B、如图2中,当BF=CF时,∵AF=CF=BF,∴∠BAC=90°,∴AC===2,∴S平行四边形ABCD=AB•AC=6×2=12,故选项B符合题意.C、在折叠过程中,△ABF与△EFC的周长相等,选项C不符合题意.D、如图3中,当AE⊥BC时,四边形ABEC是等腰梯形,选项D不符合题意.故选:B.2.解:如图,AC,BE交于点F,∵四边形ABCD是正方形,∴∠ACB=∠BAC=45°,∵2∠ABE=3∠ACB,∴∠ABE==67.5°,∴∠AFB=180°﹣∠ABF﹣∠BAC=180°﹣67.5°﹣45°=67.5°,∴∠ABE=∠AFB,∴AB=AF,∵AB∥CE,∴∠ABF=∠CEF=67.5°,∵∠CFE=∠AFB=67.5°,∴∠CFE=∠CEF,∴CE=CF,设AB=x,则AC=x+1,在Rt△ABC中,AC=,∴x+1=,解得x=+1,故选:B.3.解:设点M(a,0),N(0,b)∵AM⊥x轴,且点A在反比例函数y=(x>0,k>0且k是常数)的图象上,∴点A的坐标为(a,),BN⊥y轴,同理可得:B(,b)则点C(a,b)s△CMN==ab=1∴ab=2∵AC=,BC===4即,且ab=2(k﹣2)2=16解得:k=6,k=﹣2(舍去)故选:D.4.解:连接FC,如图所示:∵∠ACB=90°,F为AB的中点,∴FA=FB=FC,∵△ACE是等边三角形,∴EA=EC,∵FA=FC,EA=EC,∴点F、点E都在线段AC的垂直平分线上,∴EF垂直平分AC,即EF⊥AC;∵△ABD和△ACE都是等边三角形,F为AB的中点,∴DF⊥AB即∠DFA=90°,BD=DA=AB=2AF,∠DBA=∠DAB=∠EAC=∠ACE=60°.∵∠BAC=30°,∴∠DAC=∠EAF=90°,∴∠DFA=∠EAF=90°,DA⊥AC,∴DF∥AE,DA∥EF,∴四边形ADFE为平行四边形而不是菱形;∵四边形ADFE为平行四边形,∴DA=EF,AF=2AG,∴BD=DA=EF,DA=AB=2AF=4AG;在△DBF和△EFA中,,∴△DBF≌△EFA(SAS);综上所述:①③④正确,故选:C.5.解:∵四边形ABCD是正方形,∴点A和点C关于BD对称,BC=AB=4,∵E为边BC的中点,∴BE=BC=2,连接AE交BD于P,则此时,PC+PE的值最小,PC+PE的最小值=AE,∵AE===2,∴PC+PE的最小值是2,故选:A.6.解:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=60°,∴∠BAM=60°﹣θ1,∠DCM=60°﹣θ3,∴△ABM中,60°﹣θ1+θ2+110°=180°,即θ2﹣θ1=10°①,△DCM中,60°﹣θ3+θ4+90°=180°,即θ4﹣θ3=30°②,由②+①,可得(θ4﹣θ3)+(θ2﹣θ1)=40°,即θ2+θ4﹣θ1﹣θ3=40°,故选:D.7.解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×8=8,∴S阴=8+8=16,(本题也可以证明两个阴影部分的面积相等,由此解决问题)故选:C.8.解:延长GH交AD于M点,如图所示:∵四边形ABCD与四边形CEFG都是矩形,∴CD=CE=FG=1,BC=EF=CG=3,BE∥AD∥FG,∴DG=CG﹣CD=3﹣1=2,∠HAM=∠HFG,∵AF的中点H,∴AH=FH,在△AMH和△FGH中,,∴△AMH≌△FGH(ASA).∴AM=FG=1,MH=GH,∴MD=AD﹣AM=3﹣1=2,在Rt△MDG中,GM===2,∴GH=GM=,故选:A.二.填空题(共12小题)9.解:连接AC、DE、BD,如图:∵E为AB中点,∴S△BCE=S△ABC=S平行四边形ABCD=8,同理可得:S△CDF=8,∵F为AD中点,∴S AEF=S△AED=S△ABD=S平行四边形ABCD=4,∴S△CEF=S平行四边形ABCD﹣S△AEF﹣S△BCE﹣S△CDF=32﹣8﹣8﹣4=12;故答案为:12.10.解:(1)∵四边形ABCD是正方形,∴AB=AD=4,∠A=∠ADC=90°,∵BE=5,∴AE===3,∴DE=AD﹣AE=4﹣3=1,∴EC2=DE2+CD2=12+42=17,∴正方形CEFG的面积=EC2=17.故答案为17.(2)连接DF,DG.设DE=x,则CE=,∵S△DEC+S△DFG=S正方形ECGF,∴S△DFG=(x2+16)﹣×x×4=x2﹣2x+8=(x﹣2)2+6,∵>0,∴x=2时,△DFG的面积的最小值为6.故答案为6.11.解:∵菱形ABCD的边长为2,BD=2,∴△ABD和△BCD都为正三角形,∴∠BDE=∠BCF=60°,BD=BC,∵AE+DE=AD=2,而AE+CF=2,∴DE=CF,∴△BDE≌△BCF(SAS);∴∠DBE=∠CBF,BE=BF,∵∠DBC=∠DBF+∠CBF=60°,∴∠DBF+∠DBE=60°即∠EBF=60°,∴△BEF为正三角形;设BE=BF=EF=x,则S=•x•x•sin60°=x2,当BE⊥AD时,x最小=2×sin60°=,∴S最小=×()2=,当BE与AB重合时,x最大=2,∴S最大=×22=,∴≤S≤.故答案为:≤S≤.12.解:连接EM,∵E,F,M分别为边BC,AD和对角线BD的中点,∴FM=,EM=,当EF=EM+MF时,线段EF最大,即EF=1+3=4,故答案为:1;4.13.解:如图,过点Q作QH⊥CD于点H,∵四边形ABCD是矩形,∴AB=CD=5,AD=BC=7,∵BP=2,∴CP=5,∵把线段BD绕点D逆时针方向旋转90°得线段DQ,∴BD=DQ,∠BDQ=90°,∴∠BDC+∠QDC=90°,且∠BDC+∠DBC=90°,∴∠QDC=∠DBC,且BD=DQ,∠BCD=∠DHQ=90°,∴△BDC≌△DQH(AAS)∴DC=HQ=5,BC=DH=7,∴CH=DH﹣CD=2,∵CP=HQ=5,∠PEC=∠QEH,∠PCE=∠QHE,∴△PCE≌△QHE(AAS)∴CE=EH,且CH=2,∴CE=EH=1,∴DE=DC+CE=5+1=6,故答案为:6.14.解:∵点D、E、F分别是BC、AB、AC的中点,∴EF∥BC,DE∥AC(三角形的中位线的性质)又∵EF∥BC,∠DEF=50°,∴∠DEF=∠EDB=50°(两直线平行,内错角相等),∵DE∥AC,∴∠EDB=∠FCH=50°(两直线平行,同位角相等),又∵AH⊥BC,∴△AHC是直角三角形,∵HF是斜边上的中线,∴HF=AC=FC,∴∠FHC=∠FCH=50°.∴∠CFH=180°﹣50°﹣50°=80°,故答案为:80°.15.解:①当矩形的其中一边在AC上时,如图1所示:设CE=x,则BE=3﹣x,∵∠A=30°,∠C=90°,∴DE=(3﹣x),∴S矩形DECF=CE•DE=x(3﹣x)=2,整理得:x2﹣3x+2=0,解得x1=1,x2=2,当x=1时,该矩形周长=(CE+DE)×2=(1+2)×2=4+2,当x=2时,该矩形周长=(CE+DE)×2=2+4,∵(4+2)﹣(2+4)=2﹣2=2(﹣1)>0,∴矩形的周长最小值为2+4;②当矩形的其中一边在AB上时,如图2所示:设CF=x,则BF=3﹣x,∵∠A=30°,∠C=90°,∴FG=2x,EF=(3﹣x),∴S矩形DECF=FG•EF=2x•(3﹣x)=2,整理得:x2﹣3x+2=0,解得x1=1,x2=2,所以和(1)的结果一致,综上所述:矩形周长的最小值为2+4.故答案为:2+4.16.解:连接BN、CM,作NP⊥BC于P,如图所示:∵△ABM和△ACN是等边三角形,∴AB=AM,AN=AC=CN=3,∠BAM=∠CAN=∠ACN=60°,∴∠BAM+∠BAC=∠CAN+∠BAC,即∠CAM=∠NAB,在△CAM和△NAB中,,∴△CAM≌△NAB(SAS),∴CM=NB,∵D,E,F,G分别是MB,BC,CN,MN的中点,∴DG是△BMN的中位线,EF是△BCN的中位线,DE是△BCM的中位线,∴DG∥BN,DG=BN,EF∥BN,EF=BN,DE=CM,∴DG∥EF,DG=EF,DG=DE,∴四边形DEFG是平行四边形,又∵DG=DE,∴四边形DEFG是菱形,∴DE=DG=EF=FG=BN,∵∠BAC=60°,∴∠NCP=180°﹣∠ACB﹣∠ACN=60°,∵NP⊥BC,∴∠CNP=90°﹣60°=30°,∴PC=CN=,PN=PC=,∴BP=BC+PC=5+=,∴BN===7,∴DE=DG=EF=FG=BN=,∴四边形DEFG的周长=4×=14,故答案为:14.17.解:∵∠1、∠2、∠3、∠4的外角的角度和为220°,∴∠1+∠2+∠3+∠4+220°=4×180°,∴∠1+∠2+∠3+∠4=500°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣500°=40°,故答案为:40°.18.解:∵直线y=a分别与直线y=x和双曲线y=交于点D、A,∴A(,a),D(2a,a),当直线在x轴的正半轴时,∵四边形ABCD是正方形,∴AB=AD,即2a﹣=a,解得a=﹣1或a=1.当直线在x轴的负半轴时,同理可得,2a﹣=﹣a,解得a=±.故答案为:±1或±.19.解:如图,设AD=BC=x.过点P作PH⊥AC于H.由翻折的性质可知,PA=PC=BC=x,∵∠APC=120°,PH⊥AC,∴AH=CH,∠APH=∠CPH=60°,∴AC=2AH=2•PA•sin60°=x,∵四边形ABCD是矩形,∴∠D=90°,∴CD=AB===x,∴==,故答案为:1.20.解:∵BE=BC,∠ABC=90°,∴△BCE是等腰直角三角形,∴∠BCE=∠BEC=45°,∵GE⊥CG,∴∠AGE+∠CGD=90°,∵∠DCG+∠CGD=90°,∴∠AGE=∠DCG,又∵∠A=∠D=90°,∴△AGE∽△DCG,∴,∵G是AD的中点,∴AG=DG,∴,∵∠D=∠CGE=90°,∴△CDG∽△CGE,∴∠DCG=∠GCE=(90°﹣45°)=22.5°,∵G是AD的中点,∴由矩形的对称性可知∠ABG=∠DCG=22.5°,由三角形的外角性质得,∠BFC=∠ABG+∠BEC=22.5°+45°=67.5°.故答案为:67.5°.三.解答题(共10小题)21.(1)证明:在正方形ABCD中,AB=DA,∠EAB=∠D=90°,又∵AE=DF,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,又∵∠DAF+∠FAB=∠EAB=90°,∴∠ABE+∠FAB=90°,∴∠APB=90°,∴AF⊥BE,又∵CH⊥BE,∴AF∥CH;(2)解:在正方形ABCD中,∠EAB=90°,AB=2,AE=2,∴BE===4,∵S△ABE=AB•AE=BE•AP,∴AP==,在Rt△ABP中,BP===3,∵∠APB=∠ABC=90°,∴∠ABP+∠HBC=90°,∠HCB+∠HBC=90°,∴∠ABP=∠HCB,∵CH⊥BE,∴∠HCB=90°,又∵AB=BC,∴△ABP≌△BCH(AAS),∴BH=AP=,∴PH=BP﹣BH=BP﹣AP=3﹣.(3)解:在正方形ABCD中,AB=BC,AD∥BC,∵CH⊥BP,PH=BH,∴CP=BC,∴∠CBP=∠CPB,∵∠CPB=∠QPE,∠CBP=∠QEP,∴∠QPE=∠QEP,在Rt△APE中,∠QAP=∠QPA,∴QE=QP=QA,在四边形QABC中,设QP=a,CP=b,则AB=BC=b,AQ=a,QC=a+b,∵DC2+DQ2=CQ2,∴b2+(b﹣a)2=(a+b)2,∴b2=4ab,即b=4a,∴=4.22.(1)证明:∵四边形ABCD为矩形,∴∠DAB=90°,∵AP平分∠DAB,∴∠DAP=∠EAP=45°,在△DAP和△EAP中,,∴△DAP≌△EAP(SAS)∴PD=PE;(2)解:如图1,作CP′⊥AP′于P′,则P′C最小,∵AB∥CD,∴∠DFA=∠EAP,∵∠DAP=∠EAP,∴∠DAP=∠DFA=45°,∴FC=DF=AD=2,∠P′FC=45°,∴P′C=FC×=,∴PC的最小值为;(3)解:如图2,∵DF=FC,OA=OC,∴OF∥AD,∴∠DFO=180°﹣∠ADF=90°,∴当点P与点F重合时,∠DPO=90°,此时,AP==2,当点P在AF上时,作PG⊥AD于G,PH⊥AB于H,∵AP平分∠DAB,PG⊥AD,PH⊥AB,∴PG=PH,设PG=PH=a,由勾股定理得,DP2=(2﹣a)2+a2,OP2=(2﹣a)2+(1﹣a)2,OD2=5,当∠DPO=90°时,DP2+OP2=OD2,即(2﹣a)2+a2+(2﹣a)2+(1﹣a)2=5,解得,a1=2(舍去),a2=,当a=时,AP=,综上所述,∠DPO=90°时,AP=2或.23.解:(1)∵两个函数图象的交点分别为A,B,∴,∴x2=k2,∴x=±k,∴点A坐标为(﹣k,﹣1),点B坐标(k,1),(2)∵k=1,∴点A坐标为(﹣1,﹣1),点B坐标(1,1),∵点P的坐标为(m,),∴直线PA解析式为:y=+,当y=0时,x=m﹣1,∴点C(m﹣1,0)同理可求直线PB解析式为:y=﹣x+,当y=0时,x=m+1,∴点D(m+1,0)∴PD==,PC==,∴PC=PD,∴△PCD是等腰三角形;(3)如图,过点P作PH⊥CD于H,∵△PCD为直角三角形,PH⊥CD,∴CD=2PH,∴m+1﹣(m﹣1)=2×∴m=1,∴点P(1,1),∵点B(1,1),且点P是函数y=在第一象限内的图象上的一个动点(点P不与B 重合),∴不存在点P使△PCD为直角三角形.24.(1)证明:由折叠的性质可知,∠BEA=∠BEF,∵AD∥BC,∴∠BEA=∠EBC,∠BCF=∠CED,∴∠BEF=∠EBC,∴BC=CE,∵∠BFC=∠D=90°,∴△BFC≌△CDE(AAS),∴CF=DE.(2)解:①由翻折可知BA=BF,∠BFE=∠A=90°,在Rt△BFC中,sin∠BCF====,∴∠BCF=60°,∴∠CBF=30°,∵∠ABC=90°,∴∠ABF=90°﹣30°=60°,∵∠ABE=∠FBE,∴∠ABE=∠ABF=30°.②∵=k,=m,∴AE=kAD,AB=mAD,∴DE=AD﹣AE=AD(1﹣k),在Rt△CED中,CE2=CD2+DE2,即AD2=(mAD)2+[AD(1﹣k)]2,整理得,m2=2k﹣k2.25.证明:(1)∵四边形ABCD为正方形,∴∠BCD=90°,∠ABD=∠CDB=∠CBD=45°,AB=BC=CD,∴△ABD是等腰直角三角形,∴AB=BD,∵GE⊥CD,GF⊥BC,∴△DGE和△BGF是等腰直角三角形,∴GE=DG,GF=BG,∴GE+GF=(DG+BG)=BD,∴GE+GF=AB;(2)解:GE2+GF2=AG2,理由如下:连接CG,如图所示:在△ABG和△CBG中,,∴△ABG≌△CBG(SAS),∴AG=CG,∵GE⊥CD,GF⊥BC,∠BCD=90°,∴四边形EGFC是矩形,∴CE=GF,∴GE2+CE2=CG2,∴GE2+GF2=AG2;设GE=x=CF,则GF=6﹣x=BF,由勾股定理得:x2+(6﹣x)2=()2,∴x=1或x=5当x=1时,∴BF=GF=5,∴BG===5,当x=5时,∴BF=GF=1,∴BG===,26.解:(1)△AEF是等腰直角三角形,理由如下:过点E作直线MN∥AB,交AD于M,交BC于N,如图1所示:∵四边形ABCD是正方形,BD是对角线,且MN∥AB,∴四边形ABNM和四边形MNCD都是矩形,△NEB和△MDE都是等腰直角三角形,∴AM=BN,∠AME=∠ENF=90°,EN=BN,∴AM=EN,∵EF⊥AE,∴∠AEM+∠FEN=∠AEM+∠EAM=90°,∴∠EAM=∠FEN,在△AME和△ENF中,,∴△AME≌△ENF(ASA),∴AE=EF,∵AE⊥EF,∴△AEF是等腰直角三角形;(2)(1)中的结论还成立,理由如下:过点E作直线MN∥DC,交AD于M,交BC于N,如图2所示:由(1)同理可得:AM=BN=EN,∠EAM=∠FEN,∵∠AME=∠ENF=90°,在△AME和△ENF中,,∴△AME≌△ENF(ASA);∴AE=EF,∵AE⊥EF,∴△AEF是等腰直角三角形;(3)分两种情况:①△ADE的面积:△ABE的面积=1:2时,如图1所示:则BE=2DE,设正方形ABCD的边长为3a,则BD=3a,由(1)得:AE=EF,ME=NF,DM=CN,△AEF、△NEB和△MDE都是等腰直角三角形,∴AF=AE,BE=BN=2a,DE=ME=a,∴AM=BN=2a,CN=NF=DM=ME=a,∴CF=NF+CN=2a,AE===a,∴AF=AE=a,∴==;②△ADE的面积:△ABE的面积=2:1时,如图2所示:则DE=2BE,设正方形ABCD的边长为3a,则BD=3a,同(1)得:AF=AE,BE=BN=a,DE=ME=2a,∴AM=BN=a,CN=NF=DM=ME=2a,∴CF=NF+CN=4a,AE===a,∴AF=AE=a,∴==;综上所述,若AE将△ABD的面积分成1:2的两部分,则AF:CF的值为或.27.(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠BCA=∠DCA=45°,AD∥DC,∵点E与点G关于直线CD对称,∴EC=GC,∠DCG=∠DCA=45°,EG⊥CD,∴∠BCE=∠DCG,在△BEC和△DGC中,,∴△BEC≌△DGC(SAS);(2)证明:∵EG⊥CD,AD⊥DC,AD∥BC,∴EG∥DF∥BC,∴∠EGC=∠GEC=∠ACB=45°,∴∠DGE=∠DGC﹣45°,∵BE⊥EF,∴∠FEG=360°﹣90°﹣45°﹣∠BEC=225°﹣∠BEC,∵△BEC≌△DGC,∴∠DGC=∠BEC,∴∠DGE+∠FEG=∠DGC﹣45°+225°﹣∠BEC=180°,∴EF∥DG,∴四边形FEGD为平行四边形;(3)解:过E作MN⊥AD于N,MN⊥BC于M,如图所示:则∠EBM+∠BEM=90°,∵EF⊥BE,∴∠BEM+∠FEN=90°,∴∠EBM=∠FEN,∵BM=AN,AN=EN,∴BM=EN,在△BME和△ENF中,,∴△BME≌△ENF(ASA),∴BE=EF,∵四边形ABCD是正方形,∴B、D关于AC对称,∴BE=DE,∴DE=EF,当四边形GD为菱形时,DF=EF,∴△DEF是等边三角形,∴∠EBM=∠FEN=∠FED=30°,设CM=x,则EM=x,∵∠EBM=30°,∴BM=x,∵四边形ABCD为正方形,AB=4,∴BC=BM+EM=(+1)x=4,解得:x=2(﹣1),∴CE=x=2﹣2.28.(1)证明:连接MN,如图1所示:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠B=90°,∴∠EAM=∠FCN,AC===5,∵M,N分别是AD,BC的中点,∴AM=DM=BN=CN,AM∥BN,∴四边形ABNM是平行四边形,又∵∠B=90°,∴四边形ABNM是矩形,∴MN=AB=3,在△AME和△CNF中,,∴△AME≌△CNF(SAS),∴EM=FN,∠AEM=∠CFN,∴∠MEF=∠NFE,∴EM∥FN,∴四边形EMFN是平行四边形,又∵AE=CF=1,∴EF=AC﹣AE﹣CF=3,∴MN=EF,∴四边形EMFN为矩形.(2)解:连接MN,作MH⊥BC于H,如图2所示:则四边形ABHM是矩形,∴MH=AB=3,BH=AM=x,∴HN=BC﹣BH﹣CN=4﹣2x,∵四边形EMFN为矩形,AE=CF=0.5,∴MN=EF=AC﹣AE﹣CF=4,在Rt△MHN中,由勾股定理得:32+(4﹣2x)2=42,解得:x=2±,∵0<x<2,∴x=2﹣.29.(1)证明:①如解图1,∵点E,点F关于CD对称.∴DE=DF;CE=CF,OE=OF,CD⊥EF,∴∠ECO=∠FCO,∵ED∥CF,∴∠FCO=∠EDO,∴∠ECO=∠EDO,∴DE=EC,∴DE=DE=EC=CF,∴四边形ECFD是菱形.②由得①得四边形ECFD是菱形,∴EO=OF=,OD=OC,又∵AE=EC,∴OF=.∴AD=EF(2)解:四边形ABCD是正方形,△BDF是直角三角形,则有以下情况:Ⅰ.第一种情况:若∠BFD=90°时,E、F、C三点重合,BF=BE,即.Ⅱ.第二种情况:若∠BDF=90°时,如解2,∵四边形ABCD为正方形,∴∠BDC=∠DBC=45°,BE=DE,∴∠FDC=45°,∵E,点F关于CD对称,∴∠EDC=45°,即E为AC与BD的交点,EF⊥CD,∴EF∥BC,∴∠DEF=∠BDC=45°,∴△EFD为等腰直角三角形,∴DF=DE=BE,在Rt△BDF中,BF==,∴即=.Ⅲ.点E为AC上一点,所以∠DBF=90°不存在.综上所述:若四边形ABCD是正方形,△BDF是直角三角形,的值为1或.30.解:(1)①EG=EH,理由如下:如图,∵四边形ABCD是矩形∴AD∥BC∴AF∥BE,且GH∥EF∴四边形GHEF是平行四边形∴∠GHE=∠GFE∵将一矩形纸片ABCD沿着EF折叠,∴∠1=∠GEF∵AF∥BE,GH∥EF∴∠1=∠GFE,∠HGE=∠GEF∴∠GEF=∠HGE∴∠GHE=∠HGE∴HE=GE②GH平分∠AGE理由如下:∵AF∥BE∴∠AGH=∠GHE,且∠GHE=∠HGE ∴∠AGH=∠HGE∴GH平分∠AGE(2)①EG=GH理由如下,如图,∵将△ABC沿EF折叠∴∠CEF=∠C'EF,∠C=∠C'∵GH∥EF∴∠GEF=∠HGE,∠FEC'=∠GHE ∴∠GHE=∠HGE∴EG=EH②∠AGH=∠HGE+∠C理由如下:∵∠AGH=∠GHE+∠C'∴∠AGH=∠HGE+∠C。

中考数学复习专题特殊平行四边形

中考数学复习专题特殊平行四边形

中考(Kao)数学复习专题特殊平行四边形小(Xiao)题)1.下列性质中,菱形具有(You)而平行四边形不具有的性质是()A.对边平(Ping)行且相等B.对角线互(Hu)相平分C.对角线互相(Xiang)垂直 D.对角互补2.能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角3.矩形具有而菱形不一定具有的性质是()A.对边分别相等B.对角分别相等C.对角线互相平分 D.对角线相等4.以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD5.顺次连接四边形ABCD各边中点所成的四边形为菱形,那么四边形ABCD的对角线AC 和BD只需满足的条件是()A.相等B.互相垂直C.相等且互相垂直 D.相等且互相平分6.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A.12cm B.10cm C.7cm D.5cm7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16 B.15 C.14 D.138.如(Ru)图,E,G,F,H分(Fen)别是矩形(Xing)ABCD四条边上的(De)点,EF⊥GH,若(Ruo)AB=2,BC=3,则(Ze)EF:GH=()A.2:3 B.3:2 C.4:9 D.无法确(Que)定9.如(Ru)图:点P是Rt△ABC斜边AB上的一点,PE⊥AC于E,PF⊥BC于F,BC=15,AC=20,则线段EF的最小值为()A.12 B.6 C.12.5 D.2510.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°11.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.55°B.50°C.45°D.35°12.如(Ru)图,矩形(Xing)ABCD中(Zhong),O为(Wei)AC中点(Dian),过点(Dian)O的(De)直线分别与(Yu)AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()A.1 B.2 C.3 D.4评卷人得分二.填空题(共6小题)13.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于度.14.如图,在平面直角坐标系中(Zhong),菱形(Xing)ABCD在第一象(Xiang)限内,边(Bian)BC与(Yu)x轴(Zhou)平行,A,B两点(Dian)的纵坐标分别为(Wei)3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为.15.如图:在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE 垂直AC交AD于点E,则DE的长是.16.平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.下列结论:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是.17.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,∠1=15°,则∠2=.18.如图所示(Shi),在矩形(Xing)ABCD中(Zhong),AB=6,AD=8,P是(Shi)AD上(Shang)的动点,PE⊥AC,PF⊥BD于(Yu)F,则(Ze)PE+PF的值(Zhi)为.评卷人得分三.解答题(共6小题)19.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥CD,CE∥AB,连接DE 交AC于点O.(1)证明:四边形ADCE为菱形.(2)BC=6,AB=10,求菱形ADCE的面积.20.已知,如图,BD为平行四边形ABCD的对角线,O为BD的中点,EF⊥BD于点O,与AD、BC分别交于点E、F.试判断四边形BFDE的形状,并证明你的结论.21.如图,在△ABC中,AB=AC,点D是BC的中点,DE⊥AC于点E,DG⊥AB于点G,EK⊥AB于点K,GH⊥AC于点H、EK和GH相交于点F.求证:GE与FD互相垂直平分.22.如图(Tu):在△ABC中(Zhong),CE、CF分(Fen)别平分∠ACB与它的(De)邻补角∠ACD,AE⊥CE于(Yu)E,AF⊥CF于(Yu)F,直(Zhi)线(Xian)EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.23.如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;(3)求四边形EFPH的面积.24.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.2017---2018学年中(Zhong)考数学复习专题(Ti)--《特殊平行(Xing)四边形》参考答案与试题解(Jie)析一.选择(Ze)题(共(Gong)12小(Xiao)题)1.下列性质(Zhi)中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等 B.对角线互相平分C.对角线互相垂直 D.对角互补【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选C.2.能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角【解答】解:∵对角线互相垂直平分的四边形是菱形.∴A、B、D都不正确.∵对角相等的四边形是平行四边形,而对角线互相垂直的平行四边形是菱形.故C正确.故选C.3.矩形具有而菱形不一定具有的性质是()A.对边分别相等B.对角分别相等C.对角线互相平分 D.对角线相等【解答】解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;菱(Ling)形的性质有:①菱形的四条(Tiao)边都相等,且对边平行,②菱(Ling)形的对角相等,③菱形的对角(Jiao)线互相平分、垂直,且每一条对角线平分一组对角;∴矩形具有而菱形不一定具有的性质(Zhi)是对角线相等,故(Gu)选(Xuan)D.4.以下条件不(Bu)能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD【解答】解:如图:A、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴四边形ABCD是矩形,故本选项错误;B、∵OA=OB=OC=OD,∴AC=BD,∴四边形ABCD是平行四边形,∴四边形ABCD是矩形,故本选项错误;C、∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项错误;D、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,根据OA=OC,OB=OD不能推出平行四边形ABCD是矩形,故本选项正确;故选D.5.顺(Shun)次连接四边形(Xing)ABCD各边(Bian)中点所成的四边形为菱形,那么四边形(Xing)ABCD的(De)对角线(Xian)AC和(He)BD只需满足的条件(Jian)是()A.相等B.互相垂直C.相等且互相垂直 D.相等且互相平分【解答】解:因为原四边形的对角线与连接各边中点得到的四边形的关系:①原四边形对角线相等,所得的四边形是菱形;②原四边形对角线互相垂直,所得的四边形是矩形;③原四边形对角线既相等又垂直,所得的四边形是正方形;④原四边形对角线既不相等又不垂直,所得的四边形是平行四边形.因为顺次连接四边形ABCD各边中点所成的四边形为菱形,所以四边形ABCD的对角线AC和BD相等.故选A.6.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A.12cm B.10cm C.7cm D.5cm【解答】解:如图:∵菱形ABCD中BD=8cm,AC=6cm,∴OD=BD=4cm,OA=AC=3cm,在直角三角形AOD中AD===5cm.故选D.7.如图,在(Zai)平行四边形(Xing)ABCD中,用直尺(Chi)和圆规作∠BAD的(De)平分线(Xian)AG交(Jiao)BC于(Yu)点(Dian)E,以A为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16 B.15 C.14 D.13【解答】解:连结EF,AE与BF交于点O,如图,∵AO平分∠BAD,∴∠1=∠2,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,同理:AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∴四边形ABEF是菱形,∴AE⊥BF,OB=OF=6,OA=OE,在Rt△AOB中,由勾股定理得:OA===8,∴AE=2OA=16.故选:A.8.如(Ru)图,E,G,F,H分别(Bie)是矩形(Xing)ABCD四(Si)条边上的点,EF⊥GH,若(Ruo)AB=2,BC=3,则(Ze)EF:GH=()A.2:3 B.3:2 C.4:9 D.无法(Fa)确定【解(Jie)答】解:过F作FM⊥AB于M,过H作HN⊥BC于N,则∠4=∠5=90°=∠AMF∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∠A=∠D=90°=∠AMF,∴四边形AMFD是矩形,∴FM∥AD,FM=AD=BC=3,同理HN=AB=2,HN∥AB,∴∠1=∠2,∵HG⊥EF,∴∠HOE=90°,∴∠1+∠GHN=90°,∵∠3+∠GHN=90°,∴∠1=∠3=∠2,即∠2=∠3,∠4=∠5,∴△FME∽△HNG,∴==∴EF:GH=AD:CD=3:2.故(Gu)选(Xuan)B.9.如(Ru)图:点(Dian)P是(Shi)Rt△ABC斜(Xie)边(Bian)AB上的一(Yi)点,PE⊥AC于E,PF⊥BC于F,BC=15,AC=20,则线段EF的最小值为()A.12 B.6 C.12.5 D.25【解答】解:如图,连接CP.∵∠C=90°,AC=3,BC=4,∴AB===25,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFPE是矩形,∴EF=CP,由垂线段最短可得CP⊥AB时,线段EF的值最小,=BC•AC=AB•CP,此时,S△ABC即(Ji) ×20×15=×25•CP,解(Jie)得(De)CP=12.故(Gu)选(Xuan)A.10.如图(Tu),在菱形(Xing)ABCD中(Zhong),∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故(Gu)选(Xuan)D.11.如图(Tu),在菱形(Xing)ABCD中(Zhong),∠A=110°,E,F分别(Bie)是边(Bian)AB和(He)BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.55°B.50°C.45°D.35°【解答】解:延长PF交AB的延长线于点G.如图所示:在△BGF与△CPF中,,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴EF=PG,∵PF=PG,∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即(Ji)∠BEF=∠FPC,∵四(Si)边形(Xing)ABCD为(Wei)菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分(Fen)别为(Wei)AB,BC的中(Zhong)点,∴BE=BF,∠BEF=∠BFE=(180°﹣70°)=55°,∴∠FPC=55°;故(Gu)选:A.12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平(Ping)分,∵O为(Wei)AC中(Zhong)点,∴BD也(Ye)过(Guo)O点(Dian),∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三(San)角形,∴OB=BC=OC,∠OBC=60°,在(Zai)△OBF与△CBF中∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,易证△AOE≌△COF,∴OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确,∵△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错(Cuo)误.∴②错(Cuo)误,∵∠OMB=∠BOF=90°,∠OBF=30°,∴MB=,OF=,∵OE=OF,∴MB:OE=3:2,∴④正(Zheng)确;故(Gu)选:C.二(Er).填空题(共(Gong)6小(Xiao)题)13.如图(Tu),菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C 落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于75度.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在(Zai)△DEC中(Zhong),∠DEC=180°﹣(∠CDE+∠C)=75°.故答案(An)为:75.14.如图,在平面直角坐标系中(Zhong),菱形(Xing)ABCD在第一象(Xiang)限内,边(Bian)BC与(Yu)x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为4.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱(Ling)形(Xing)ABCD=底(Di)×高(Gao)=2×2=4,故(Gu)答案为(Wei)4.15.如图(Tu):在矩形(Xing)ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是3.【解答】解:如图,连接CE,,设DE=x,则AE=8﹣x,∵OE⊥AC,且点O是AC的中点,∴OE是AC的垂直平分线,∴CE=AE=8﹣x,在Rt△CDE中,x2+42=(8﹣x)2解得x=3,∴DE的(De)长是(Shi)3.故(Gu)答案为:3.16.平(Ping)行四边形(Xing)ABCD中,对(Dui)角线(Xian)AC、BD相交(Jiao)于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.下列结论:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是①②④.【解答】解:令GF和AC的交点为点P,如图所示:∵E、F分别是OC、OD的中点,∴EF∥CD,且EF=CD,∵四边形ABCD为平行四边形,∴AB∥CD,且AB=CD,∴∠FEG=∠BGE(两直线平行,内错角相等),∵点G为AB的中点,∴BG=AB=CD=FE,在△EFG和△GBE中,,∴△EFG≌△GBE(SAS),即②成立,∴∠EGF=∠GEB,∴GF∥BE(内错角相等,两直线平行),∵BD=2BC,点(Dian)O为平行四边形对角线交(Jiao)点,∴BO=BD=BC,∵E为(Wei)OC中(Zhong)点,∴BE⊥OC,∴GP⊥AC,∴∠APG=∠EPG=90°∵GP∥BE,G为(Wei)AB中(Zhong)点,∴P为(Wei)AE中(Zhong)点,即AP=PE,且GP=BE,在△APG和△EGP中,,∴△APG≌△EPG(SAS),∴AG=EG=AB,∴EG=EF,即①成立,∵EF∥BG,GF∥BE,∴四边形BGFE为平行四边形,∴GF=BE,∵GP=BE=GF,∴GP=FP,∵GF⊥AC,∴∠GPE=∠FPE=90°在(Zai)△GPE和(He)△FPE中(Zhong),,∴△GPE≌△FPE(SAS),∴∠GEP=∠FEP,∴EA平(Ping)分∠GEF,即(Ji)④成(Cheng)立.故(Gu)答案为:①②④.17.如(Ru)图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,∠1=15°,则∠2=30°.【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,OB=OD,OA=OC,AC=BD,∴OB=OC,OB=OA,∴∠OCB=∠OBC,∵AB=BE,∠ABE=90°,∴∠BAE=∠AEB=45°,∵∠1=15°,∴∠OCB=∠AEB﹣∠EAC=45°﹣15°=30°,∴∠OBC=∠OCB=30°,∴∠AOB=30°+30°=60°,∵OA=OB,∴△AOB是(Shi)等边三角形,∴AB=OB,∵∠BAE=∠AEB=45°,∴AB=BE,∴OB=BE,∴∠OEB=∠EOB,∵∠OBE=30°,∠OBE+∠OEB+∠BEO=180°,∴∠OEB=75°,∵∠AEB=45°,∴∠2=∠OEB﹣∠AEB=30°,故(Gu)答案为:30°.18.如图所示(Shi),在矩形(Xing)ABCD中(Zhong),AB=6,AD=8,P是(Shi)AD上(Shang)的动点,PE⊥AC,PF⊥BD于(Yu)F,则PE+PF的值为.【解答】解:连接OP,∵四边形ABCD是矩形,∴∠DAB=90°,AC=2AO=2OC,BD=2BO=2DO,AC=BD,∴OA=OD=OC=OB,∴S △AOD =S △DOC =S △AOB =S △BOC =S 矩(Ju)形(Xing)ABCD =×6×8=12,在(Zai)Rt △BAD 中,由勾股(Gu)定理得:BD===10,∴AO=OD=5,∵S △APO +S △DPO =S △AOD , ∴×AO ×PE +×DO ×PF=12,∴5PE +5PF=24, PE +PF=,故答(Da)案为:.三.解(Jie)答题(共(Gong)6小(Xiao)题) 19.如(Ru)图,在(Zai)Rt △ABC 中(Zhong),∠ACB=90°,D 为(Wei)AB 的中(Zhong)点,AE ∥CD ,CE ∥AB ,连(Lian)接(Jie)DE 交(Jiao)AC 于点O .(1)证明:四边形ADCE 为菱形.(2)BC=6,AB=10,求菱形ADCE的面积.【解答】证明:(1)∵在Rt△ABC中,∠ACB=90°,D为AB中点,∴CD=AB=AD,又∵AE∥CD,CE∥AB∴四边形ADCE是平行四边形,∴平行四边形ADCE是菱形;(2)在Rt△ABC中,AC===8.∵平行四边形ADCE是菱形,∴CO=OA,又∵BD=DA,∴DO是△ABC的中位线,∴BC=2DO.又∵DE=2DO,∴BC=DE=6,===24.∴S菱(Ling)形(Xing)ADCE20.已知(Zhi),如图,BD为平(Ping)行四边形(Xing)ABCD的对(Dui)角线,O为(Wei)BD的(De)中点,EF⊥BD于点O,与AD、BC分别交于点E、F.试判断四边形BFDE的形状,并证明你的结论.【解答】答:四边形BFDE的形状是菱形,理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∵∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF,又∵ED∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴▱BEDF是菱形.21.如图,在△ABC中,AB=AC,点D是BC的中点,DE⊥AC于点E,DG⊥AB于点G,EK⊥AB于点K,GH⊥AC于点H、EK和GH相交于点F.求证:GE与FD互相垂直平分.【解(Jie)答】证(Zheng)明:∵DE⊥AC,DG⊥AB,EK⊥AB,GH⊥AC,∴∠DGB=∠DEC=90°,EK∥DG,DE∥GH,∴四(Si)边形(Xing)DEFG是平行四边(Bian)形,∵AB=AC,∴∠B=∠C,在(Zai)△DGB和(He)△DEC中(Zhong),,∴△DGB≌△DEC(AAS),∴DG=DE,∵四边形DEFG是平行四边形,∴四边形DEFG是菱形,∴GE与FD互相垂直平分.22.如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE于E,AF⊥CF于F,直线EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.【解(Jie)答】(1)证(Zheng)明:∵AE⊥CE于(Yu)E,AF⊥CF于(Yu)F,∴∠AEC=∠AFC=90°,又(You)∵CE、CF分别(Bie)平分∠ACB与它的(De)邻补角∠ACD,∴∠BCE=∠ACE,∠ACF=∠DCF,∴∠ACE+∠ACF=(∠BCE+∠ACE+∠ACF+∠DCF)=×180°=90°,∴三个角为直角的(De)四边形AECF为矩形.(2)结论:MN∥BC且MN=BC.证明:∵四边形AECF为矩形,∴对角线相等且互相平分,∴NE=NC,∴∠NEC=∠ACE=∠BCE,∴MN∥BC,又∵AN=CN(矩形的对角线相等且互相平分),∴N是AC的中点,若M不是AB的中点,则可在AB取中点M1,连接M1N,则(Ze)M1N是(Shi)△ABC的中位(Wei)线,MN∥BC,而(Er)MN∥BC,M1即(Ji)为点(Dian)M,。

2019年中考数学《特殊的四边形》总复习训练含答案解析

2019年中考数学《特殊的四边形》总复习训练含答案解析

特殊的四边形(矩形、菱形)一、选择题1.如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是()A.B.C.D.不确定2.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是()A.20°B.40°C.80°D.100°3.如图,矩形ABCD中,AB=8,BC=6,E、F是AC上的三等分点,则S△BEF为()A.8 B.12 C.16 D.244.把一张长方形的纸片按如图所示的方式折叠,EM、FM为折痕,折叠后的C点落在B′M 或B′M的延长线上,那么∠EMF的度数是()A.85°B.90°C.95°D.100°5.如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的四边形有()A.3对 B.4对 C.5对 D.6对6.如图,矩形ABCD的周长为68,它被分成7个全等的矩形,则矩形ABCD的面积为()A.98 B.196 C.280 D.2847.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O 重合,若BC=3,则折痕CE的长为()A.B.C.D.68.如图所示,把一长方形纸片沿MN折叠后,点D,C分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD′等于()A.144°B.126°C.108° D.72°9.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()10.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°.现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为()A.4 B.3 C.2 D.111.如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A′、D′处,则整个阴影部分图形的周长为()A.18cm B.36cm C.40cm D.72cm12.下列识别图形不正确的是()A.有一个角是直角的平行四边形是矩形B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形D.对角线互相平分且相等的四边形是矩形13.四边形ABCD的对角线相交于点O,下列条件不能判定它是矩形的是()A.AB=CD,AB∥CD,∠BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°,∠BCD+∠ADC=180°D.∠BAD=∠BCD,∠ABC=∠ADC=90°14.直角三角形中,两条直角边边长分别为12和5,则斜边中线的长是()15.将一个矩形的纸对折两次,沿图中虚线将一角剪掉再打开后,得到的图形为()A.B.C.D.16.菱形一条对角线长为8m,周长为20m,则其面积为()A.40m2B.20m2C.48m2D.24m217.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形18.已知DE∥AC、DF∥AB,添加下列条件后,不能判断四边形DEAF为菱形的是()A.AD平分∠BAC B.AB=AC且BD=CD C.AD为中线D.EF⊥AD二、填空题19.矩形ABCD中,对角线AC=10cm,AB:BC=3:4,则它的周长是cm.20.矩形ABCD的两条对角线相交于点O,如果矩形的周长是34cm,又△AOB的周长比△ABC的周长少7cm,则AB=cm,BC=cm.21.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=110°,则∠OAB=度.22.如图所示,把两个大小完全一样的矩形拼成“L”形图案,则∠FAC=度,∠FCA=度.23.如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F,线段DF 与图中的哪一条线段相等?先将猜想出的结论填写在下面的横线上,然后再加以证明.即DF=.(写出一条线段即可)24.将矩形ABCD沿AE折叠,得到如图所示图形.若∠CED′=56°,则∠AED的大小是°.25.菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为.26.已知菱形的两条对角线长为6cm和8cm,菱形的周长是cm,面积是cm2.27.如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是.28.已知菱形的两条对角线的长分别是4cm和8cm,则它的边长为cm.29.若四边形ABCD是平行四边形,使四边形ABCD是菱形,请补充条件(写一个即可).30.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为.31.已知四边形ABCD为菱形,∠BAD=60°,E为AD中点,AB=6cm,P为AC上任一点.求PE+PD的最小值是.32.如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是.33.已知四边形ABCD为平行四边形,要使四边形ABCD为菱形,还应添加条件.34.用两张对边平行的纸条交叉重叠放在一起,则四边形ABCD为;两张纸条互相垂直时,四边形ABCD为;若两张纸条的宽度相同,则四边形ABCD为.三、解答题35.如图1中的矩形ABCD,沿对角线AC剪开,再把△ABC沿着AD方向平行移动,得到图2.在图2中,△ADC≌△C′BA′,AC∥A′C′,A′B∥DC.除△DAC与△C′BA′外,指出有哪几对全等的三角形(不能添加辅助线和字母)?选择其中一对加以证明.36.如图,在▱ABCD的纸片中,AC⊥AB,AC与BD相交于点O,将△ABC沿对角线AC 翻转180°,得到△AB′C.(1)以A,C,D,B′为顶点的四边形是矩形吗(请填“是”、“不是”或“不能确定”);=cm2.(2)若四边形ABCD的面积S=12cm2,求翻转后纸片重叠部分的面积,即S△ACE37.如图,四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,那么MN⊥BD成立吗?试说明理由.38.如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A点开始按ABCDEFCGA的顺序沿菱形的边循环运动,行走2010厘米后停下,则这只蚂蚁停在点.39.如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.特殊的四边形(矩形、菱形)参考答案与试题解析一、选择题1.如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是()A.B.C.D.不确定【考点】矩形的性质;相似三角形的判定与性质.【专题】压轴题;动点型.【分析】过P点作PE⊥AC,PF⊥BD,由矩形的性质可证△PEA∽△CDA和△PFD∽△BAD,根据和,即和,两式相加得PE+PF=,即为点P到矩形的两条对角线AC和BD的距离之和.【解答】解:法1:过P点作PE⊥AC,PF⊥BD∵矩形ABCD∴AD⊥CD∴△PEA∽△CDA∴∵AC=BD==5∴…①同理:△PFD∽△BAD∴∴…②∴①+②得:∴PE +PF=即点P 到矩形的两条对角线AC 和BD 的距离之和是.法2:连结OP . ∵AD=4,CD=3, ∴AC==5,又∵矩形的对角线相等且互相平分, ∴AO=OD=2.5cm ,∴S △APO +S △POD =×2.5•PE +×2.5•PF=×2.5(PE +PF )=×3×4, ∴PE +PF=.故选:A .【点评】根据矩形的性质,结合相似三角形求解.2.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是( )A .20°B .40°C .80°D .100° 【考点】矩形的性质. 【专题】计算题.【分析】根据矩形的性质,得△BOC 是等腰三角形,再由等腰三角形的性质进行答题. 【解答】解:图形中∠1=40°,∵矩形的性质对角线相等且互相平分,∴OB=OC,∴△BOC是等腰三角形,∴∠OBC=∠1,则∠AOB=2∠1=80°.故选C.【点评】本题主要考查了矩形的性质,对角线相等且互相平分,矩形被对角线分成四个等腰三角形.3.如图,矩形ABCD中,AB=8,BC=6,E、F是AC上的三等分点,则S△BEF为()A.8 B.12 C.16 D.24【考点】矩形的性质.【专题】压轴题.【分析】要求S△BEF只要求出底边EF以及EF边上的高就可以,高可以根据△ABC的面积得到,EF=AC,根据勾股定理得到AC,就可以求出EF的长,从而求出△EFG的面积.【解答】解:S△ABC=×8×6=24.又E、F是AC上的三等分点.∴S△BEF =S△ABC=8.故选A.【点评】本题运用了勾股定理,已知直角三角形的两直角边,求斜边上的高,这类题的解决方法是需要熟记的内容.4.把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B′M 或B′M 的延长线上,那么∠EMF 的度数是( )A .85°B .90°C .95°D .100°【考点】翻折变换(折叠问题).【分析】根据折叠的性质:对应角相等,对应的线段相等,可得.【解答】解:根据图形,可得:∠EMB′=∠EMB ,∠FMB′=∠FMC ,∵∠FMC +∠FMB′+∠EMB′+∠BME=180°,∴2(∠EMB′+∠FMB′)=180°,∵∠EMB′+∠FMB′=∠FME ,∴∠EMF=90°.故选B .【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.5.如图,在矩形ABCD 中,EF ∥AB ,GH ∥BC ,EF 、GH 的交点P 在BD 上,图中面积相等的四边形有( )A .3对B .4对C .5对D .6对【考点】矩形的性质.【专题】压轴题.【分析】本题考查了矩形的性质,得出△EPD ≌△HDP ,则S △EPD =S △HDP ,通过对各图形的拼凑,得到的结论.【解答】解:在矩形ABCD 中,∵EF ∥AB ,AB ∥DC ,∴EF ∥DC ,则EP ∥DH ;故∠PED=∠DHP ;同理∠DPH=∠PDE ;又PD=DP ;所以△EPD ≌△HDP ;则S △EPD =S △HDP ;同理,S △GBP =S △FPB ;则(1)S 梯形BPHC =S △BDC ﹣S △HDP =S △ABD ﹣S △EDP =S 梯形ABPE ;(2)S □AGPE =S 梯形ABPE ﹣S △GBP =S 梯形BPHC ﹣S △FPB =S □FPHC ;(3)S 梯形FPDC =S □FPHC +S △HDP =S □AGPE +S △EDP =S 梯形GPDA ;(4)S □AGHD =S □AGPE +S □HDPE =S □PFCH +S □PHDE =S □EFCD ;(5)S □ABFE =S □AGPE +S □GBFP =S □PFCH +S□GBFP =S □GBCH故选C .【点评】本题是一道结论开放题,掌握矩形的性质,很容易得到答案.6.如图,矩形ABCD 的周长为68,它被分成7个全等的矩形,则矩形ABCD 的面积为( )A .98B .196C .280D .284【考点】矩形的性质.【专题】计算题.【分析】等量关系为:5个小矩形的宽等于2个小矩形的长;6个小矩形的宽加一个小矩形的长等于大长方形周长的一半.【解答】解:设小矩形宽为x ,长为y .则大矩形长为5x 或2y ,宽为x +y .依题意有x +y +5x==34;5x=2y .解得:x=4,y=10.则大矩形长为20,宽为14.所以大矩形面积为280.故选C .【点评】本题考查了矩形的面积和一种很重要的思想:方程思想.7.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O 重合,若BC=3,则折痕CE的长为()A.B.C.D.6【考点】翻折变换(折叠问题);勾股定理.【分析】先根据图形翻折变换的性质求出AC的长,再由勾股定理及等腰三角形的判定定理即可得出结论.【解答】解:∵△CEO是△CEB翻折而成,∴BC=OC,BE=OE,∠B=∠COE=90°,∴EO⊥AC,∵O是矩形ABCD的中心,∴OE是AC的垂直平分线,AC=2BC=2×3=6,∴AE=CE,在Rt△ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3,在Rt△AOE中,设OE=x,则AE=3﹣x,AE2=AO2+OE2,即(3﹣x)2=32+x2,解得x=,∴AE=EC=3﹣=2.故选:A.【点评】本题考查的是翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.8.如图所示,把一长方形纸片沿MN折叠后,点D,C分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD′等于()A.144°B.126°C.108° D.72°【考点】翻折变换(折叠问题);矩形的性质.【专题】计算题.【分析】根据∠AMD′=36°和折叠的性质,得∠NMD=∠NMD′=72°;根据平行线的性质,得∠BNM=∠NMD=72°;根据折叠的性质,得∠D′=∠D=90°;根据四边形的内角和定理即可求得∠NFD′的值.【解答】解:∵∠AMD′=36°,∴∠NMD=∠NMD′=72°.∵AD∥BC,∴∠BNM=∠NMD=72°.又∵∠D′=∠D=90°,∴∠NFD′=360°﹣72°×2﹣90°=126°.故选B.【点评】此题综合运用了折叠的性质、平行线的性质、四边形的内角和定理.9.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A.1 B.2 C.D.【考点】菱形的性质;勾股定理.【专题】计算题.【分析】根据题意可知,AC=2BC,∠B=90°,所以根据勾股定理可知AC2=AB2+BC2,即(2BC)2=32+BC2,从而可求得BC的长.【解答】解:∵AC=2BC,∠B=90°,∴AC2=AB2+BC2,∴(2BC)2=32+BC2,∴BC=.故选:D.【点评】此题主要考查学生对菱形的性质及勾股定理的理解及运用.10.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°.现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为()A.4 B.3 C.2 D.1【考点】翻折变换(折叠问题).【分析】连BH,根据折叠的性质得到∠1=∠2,EB=EH,BH⊥EG,则∠EBH=∠EHB,又点E是AB的中点,得EH=EB=EA,于是判断△AHB为直角三角形,且∠3=∠4,根据等角的余角相等得到∠1=∠3,因此有∠1=∠2=∠3=∠4.【解答】解:连BH,如图,∵沿直线EG将纸片折叠,使点B落在纸片上的点H处,∴∠1=∠2,EB=EH,BH⊥EG,而∠1>60°,∴∠1≠∠AEH,∵EB=EH,∴∠EBH=∠EHB,又∵点E是AB的中点,∴EH=EB=EA,∴△AHB为直角三角形,∠AHB=90°,∠3=∠4,∴∠1=∠3,∴∠1=∠2=∠3=∠4.故选B.【点评】本题考查了折叠的性质:折叠前后的两个图形全等,即对应角相等,对应线段相等.也考查了若三角形一边上的中线等于这边的一半,则此三角形为直角三角形.11.如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A′、D′处,则整个阴影部分图形的周长为()A.18cm B.36cm C.40cm D.72cm【考点】翻折变换(折叠问题).【专题】压轴题.【分析】延长A1E交CD于点G,由题意知GE=EH,FH=GF,则阴影部分的周长与原矩形的周长相等.【解答】解:延长A1E交CD于点G,由题意知,GE=EH,FH=GF,四边形EHD1A1≌四边形EGDA,∴AD=A1D1,AE=A1E,DG=D1H,FH=FG,∴阴影部分的周长=矩形的周长=(12+6)×2=36cm.故选:B.【点评】本题利用了翻折的性质:对应图形全等,对应边相等.12.下列识别图形不正确的是()A.有一个角是直角的平行四边形是矩形B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形D.对角线互相平分且相等的四边形是矩形【考点】矩形的判定.【专题】证明题.【分析】矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形,据此判定.【解答】解:A、有一个角是直角的平行四边形是矩形,正确;B、有三个角是直角的四边形是矩形,正确;C、对角线相等的四边形不一定是矩形,对角线相等的平行四边形才是矩形,错误;D、对角线互相平分且相等的四边形是矩形,正确.故选C.【点评】本题主要考查的是矩形的判定定理.(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形,据此判定.13.四边形ABCD的对角线相交于点O,下列条件不能判定它是矩形的是()A.AB=CD,AB∥CD,∠BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°,∠BCD+∠ADC=180°D.∠BAD=∠BCD,∠ABC=∠ADC=90°【考点】矩形的判定.【分析】矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.据此判断.【解答】解:A、一个角为直角的平行四边形为矩形,故A正确.B、矩形的对角线平分且相等,故B正确.C、∠BCD+∠ADC=180°,但∠BCD不一定与∠ADC相等,根据矩形的判定定理,故C不正确.D、因为∠BAD=∠BCD,故AB∥CD,又因为,∠ABC=∠ADC=90°,根据矩形的判定(有一个角是直角的平行四边形是矩形),故D正确.故选C.【点评】本题考查的是矩形的判定定理,但考生应注意的是由矩形的判定引申出来的各图形的判定.难度一般.14.直角三角形中,两条直角边边长分别为12和5,则斜边中线的长是()A.26 B.13 C.30 D.6.5【考点】勾股定理;直角三角形斜边上的中线.【分析】由勾股定理可以求出斜边,再根据直角三角形中斜边上的中线等于斜边的一半可以求出斜边中线的长.【解答】解:由勾股定理知,斜边c==13,∵直角三角形中斜边上的中线等于斜边的一半知,∴斜边中线的长=×13=6.5.故选D.【点评】本题考查了勾股定理和直角三角形的性质:斜边上的中线等于斜边的一半.15.将一个矩形的纸对折两次,沿图中虚线将一角剪掉再打开后,得到的图形为()A.B.C.D.【考点】剪纸问题.【分析】根据题意知,对折实际上就是对称,对折两次的话,剪下应有4条边,并且这4条边还相等,从而可以得到剪下的图形展开后一定是菱形.【解答】解:根据题意折叠剪图可得,剪下的四边形四条边相等,根据四边形等的四边形是菱形可得剪下的图形是菱形,故选:A.【点评】此题考查了剪纸问题,关键是掌握菱形的判定方法:四边形等的四边形是菱形.16.菱形一条对角线长为8m,周长为20m,则其面积为()A.40m2B.20m2C.48m2D.24m2【考点】菱形的性质.【专题】几何图形问题.【分析】菱形对角线互相垂直平分,所以OA2+OB2=AB2,根据已知可得AB=5,BO=4,利用勾股定理求得AO,即可求得AC的长,根据AC、BD即可求菱形ABCD的面积,即可解题.【解答】解:根据题意可得:BD=8m,则BO=DO=4m,∵菱形周长为20m,∴AB=5m,∵菱形对角线互相垂直平分,∴OA2+OB2=AB2,∴AO==3(m),∴AC=6(m),故菱形的面积S=×6×8=24(m2).故选D..【点评】本题考查了菱形对角线互相垂直平分的性质,菱形面积的计算,本题中根据勾股定理求AO的值是解题的关键.17.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形【考点】菱形的判定;作图—复杂作图.【分析】关键菱形的判定定理(有四边都相等的四边形是菱形)判断即可.【解答】解:由图形作法可知:AD=AB=DC=BC,∴四边形ABCD是菱形,故选:B.【点评】本题主要考查对作图﹣复杂作图,菱形的判定等知识点的理解和掌握,能熟练地运用性质进行推理是解此题的关键.18.已知DE∥AC、DF∥AB,添加下列条件后,不能判断四边形DEAF为菱形的是()A.AD平分∠BAC B.AB=AC且BD=CD C.AD为中线D.EF⊥AD【考点】菱形的判定.【专题】几何图形问题.【分析】首先根据题意画出图形,然后由DE∥AC、DF∥AB,判定四边形DEAF为平行四边形,再由菱形的判定定理求解即可求得答案;注意掌握排除法在选择题中的应用.【解答】解:如图,∵DE∥AC、DF∥AB,∴四边形DEAF为平行四边形,A、∵AD平分∠BAC,DF∥AB,∴∠BAD=∠CAD,∠BAD=∠ADF,∴∠CAD=∠ADF,∴AF=DF,∴四边形DEAF为菱形;B、∵AB=AC且BD=CD,∴AD平分∠BAC,同理可得:四边形DEAF为菱形;C、∵由AD为中线,得不到AD平分∠BAC,证不出四边形DEAF的邻边相等,∴不能判断四边形DEAF为菱形;D、∵AD⊥EF,∴▱DEAF是菱形.故选C.【点评】此题考查了菱形的判定.此题难度不大,注意掌握数形结合思想的应用.二、填空题19.矩形ABCD中,对角线AC=10cm,AB:BC=3:4,则它的周长是28cm.【考点】矩形的性质;勾股定理.【专题】计算题.【分析】根据矩形的一组邻边和一条对角线组成一个直角三角形,解题即可.【解答】解:根据矩形的性质得到△ABC是直角三角形,因为对角线AC=10cm,AB:BC=3:4,根据勾股定理得到BC2=AC2﹣(BC)2=100﹣BC2解得BC=8,AB=6,故它的周长=2×8+2×6=28cm.故答案为28.【点评】本题考查对矩形的性质以及勾股定理的运用.20.矩形ABCD的两条对角线相交于点O,如果矩形的周长是34cm,又△AOB的周长比△ABC的周长少7cm,则AB=10cm,BC=7cm.【考点】矩形的性质;勾股定理.【专题】计算题.【分析】根据矩形的对边相等以及所给的三角形的周长可得到和所求线段相关的两个式子,进而求解.【解答】解:设AB=a,BC=b.∴2OA=2OB=AC=,2a+2b=34,即a+b=17.由题意可知△AOB的周长+7=△ABC的周长.∴AB+OA+OB+7=AB+BC+AC.∴a++7=a+b+.即b=7,a=17﹣7=10.即AB=10,BC=7.故答案为,10,7.【点评】本题综合考查了矩形的性质及勾股定理的运用.21.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=110°,则∠OAB=35度.【考点】矩形的性质;三角形内角和定理.【专题】计算题.【分析】根据矩形对角线的性质得到△OAB的形状,进而求得底角的度数.【解答】解:∵矩形的对角线相等且互相平分.∴OA=OC.∴△AOB是等腰三角形.∴∠OAB=∠OBA.∵∠OAB+∠OBA+∠AOB=180°.∴2∠OAB+110°=180°.∴∠OAB=35°.故答案为35.【点评】本题考查矩形的性质以及三角形内角和定理.22.如图所示,把两个大小完全一样的矩形拼成“L”形图案,则∠FAC=90度,∠FCA= 45度.【考点】矩形的性质;全等三角形的判定与性质.【专题】计算题.【分析】两个大小完全一样的矩形拼成“L”形图案所构成的△AFG≌△CAB,所以AF=AC,∠FAC=90°,∠FCA=45度.【解答】解:由已知△AFG≌△CAB,∴∠AFG=∠CAB,AF=AC∵∠AFG+∠FAG=90°,∴∠CAB+∠FAG=90°,∴∠FAC=90°.又∵AF=AC,∴∠FCA=(180°﹣90°)×=45°.故答案为:90;45.【点评】根据矩形的性质得到全等三角形,进而求得△AFC是等腰直角三角形.23.如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F,线段DF 与图中的哪一条线段相等?先将猜想出的结论填写在下面的横线上,然后再加以证明.即DF=BE.(写出一条线段即可)【考点】矩形的性质;全等三角形的判定与性质.【专题】几何图形问题.【分析】根据矩形的性质得出AD∥BC,推出∠AFD=∠B,推出∠DAF=∠AEB,根据全等三角形的判定推出△AFD≌△EBA即可.【解答】解:DF=BE,理由是:∵四边形ABCD是矩形,DF⊥AE,∴∠B=∠AFD=90°,AD∥BC,∴∠DAF=∠AEB,在△AFD和△EBA中∴△AFD≌△EBA(AAS),∴DF=BE,故答案为:DF=BE.【点评】本题考查了全等三角形的性质和判定,平行线的性质,全等三角形的性质和判定的应用,关键是推出△AFD≌△EBA,注意:矩形的四个角都是直角,矩形的对边平行.24.将矩形ABCD沿AE折叠,得到如图所示图形.若∠CED′=56°,则∠AED的大小是62°.【考点】翻折变换(折叠问题).【专题】压轴题;操作型.【分析】易得∠DED′的度数,除以2即为所求角的度数.【解答】解:∵∠CED′=56°,∴∠DED′=180°﹣56°=124°,∵∠AED=∠AED′,∴∠AED=∠DED′=62°.故答案为:62.【点评】考查翻折变换问题;用到的知识点为:翻折前后得到的角相等.25.菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为40.5.【考点】菱形的性质.【分析】根据相邻两内角的度数比为1:5,可求出一个30°角,根据周长为36,求出菱形的边长,根据直角三角形里30°角的性质求出高,从而求出面积.【解答】解:作AE⊥BC于E点,∵其相邻两内角的度数比为1:5,∴∠B=180°×=30°,∵菱形ABCD的周长为36,∴AB=BC=×36=9.∴AE=×9=.∴菱形的面积为:BC•AE=9×=40.5.故答案为:40.5.【点评】本题考查菱形的性质,菱形的邻角互补,四边相等.26.已知菱形的两条对角线长为6cm和8cm,菱形的周长是20cm,面积是24cm2.【考点】菱形的性质;勾股定理.【分析】根据菱形的面积等于两对角线乘积的一半可得到其面积,根据菱形的性质可求得其边长,从而可得到其周长.【解答】解:如图,四边形ABCD是菱形,BD,AC分别是其对角线且BD=6,AC=8,求其面积和周长.∵四边形ABCD是菱形,BD,AC分别是其对角线,∴BD⊥AC,BO=OD=3cm,AO=CO=4cm,∴AB=5cm,∴菱形的周长=5×4=20cm;S菱形=×6×8=24cm2.故本题答案为:20cm;24cm2.【点评】此题主要考查学生对菱形的性质及勾股定理的理解及运用.27.如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是AC⊥BD.【考点】中点四边形.【分析】根据三角形的中位线定理,可以证明所得四边形的两组对边分别和两条对角线平行,所得四边形的两组对边分别是两条对角线的一半,再根据平行四边形的判定就可证明该四边形是一个平行四边形;所得四边形要成为矩形,则需有一个角是直角,故对角线应满足互相垂直.【解答】解:如图,∵E,F分别是边AB,BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形;要使四边形EFGH是矩形,则需EF⊥FG,即AC⊥BD;故答案为:AC⊥BD.【点评】此题主要考查了三角形的中位线定理的运用.同时熟记此题中的结论:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形.28.已知菱形的两条对角线的长分别是4cm和8cm,则它的边长为2cm.【考点】菱形的性质.【专题】计算题.【分析】根据菱形的性质及勾股定理即可求得其边长的值.【解答】解:菱形的两条对角线分别是4cm,8cm,得到两条对角线相交所构成的直角三角形的两直角边是×4=2和×8=4,那么根据勾股定理得到它的斜边即菱形的边长=2cm.故答案为2【点评】本题考查菱形的性质以及勾股定理.29.若四边形ABCD是平行四边形,使四边形ABCD是菱形,请补充条件此题答案不唯一,如AC⊥BD或AB=AD等(写一个即可).【考点】菱形的判定.【专题】开放型.【分析】由四边形ABCD是平行四边形,根据菱形的判定定理求解即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴当AC⊥BD或AB=AD时,四边形ABCD是菱形.故答案为:此题答案不唯一,如AC⊥BD或AB=AD等.【点评】此题考查了菱形的判定.此题难度不大,注意熟记定理是解此题的关键.30.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为或.【考点】菱形的性质.【专题】压轴题;分类讨论.【分析】根据题意得,应分P与A在BD的同侧与异侧两种情况进行讨论.【解答】解:当P与A在BD的异侧时:连接AP交BD于M,∵AD=AB,DP=BP,∴AP⊥BD(到线段两端距离相等的点在垂直平分线上),在直角△ABM中,∠BAM=30°,∴AM=AB•cos30°=3,BM=AB•sin30°=3,∴PM==,∴AP=AM+PM=4;当P与A在BD的同侧时:连接AP并延长AP交BD于点MAP=AM﹣PM=2;当P与M重合时,PD=PB=3,与PB=PD=2矛盾,舍去.AP的长为4或2.故答案为4或2.【点评】本题注意到应分两种情况讨论,并且注意两种情况都存在关系AP⊥BD,这是解决本题的关键.31.已知四边形ABCD为菱形,∠BAD=60°,E为AD中点,AB=6cm,P为AC上任一点.求PE+PD的最小值是3.【考点】轴对称﹣最短路线问题;菱形的性质.【专题】几何图形问题.【分析】根据菱形的性质,可得AC是BD的垂直平分线,可得AC上的点到D、B点的距离相等,连接BE交AC与P,可得答案.【解答】解:∵菱形的性质,∴AC是BD的垂直平分线,AC上的点到B、D的距离相等.连接BE交AC于P点,PD=PB,PE+PD=PE+PB=BE,在Rt△ABE中,由勾股定理得BE==3,故答案为:3.【点评】本题考查了轴对称,对称轴上的点到线段两端点的距离相等是解题关键.32.如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是5.【考点】轴对称﹣最短路线问题;勾股定理;菱形的性质.【专题】计算题.【分析】AC交BD于O,作E关于AC的对称点N,连接NF,交AC于P,则此时EP+FP 的值最小,根据菱形的性质推出N是AD中点,P与O重合,推出PE+PF=NF=AB,根据勾股定理求出AB的长即可.【解答】解:AC交BD于O,作E关于AC的对称点N,连接NF,交AC于P,则此时EP+FP的值最小,∴PN=PE,∵四边形ABCD是菱形,∴∠DAB=∠BCD,AD=AB=BC=CD,OA=OC,OB=OD,AD∥BC,∵E为AB的中点,∴N在AD上,且N为AD的中点,∵AD∥CB,。

中考数学 专题23《特殊四边形》练习题

中考数学 专题23《特殊四边形》练习题

《特殊四边形》练习题一.选择题1.如图,在正方形ABCD的外侧,作等边三角形ADE. AC,BE相交于点F,则∠BFC为( )A.45° B.55° C.60° D.75°2.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分3.下列命题中,真命题是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形4.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°5.(2016·四川泸州)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.6.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF二.填空题7. (2016·内蒙古包头)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.8. 如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.9. 如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为.10. 如图,矩形ABCD中,AD=5,AB=7. 点E为DC上一个动点,把△ADE沿AE折叠,当点D 的对应点D'落在∠ABC的角平分线上时,DE的长为 .11. 如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=13a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=13A1B2,….依次规律继续下去,则正方形A n B n C n D n的面积为.三.解答题12.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.13.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.14.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE= ;②连接OD,OE,当∠A的度数为时,四边形ODME是菱形.15.(2016·陕西)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.答案:1.C2.B3.C4.C5.B6.B7. 22.5°8. 2﹣2 9. (4,4)10. 52或53.11. 25()9n a12. 解:(1)∵正方形ABCD∴AD=B A,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ13. (1)解:结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.(2)证明:如图2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF.(3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在RT△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=2,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,14. (1)证明:∵∠ABC=90°,AM=MC,∴BM=AM=MC,∴∠A=∠ABM,∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=180°,又∠ADE+∠MDE=180°,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME.(2)①由(1)可知,∠A=∠MDE,∴DE∥AB,∴=,∵A D=2DM,∴DM:MA=1:3,∴DE=AB=×6=2.故答案为2.②当∠A=60°时,四边形ODME是菱形.理由:连接OD、OE,∵OA=OD,∠A=60°,∴△AOD是等边三角形,∴∠AOD=60°,∵DE∥AB,∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°,∴△ODE,△DEM都是等边三角形,∴OD=OE=EM=DM,∴四边形OEMD是菱形.故答案为60°.15. 解:(1)如图1,△ADC即为所求;(2)存在,理由:作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,交BC于G,交CD于H,连接FG,EH,则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,∴AF′=6,AE′=8,∴E′F′=10,EF=2,∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,∴在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小,最小值为2+10;(3)能裁得,理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,∴∠1=∠2,在△AEF与△BGF中,,∴△AEF≌△BGF,∴AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x,∴x2+(3﹣x)2=()2,解得:x=1,x=2(不合题意,舍去),∴AF=BG=1,BF=AE=2,∴DE=4,CG=5,连接EG,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,此时,四边形EFGH′是要想裁得符合要求的面积最大的,∴C在线段EG的垂直平分线设,∴点F,O,H′,C在一条直线上,∵EG=,。

2023年中考数学 几何专题:特殊的平行四边形(含答案)

2023年中考数学 几何专题:特殊的平行四边形(含答案)

2023中考数学 几何专题:特殊的平行四边形(含答案)例1 矩形的性质(1)如图,l m ∥,矩形ABCD 的顶点B 在直线m 上,则α=∠________度.(2)矩形边长为10和15,其中一内角平分线分长边为两部分,这两部分的长为( )A .6和9B .5和10C .4和11D .7和8(3) 如图,矩形ABCD中,120AOD BC ∠=︒=,,则下列结论:①AOB △是等边三角形②130∠=︒③3cm AB =④6cm AC =⑤2ABCD S =矩形.其中正确的有( )A .①②③B .①②③④C .②③④⑤D .①②③④⑤(4) 如图,矩形ABCD 中,O 是两对角线的交点,AE BD ⊥,垂足为E.若2OD OE AE =,则DE 的长为________.【答案】(1)30;(2)B ;(3)D ;(4)3例2 矩形模型 (1)如图,已知矩形ABCD 中,对角线AC 、BD 相交于点O ,AE BD ⊥,垂足为E ,:3:1DAE BAE ∠∠=,则EAC ∠的度数为_______.α60°lm DCBAO 1DC BA第14题图E OCBDAA B(2)如图所示,矩形ABCD 内一点P 到A 、B 、C 的长分别是2、3、4,则PD 的长为_______.(3)已知,如图,在矩形ABCD 中,P 是边AD 上的动点,PE AC ⊥于E ,PF BD ⊥于F ,如果3AB =,4AD =,那么PE+PF=_______.【答案】(1)45︒;(2(3)125例3 矩形的判定(1)在四边形ABCD 中,AB DC =,AD BC =.请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是________.(写出一种即可)【答案】AC BD =或AB BC ⊥或90ABC =︒∠(答案不唯一)(2)如图,D 是△ABC 的边AB 上一点,CN ∥AB ,DN 交AC 于点M ,若MA=MC ,∠BAN=90°,求证:四边形ADCN 是矩形.证明:∵CN ∥AB , ∴∠DAC=∠NCA , 在△AMD 和△CMN 中,∵∠DAC =∠NCA ,MA =MC ,∠AMD =∠CMN ∴△AMD ≌△CMN (ASA ), ∴AD=CN . 又∵AD ∥CN ,∴四边形ADCN 是平行四边形. 又∵∠BAN=90度,∴四边形ADCN 是矩形.(3)如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 分别是DAB ∠、ABC ∠、BCD ∠、CDA ∠的平分PDCBAABCDPEF线,AQ 与BN 交于P ,CN 与DQ 交于M ,证明:四边形PQMN 是矩形.【答案】∵四边形ABCD 为平行四边形∴AB CD ∥,AD BC ∥∵AQ 、BN 分别是DAB ∠、ABC ∠的平分线 ∴180BAD ABC ∠+∠=︒ ∴90QPN ∠=︒同理90PQM QMN MNP ∠=∠=∠=︒ ∴四边形PQMN 是矩形.例4 (1)如图,已知菱形ABCD 的两条对角线相交于点O ,若6AC =,4BD =,则菱形ABCD 的周长是( )A .24B .16C.D.(2)如图,已知菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为( ) A .2.4cmB .4.8cmC .5cmD .9.6cm(3)如图,在边长为2的菱形ABCD 中,∠A=60°,DE ⊥AB ,DF ⊥BC ,则△DEF 的周长为_______(4)如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若70B =︒∠,则AED ∠的大小为( )NMQPDCBAODC BAA .60︒B .55︒C .65︒D .70︒ (5)如图,在菱形ABCD 中,80BAD ∠=︒,AB 的垂直平分线交对角线AC 于点E ,点F 为垂足,连接DE ,则CDE ∠=( )A .80︒B .70︒C .65︒D .60︒(6)如图,在菱形ABCD 中,4AB =,60BAD ∠=︒,点P 是对角线AC 上的一个动点,点E 是AB 边上的中点,则PB PE +的最小值为( )A .2B.C. D .4【答案】(1)C ;(2)B ;(3)(4)B ;(5)D ;(6)B能力提升例5 菱形的判定(1)已知:如图,平行四边形的对角线、相交于点,且,,求证:平行四边形是菱形;ABCDEHFABCDEABCD AC BD O 10AB =5AO =BO =ABCD【答案】∵在中,,, ∴ ∴是直角三角形∴平行四边形是菱形.AOB △10AB =5AO=BO =222AB AO BO =+AOB △AC BD ⊥ABCD(2)如图,ABC ∆中,90ACB ∠=︒,AD 是BAC ∠的平分线,交BC 于D ,CH 是AB 边上的高,交AD 于F ,DE AB ⊥于E ,求证:四边形CDEF 是菱形.【答案】∵∠ACB=90°,AD 是∠CAB 的平分线,DE ⊥AB , ∴DC=DE ,∠CAD=∠EAD ,∠CDF+∠CAD=90°, ∵CH 是AB 边上的高, ∴CH ⊥AB ,∴CH ∥DE ,∠AFH+∠EAD=90°, ∴∠CDF=∠AFH , ∵∠CFD=∠AFH , ∴∠CDF=∠CFD , ∴CF=DC , ∴CF=DE ,∴四边形CDEF 是平行四边形, ∴四边形CDEF 是菱形.例6 (1)如图,在正方形ABCD 中,E 是对角线BD 上任意一点,过E 作EF ⊥BC 于F ,作EG ⊥CD 于G ,若正方形ABCD 的周长为m ,则四边形EFCG 的周长为(2)如图,AC 为正方形ABCD 的对角线,E 为AC 上一点,联结EB ,ED ,当126BED ∠=°时,EDA ∠的度数为( )A .54°B .27°C .36°D .18°(3)已知正方形ABCD ,以AB 为边构造等边ABP ∆,那么DCP ∠=HF DECBAEDCB A【答案】(1)2m;(2)D ;(3)15°或75° 例7 下列说法不正确的是( ) A .有一个角是直角的菱形是正方形 B .两条对角线相等的菱形是正方形 C .对角线互相垂直的矩形是正方形D .四条边都相等的四边形是正方形【答案】D练1 (1)如图,矩形ABCD 中,3AB =,两条对角线AC 、BD 所夹的钝角为120︒,则对角线BD 的长为________(2) 矩形ABCD 的对角线AC 、BD 交于O ,如果ABC ∆的周长比AOB ∆的周长大10cm ,则边AD 的长是 .【答案】(1)6 ;(2)10cm练2 (1)下列说法不能判定四边形是矩形的是( ) A .三个角是直角的四边形 B .四个角都相等的四边形 C .对角线相等的平行四边形 D .对角线垂直且相等的四边形 【答案】D(2)已知:如图,M 为▱ABCD 的AD 边上的中点,且MB=MC , 求证:▱ABCD 是矩形.证明:∵四边形ABCD 是平行四边形, ∴AB=CD .∵AM=DM ,MB=MC , ∴△ABM ≌△DCM . ∴∠A=∠D . ∵AB ∥CD ,∴∠A+∠D=180°. ∴∠A=90°.∴▱ABCD 是矩形.练3 (1)如图:在菱形ABCD 中,AC=6,BD=8,则菱形的边长为_______;BC 上的高为_____(2)菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较长的对角线的长度为 【答案】(1)5、245;(2)练4 如图.矩形的对角线相交于点.,. ⑴ 求证:四边形是菱形;⑵ 若,菱形的面积为ABCD 的面积.【答案】⑴ ∵, ∴四边形是平行四边形 ∵四边形是矩形∴(矩形对角线相等且互相平分)∴四边形是菱形(邻边相等的平行四边形是菱形)⑵ABCD S练5 四边形ABCD 是正方形,延长BC 至E ,使CE AC =,连结AE 交CD 于F ,那么AFC ∠的度数为________.【答案】112.5°ABCD O DE AC ∥CE BD ∥OCED 30ACB ∠=︒OCED OEDC BADE AC ∥CE BD ∥OCED ABCD OC OD =OCED 12OCD OCED S S =△菱形FED CBA。

中考数学专题复习:特殊平行四边形

中考数学专题复习:特殊平行四边形

中考数学专题复习:特殊平行四边形1.如图所示,在边长为1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D两点的一动点,N是CD上一动点,且AM+CN=1.(1)证明:无论M,N怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值.2.如图,四边形PNQM为菱形,延长MP使得PB=MP,延长NQ使得QD=NQ,延长BN 使得NC=BN,延长DM使得DM=MA,连接AB,CD.(1)求证:四边形BNDM是平行四边形.(2)猜想:四边形ABCD是哪种特殊的四边形?并证明你的猜想.3.如图1,四边形ABCD为菱形,对角线AC,BD相交于点O,点E为OC上的动点.(1)当AD=AE时,OE=1,OD=5,求菱形ABCD的面积;(2)如图2,当OE=OD时,过点A作CD的垂线,垂足为F,交ED延长线于点G,求证:GE=AO.4.如图①,点P是菱形ABCD对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:PD=PE;(2)如图②,当∠ABC=90°时,连接DE,则是否为定值?如果是,请求其值;如果不是,请说明理由.5.如图1,菱形ABCD中,∠A=60°,F,E分别为AD,BD边上的点,且DE=AF,CF 交BD于点G,AD=2.(1)求证:CE=BF;(2)当E点和G点重合时,求DF的长;(3)如图2,延长CE交BF于点H,连接HG,当F为AD的中点时,求证:GH⊥BF.6.在菱形ABCD中,E、F分别是AD和AB的中点,连接BE、DF.(1)如图(1),求证:BE=DF;(2)如图(2),设BE,DF交于点G,连接AC,EF,在不添加任何辅助线的情况下,直接写出图中所有的等腰三角形.7.如图,在▱ABCD中,E、F分别为AD、BC的中点,点M、N在对角线AC上,且AM =CN.(1)求证:四边形EMFN是平行四边形;(2)若AB⊥AC,求证:四边形EMFN是菱形.8.点E、F分别在菱形ABCD的边BC、CD上,BE=DF,作FG∥AE,交AC的延长线于点G,连接AF、EG.(1)如图1,求证:四边形AEGF是菱形;(2)如图2,当AF平分∠CAD时,在不添加辅助线及字母的情况下,请直接写出图中所有的等腰三角形(不包括腰长等于AB的等腰三角形).9.如图1,已知平行四边形ABCD中,BD平分∠CBA.(1)求证:平行四边形ABCD是菱形;(2)如图2,E为边AB上一动点,连接CE,作CE的垂直平分线交CE于F,交DB于G,连接AG、EG,①求证:△AGE为等腰三角形;②若∠CBA=60°,求的值.10.四边形ABCD为矩形,E是AB延长线上的一点.(1)若AC=EC,如图1,求证:四边形BECD为平行四边形;(2)若AB=AD,点F是AB上的点,AF=BE,EG⊥AC于点G,如图2,求证:△DGF 是等腰直角三角形.11.在矩形ABCD中,AB=6,AD=8,E是边BC上一点,以点E为直角顶点,在AE的右侧作等腰直角△AEF.(1)如图1,当点F在CD边上时,求BE的长;(2)如图2,若EF⊥DF,求BE的长.12.小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,求矩形ABCD长与宽的比值.13.矩形ABCD,点E在直线CD上,CF⊥AE垂足为F,连接BF、DF.(1)如图1,点E在线段CD上,写出线段BF与DF的位置关系并证明;(2)如图2,点E不在线段CD上,请补全图形,写出线段BF与DF的位置关系并证明.14.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若E、F是AC上两动点,分别从A、C两点以相同的速度1cm/s向C、A运动.(1)四边形DEBF是平行四边形吗?请说明理由;(2)若BD=12cm,AC=16cm,当四边形DEBF是矩形,求运动时间t为何值?15.如图,四边形ABCD是矩形,∠ACP=90°,∠APC=∠P AD+∠PCD.(1)求∠ACD的度数;(2)过点D作DE⊥AP,垂足为点E,延长DE交AC于点F.请补全图形,探究线段AF,CF,PC的数量关系,并证明.16.如图,在矩形ABCD中,AB=8,BC=6.动点P、Q分别从点D、A同时出发向右运动,点P的运动速度为2个单位/秒,点Q的运动速度为1个单位/秒,当一个点到达终点时两个点都停止运动.设运动的时间为t(s)(1)当t=2时,PQ的长为________;(2)若PQ=PB,求运动时间t的值;(3)若BQ=PQ,求运动时间t的值.17.在矩形ABCD中,AB=4,BC=3,E是AB边上一点,连接CE,过点E作EF⊥CE交AD于点F,作∠AEH=∠BEC,交射线FD于点H,交射线CD于点N.(1)如图1,当点H与点F重合时,求BE的长;(2)如图2,当点H在线段FD上时,用等式表示线段BE与DN之间的数量关系(其中2<BE≤3),并证明.18.如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°.(1)如图1,求证:△AOB为等边三角形.(2)如图2,若AE平分∠BAD交BC于点E,连接OE,请直接写出图中除等边三角形外的所有等腰三角形.19.如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA(不包括端点)上运动,且满足AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;(2)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由.20.如图,点E为▱ABCD的边AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH,AF.(1)若∠BAE=70°,∠DCE=20°,求∠DEC的度数;(2)求证:当∠F AD=90°时,四边形AFHD为矩形.21.如图,在▱ABCD中,延长AB到点E,使BE=AB,DE交BC于点O,连接EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=40°,当∠BOD等于多少度时四边形BECD是矩形,并说明理由.22.如图,在▱ABCD中,E,F分别是AD,BC边上的点,DE=BF,连接EF,∠EFB,∠FED的平分线分别交AB,CD边于点M,N,连接ME,NF.(1)求证:四边形EMFN是平行四边形;(2)小明在完成(1)的证明后继续探索,他猜想:当M为AB的中点时,四边形EMFN 是矩形,请补全他的证明思路.小明的证明思路:连接MN.由(1)知四边形EMFN是平行四边形.要证▱EMFN是矩形,只要证MN=EF.故只要证∠FEN=∠MNE.由已知条件________,故只要证MN∥AD,即证四边形AMND为平行四边形,易证________,故只要证AM=DN,易证AM=BM,故只要证________,易证△BMF≌△DNE,即可得证.23.在▱ABCD中,点E、F均在AD边上,AE=FD.连接BE、CF并延长,它们交于点G,且GB=GC.(1)如图1,求证:四边形ABCD是矩形;(2)如图2,连接BF、CE,若EF=AE,在不添加任何字母和辅助线的前提下,请直接写出所有面积是△GEF面积8倍的四边形.24.如图,边长为1的正方形ABCD中,点K在AD上,连接BK,过点A,C作BK的垂线,垂足分别为M,N,点O是正方形ABCD的中心,连接OM,ON.(1)求证:△ABM≌△BCN.(2)请判定△OMN的形状,并说明理由.(3)若点K在线段AD上运动(不包括端点),当AK=时,求△OMN的面积.25.如图1,M为正方形ABCD的对角线BD上一点,过M作BD的垂线交AD于E,连BE,取BE中点O.(1)如图1,连AO、MO,求证:∠AOM=90°;(2)如图2,若M在对角线DB的延长线上,连接AM,使得∠MAN=135°,AN与DB的反向延长线相交于点N,求证:2AM 2﹣MB 2=MN 2﹣BN 2.26.如图,已知正方形ABCD,AB=2,E是对角线BD上一点,且不与B、D两点重合,F 是射线CB上一点,且EF=EC.(1)求证:AE=EF;(2)若BE=AB,请在图2中补全图形,判断AF与EC的数量关系并加以证明.27.[问题呈现]如图①,点E是正方形ABCD的边CD上的一点,点F是CB的延长线上的一点,且EA⊥AF.求证:DE=BF.[拓展探究]如图②,在△ABC中,∠ACB=90°,AC=CB=2,CD⊥AB,垂足为点D,点E是边AC上的动点,点F是边CB上的一点,且ED⊥DF.(1)直接写出四边形EDFC的面积.(2)若∠CDE=15°,则四边形EDFC的周长为________.28.在矩形ABCD中,AB=3,BC=4,动点E从B出发,以每秒1个单位的速度,沿射线BC方向运动,连接AE,以AE为边向上作正方形AEFG.设点E的运动时间为t(t>0).(1)如图1,EF与CD边交于点M,当DM=EM时,求此时t的值;(2)如图2,当点F恰好落在矩形任意两个顶点的所在直线上时,请求出所有符合条件的t的值.29.在正方形ABCD中,对角线AC、BD相交于点O,点E在线段OC上,点F在线段AB 上,连接BE,连接EF交BD于点M,已知∠AEB=∠OME.(1)如图1,求证:EB=EF;(2)如图2,点N在线段EF上,AN=EN,AN延长线交DB于H,连接DF,求证:DF=AH.30.在正方形ABCD中,E是BC中点,F是CD上一点,且CF=CD.(1)如图1,求证:∠AEF=90°;(2)如图2,连接DE,延长FE交AB的延长线于点G,过点B作BH⊥AF交AD于点H,垂足为M,交AE于点N,在不添加任何辅助线的情况下,请直接写出图2中的所有等腰三角形.31.如图,在正方形ABCD中,点E在边BC上,AE交BD于点F,DG⊥AE于G,∠DGE 的平分线GH分别交BD,CD于点P,H,连接FH.(1)求证:∠DHG=∠DF A;(2)求证:FH∥BC;(3)求:的值.32.正方形ABCD,点E在射线CD上,连接AE,以AE为斜边,作Rt△AEF,FE=F A(点F,B在直线AE的两侧),连接DF.(1)如图,点E在线段CD上.①求∠ADF的度数.②求证:CE=DF.(2)若DE=2,以A,E,D,F为顶点的四边形的面积为6时,请直接写出DF的长.33.如图,正方形ABCD中,点G是CD边上的一点(点G不与点C,点D重合),以CG 为一边向正方形ABCD外做正方形GCEF,联结DE交BG的延长线于点H.(1)求证:BH⊥DE;(2)若正方形ABCD的边长为1,当点H为DE中点时,求CG的长.34.如图,点O为正方形ABCD的中心.DE=AG,连接EG,过点O作OF⊥EG交AD于点F.(1)连接EF,△EDF的周长与AD的长有怎样的数量关系,并证明;(2)连接OE,求∠EOF的度数;(3)若AF:CE=m,OF:OE=n,求证:m=n2.35.正方形ABCD,点E在AB上,过点E作AD的平行线交CD于点F点G在EF上,CG 平分∠BCD,点H在CG上,HE=HD.(1)如图(1),求证:HG=HC;(2)如图(2),连接DE,FH,在不添加任何辅助线的情况下,请直接写出图(2)中的所有的等腰直角三角形.36.如图,已知四边形ABCD是正方形,对角线AC、BD相交于O.(1)如图1,设E、F分别是AD、AB上的点,且∠EOF=90°,线段AF、BF和EF之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E、F分别是AB上不同的两个点,且∠EOF=45°,请你用等式表示线段AE、BF和EF之间的数量关系,并证明.37.点E在正方形AOCD的边AD上,点H在边AO上,AH=DE.(1)如图1,求证:DH⊥CE;(2)如图2,EF⊥CE,FH⊥AO,垂足为点H.求证:FH=AH.38.已知边长为2的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点P作PE⊥PB,PE交DC于点E,过点E作EF⊥AC,垂足为点F.(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,求出这个不变的值;若变化,试说明理由.39.如图1,在正方形ABCD中,对角线AC、BD相交于点O,点E为线段BO上一点,FC⊥EC 于点C,且EC=FC,连接EF交CD于点G.(1)若AB=4,BE=,求△CEF的面积.(2)如图2,线段FE的延长线交AB于点H,过点F作FM⊥CD于点M,求证:BH+MG =BE.40.如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G,求证:BF=FG+DG.41.如图,正方形ABCD和正方形AEFG有公共点A,点B在线段DG上.(1)判断DG与BE的位置关系,并说明理由;(2)若正方形ABCD的边长为1,正方形AEFG的边长为,求BE的长.42.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE 交DG的延长线于点H,连接BH.(1)直接写出GF与GC的数量关系:________;(2)用等式表示线段BH与AE的数量关系,并证明.43.如图1,△ABC是以∠ACB为直角的直角三角形,分别以AB,BC为边向外作正方形ABFG,BCED,连接AD,CF,AD与CF交于点M,AB与CF交于点N.(1)求证:△ABD≌△FBC;(2)如图2,在图1基础上连接AF和FD,若AD=6,求四边形ACDF的面积.44.如图,已知正方形ABCD,点E在BC上,点F在CD延长线上,BE=DF(1)求证:AE=AF;(2)若BD与EF交于点M,连接AM,试判断AM与EF的数量与位置关系,并说明理由.45.如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD 于点E,(1)求DE的长;(2)过点E作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.46.如图1,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45度.则有结论EF=BE+FD成立;(1)如图2,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的一半,那么结论EF=BE+FD是否仍然成立?若成立,请证明;不成立,请说明理由.(2)若将(1)中的条件改为:如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,延长BC到点E,延长CD到点F,使得∠EAF仍然是∠BAD的一半,则结论EF=BE+FD 是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并证明.47.如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G.过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.(1)求证:△ABC≌△BAD;(2)若AB=BC,四边形AHBG是什么特殊四边形?请说明理由.48.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)若AB=4,CE=2,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是40°时,直接写出∠EFC的度数.参考答案1.(1)证明:如图所示,连接BD,在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等边三角形,∴AB=BD,又AM+CN=1,DN+CN=1,∴AM=DN,在△AMB和△DNB中,,∴△AMB≌△DNB(SAS),∴BM=BN,∠MBA=∠NBD,又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等边三角形;(2)解:过点B作BE⊥MN于点E.设BM=BN=MN=x,则,故,∴当BM⊥AD时,x最小,此时,,.∴△BMN面积的最小值为.2.(1)证明:∵四边形PNQM为菱形,∴MP=NQ,MP∥NQ,∵PB=MP,QD=NQ,∴MB=DN,∵MP∥NQ,∴四边形BNDM是平行四边形;(2)四边形ABCD是矩形.证明:∵四边形BNDM是平行四边形.∴DM=BN,∵NC=BN,∴DM=NC,∵DM∥NC,∴四边形DMNC是平行四边形.∴MN=DC,MN∥DC,∵DM=MA,∴MA=BN,∴四边形AMNB是平行四边形.∴AB∥MN,AB=MN,∴AB=DC,AB∥DC,∴四边形ABCD是平行四边形.∵四边形PNQM为菱形,∴MQ=NQ,∵QD=NQ,∴QD=NQ=MQ,∴∠NMD=90°,∴∠CDM=90°,∴四边形ABCD是矩形.3.解:(1)∵四边形ABCD是菱形,∴AC⊥BD,AC=2AO,BD=2DO=10,∵AD=AE,∴AD=AE=AO+OE=1+OA,∵AD2=OD2+AO2,∴(1+OA)2=25+AO2,∴AO=12,∴AC=24,∴菱形ABCD的面积==120;(2)如图,过点G作GH⊥AC于H,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,AD=CD,∠DAC=∠DCA,∵OE=OD,∴∠DEO=∠EDO=45°,∵GH⊥AC,∴∠HED=∠HGE=45°,∴GH=HE,GE=GH,设∠DAC=∠DCA=x,∴∠EDC=45°﹣x=∠GDF,∵AF⊥CF,∴∠FGD=90°﹣∠GDF=45°+x,∵∠DAF=90°﹣2x,∴∠ADC=180°﹣∠GAD﹣∠AGD=45°+x,∴∠ADC=∠AGD,∴AG=AD,在△AHG和△DOA中,,∴△AHG≌△DOA(AAS),∴GH=AO,∴GE=GH=AO.4.证明:(1)∵四边形ABCD是菱形,∴BC=DC,∠BCP=∠DCP,AB∥DC,在△BCP和△DCP中,,∴△BCP≌△DCP(SAS),∴PB=PD,∵PE=PB,∴PD=PE;(2),理由如下:∵∠ABC=90°,∴四边形ABCD是正方形,由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB,∴∠CBP=∠E,∵∠CFE=∠DFP(对顶角相等),∴180°﹣∠DFP﹣∠CDP=180°﹣∠CFE﹣∠E,即∠DPE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC=90°,又∵PD=PE,∴DE=PE,∴.5.(1)证明:∵四边形ABCD为菱形,∠A=60°,∴AB=BC=CD=DA=BD,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴CE=BF.(2)DF的长是﹣1.(3)证明:∵F为AD的中点,∴BF⊥AD,AF=DF,∠DBF=30°,由(1)知:AF=DE,∴AF=DF=DE=BE,∴CE⊥BD,∴∠BFD=∠BEH=90°,∴∠EBH=∠FBD,∴BH=,HG=,由(2)知DF:BC=DG:BG=1:2,∴,∴BH2+HG2=BG2,∴△BHG为直角三角形,∴∠BHG=90°,∴GH⊥BF.6.证明:(1)∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠BAC=∠DAC,∵E、F分别是AD和AB的中点,∴AF=AE=BF=DE,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴BE=DF;(2)∵AE=AF,∴△AEF是等腰三角形,∵AB=AD=BC=CD,∴△ABC,△ADC是等腰三角形,∵AE=AF,∠BAC=∠DAC,∴AG垂直平分EF,∴FG=EG,∴△GEF是等腰三角形.7.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAM=∠FCN,∵E、F分别为AD、BC的中点,∴AE=DE=BF=CF,在△AEM和△CFN中,,∴△AEM≌△CFN(SAS),∴EM=FN,∠AME=∠CNF,∴∠EMN=∠FNM,∴EM∥FN,∴四边形EMFN是平行四边形;(2)连接EF交AC于O,如图所示:由(1)得:AE∥BF,AE=BF,∴四边形AEFB是平行四边形,∴AB∥EF,∵AB⊥AC,∴∠BAC=90°,∴∠COF=∠BAC=90°,∴EF⊥MN,∴四边形EMFN是菱形.8.(1)证明:∵菱形ABCD,∴AB=AD,∠B=∠D,∠BAC=∠DAC,∵BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF,∴∠EAG=∠F AG,∵FG∥AE,∴∠EAG=∠FGA,∴∠F AG=∠FGA,∴FG=AF=AE,∵FG∥AE,∴四边形AECF是平行四边形,又∵AF=AE,∴四边形AECF是菱形;(2)解:△AEG、△AFG、△CEG、△CFG.理由如下:由(1)及菱形的性质可得△AEG、△AFG是等腰三角形,∴∠F AC=∠FGA,∵∠DAC=2∠F AC,∴∠DAC=2∠FGA,∵AD=DC,∴∠DAC=∠DCA,∵∠DCA=∠FGA+∠CFG,∴2∠FGA=∠FGA+∠CFG,∴∠FGA=∠CFG,∴△CFG是等腰三角形,同理可得△CEG是等腰三角形,∴符合要求的等腰三角形为△AEG、△AFG、△CEG、△CFG.9.证明:(1)∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDB=∠ABD,∵BD平分∠ABC,∴∠CBD=∠ABD,∴∠CDB=∠CBD,∴DC=BC,∵四边形ABCD是平行四边形,∴四边形ABCD是菱形;(2)①∵四边形ABCD是菱形,∴DC=DA,∠CDG=∠ADG,在△ADG和△CDG中,∴△ADG≌△CDG(SAS),∴AG=CG,∵GF是EC的垂直平分线,∴CG=EG,∴AG=EG,即△AGE是等腰三角形;②连接AC交BD于O,∵GC=GE,∴∠GCE=∠GEC,∵AG=CG=GE,∴∠GCA=∠GAC,∠GAE=∠GEA,∵∠CBA=60°,BC=AB,∴∠CAB=∠ACB=60°,∴∠GAC+∠GAE=60°,∴∠GAC+∠GCA+∠GAE+∠GEA=120°,∴∠AGC+∠AGE=240°,∴∠CGE=120°,∴∠GCE=30°,∴CG=2GF,∴AG=2GF,∴=.10.证明:(1)∵四边形ABCD为矩形,∴AB∥CD,AB=CD,CB⊥AE,又∵AC=EC,∴AB=BE,∴BE=CD,BE∥CD,∴四边形BECD为平行四边形;(2)∵AB=AD,∴矩形ABCD是正方形,∵EG⊥AC,∴∠E=∠GAE=45°,∴GE=GA,又∵AF=BE,∴AB=FE,∴FE=AD,在△EGF和△AGD中,,∴△EGF≌△AGD(SAS),∴GF=GD,∠DGA=∠FGE,∠DGF=∠DGA+∠AGF=∠EGF+∠AGF=∠AGE=90°,∴△DGF是等腰直角三角形.11.解:(1)如图1中,∵四边形ABCD是矩形,∴∠B=∠C=90°,AD=BC,∵EF⊥AE,∠AEF=90°,∴∠AEB=∠EFC,∵△AEF是等腰直角三角形,∴EF=AE,在△ABE和△ECF中,,∴△ABE≌△ECF(AAS),∴CE=AB,∵AB=6,∴CE=6,∵AD=8,∴BC=8,∴BE=BC﹣CE=2.(2)如图2中,延长DF,BC交于点N,过点F作FM⊥BN于点M,同理可证△ABE≌△EMF,∴AB=EM,BE=FM,设BE=x,则EM=AB=6,FM=BE=x,EC=8﹣x,∵EF⊥DF,∴∠NFE=∠DCB=90°,∴∠CDF+∠N=90°,∠FEC+∠N=90°,∴∠FEC=∠CDF,在矩形ABCD中,AB=DC,∴CD=AB=EM,在△EFM和△DNC中,,∴△EFM≌△DNC(AAS),∴NC=FM=x,EN=EC+NC=8,NM=EN﹣EM=2,即在Rt△FMN中,FN2=FM2+NM2=x2+22,在Rt△EFM中,EF2=FM2+EM2=x2+62,在Rt△EFN中,FN2+EF2=EN2,即x2+22+x2+62=82,解得x=2或﹣2舍弃),即BE=2.12.解:连接DE,如图:∵沿过A点的直线折叠,使得B点落在AD边上的点F处,∴四边形ABEF为正方形,∴∠EAD=45°,由第二次折叠知,M点正好在∠NDG的平分线上,∴DE平分∠GDC,∴∠GDE=∠CDE,∵DG为折痕,∴∠DGE=90°=∠C,而DE=DE,∴Rt△DGE≌Rt△DCE(AAS),∴DC=DG,∵∠EAD=45°,∠DGA=90°,∴△AGD为等腰直角三角形,∴AD=DG=CD,∴矩形ABCD长与宽的比值为,故答案为.13.解:(1)BF⊥DF,如图1,连接AC,BD交于点O,连接OF,∵四边形ABCD是矩形,∴AC与BD相等且互相平分,∴OA=OC=OB=OD,∵CF⊥AE垂足为F,∴∠AFC=90°,∵在Rt△ACF中,OA=OC,∴OF=AC=OA=OB=OD,∴OF=OB=OD,∴∠DBF=∠OFB,∠BDF=∠OFD,∵∠BFD+∠BDF+∠DBF=180°,∴∠OFB+∠OFD+∠OFB+∠OFD=180°,∴∠OFB+∠OFD=90°,∴∠BFD=∠OFB+∠OFD=90°,即BF⊥DF.(2)补全图形如图2或图3,BF⊥DF,连接AC,BD交于点O,连接OF,∵四边形ABCD是矩形,∴AC与BD相等且互相平分,∴OA=OC=OB=OD,∵CF⊥AE垂足为F,∴∠AFC=90°,∵在Rt△ACF,OA=OC,∴OF=AC=OA=OB=OD,∴OF=OB=OD,∴∠DBF=∠OFB,∠BDF=∠OFD,∵∠BFD+∠BDF+∠OFB+∠OFD=180°,∴∠OFB+∠OFD=90°,∴∠BFD=∠OFB+∠OFD=90°,即BF⊥DF.14.解:(1)是.理由:∵四边形ABCD是平行四边形,∴OD=OB,OA=OC,∵E、F两点移动的速度相同,即AE=CF,∴OE=OF,∵OD=OB,∴四边形DEBF是平行四边形.(2)因为矩形对角线相等,所以EF=12时,其为矩形,即AE=CF=(16﹣12)=2,或者AE=CF=(16+12)=14,所以当t=2或14时,四边形DEBF是矩形.15.解:(1)∵四边形ABCD是矩形,∴∠D=90°,∴∠DAC+∠DCA=90°,即∠DAP+∠P AC+∠DCA=90°,∵∠ACP=90°,∴∠APC+∠CAP=90°,∵∠APC=∠P AD+∠PCD.∴∠CAP+∠P AD+∠PCD=90°,∴∠PCD=∠ACD,∵∠ACP=90°,∴∠PCD+∠ACD=90°,∴∠ACD=45°;(2)AF=CF+PC.连接BD,交AC于点O,过点C作CN∥AP交BD于点N,如图.证明:由(1)知,∠ACD=45°,∴∠CAD=∠ACD=45°,∴AD=CD,∴矩形ABCD是正方形,∴∠DAO=∠CDO=45°,∠AOD=90°,∵∠ACP=∠AOD=90°,∴MN∥PC,∵AP∥CN,∴∠1=∠2,四边形PCNM为平行四边形,∴PC=MN,∵∠1+∠3=90°,∠2+∠4=90°,∴∠3=∠4,在△ADF和△DCN中,,∴△ADF≌△DCN(AAS),∴AF=DN,∵∠7+∠ADE=90°,∠8+∠ADE=90°,∴∠7=∠8,在△ADM和△DCF中,,∴△ADM≌△DCF(ASA),∴DM=CF,∵AF=DN,PC=MN,∴AF=DN=DM+MN=CF+PC.16.解:(1)如图所示:作PH⊥AB于H,由题意得,DP=4,AQ=2,则QH=2,又PH=AD=6,由勾股定理的,PQ===2,故答案为:2;(2)当PQ=PB时,如图,QH=BH,则t+2t=8,解得,t=;(3)当PQ=BQ时,(2t﹣t)2+62=(8﹣t)2,解得,t=.17.解:(1)如图,∵EF⊥EC,∴∠NEC=90°,∴∠AEF+∠BEC=90°,∵∠AEF=∠BEC,∴∠BEC=45°,∵四边形ABCD是矩形,∴∠B=90°,∴BE=BC,∵BC=3,∴BE=3;(2)线段BE与DN之间的数量关系为DN=2BE﹣4.证明:如图,过点E作EG⊥CN,垂足为点G,∵四边形ABCD是矩形,∴AB∥CN,∴∠B=∠BCG=90°=∠EGC,∴四边形BEGC是矩形,∴BE=CG,∵AB∥CN,∴∠AEH=∠N,∠BEC=∠ECN,∵∠AEH=∠BEC,∴∠N=∠ECN,∴EN=EC,∴CN=2CG=2BE,∵CD=AB=4,∴CN=2CG=2BE=DN+4,∴DN=2BE﹣4.18.(1)证明:∵矩形ABCD的对角线AC,BD相交于点O,∴OA=OB,又∵∠AOB=60°,∴△AOB为等边三角形.(2)解∵矩形ABCD的对角线AC,BD相交于点O,∠AOB=60°,AE平分∠BAD交BC于点E,∴OA=OD=OB=AB=OC,∠BAE=45°,∴AB=BE,∴BE=OB,所以△ABE是等腰三角形,△OAD,△OBC,△BEO是等腰三角形.19.(1)证明:∵四边形ABCD是矩形,∴∠A=∠C.∴在△AEH与△CGF中,,∴△AEH≌△CGF(SAS),∴EH=GF,同理证得△EBF≌△GDH,则EF=GH,∴四边形EFGH是平行四边形;(2)解:四边形EFGH的周长一半大于或等于矩形ABCD一条对角线长度.理由如下:作G关于BC的对称点G′,连接EG′,可得EG′的长度就是EF+FG的最小值.连接AC,∵CG′=CG=AE,AB∥CG′,∴四边形AEG′C为平行四边形,∴EG′=AC.在△EFG′中,∵EF+FG′>EG′=AC,∴四边形EFGH的周长一半大于或等于矩形ABCD一条对角线长度.20.(1)解:∵四边形ABCD是平行四边形,∴∠BAE=∠BCD=70°,AD∥BC,∵∠DCE=20°,AB∥CD,∴∠CDE=180°﹣∠BAE=110°,∴∠DEC=180°﹣∠DCE﹣∠CDE=50°;(2)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAE=∠BCD,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=FG,∵H为FG的中点,∴FH=FG,∴BC∥FH,BC=FH,∴AD∥FH,AD=FH,∴四边形AFHD是平行四边形,∵∠F AD=90°,∴四边形AFHD为矩形.21.(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形;(2)解:若∠A=40°,当∠BOD=80°时,四边形BECD是矩形,理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=40°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=80°﹣40°=40°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形.22.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∠B=∠D,∴∠FED=∠EFB,∵EN,FM分别平分∠FED,∠EFB,∴∠FEN=∠DEN=FED,∠EFM=∠BFM=EFB,∴∠FEN=∠EFM,∠DEN=∠BFM,∴FM∥EN,在△BFM与△DEN中,,∴△BFM≌△DEN(ASA),∴FM=EN,∴四边形EMFN是平行四边形;(2)连接MN.由(1)知四边形EMFN是平行四边形.要证▱EMFN是矩形,只要证MN=EF.故只要证∠FEN=∠MNE.由已知条件EN平分∠FED,故只要证MN∥AD,即证四边形AMND为平行四边形,易证AM∥DN,故只要证AM=DN,易证AM=BM,故只要证BM=DN,易证△BMF≌△DNE,即可得证.故答案为:EN平分∠FED;AM∥DN;BM=DN.23.(1)证明:∵▱ABCD,∴AD∥BC,∠A+∠D=180°,∴∠GBC=∠GEF,∠GCB=∠GFE,∵GB=GC,∴∠GBC=∠GCB,∴∠GEF=∠GFE,∴GE=GF,∠AEB=∠DFC,∴GB﹣GE=GC﹣GF,即EB=FC,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠A=∠D,又∠A+∠D=180°,∴∠A=∠D=90°,∴四边形ABCD是矩形;(2)∵▱ABCD,∴AD∥BC,AD=BC,∴∠GBC=∠GEF,∠GCB=∠GFE,∴S四边形EBCF=8S△GEF,∵AE=FD=EF,∴S△AEB=S△EFB=S△EFC=S△FDC,∴S△AEB+S△BCE=S△EFC+S△BCE,S△EFB+S△BCF=S△FDC+S△BCF,即S四边形ABCE=S四边形EBCF,S四边形EBCF=S四边形DCBF,∴S四边形ABCE=S四边形EBCF=S四边形DCBF=8S△GEF.面积是△GEF面积8倍的四边形有:四边形ABCE,四边形EBCF,四边形DCBF.24.证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABM+∠CBM=90°,∵AM⊥BM,CN⊥BN,∴∠AMB=∠BNC=90°,∴∠MAB+∠MBA=90°,∴∠MAB=∠CBM,在△ABM和△BCN中,,∴△ABM≌△BCN(AAS);(2)△OMN是等腰直角三角形,理由如下:如图,连接OB,∵点O是正方形ABCD的中心,∴OA=OB,∠OBA=∠OAB=45°=∠OBC,AO⊥BO,∵∠MAB=∠CBM,∴∠MAB﹣∠OAB=∠CBM﹣∠OBC,∴∠MAO=∠NBO,又∵AM=BN,OA=OB,∴△AOM≌△BON(SAS),∴MO=NO,∠AOM=∠BON,∵∠AON+∠BON=90°,∴∠AON+∠AOM=90°,∴∠MON=90°,∴△MON是等腰直角三角形;解:(3)设AK=x(0<x<1),在Rt△ABK中,BK==, ∵S△ABK=×AK×AB=×BK×AM,∴AM==,∴BN=AM=,∴BM==,∴MN=BM﹣BN=,∵S△OMN=MN2==(0<x<1),将x=代入得:S△OMN===,∴当AK=时,S△OMN=.25.(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠BAD=90°,∠ABD=∠ADB=45°,∵ME⊥BD,∴∠BME=90°,∵O是BE的中点,∴AO=MO=BE=BO=EO,∴∠ABO=∠BAO,∠OBM=∠OMB,∴∠AOE=2∠ABO,∠MOE=2∠MBO,∴∠AOM=∠AOE+∠MOE=2∠ABO+2∠MBO=2∠ABD=90°;(2)∵四边形ABCD是正方形,∴∠ADB=45°,即∠N+∠DAN=45°,∵∠MAN=135°,∴∠MAB+∠DAN=135°﹣∠BAD=45°,∴∠MAB=∠N,又∠M=∠M,∴MA2=MN•MB∴2AM2=MN•2BM=MN•(BM+BM)=MN•(MN﹣BN+BM)=MN2﹣MN((BN﹣BM)=MN2﹣(BN+BM)•(BN﹣BM)=MN2﹣BN2+BM2,∴2AM2﹣MB2=MN2﹣BN2.26.证明:(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ADB=∠CDB=45°,在△ADE与△CDE中,,∴△ADE≌△CDE(SAS),∴AE=EC,∵EF=EC,∴AE=EF;(2)AF=CE,理由如下:∵AB=BE=BC,∠ABD=∠DBC=45°,∴∠BAE=∠AEB=∠BEC=∠BCE=67.5°,∵EF=EC,∴∠EFC=∠ECF=67.5°,∴∠FEC=45°,∠BFE=112.5°,∵∠BAE+∠AEF+∠BFE+∠ABF=360°,∴∠AEF=90°,且AE=EF,∴∠AFE=45°,∴∠AFE=∠FEC=45°,∴AF=EF,∴AF=CE.27.证明:[问题呈现]∵四边形ABCD是正方形,∴AD=AB,∠BAD=∠D=∠ABF=90°.∵EA⊥AF,∴∠F AE=90°.∴∠DAE+∠BAE=∠BAF+∠BAE=90°,∴∠BAF=∠DAE.在△ADE和△ABF中,,∴△ADE≌△ABF(ASA),∴DE=BF.[拓展探究](1)∵∠ACB=90°,ED⊥DF,∴∠CED+∠CFD=180°,∵∠BFD=∠CFD=180°,∴∠CED=∠BFD,又∵AC=CB=2,CD⊥AB,∴△ABC为等腰直角三角形,∴CD=BD=AD,∠B=∠DCE=45°,∴△DCE≌DBF(AAS).∴S四边形CEDF=S△CDB=S△ABC=AC•BC=3.(2)作DM⊥AC于点M,则CM=AM=DM=AC=,∵∠CDE=15°,∠ACD=45°,∴∠MED=∠CDE+∠ACD=60°,∴ED=2.∵△DCE≌DBF,∴ED=FD,EC=BF,∴四边形EDFC的周长=ED+FD+EC+BF=2ED+BC=4+2.故答案为:4+2.28.解:(1)连接AM,如图,∵正方形AEFG,矩形ABCD,∴∠AEM=∠ADM=∠ABE=90°,AD=BC=4,在Rt△AEM和Rt△ADM中,,∴Rt△AEM≌Rt△ADM(HL),∴AE=AD=4,在Rt△ABE中,BE==,∵动点E从B出发,以每秒1个单位的速度,∴;(2)分四种情况,1°当点F在CD上时,如图,∵矩形ABCD,∴∠ABE=∠ECF=90°,∴∠BAE+∠AEB=90°,∠FEC+∠EFC=90°,∵正方形AEFG,∴∠AEF=90°,AE=EF,∴∠FEC+∠AEB=90°,∴∠BAE=∠FEC,∠AEB=∠EFC,在△BAE和△CEF中,,∴△BAE≌△CEF(ASA),∴AB=EC=3,∴BE=BC﹣CE=4﹣3=1,∵动点E从B出发,以每秒1个单位的速度,∴t=1;2°当点F落在AD上时,如图,∵AF时正方形AEFG的对角线,∴∠EAF=45°,∵矩形ABCD,∴∠B=∠BAD=90°,∴∠BAE=45°=∠AEB,∴BE=AB=3,∵动点E从B出发,以每秒1个单位的速度,∴t=3;3°当点F落在AC上时,过点F作FM⊥BC交BC于点M,如图,∵正方形AEFG,∴AE=EF,∠AEF=90°,∴∠AEB+∠FEM=90°,∵矩形ABCD,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠BAE=∠FEM,在△BAE和△MEF中,,∴△BAE≌△MEF(AAS),∴FM=BE,EM=AB=3,设FM=BE=x,则MC=4﹣3﹣x=1﹣x,∵∠FCM=∠ACM,∠FMC=∠ABC,∴△FMC~△ABC,∴x=,即FM=BE=,∵动点E从B出发,以每秒1个单位的速度,∴;4°当点F落在BD上时,过点F作FM⊥BC交BC于点M,如图,∵正方形AEFG,∴AE=EF,∠AEF=90°,∴∠AEB+∠FEM=90°,∵矩形ABCD,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠BAE=∠FEM,在△BAE和△MEF中,,∴△BAE≌△MEF(AAS),∴FM=BE,EM=AB=3,设CE=a,,则FM=BE=4+a,BM=7+a,∵∠DBC=∠FBM,∠FMB=∠BCD=90°,∴a=5,∴BE=4+a=9,∵动点E从B出发,以每秒1个单位的速度,∴t=9;故所有符合条件的t的值t=1或t=3或t=9或.29.证明:(1)如图所示:∵四边形ABCD是正方形,∴AC⊥BD,∠1=∠2=45°,∴在Rt△OME和Rt△OEB中,∠3+∠OME=∠4+∠OEB=90°,∵∠OME=∠OEB,∴∠3=∠4,∴∠5=∠1+∠3=∠2+∠4=∠FBE,∴EF=EB;(2)连接DE,∵AN=EN,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∵四边形ABCD是正方形,∴OA=OB,AC⊥BD,∴∠7=∠8=90°,在△AOH和△BOE中,,∴△AOH≌△BOE(ASA),∵四边形ABCD是正方形,∴DC=BC,∠1=∠2=45°,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴DE=BE=AH=EF,∵AC⊥BD,∴∠6=∠AEB,∵∠3=∠4,∠4+∠AEB=90°,∴∠3+∠6=90°,即∠DEF=90°,∴△DEF是等腰直角三角形,∴.30.解:(1)证明:∵四边形ABCD为正方形,∴∠B=∠C=90°,AB=BC=CD.∵E是BC中点,∴,EC=BC=CD.∴∠BAE=∠CEF.∵∠BAE+∠BEA=90°,∴∠BEA+∠CEF=90°.∴∠AEF=90°.(2)∵四边形ABCD为正方形,∴∠GBE=∠C=90°,AB∥CD.∴∠G=∠CFE.在△BEG和△CEF中,.∴△BEG≌△CEF(AAS).∵∠AEF=90°,∴AE是GF的垂直平分线.∴AG=AF.∴△AGF为等腰三角形.∴∠GAE=∠F AE.∵BH⊥AF,∴∠MAH+∠AHM=90°.∵AD∥BC,∴∠AHM=∠HBC.∵∠ABC=90°,∴∠HBC+∠ABH=90°.∴∠ABH=∠MAH.∵∠ANH=∠ABH+∠GAE,∴∠ANH=∠MAH+∠EAF=∠NAH.∴HA=HN.∴△HAN为等腰三角形.∵AD∥BC,∴∠HAN=∠BEN.∵∠ANH=∠BNE,∴∠BEN=∠BNE.∴△BEN为等腰三角形.在△ABE和△DCE中,.∴△ABE≌△DCE(SAS).∴EA=ED.∴△AED为等腰三角形.综上,等腰三角形有:△AED,△BEN,△AHN,△AGF.31.证明:(1)∵四边形ABCD是正方形,∴∠BDC=45°,∵DG⊥AE,∴∠DGE=90°,∵GH平分∠DGE,∴∠DGH=∠EGH=45°,∴∠BDC=∠EGH=45°,∵∠DPH=∠GPF,∴∠DHG=∠DF A.(2)由(1)可知:∠BDC=∠EGH=45°,∠DPH=∠GPF,∴∠DGP=∠HFP=45°,又∠DBC=45°,∴∠DBC=∠HFP=45°,∴FH∥BC.(3)连接P A,过点P作PM⊥AE于M,PN⊥DG于N,QP⊥GP交GD于Q,如图所示.由(2)证法,易证∠P AG=∠PDG,∵PM⊥AE,PN⊥DG,GH平分∠DGE,∴PM=PN,∴Rt△PMA≌Rt△PND(AAS),∴P A=PD,∵四边形ABCD是正方形,∠ADB=45°,∴∠APD=90°=∠GPQ,∴∠APG=∠DPQ,∴△APG≌△DPQ(ASA),∴QD=AG,∵∠PGQ=45°,∴△PGQ是等腰直角三角形,∴GQ=PG,∴DG﹣AG=DG﹣DQ=GQ=PG,∴.32.解:(1)①连接AC,∵四边形ABCD是正方形,∴∠CAD=45°,Rt△AEF中,FE=F A,∴∠EAF=45°,即∠CAE=∠DAF,∴∠ADF=∠ACE=45°.∴CE=DF;(2)①当点E在线段CD上时,则S△ADE+S△ADF=6,过点F作FH⊥AD,∵∠ADF=45°,∴HF=DF,设方形ABCD的边长为a,则CE=a﹣2,DF=CE=(a﹣2),∴2a+a×(a﹣2)×=6,解得:a=4,∴CE=4﹣2=2,∴DF=CE=×2=,②当点E在CD的延长线上时,则S△ADE+S△AEF=6,过点F作FM⊥AE,FN⊥AD,连接AC,设正方形ABCD的边长为a,则AE==,MF=,∴×2a+×=6,解得a=2﹣2或a=﹣2﹣2(舍去),∴CE=2﹣2+2=2,∴DF=CE=×2=2,综上所述:DF=或2.33.(1)证明:∵正方形ABCD,∴∠BCD=90°,BC=CD,同理:CG=CE,∠GCE=90°,∴∠BCD=∠GCE=90°,,∴△BCG≌△DCE(SAS),∴∠GBC=∠CDE,在Rt△DCE中∠CDE+∠CED=90°,∴∠GBC+∠BEH=90°,∴∠BHE=180°﹣(∠GBC+∠BEH)=90°,。

九年级数学特殊的平行四边形中考总复习

九年级数学特殊的平行四边形中考总复习

《特殊的平行四边形》专题复习学习目标:1.平行四边形、矩形、菱形、正方形的性质和判定在几何问题中的综合运用。

2.连平行四边形、矩形、菱形、正方形的对角线,能得到特殊三角形(直角三角形和等腰三角形)、全等三角形,要用心体会方程思想(直角三角形)和分类讨论思想(等腰三角形)在解决问题中的作用.知识梳理:一.矩形、菱形、正方形的性质与判定.二.矩形、菱形、正方形与平行四边形的关系.(小组讨论)注意:以平行四边形为基础,从边、角、对角线等不同角度进行演变,推出特殊的四边形:矩形、菱形、正方形。

他们之间既有联系又有区别。

(1)矩形的性质与判定.注意:从矩形的图形中可以分解出:直角三角形、等腰三角形、对角线的夹角是60°时有等边三角形。

(2)矩形性质的推论:直角三角形斜边上的中线等于斜边的一半. (3)菱形的性质与判定.注意:从菱形的图形中可以分解出:直角三角形、等腰三角形或等边三角形。

(4)菱形的面积1.运用平行四边形的面积公式: .2.菱形的面积等于两条对角线乘积的一半.(5)正方形的性质与判定.注意:从正方形的图形中可以分解出:等腰直角三角形。

例1.如图,在菱形ABCD 中,P 是对角线AC 上任一点(不与A ,C 重合),连接BP ,DP ,过P 作PE ∥CD 交AD 于E ,过P 作PF ∥AD 交CD 于F ,连接EF .(1)求证:△ABP ≌△ADP ;(2)若BP=EF ,求证:四边形EPFD 是矩形.S =⨯平行四形底高12ABCD S AC BD =⋅菱形跟踪练习.如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.(1)求证:△AOE≌△COD;(2)若∠OCD=30°,AB=,求△AOC的面积.例2.如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.跟踪练习.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O 的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.巩固提高:准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.总结中考这类题做题方法与注意事项:专项训练:1.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB 上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.2. 如图,四边形ABCD是平行四边形,DE∥BF,且分别交对角线AC于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD为菱形.3. 如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC 的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△FAE;(2)求证:四边形ADCF为矩形.4. 如图,在边长为l的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.5. 如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.6. 如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.7. 如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.8. 如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,求ABCD的面积?9. 如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.10. 如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.11. 如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF ⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.12. 如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.13. 如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4,tanα=,求四边形OBEC的面积.14. 如图,在正方形ABCD中,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF(2)若AB=4,DE=1,求AG的长.15.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,16.延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.。

人教版初中数学中考总复习:特殊的四边形--知识讲解(基础)

人教版初中数学中考总复习:特殊的四边形--知识讲解(基础)

第十九讲特殊的四边形【考纲要求】1. 会识别矩形、菱形、正方形以及梯形;2.掌握矩形、菱形、正方形的概念、判定和性质,会用矩形、菱形、正方形的性质和判定解决问题.3.掌握梯形的概念以及了解等腰梯形、直角梯形的性质和判定,会用性质和判定解决实际问题.【知识网络】【考点梳理】考点一、几种特殊四边形性质、判定四边形性质判定边角对角线矩形对边平行且相等四个角是直角相等且互相平分1、有一个角是直角的平行四边形是矩形;2、有三个角是直角的四边形是矩形;3、对角线相等的平行四边形是矩形中心、轴对称图形菱形四条边相等对角相等,邻角互补垂直且互相平分,每一条对角线平分一组对角1、有一组邻边相等的平行四边形是菱形;2、四条边都相等的四边形是菱形;3、对角线互相垂直的平行四边形是菱中心、轴对称图形.形正方形四条边相等四个角是直角相等、垂直、平分,并且每一条对角线平分一组对角1、邻边相等的矩形是正方形2、对角线垂直的矩形是正方形3、有一个角是直角的菱形是正方形4、对角线相等的菱形是正方形中心、轴对称图形等腰梯形两底平行,两腰相等同一底上的两个角相等相等1、两腰相等的梯形是等腰梯形;2、在同一底上的两个角相等的梯形是等腰梯形;3、对角线相等的梯形是等腰梯形.轴对称图形【要点诠释】矩形、菱形、正方形都是特殊的平行四边形,它们具有平行四边形的一切性质.考点二、梯形1.解决梯形问题常用的方法:(1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);(2)“作高”:使两腰在两个直角三角形中(图2);(3)“平移对角线”:使两条对角线在同一个三角形中(图3);(4)“延腰”:构造具有公共角的两个三角形(图4);(5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).图1 图2 图3 图4 图5【要点诠释】解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.在学习时注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助.2.特殊的梯形1)等腰梯形:两腰相等的梯形叫做等腰梯形.性质:(1)等腰梯形的同一底边上的两个角相等;等腰梯形的两条对角线相等.(2)同一底边上的两个角相等的梯形是等腰梯形.(3)等腰梯形是轴对称图形,它的对称轴是经过两底中点的一条直线.2)直角梯形:有一个角是直角的梯形叫做直角梯形.考点三、中点四边形相关问题1.中点四边形的概念:把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.2.若中点四边形为矩形,则原四边形满足条件对角线互相垂直;若中点四边形为菱形,则原四边形满足条件对角线相等;若中点四边形为正方形,则原四边形满足条件对角线互相垂直且相等.【要点诠释】中点四边形的形状由原四边形的对角线的位置和数量关系决定.【典型例题】类型一、特殊的平行四边形的应用1. 在平行四边形ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE.(1)如图①,试判断四边形EGFH的形状,并说明理由;(2)如图②,当EF⊥GH时,四边形EGFH的形状是;(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是;(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.【思路点拨】中点四边形的形状由原四边形的对角线的位置和数量关系决定.【答案与解析】(1)四边形EGFH是平行四边形;证明:∵平行四边形ABCD的对角线AC、BD交于点O,∴点O是平行四边形ABCD的对称中心;∴EO=FO,GO=HO;∴四边形EGFH是平行四边形;(2)菱形;(提示:菱形的对角线垂直平分)(3)菱形;(提示:当AC=BD时,对四边形EGFH的形状不会产生影响,故结论同(2))(4)四边形EGFH是正方形;证明:∵AC=BD,∴平行四边形ABCD是矩形;又∵AC⊥BD,∴平行四边形ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;∵EF⊥GH,∴∠GOF=90°;∴∠BOG=∠COF;∴△BOG≌△COF(ASA);∴OG=OF,∴GH=EF;由(3)知四边形EGFH是菱形,又EF=GH,∴四边形EGFH是正方形.【总结升华】主要考查了平行四边形、菱形、矩形、正方形的判定和性质以及全等三角形的判定和性质;熟练掌握各特殊四边形的联系和区别是解答此类题目的关键.2.动手操作:在一张长12cm、宽5cm的矩形纸片内,要折出一个菱形.小颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),小明同学沿矩形的对角线AC折出∠CAE=∠CAD,∠ACF=∠ACB 的方法得到菱形AECF(见方案二).(1)你能说出小颖、小明所折出的菱形的理由吗?(2)请你通过计算,比较小颖和小明同学的折法中,哪种菱形面积较大?【思路点拨】(1)、要证所折图形是菱形,只需证四边相等即可.(2)、按照图形用面积公式计算S=30和S=35.21,可知方案二小明同学所折的菱形面积较大. 【答案与解析】(1)小颖的理由:依次连接矩形各边的中点所得到的四边形是菱形, 小明的理由:∵ABCD 是矩形, ∴AD ∥BC ,则∠DAC=∠ACB , 又∵∠CAE=∠CAD ,∠ACF=∠ACB , ∴∠CAE=∠CAD=∠ACF=∠ACB , ∴AE=EC=CF=FA , ∴四边形AECF 是菱形. (2)方案一:S 菱形=S 矩形-4S △AEH =12×5-4×12×6×52=30(cm )2, 方案二:设BE=x ,则CE=12-x , ∴AE=22BE AB +=225x +由AECF 是菱形,则AE 2=CE 2∴x 2+25=(12-x )2, ∴x=11924, S 菱形=S 矩形-2S △ABE =12×5-2×12×5×11924≈35.21(cm )2, 比较可知,方案二小明同学所折的菱形面积较大.【总结升华】本题考查了矩形的性质和菱形的判定,以及图形面积的计算与比较. 举一反三:【变式】如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为 ( ).A.B.C.4 D.5【答案】A.类型二、梯形的应用3.(•黄州区校级模拟)如图,△ABC中,∠BAC=90°,延长BA至D,使AD=AB,点E、F分别是边BC、AC的中点.(1)判断四边形DBEF的形状并证明;(2)过点A作AG∥BC交DF于G,求证:AG=DG.【思路点拨】(1)利用梯形的判定首先得出四边形DBEF为梯形,进而得出四边形HFEB是平行四边形,得出BE=FD进而得出答案;(2)利用四边形DBEF为等腰梯形,得出∠B=∠D,利用AG∥BG,∠B=∠DAG,得出答案.【答案与解析】(1)解:四边形DBEF为等腰梯形,理由如下:如图,过点F作FH∥BC,交AB于点H,∵FH∥BC,点F是AC的中点,点E是BC的中点,∴AH=BH=AB,EF∥AB,显然EF<AB<AD,∴EF≠AD,∴四边形DBEF为梯形,∵AD=AB,∴AD=AH,∴CA是DH的中垂线,∴DF=FH,∵FH∥BC,EF∥AB,∴四边形HFEB是平行四边形,∴FH=BE,∴BE=FD,故四边形DBEF为等腰梯形;(2)证明:∵四边形DBEF为等腰梯形,∴∠B=∠D,∵AG∥BG,∠B=∠DAG,∴∠D=∠DAG,∴AG=D G.【总结升华】此题主要考查了等腰梯形的判定以及其性质和平行四边形的判定与性质等知识,得出BE=FD 是解题关键.举一反三:【变式】如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为().C. 2.5D.2.3A.22B. 231类型三、特殊四边形与其他知识结合的综合运用4. (•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【思路点拨】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.【答案与解析】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【总结升华】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.5.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.【思路点拨】(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠2,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;(2)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF 全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证.【答案与解析】(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF=12BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵CE CFACB ACDCM CM=⎧⎪∠=∠⎨⎪=⎩,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵2GBFG CFDBF CF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.【总结升华】本题考查了菱形的性质,全等三角形的判定与性质,等角对等边的性质,作出辅助线构造出全等三角形是解题的关键.6 . 如图,己知ABC的顶点B、C为定点,A为动点(不在直线BC上).是点B关于直线AC的对称点,是点C关于直线AB的对称点.连结、、、.(1)猜想线段与'的数量关系,并证明你的结论;(2)当点A运动到怎样的位置时,四边形为菱形?这样的位置有几个?请用语言对这样的位置进行描述;(不用证明)(3)当点A在线段BC的垂直平分线l(BC的中点及到BC的距离为的点除外)上运动时,判断以点B、C、、为顶点的四边形的形状,画出相应的示意图.(不用证明)【思路点拨】本题考查轴对称的基本性质,综合考查菱形、正方形、等腰梯形的判定.在运动变化过程中,认识图形之间的内在联系.【答案与解析】(1)猜想:BC′=CB′∵B′是点B关于直线AC的对称点∴AC垂直平分B B′∴BC= CB′同理BC= BC′∴B C′=C B′(2)要使BCB′C′是菱形,根据菱形的性质,对角线互相垂直平分∵B′是点B关于直线AC的对称点,C′是点C关于直线AB的对称点∴AC垂直平分B B′,AB垂直平分C C′,∴B B′、C C′应该同时过A点∴∠BAC=90°∴只要AB⊥AC即可满足要求,这样的位置有无数个.(3)如图,当A是BC的中点时,没有形成四边形;当A到BC时,∵l是BC的垂直平分线,∴∠ACB=∠ABC=30°,∴∠BAC=120°,∴∠BOC=60°,∴BC=C B′= B′C′=B C′.∴BC B′C′为菱形,当BC的中点及到BC BC的点除外时,∵∠BOC= B′O C′,OB=OC O B′=O C′,∴∠OBC=∠OCB=∠O B′C′=∠O C′B′,∴BC∥B′C′.∵B C′不平行C B′,B C′=C B′,四边形BC B′ C′为等腰梯形.【总结升华】本题可以很好的培养观察推理能力,按照要求画出图形可以更清楚的解题.举一反三:【变式】(2012•襄阳)如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F.(1)求证:梯形ABCD是等腰梯形;(2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.【答案】(1)证明:∵AD∥BC,∴∠DEC=∠EDA,∠BEA=∠EAD,又∵EA=ED,∴∠EAD=∠EDA,∴∠DEC=∠AEB,又∵EB=EC,∴△DEC≌△AEB,∴AB=CD,∴梯形ABCD是等腰梯形.(2)当AB⊥AC时,四边形AECD是菱形.证明:∵AD∥BC,BE=EC=AD,∴四边形ABED和四边形AECD均为平行四边形.∴AB=ED,∵AB⊥AC,∴AE=BE=EC,∴四边形AECD是菱形.过A作AG⊥BE于点G,∵AE=BE=AB=2,∴△ABE是等边三角形,∴∠AEB=60°,∴AG=3,∴S菱形AECD=EC•AG=2×3=23.第十九讲特殊的四边形一、选择题1.(•天水)如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和BC′F的周长之和为()A.3 B.4 C.6 D.82.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF面积为( ).A.4 B.6 C.8 D.103.如图所示,在矩形ABCD中,AB=3,AD=4,P是AD上的一点,PE⊥AC,垂足为E,PF⊥BD,垂足为F,则PE+PF的值为( ).A.B.C.2 D.第3题第4题4.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使EFGH为矩形,四边形应该具备的条件是().A.一组对边平行而另一组对边不平行B.对角线相等C.对角线相互垂直 D.对角线互相平分5.如图,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于().A.7B.5C.4D.3第5题第6题6.如图,在矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为().A.15° B.18° C.36° D.54°二、填空题7.(春•西城区期末)直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE= .8. 如图,菱形ABCD中,于E,于F,,则等于___________.9. 正方形ABCD中,E为BC上一点,BE=,CE=,P在BD上,则PE+PC的最小值可能为__________.10.如图,M为正方形ABCD中BC边的中点,将正方形折起,使点A与M重合,设折痕为EF,若正方形的面积为64,则△AEM的面积为____________.11.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC 于F,则线段EF长度的最小值是_______________.第10题第11题第12题12.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=23,点E是BC边的中点,△DEF是等边三角形,DF交AB于点G,则△BFG的周长为________.三、解答题13.如图1,图2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.(1)如图1,当点E在AB边的中点位置时:①猜想DE与EF满足的数量关系是__________;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是__________;③请证明你的上述两个猜想.(2)如图2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时 DE 与EF有怎样的数量关系.14. 如图,在梯形ABCD中,AD//BC,AB=CD=3cm,∠A=120°,BD⊥CD,(1)求BC、AD的长度;(2)若点P从点B开始沿BC边向点C以2cm/秒的速度运动,点Q从点C开始沿CD边向点D以1cm/秒的速度运动,当P、Q分别从B、C同时出发时,写出五边形ABPQD的面积S与运动时间t之间的关系式,并写出t的取值范围(不包含点P在B、C两点的情况);(3)在(2)的前提下,是否存在某一时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5?若存在,求出t的值;若不存在,请说明理由.15. (•青岛模拟)已知正方形ABCD的边长为a,两条对角线AC、BD相交于点O,P是射线AB上任意一点,过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F.(1)如图1,当P点在线段AB上时,PE+PF的值是否为定值?如果是,请求出它的值;如果不是,请加以说明.(2)如图2,当P点在线段AB的延长线上时,求PE﹣PF的值.16.如图,十三个边长为正整数的正方形纸片恰好拼成一个大矩形(其中有三个小正方形的边长已标出字母x,y,z).试求满足上述条件的矩形的面积最小值.【答案与解析】一.选择题1.【答案】C.【解析】将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,由折叠特性可得,CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°,∵∠ABE+∠EBF=∠C′BF+∠EBF=90°∴∠ABE=∠C′BF在△BAE和△BC′F中,∴△BAE≌△BC′F(ASA),∵△ABE的周长=AB+AE+EB=AB+AE+ED=AB+AD=1+2=3,△ABE和△BC′F的周长=2△ABE的周长=2×3=6.故选:C.2.【答案】C.3.【答案】A.4.【答案】C.5.【答案】B.【解析】可证△OEB≌△OFC,则EB=FC=3,AE=BF=4,32346.【答案】B.【解析】由题意∠ADE=54°,∠CDE=36°,∠DCE=54°,∠BDE=54°-36°=18°.二.填空题7.【答案】3.【解析】如图,∵在直角△ABC中,∠BAC=90°,D、F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE.故填:3.8.【答案】60°.9.【答案】.10.【答案】10.【解析】提示:设AE=x=EM ,BE=8-x,MB=4,在Rt△BEM中由勾股定理解得x=5,从而算出面积.11.【答案】125.【解析】连接PC.∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴12AC•BC=12AB•PC,∴PC=125.∴线段EF长的最小值为125;故答案是:125.12.【答案】3+3.【解析】首先由已知AD∥BC,∠ABC=90°点E是BC边的中点,推出四边形ABED是矩形,所以得到直角三角形CED,所以能求出CD和DE,又由△DEF是等边三角形,得出DF,由直角三角形AGD可求出AG、DG,进而求得FG,再证△AGD≌△BGF,得到BF=AD,从而求出△BFG的周长.三.综合题13.【解析】(1)①DE=EF;②NE=BF;③∵四边形ABCD为正方形,∴AD=AB,∠DAB=∠ABC=90°,∵N,E分别为AD,AB中点,∴AN=DN=12AD,AE=EB=12AB,∴DN=BE,AN=AE,∵∠DEF=90°,∴∠AED+∠FEB=90°,又∵∠ADE+∠AED=90°,∴∠FEB=∠ADE,又∵AN=AE,∴∠ANE=∠AEN,又∵∠A=90°,∴∠ANE=45°,∴∠DNE=180°-∠ANE=135°,又∵∠CBM=90°,BF平分∠CBM,∴∠CBF=45°,∠EBF=135°,∴△DNE≌△EBF(ASA),∴DE=EF,NE=BF.(2)在DA上截取DN=EB(或截取AN=AE),连接NE,则点N可使得NE=BF.此时DE=EF.证明方法同(1),证△DNE≌△EBF.14.【解析】(1)在Rt△BCD中,CD=3cm,∠C=60°, ∴∠DBC=30°,∴BC=2CD=6cm.由已知得:梯形ABCD是等腰梯形,∴∠ABC=∠C=60°,∴∠ABD=∠ABC-∠DBC=30°.∵AD∥BC,∴∠ADB=∠DBC=30°,∴∠ABD=∠ADB,∴AD=AB=3cm.(2)当P、Q分别从B、C同时出发运动t秒时,BP=2t,CQ=t, ∴PC=6-2t,过Q作QE⊥BC于E,则QE=CQsin60°=32t,∴S梯形ABCD-S△PCQ=2734-34(6-2t)t=34(2t2-6t+27)(0<t<3).(3)存在时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5.∵S梯形ABCD=2734,S△ABD=12×3×32×3,∴S△ABD=13×S梯形ABCD,∴五边形ABPQD的面积不可能是梯形ABCD面积的16.∴S△PCQ:S五边形ABPQD=1:5,即S五边形ABPQD=56S梯形ABCD∴34(2t2-6t+27)=56×2734,整理得:4t2-12t+9=0,∴t=32,即当t=32秒时,PQ把梯形ABCD分成两部分的面积比为1:5.15.【解析】解:(1)是定值,∵四边形ABCD为正方形,∴AC⊥BD.∵PF⊥BD,∴PF∥AC,同理PE∥BD.∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=acos45°=a.(2)∵四边形ABCD为正方形,∴AC⊥BD.∵PF⊥BD,∴PF∥AC,同理PE∥BD.∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE﹣PF=OF﹣BF=OB=acos45°=a.16.【解析】已有三个小正方形的边长为x,y,z,我们通过x,y,z表示其余正方形的边长依次填在每个正方形中,它们是x+y,x+2y,x+3y,4y,x+7y,2x+y,2x+y+z,4x+4y-z,4x+4y-2x及5x-2y+z.因矩形对边相等,所以得11x+3y=7x+16y-z及8x+8y-3z=6x+5y+z.化简上述的两个方程得到z=13y-4x,4z=2x+3y,消去z得18x=49y.因为18与49互质,所以x、y的最小自然数解是x=49,y=18,此时z=38.以x=49,y=18,z=38代入矩形长、宽的表达式11x+3y及8x+8y-3z,得长、宽分别为593和422.此时得最小面积值是593×422=250246.。

中考数学专题复习辅导讲义 特殊平行四边形

中考数学专题复习辅导讲义 特殊平行四边形

中考数学专题复习辅导讲义特殊平行四边形年级:辅导科目:数学课时数:3课题特殊平行四边形教学目的教学内容一、【中考要求】掌握矩形、菱形、正方形的概念和性质,了解平行四边形、矩形、菱形、正方形、梯形之间的关系,掌握矩形、菱形、正方形的性质,探索并掌握四边形是矩形、菱形、正方形的条件。

二、【三年中考】1.(台州)如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A.16a B.12a C.8a D.4a解析:在菱形ABCD中,AC⊥BD,又OE平分AB,∴AB=2OE=2a,∴菱形ABCD的周长为8a.答案:C2.(杭州)如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35°B.45°C.50°D.55°解析:过F作FN∥AB,交PE于点N,则FN⊥EP且FN平分EP,∴FE=FP,∴∠FEP=∠FPE,∴∠FPC=∠FEB=55°.答案:D3.(舟山)如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.2m+3 B.2m+6 C.m+3 D.m+6解析:设另一边长为a,由面积法可得:(m+3)2=m2+3·a,∴a=2m+3.答案:A4.(温州)如图,菱形ABCD中,∠A=60°,对角线BD=8,则菱形ABCD的周长等于________.解析:菱形ABCD中,AB=AD,又∠A=60°,∴△ABD是等边三角形,∴AB=BD=8,∴菱形ABCD的周长是32.答案:325.(丽水)如图,正方形ABCD中,E与F分别是AD,BC上一点.在①AE=CF,②BE∥DF,③∠1=∠2中,请选择其中一个条件,证明BE=DF.(1)你选择的条件是________;(只需填写序号)(2)证明.解:(解法一)(1)选__①__;(2)证明:∵ABCD是正方形,∴AB=CD,∠A=∠C=Rt∠.又∵AE=CF,∴△AEB≌△CFD.∴BE=DF.(解法二)(1)选__②__;(2)证明:∵ABCD是正方形,∴AD∥BC.又∵BE∥DF,∴四边形EBFD是平行四边形.∴BE=DF.(解法三)(1)选__③__;(2)证明:∵ABCD是平行四边形,∴AB=CD,∠A=∠C=Rt∠.又∵∠1=∠2,∴△AEB≌△CFD.∴BE=DF.6.(湖州)如图,在△ABC中,D是BC边的中点,F,E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF.(2)请连结BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由.证明:(1)∵CF∥BE,∴∠EBD=∠FCD.又∵∠BDE=∠CDF,BD=CD,∴△BDE≌△CDF.(2)四边形BECF是平行四边形.由△BDE≌△CDF,得ED=FD.∵BD=CD,∴四边形BECF是平行四边形.三、【考点知识梳理】(一)矩形的定义、性质和判定1.定义:有一个角是直角的平行四边形是矩形.2.性质:(1)矩形的四个角都是直角;(2)矩形的对角线互相平分且相等;(3)矩形既是轴对称图形,又是中心对称图形,它有两个对称轴;它的对称中心是对角线的交点.3.判定:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线相等的平行四边形是矩形.(二)菱形的定义、性质和判定1.定义:有一组邻边相等的平行四边形是菱形.2.性质:(1)菱形的四条边都相等,对角线互相互相垂直,并且每条对角线平分一组对角;(2)菱形既是轴对称图形又是中心对称图形.3.判定:(1)有一组邻边相等的平行四边形是菱形;(2)四条边都相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.(三)正方形的定义、性质和判定1.定义:有一个角是直角的菱形是正方形或有一组邻边相等的矩形是正方形.2.性质:(1)正方形四个角都是直角,四条边都相等;(2)正方形两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.3.判定:(1)有一个角是直角的菱形是正方形;(2)有一组邻边相等的矩形是正方形.温馨提示:1.矩形、菱形和正方形具有平行四边形的所有性质;2.平行四边形及特殊平行四边形的有关知识点较多,要想做到准确而不混淆就要从“边、角、对角线、对称性”这四个方面来研究它们的性质和判定,多用数形结合法,掌握它们的区别及联系,把握它们的特征是关键。

中考数学:特殊四边形的计算与证明问题真题+模拟(原卷版北京专用)

中考数学:特殊四边形的计算与证明问题真题+模拟(原卷版北京专用)

中考数学特殊四边形的计算与证明问题【方法归纳】握平行四边形、矩形、菱形、正方形的性质定理和判定定理,会画出四边形全等变换后的图形,并会结合其他知识解答一些有探索性、开放性的问题,提高解决问题的能力.解决此类问题的关键是要牢牢把握四边形的性质与特征,挖掘相关图形之间的联系,利用所给图形及图形之间形状、大小、位置关系,进行观察、实验、比较、联想、类比、分析、综合等.常用到的矩形、菱形、正方形的解题策略有:(1)对于矩形:①判定四边形是矩形,一般先判定是平行四边形,然后再判定是矩形;②矩形的内角是直角和对角线相等,相对于平行四边形来说是矩形特殊的性质;③利用矩形的性质计算或证明时,常常运用勾股定理,锐角三角函数或相似三角形求解.(2)对于菱形:①判定四边形是菱形,一般先判定是平行四边形,然后再判定是菱形;②菱形的邻边相等和对角线垂直,相对于平行四边形来说是菱形特殊的性质;③利用菱形的性质计算或证明时,常常运用勾股定理,锐角三角函数或相似三角形求解;④求线段和的最小值时,往往运用菱形的轴对称的性质转化为求线段的长度.(3)对于正方形:①判定四边形是正方形,一般先判定是平行四边形,然后再判定是矩形或菱形,最后判定这个四边形是正方形;②正方形是最特殊的四边形,在正方形的计算或证明时,要特别注意线段或角的等量转化.【典例剖析】【例1】(2021·北京·中考真题)如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC 上,AE//DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分∠BAC,BE=5,cosB=45,求BF和AD的长.【例2】(2022·北京·中考真题)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.【真题再现】1.(2014·北京·中考真题)如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,BF 平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.2.(2016·北京·中考真题)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.3.(2017·北京·中考真题)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.4.(2017·北京·中考真题)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(____________+____________).易知,S△ADC=S△ABC,_____________=______________,______________=_____________.可得S矩形NFGD= S矩形EBMF.BC,5.(2013·北京·中考真题)如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=12连结DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.6.(2015·北京·中考真题)在▱ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.7.(2020·北京·中考真题)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.8.(2016·北京·中考真题)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.【模拟精练】一、解答题1.(2022·北京房山·二模)已知:如图,在四边形ABCD中,AB∥DC,AC⊥BD,垂足为M,过点A作AE⊥AC,交CD的延长线于点E.(1)求证:四边形ABDE是平行四边形;(2)若AC=8,sin∠ABD=4,求BD的长.52.(2022·北京西城·二模)如图,菱形ABCD的对角线AC,BD交于点O,点E,F分别在DA,BC的延长线上,且BE⊥ED,CF=AE.(1)求证:四边形EBFD是矩形;(2)若AB=5,cos∠OBC=4,求BF的长.53.(2022·北京朝阳·二模)如图,在菱形ABCD中,O为AC,BD的交点,P,M,N分别为CD,OD,OC的中点.(1)求证:四边形OMPN是矩形;(2)连接AP,若AB=4,∠BAD=60∘,求AP的长.4.(2022·北京东城·二模)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=√10,tan∠DCB=3,求菱形AEBD的边长.5.(2022·北京平谷·二模)如图,在□ABCD中,连接AC,点E是AB中点,点F是AC的中点,连接EF,过E作EG∥AF,交DA的延长线于点G.(1)求证:四边形AGEF是平行四边形;(2)若sin∠G=3,AC=10,BC=12,连接GF,求GF的长.56.(2022·北京北京·二模)如图,在等边△ABC中,D是BC的中点,过点A作AE∥BC,且AE=DC,连接CE.(1)求证:四边形ADCE是矩形;(2)连接BE交AD于点F,连接CF.若AB=4,求CF的长.7.(2022·北京丰台·二模)如图,在△ABC中,∠BAC=90∘,AD⊥BC,垂足为D,AE∥BC,CE∥DA.(1)求证:四边形AECD是矩形;(2)若AB=5,cosB=3,求AE的长.58.(2022·北京密云·二模)如图,在平行四边形ABCD中,AC平分∠BAD,点E为AD边中点,过点E作AC的垂线交AB于点M,交CB延长线于点F.(1)求证:平行四边形ABCD是菱形;(2)若FB=2,sinF=3,求AC的长.59.(2022·北京市十一学校模拟预测)如图,在四边形ABCD中,AD=CD,BD⊥AC于点O,点E是DB延长线上一点,OE=OD,BF⊥AE于点F.(1)求证:四边形AECD是菱形;(2)若AB平分∠EAC,OB=3,tan∠CED=3,求EF和AD的长.410.(2022·北京昌平·二模)如图,在矩形ABCD中,对角线AC,BD交于点O,分别过点C,D作BD,AC的平行线交于点E,连接OE交AD于点F.(1)求证:四边形OCED是菱形;(2)若AC=8,∠DOC=60°,求菱形OCED的面积.11.(2022·北京海淀·二模)如图,在Rt△ABC中,∠A =90°,点D,E,F分别为AB,AC,BC的中点,连接DF,EF.(1)求证:四边形AEFD是矩形;(2)连接BE,若AB = 2,tan C =1,求BE的长.212.(2022·北京东城·一模)如图,在正方形ABCD中,E为对角线AC上一点(AE>CE),连接BE,DE.(1)求证:BE=DE;(2)过点E作EF⊥AC交BC于点F,延长BC至点G,使得CG=BF,连接DG.①依题意补全图形;②用等式表示BE与DG的数量关系,并证明.13.(2022·北京东城·一模)如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,∠EAO=∠DCO.(1)求证:四边形AECD是平行四边形;(2)若AB=BC,CD=5,AC=8,tan∠ABD=2,求BE的长.314.(2022·北京市十一学校二模)如图,在平行四边形ABCD中,CE⊥AD于点E,延长DA至点F,使得AF=DE,连接BF,CF.(1)求证:四边形BCEF是矩形;(2)若AB=6,CF=8,DF=10,求EF的长.15.(2022·北京石景山·一模)如图所示,△ABC中,∠ACB=90°,D,E分别为AB,BC的中点,连接DE并延长到点F,使得EF=DE,连接CD,CF,BF.(1)求证:四边形BFCD是菱形;(2)若cos A=5,DE=5,求菱形BFCD的面积.1316.(2022·北京大兴·一模)如图,在平面四边形ABCD中,点E,F分别是AB,CD上的点,CF=BE.(1)求证:四边形AEFD是平行四边形;(2)若∠A=60°,AD=2,AB=4,求BD的长.17.(2022·北京丰台·一模)如图,在四边形ABCD中,∠DCB=90°,AD∥BC,点E在BC 上,AB∥DE,AE平分∠BAD.(1)求证:四边形ABED为菱形;(2)连接BD,交AE于点O.若AE=6,sin∠DBE=3,求CD的长.518.(2022·北京市师达中学模拟预测)如图,四边形ABCD是平行四边形,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF并延长,交AD的延长线于点G,若∠CEG=30°,AE =2,求EG的长.19.(2022·北京四中模拟预测)如图,在四边形ABCD中,AD=CD,BD⊥AC于点O,点E是DB延长线上一点,OE=OD,BF⊥AE于点F.(1)求证:四边形AECD是菱形;(2)若AB平分∠EAC,OB=3,BE=5,求EF和AD的长.20.(2021·北京丰台·一模)如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.21.(2022·北京市燕山教研中心一模)如图,在菱形ABCD中,对角线AC与BD相交于点O,过点D作DE⊥BD交BC的延长线于点E.(1)求证:四边形ACED是平行四边形;(2)若BD=4,AC=3,求sin∠CDE的值.22.(2022·北京平谷·一模)如图,△ABC中,∠ACB=90°,点D为AB边中点,过D点作AB的垂线交BC于点E,在直线DE上截取DF,使DF=ED,连接AE、AF、BF.(1)求证:四边形AEBF是菱形;(2)若cos∠EBF=3,BF=5,连接CD,求CD的长.523.(2022·北京市第一六一中学分校一模)在矩形ABCD中,AC,BD相交于点O,过点C 作CE∥BD交AD的延长线于点E.(1)求证:∠ACD=∠ECD;(2)连接OE,若AB=2,tan∠ACD=2,求OE的长.24.(2022·北京房山·一模)如图,在平行四边形ABCD中,过点B作BE⊥CD交CD的延长线于点E,过点C作CF∥EB交AB的延长线于点F.(1)求证:四边形BFCE是矩形;(2)连接AC,若AB=BE=2,tan∠FBC=1,求AC的长225.(2022·北京朝阳·一模)如图,在矩形ABCD中,AC,BD相交于点O,AE//BD,BE//AC.(1)求证:四边形AEBO是菱形;(2)若AB=OB=2,求四边形AEBO的面积.26.(2022·北京·中国人民大学附属中学分校一模)如图,正方形ABCD中,P为BD上一动点,过点P作PQ⊥AP交CD边于点Q.(1)求证:PA=PQ;(2)用等式表示PB、PD、AQ之间的数量关系,并证明;(3)点P从点B出发,沿BD方向移动,若移动的路径长为4,则AQ的中点M移动的路径长为(直接写出答案).27.(2022·北京市三帆中学模拟预测)已知:△ABC中,AB=AC,AD⊥BC于点D,过点BC,连结DE.A作AE,且AE=12(1)求证:四边形ABDE是平行四边形;(2)作FG⊥AB于点G,AG=4,cos∠GAF=4,求FG和FD的长.528.(2022·北京西城·一模)如图,在△ABC中,BA=BC,BD平分∠ABC交AC于点D,点E在线段BD上,点F在BD的延长线上,且DE=DF,连接AE,CE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BA⊥AF,AD=4,BC=4√5,求BD和AE的长.29.(2022·北京顺义·一模)如图,在四边形ABCD中,AD∥BC,AC⊥BD,垂足为O,过点D作BD的垂线交BC的延长线于点E.(1)求证:四边形ACED是平行四边形;(2)若AC=4,AD=2,cos∠ACB=4,求BC的长.530.(2022·北京通州·一模)如图.在△ABC中,AB=BC,BD平分∠ABC交AC于点D.点E为AB的中点,连接DE,过点E作EF∥BD交CB的延长线于点F.(1)求证:四边形DEFB是平行四边形;(2)当AD=4,BD=3时,求CF的长.。

中考数学专题复习题:特殊平行四边形

中考数学专题复习题:特殊平行四边形

中考数学专题复习题:特殊平行四边形一、单项选择题(共5小题)1.下列结论中,矩形具有而平行四边形不一定具有的性质是()A.对边平行且相等B.对角线互相平分C.任意两个邻角互补D.对角线相等2.如图,在△ABC中,DE∥CA,DF∥BA,下列四个判断不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是矩形D.如果AD⊥BC,且AB=AC,那么四边形AEDF是菱形第2题图第3题图3.如图,在矩形ABCD中,对角线AC,BD相交于点O,下列说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD4.如图,四边形ABCD的对角线AC与BD相交于点O,下列条件中,能判定四边形ABCD是矩形的是()A.AB∥DC,AB=CD B.AB∥CD,AD∥BCC.AC=BD,AC⊥BD D.OA=OB=OC=OD5.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A.17 B.18 C.19 D.20二、填空题(共5小题)6.如图,小明把面积为8的矩形纸板挂在墙上,则图中阴影区域的面积是________.7.如图,四边形ABCD是矩形,对角线AC与BD交于点O,∠AOD=60°,AD=2,则AC=________,矩形的面积等于________.8.如图,在矩形ABCD中,已知AE⊥BD于点E,∠DBC=30°,BE=1 cm,则AE的长为________.9.已知Rt△ABC的两直角边长分别为3 cm,4 cm,则斜边上的中线是________,斜边上的高是________.10.如图,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD.若AC=10,则四边形OCED的周长是________.三、解答题(共2小题)11.如图,在平行四边形ABCD中,∠ABC和∠BCD的平分线相交于点E,BF∥CE,CF∥BE. 求证:四边形BFCE是矩形.12.如图,四边形ABCD是矩形,对角线AC,BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE;(2)若∠DBC=30°,BO=4,求四边形ABED的面积.。

中考数学《特殊平行四边形》专题复习课件(共32张PPT)

中考数学《特殊平行四边形》专题复习课件(共32张PPT)
ACEF是菱形?请回答并证明你的结论. (3)四边ACEF有可能是正方形吗?请证明
你的结论。
7.如图,OABC是一张放在平面直角坐标系中的 矩形纸片,O为原点,点A在x轴上,点C在y 轴上,OA=10,OC=6。
(1)如图①,在OA上选取一点G,将△COG 沿CG翻折,使点O落在BC边上,设为E, 求折痕CG所在直线的解析式。
谢谢观赏
You made my day!
我们,还在路上……
⑵当x为何值时,⊿PBC的周长最 小,并求出此时y的值
❖1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 ❖2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 ❖3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 ❖4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
一、四边形的分类及转化
两组对边平行 平行四边形
任意四边形
一组对边平行
梯形
另一组对边不平行
矩形
菱 形
正方形
等腰梯形
直角梯形
二、几种特殊四边形的性质:
项目 四边形
对边

对角线
对称性
对角相等
平行且相等
平行四边形
邻角互补
四个角
矩形 平行且相等 都是直角
平行
对角相等

多边形证明 --特殊四边形证明(解析版)-中考数学重难点题型专题汇总

多边形证明 --特殊四边形证明(解析版)-中考数学重难点题型专题汇总

多边形证明-中考数学重难点题型特殊四边形证明(专题训练)1.如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.【分析】根据菱形的性质可得∠B=∠D,AB=AD,再证明△ABE≌△ADF,即可得∠BAE=∠DAF.【解答】证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,AB=AD∠B=∠DBE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.2.如图,在菱形ABCD中,将对角线AC分别向两端延长到点E和F,使得AE=CF.连接DE,DF,BE,BF.求证:四边形BEDF是菱形.【分析】四边形ABCD是菱形,可得AB=BC=CD=DA,∠DCA=∠BCA,∠DAC=∠BAC,可以证明△CDF≌△CBF,△DAE≌△BFC,△DCF≌△BEA,进而证明平行四边形BEDF是菱形.【解答】证明:∵四边形ABCD是菱形,∴BC=CD,∠DCA=∠BCA,∴∠DCF=∠BCF,∵CF=CF,∴△CDF≌△CBF(SAS),∴DF=BF,∵AD∥BC,∴∠DAE=∠BCF,∵AE=CF,DA=AB,∴△DAE≌△BFC(SAS),∴DE=BF,同理可证:△DCF≌△BEA(SAS),∴DF=BE,∴四边形BEDF是平行四边形,∵DF=BF,∴平行四边形BEDF是菱形.3.如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.【答案】证明见试题解析.【分析】由矩形的性质和已知得到DF=BE,AB∥CD,故四边形DEBF是平行四边形,即可得到答案.【详解】∵四边形ABCD是矩形,∴AB∥CD,AB=CD,又E、F分别是边AB、CD的中点,∴DF=BE,又AB∥CD,∴四边形DEBF是平行四边形,∴DE=BF.考点:1.矩形的性质;2.全等三角形的判定.4.已知:如图,在▱ABCD中,点O是CD的中点,连接AO并延长,交BC的延长线于点E,求证:AD=CE.【分析】只要证明△AOD≌△EOC(ASA)即可解决问题;【解答】证明:∵O 是CD 的中点,∴OD=CO,∵四边形ABCD 是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO 和△ECO 中,∠D =∠OCE OD =OC ∠AOD =∠EOC ,∴△AOD≌△EOC(ASA),∴AD=CE.5.如图,在▱ABCD 中,点E 在AB F 在CD 的延长线上,满足BE=DF.连接EF,分别与BC,AD 交于点G,H.求证:EG=FH.【分析】根据平行四边形的性质和全等三角形的判定和性质定理即可得到结论.【解答】证明:∵四边形ABCD 是平行四边形,∴AB∥CD,∠ABC=∠FDH,在△BEG 与△DFH 中,∠E =∠F BE =DF ∠EBG =∠FDH ,∴△BEG≌△DFH(ASA),∴EG=FH.6.如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.(1)若OE=32,求EF的长;(2)判断四边形AECF的形状,并说明理由.【分析】(1)判定△AOE≌△COF(ASA),即可得OE=OF=32,进而得出EF的长;(2)先判定四边形AECF是平行四边形,再根据EF⊥AC,即可得到四边形AECF是菱形.【解析】(1)∵四边形ABCD是平行四边形,∴AB∥CD,AO=CO,∴∠FCO=∠EAO,又∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF=32,∴EF=2OE=3;(2)四边形AECF是菱形,理由:∵△AOE≌△COF,∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形.7.已知:如图,在▱ABCD中,点E、F分别在AD、BC上,且BE平分∠ABC,EF∥AB.求证:四边形ABFE是菱形.【答案】见解析【分析】先证四边形ABFE是平行四边形,由平行线的性质和角平分线的性质证AB=AE,依据有一组邻边相等的平行四边形是菱形证明即可.【解析】证明:∵四边形ABCD是平行四边形,∴AD∥BC,又∵EF∥AB,∴四边形ABFE是平行四边形,∵BE平分∠ABC,∴∠ABE=∠FBE,∵AD∥BC,∴∠AEB=∠EBF,∴∠ABE=∠AEB,∴AB=AE,∴平行四边形ABFE是菱形.【点睛】本题考查了平行四边形的性质、等腰三角形的判定、菱形的判定,解题关键是熟练运用相关知识进行推理证明,特别注意角平分线加平行,可证等腰三角形.8.如图,四边形ABCD 是菱形,点E 、F 分别在边AB 、AD 的延长线上,且BE DF =.连接CE 、CF .求证:CE CF =.【答案】见解析【分析】根据菱形的性质得到BC=CD,∠ADC=∠ABC,根据SAS 证明△BEC≌△DFC,可得CE=CF.【详解】解:∵四边形ABCD 是菱形,∴BC=CD,∠ADC=∠ABC,∴∠CDF=∠CBE,在△BEC 和△DFC 中,BE DF CBE CDF BC CD =⎧⎪∠=∠⎨⎪=⎩,∴△BEC≌△DFC(SAS),∴CE=CF.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,解题的关键是根据菱形得到判定全等的条件.9.如图,在ABC 中,BAC ∠的角平分线交BC 于点D,//,//DE AB DF AC .(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且AD =AFDE 的面积.【答案】(1)菱形,理由见解析;(2)4【分析】(1)根据DE∥AB,DF∥AC 判定四边形AFDE 是平行四边形,再根据平行线的性质和角平分线的定义得到∠EDA=∠EAD,可得AE=DE,即可证明;(2)根据∠BAC=90°得到菱形AFDE 是正方形,根据对角线AD 求出边长,再根据面积公式计算即可.【详解】解:(1)四边形AFDE 是菱形,理由是:∵DE∥AB,DF∥AC,∴四边形AFDE 是平行四边形,∵AD 平分∠BAC,∴∠FAD=∠EAD,∵DE∥AB,∴∠EDA=∠FAD,∴∠EDA=∠EAD,∴AE=DE,∴平行四边形AFDE 是菱形;(2)∵∠BAC=90°,∴四边形AFDE 是正方形,∵AD=,=2,∴四边形AFDE 的面积为2×2=4.【点睛】本题考查了菱形的判定,正方形的判定和性质,平行线的性质,角平分线的定义,解题的关键是掌握特殊四边形的判定方法.10.如图,矩形ABCD 的对角线AC、BD 相交于点O,//BE AC ,//AE BD .(1)求证:四边形AOBE 是菱形;(2)若60AOB ∠=︒,4AC =,求菱形AOBE 的面积.【答案】(1)证明过程见解答;(2)【分析】(1)根据BE∥AC,AE∥BD,可以得到四边形AOBE 是平行四边形,然后根据矩形的性质,可以得到OA=OB,由菱形的定义可以得到结论成立;(2)根据∠AOB=60°,AC=4,可以求得菱形AOBE 边OA 上的高,然后根据菱形的面积=底×高,代入数据计算即可.【解析】解:(1)证明:∵BE∥AC,AE∥BD,∴四边形AOBE 是平行四边形,∵四边形ABCD 是矩形,∴AC=BD,OA=OC=12AC,OB=OD=12BD,∴OA=OB,∴四边形AOBE 是菱形;(2)解:作BF⊥OA 于点F,∵四边形ABCD 是矩形,AC=4,∴AC=BD=4,OA=OC=12AC,OB=OD=12BD,∴OA=OB=2,∵∠AOB=60°,∴BF=OB•sin∠AOB=2=∴菱形AOBE的面积是:OA•BF=2【点睛】本题考查菱形的判定、矩形的性质,解答本题的关键是明确菱形的判定方法,知道菱形的面积=底×高或者是对角线乘积的一半.11.如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;(2)如果AB AE=,求证:四边形ACED是矩形.【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质以及点C是BE的中点,得到AD∥CE,AD=CE,从而证明四边形ACED 是平行四边形;(2)由平行四边形的性质证得DC=AE,从而证明平行四边形ACED是矩形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC.∵点C是BE的中点,∴BC=CE,∴AD=CE,∵AD∥CE,∴四边形ACED 是平行四边形;(2)∵四边形ABCD 是平行四边形,∴AB=DC,∵AB=AE,∴DC=AE,∵四边形ACED 是平行四边形,∴四边形ACED 是矩形.【点睛】本题考查了平行四边形和矩形的判定和性质,正确的识别图形是解题的关键.12.如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O,过点O 的直线EF 与BA、DC 的延长线分别交于点E、F.(1)求证:AE=CF;(2)请再添加一个条件,使四边形BFDE 是菱形,并说明理由.【答案】(1)见解析;(2)EF⊥BD 或EB=ED,见解析【分析】(1)根据平行四边形的性质和全等三角形的证明方法证明AOE COF V V ≌,则可得到AE =CF;(2)连接BF,DE,由AOE COF V V ≌,得到OE=OF,又AO=CO,所以四边形AECF 是平行四边形,则根据EF⊥BD 可得四边形BFDE 是菱形.【详解】证明:(1)∵四边形ABCD 是平行四边形∴OA=OC,BE∥DF∴∠E=∠F在△AOE 和△COF 中E F AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AOE COF V V ≌()AAS ∴AE=CF(2)当EF⊥BD 时,四边形BFDE 是菱形,理由如下:如图:连结BF,DE∵四边形ABCD 是平行四边形∴OB=OD∵AOE COFV V ≌∴OE OF=∴四边形BFDE 是平行四边形∵EF⊥BD,∴四边形BFDE 是菱形【点睛】本题主要考查了全等三角形的性质与判定、平行四边形的性质,菱形的判定等知识点,熟悉相关性质,能全等三角形的性质解决问题是解题的关键.13.如图,在▱ABCD 中,对角线AC 与BD 相交于点O,点E,F 分别在BD 和DB 的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD 平分∠ABC 时,四边形AFCE是什么特殊四边形?请说明理由.【分析】(1)根据四边形ABCD是平行四边形,可以得到AD=CB,∠ADC=∠CBA,从而可以得到∠ADE=∠CBF,然后根据SAS即可证明结论成立;(2)根据BD平分∠ABC和平行四边形的性质,可以证明▱ABCD是菱形,从而可以得到AC ⊥BD,然后即可得到AC⊥EF,再根据题目中的条件,可以证明四边形AFCE是平行四边形,然后根据AC⊥EF,即可得到四边形AFCE是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,∠ADC=∠CBA,∴∠ADE=∠CBF,在△ADE和△CBF中,AD=CB∠ADE=∠CBFDE=BF,∴△ADE≌△CBF(SAS);(2)当BD平分∠ABC时,四边形AFCE是菱形,理由:∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.14.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF ⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.【分析】(1)利用三角形内角和定理求出∠EAO,利用角平分线的定义求出∠DAC,再利用平行线的性质解决问题即可.(2)证明△AEO≌△CFO(AAS)可得结论.【解答】(1)解:∵AE⊥BD,∴∠AEO=90°,∵∠AOE=50°,∴∠EAO=40°,∵CA平分∠DAE,∴∠DAC=∠EAO=40°,∵四边形ABCD是平行四边形,∴AD∥BC,∠ACB=∠DAC=40°,(2)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°,∵∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴AE=CF.15.如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.【分析】(1)根据平行四边形的性质得到AB∥CD,根据平行线的性质得到∠ABC+∠BCD=180°,根据角平分线的定义得到∠BCD=2∠BCF,于是得到结论;(2)根据平行四边形的性质得到AB∥CD,AB=CD,∠BAD=∠DCB,求得∠ABE=∠CDF,根据角平分线的定义得到∠BAE=∠DCE,根据全等三角形的性质即可得到结论.【解析】(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵CF平分∠DCB,∴∠BCD=2∠BCF,∵∠BCF=60°,∴∠BCD=120°,∴∠ABC=180°﹣120°=60°;(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠DCB,∴∠ABE=∠CDF,∵AE,CF分别平分∠BAD和∠DCB,∴∠BAE=12∠BAD,∠DCF=12∠BCD,∴∠BAE=∠DCE,∴△ABE≌△CDF(ASA),∴BE=CF.16.如图,点E 是▱ABCD 的边CD 的中点,连结AE 并延长,交BC 的延长线于点F.(1)若AD 的长为2,求CF 的长.(2)若∠BAF=90°,试添加一个条件,并写出∠F 的度数.【分析】(1)由平行四边形的性质得出AD∥CF,则∠DAE=∠CFE,∠ADE=∠FCE,由点E 是CD 的中点,得出DE=CE,由AAS 证得△ADE≌△FCE,即可得出结果;(2)添加一个条件当∠B=60°时,由直角三角形的性质即可得出结果(答案不唯一).【解析】(1)∵四边形ABCD 是平行四边形,∴AD∥CF,∴∠DAE=∠CFE,∠ADE=∠FCE,∵点E 是CD 的中点,∴DE=CE,在△ADE 和△FCE 中,∠DAE =∠CFE ∠ADE =∠FCE DE =CE ,∴△ADE≌△FCE(AAS),∴CF=AD=2;(2)∵∠BAF=90°,添加一个条件:当∠B=60°时,∠F=90°﹣60°=30°(答案不唯一).17.如图,四边形ABCD 是平行四边形,DE∥BF,且分别交对角线AC 于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD 为菱形.【分析】(1)根据平行四边形的性质,可以得到AD=CB,AD∥CB,从而可以得到∠DAE=∠BCF,再根据DE∥BF和等角的补角相等,从而可以得到∠AED=∠CFB,然后即可证明△ADE和△CBF 全等,从而可以得到AE=CF;(2)根据(1)中的△ADE和△CBF全等,可以得到DE=BF,再根据DE∥BF,即可得到四边形EBFD是平行四边形,再根据BE=DE,即可得到四边形EBFD为菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAE=∠BCF,∵DE∥BF,∴∠DEF=∠BFE,∴∠AED=∠CFB,在△ADE和△CBF中,∠DAE=∠BCF∠AED=∠CFBAD=CB,∴△ADE≌△CBF(AAS),∴AE=CF;(2)证明:由(1)知△ADE≌△CBF,则DE=BF,又∵DE∥BF,∴四边形EBFD是平行四边形,∵BE=DE,∴四边形EBFD为菱形.18.如图,点E,F在▱ABCD的边BC,AD上,BE=13BC,FD=13AD,连接BF,DE.求证:四边形BEDF是平行四边形.【分析】根据平行四边形的性质得出AD=BC,AD∥BC,进而得出DF=BE,利用平行四边形的判定解答即可.【解析】∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE=13BC,FD=13AD,∴BE=DF,∵DF∥BE,∴四边形BEDF是平行四边形.20.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=12BD=12,OM=12MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD 和△NOB 中,∠DMO =∠BNO ∠MOD =∠NOB OD =OB ,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM 是平行四边形,∵MN⊥BD,∴四边形BNDM 是菱形;(2)解:∵四边形BNDM 是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB =12BD=12,OM =12MN=5,在Rt△BOM 中,由勾股定理得:BM =OM 2+OB 2=52+122=13,∴菱形BNDM 的周长=4BM=4×13=52.。

能力提升2_4特殊四边形综合的六种题型与真题训练【2022中考数学三轮冲刺能力提升真题对点练】原卷版

能力提升2_4特殊四边形综合的六种题型与真题训练【2022中考数学三轮冲刺能力提升真题对点练】原卷版

专题2.4特殊四边形综合的六种题型与真题训练题型一:正方形综合题一.选择题(共4小题)1.(2022•鹿城区校级一模)如图,在△ABC中以AC,BC为边向外作正方形ACFG与正方形BCDE,连结DF,并过C点作CH⊥AB于H并交FD于M.若∠ACB=120°,AC=3,BC=2,则MD的长为()A.B.C.D.2.(2021•南湖区校级模拟)如图,在边长为2的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的是()①△CMP∽△BPA;②△CNP的周长始终不变;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为;⑤当△ABP≌△ADN时,BP=2﹣2.A.2个B.3个C.4个D.5个3.(2021•天门模拟)如图,正方形ABCD的边长为定值,E是边CD上的动点(不与点C,D重合),AE交对角线BD于点F,FG⊥AE交BC于点G,GH⊥BD于点H,连结AG交BD于点N.现给出下列命题:①AF=FG;②DF=DE;③FH的长度为定值;④GE=BG+DE;⑤BN2+DF2=NF2.真命题有()A.2个B.3个C.4个D.5个4.(2021•南山区二模)如图,正方形ABCD内一点E,满足△CDE为正三角形,直线AE交BC 于F点,过E点的直线GH⊥AF,交AB于点G,交CD于点H.以下结论:①∠AFC=105°;②GH=2EF;③;④其中正确的有()A.①②③B.①③④C.①④D.①②③④二.填空题(共2小题)5.(2022•济南一模)如图,已知正方形ABCD,延长AB至点E使BE=AB,连接CE、DE,DE 与BC交于点N,取CE的中点F,连接BF,AF,AF交BC于点M,交DE于点O,则下列结论:①DN=EN;②OA=OE;③CN:MN:BM=3:1:2;④tan∠CED=;⑤S四边形BEFM=2S.△CMF其中正确的是.(只填序号)6.(2022•利州区校级模拟)如图,在正方形ABCD中,点E在对角线AC上(AE<EC),连接DE并延长交AB于点F,过点E作EG⊥DE交BC于点G,连接DG,FG,DG交AC于H,现有以下结论:①DE=EG;②AE2+HC2=EH2;③S△DEH为定值;④CG+CD=CE;⑤GF=EH.以上结论正确的有(填入正确的序号即可).三.解答题(共8小题)7.(2021•武进区模拟)某数学兴趣小组发现八年级期中试卷上有这样一道题:如图①,在正方形ABCD的外部作∠AED=45°,且AE=6,DE=3,连接BE,求BE的长.经过思考,小明提出两种解题的思路:思路1:如图②,分别过点D、B作DF⊥AE,BG⊥EA的延长线,垂足分别为F、G.构造△ABG≌△DAF,求出EG、BG的长,再利用勾股定理求BE的长.思路2:如图③,将△ABE绕点A逆时针旋转90°,就可以构造出Rt△EDF,运用勾股定理可以求出EF的长,从而得到BE的长.(1)求得BE=.请你用学过的知识或参考小明的思路解决兴趣小组提出的以下两个问题:(2)如图④,在菱形ABCD中,∠BAD=45°,在菱形ABCD的外部作∠AED=22.5°,且AE=,DE=1,连接BE,求BE2的值;(3)如图⑤,在△ABC中,AB=AC,∠BAC=α,在△ABC外部作△APC,AP=AC,∠APC=β,连接PB,若PC2+2BC2=PB2,试探求α与β的数量关系.8.(2021•息县模拟)问题背景:在课外小组活动中,“创新小组”对“正方形旋转”问题进行了探究,如图①,边长为6的正方形ABCD的对角线相交于点E,分别延长EA到点F,EB到点H,使AF=BH,再以EF,EH为邻边做正方形EFGH,连接AH,DF.解决问题:(1)AH与DF之间的数量关系是,位置关系是;深入研究:(2)如图②正方形EFGH固定不动,将正方形ABCD绕点E顺时针方向旋转α°,判断AH与DF的关系,并证明:拓展延伸:(3)如图③,在正方形ABCD旋转过程中(0°<α<90°),AB,BC分别交EF,EH于点M,N,连接MN,EC.①当AM=2时,直接写出S△BMN+S△CEN的值;②若α=45°,在不添加字母的情况下,请你在图中再找两个点,和点M,N所围成的四边形是特殊四边形,直接写出这个特殊四边形.(写两个,不需要证明,需要指明是什么特殊四边形)9.(2021•临沂模拟)问题情境:如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC 边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.探究展示:(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形CDEF绕着点C按顺时针方向旋转角度α,得到如图2的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.拓展延伸:(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图3,且AC=4,BC=3,CD=,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.10.(2022•金乡县一模)如图1,若一个四边形的两条对角线互相垂直,则称这个四边形为垂美四边形.(1)【概念理解】如图2,在四边形ABCD中,AB=AD,CB=CD,四边形ABCD是垂美四边形吗?请说明理由;(2)【性质探究】如图1,四边形ABCD是垂美四边形,请探究AB2,CD2,AD2,BC2之间存在怎样的关系?并进行证明;(3)【性质运用】如图3,分别以Rt△ABC的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE、BG、GE,CE交BG于点N,交AB于点M.已知AC=,AB=2,求GE的长.11.(2021秋•晋中期中)综合与实践如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为E,GF⊥CD,垂足为F.【证明与推断】(1)①四边形CEGF的形状是;②的值为;【探究与证明】(2)在图1的基础上,将正方形CEGF绕点C按顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;【拓展与运用】(3)如图3,在(2)的条件下,正方形CEGF在旋转过程中,当B、E、F三点共线时,探究AG和GE的位置关系,并说明理由.12.(2021•远安县二模)如图,E、F分别是正方形ABCD边AB、AD的中点.(1)如图1,连接CE、BF,交于P点.①求证:CE=BF;②求证:S四边形AEPF=S△BPC;(2)如图2,连接DP.求证:DP=DC;(3)如图3,将△ABF沿BF折叠,点A落在点Q处,连接FQ并延长,交DC于G点.求DG:GF的值.13.(2021•孝义市三模)综合与实践问题情境:如图1,在正方形纸片ABCD中,E,F,G,H分别是AB,BC,CD,AD边上的点,且AE=BF=CG=DH.动手操作:操作一:如图2,将△DHG,△BFE分别沿HG,EF折叠.点D,B的对应点分别为P,Q.操作二:再将图2中的纸片进行折叠,使得点H与点G,点E与点F分别重合,折痕与GH交于点M,与EF交于点N.操作三:分别连接MP,PN,NQ,MQ.解决问题:(1)在图1中,求证:四边形GHEF是正方形;(2)在图2中,求证:四边形MPNQ是平行四边形.(3)在满足(2)的条件下,若四边形MPNQ是矩形,请利用图3,直接写出的值是.14.(2021•海陵区校级二模)已知正方形ABCD的边长为8,P为AB上一点,且AP=2,E为AD 上的动点(不与A、D重合),连接CE,过点D作DF⊥CE于F,Q为AE上一点.(1)如图1,当PF∥AD时,求∠DCE的度数.(2)如图2,连接BD交CE于点M,连接AM,当FD=FQ时,求证:QF∥AM.(3)如图3,连接PQ、QF,求QF+PQ的最小值.题型二:长方形综合题一.填空题(共1小题)1.(2022•安徽一模)在矩形ABCD中,AB=6,AD=8,E是BC的中点,连接AE,过点D作DF⊥AE于点F,连接CF、AC.(1)线段DF的长为;(2)若AC交DF于点M,则=.二.解答题(共6小题)2.(2022•锡山区校级模拟)如图,在矩形纸片ABCD中,已知,将矩形沿EF对折(点E、F分别在边BC、AD上),使顶点D落在AB边上的点P处.(1)若AB=4,BC=6,①当AP=3时,求DF的长;②设AP=m,EQ=y,试求y与m之间函数表达式;(2)记四边形PQEF的面积为S,若=k,试说明当k为何值时S的值最小?3.(2021•开化县模拟)在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点P是射线BC上的动点,连结AP,将△ABP沿着AP翻折得到△ADP.(1)如图1,当点D在AC上时,求△ABP的面积;(2)如图2,连结BD,CD,AC与DP相交于点M,AP与BD相交于点N,当∠BDC=90°时,求DM:PM的值;(3)如图3,在CD左侧构造一个矩形CDEF,使得CD:DE=1:2,当点E、F中有一点落在直线AB上时,求BP的长.4.(2021•黄岛区模拟)已知:如图,在矩形ABCD中,CD=6cm,BC=8cm,对角线AC,BD交于点O,点P从点C出发,沿CB方向匀速运动,速度为2cm/s;同时,点Q从点D出发,沿DA方向匀速运动,速度为1cm/s.过点Q作QM∥BD,交AC于点M,连接PQ,PM分别交BD于点E,F.设运动时间为ts(0<t<4),解答下列问题:(1)当t为何值时,MP∥AB?(2)设△PQM的面积为Scm2,求S与t的函数关系式.(3)是否存在某一时刻t,使BD将△PQM分成△PEF和四边形EFMQ面积比为9:7?若存在,求出t的值;若不存在,请说明理由.(4)延长QM交AB于点N,是否存在某一时刻t,使点P在线段QN的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.5.(2021•临海市一模)【发现问题】小聪发现图1所示矩形甲与图2所示矩形乙的周长与面积满足关系:==.【提出问题】对于任意一个矩形A,是否一定存在矩形B,使得==成立?【解决问题】(1)对于图2所示的矩形乙,是否存在矩形丙(可设两条邻边长分别为x和7﹣x),使得==成立.若存在,求出矩形丙的两条邻边长;若不存在,请说明理由;(2)矩形A两条邻边长分别为m和1,若一定存在矩形B,使得==成立,求m的取值范围;(3)请你回答小聪提出来的问题.若一定存在,请说明理由;若不一定存在,请直接写出矩形A两条邻边长a,b满足什么条件时一定存在矩形B.6.(2021•临沂模拟)在一张长方形纸片ABCD中,AB=25cm,AD=20cm,现将这张纸片按下列图示方法折叠,请解决下列问题:(1)如图(1),折痕为DE,点A的对应点F在CD上,求折痕DE的长;(2)如图(2),H,G分别为BC,AD的中点,A的对应点F在HG上,折痕为DE,求重叠部分的面积;(3)如图(3),在图(2)中,把长方形ABCD沿着HG对开,变成两张长方形纸片,将两张纸片任意叠后,判断重叠四边形的形状,并证明.7.(2021•永嘉县校级模拟)如图,在平面直角坐标系xOy中,矩形OABC的顶点B坐标为(8,6),对角线AC,BO交于点D,在边OC上有一动点P,点Q是点P关于OB的对称点,设OP=t.(1)当PQ过点D时,求点Q的坐标.(2)用含t的代数式表示点Q的坐标.(3)过点P作AC的垂线,交△ABC的边于点R,当△PQR为直角三角形时,求t的值.题型三:平行四边形综合题一.解答题(共10小题)1.(2022•郑州一模)在▱ABCD中,∠BAD=α,以点D为圆心,适当的长度为半径画弧,分别交边AD、CD于点M、N,再分别以M、N为圆心,大于的长为半径画弧,两弧交于点K,作射线DK,交对角线AC于点G,交射线AB于点E,将线段EB绕点E顺时针旋转得线段EP.(1)如图1,当α=120°时,连接AP,线段AP和线段AC的数量关系为;(2)如图2,当α=90°时,过点B作BF⊥EP于点F,连接AF,请求出∠FAC的度数,以及AF,AB,AD之间的数量关系,并说明理由;(3)当a=120°时,连接AP,若,请直接写出线段AP与线段DG的比值.2.(2020•沙湾区模拟)如图,在平行四边形ABCD中,∠A=45°,AD⊥BD,P是AB上一动点,过P作DP的垂线交BC于E,将△PBE折叠得到△PBF,延长FP交AD于H,连接DE.(1)求证:PH=PF;(2)当DP2=DH•DA时,证明△ADP是等腰三角形;(3)若AD=3,AP=2BP,求DE的长.3.(2020•玉林模拟)如图,在平行四边形ABCD中,AB⊥AC,对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC、AD于点E、F,已知AB=1,,连接BF.(1)如图①,在旋转的过程中,请写出线段AF与EC的数量关系,并证明;(2)如图②,当α=45°时,请写出线段BF与DF的数量关系,并证明;(3)如图③,当α=90°时,求△BOF的面积.4.(2020•渝中区校级模拟)如图,在平行四边形ABCD中,AC为对角线,∠BAC=90°,AB =AC,点E是AD上一点,连接BE,交AC与点F,过点C作线段BE的垂线,垂足为点G,交AD于点H,连接FH.(1)如图1,当AB=AE时,求证:BF﹣EG=FH+HG;(2)如图2,连接BH交AC于点K,当=时,求出的值.5.(2020•长春一模)如图①,在平行四边形ABCD中,AB=8,BC=6,∠ABC=60°.AE 平分∠BAD交CD于点F.动点P从点A出发沿AD向点D以每秒1个单位长度的速度运动.过点P作PQ⊥AD,交射线AE于点Q,以AP、AQ为邻边作平行四边形APMQ,平行四边形APMQ 与△ADF重叠部分面积为S.当点P与点D重合时停止运动,设P点运动时间为t秒.(t>0)(1)用含t的代数式表示QF的长.(2)当点M落到CD边上时,求t的值.(3)求S与t之间的函数关系式.(4)连接对角线AM与PQ交于点G,对角线AC与BD交于点O(如图②).直接写出当GO与△ABD的边平行时t的值.6.(2022•安阳县一模)如图,在Rt△ABC中,∠A=90°,AB=2,tan C=,动点P从点B 出发以每秒1个单位长度的速度沿BC向终点C运动(点P不与点B,C重合),以BP为边在BC 上方作等腰Rt△BPN,使P为直角顶点,将△BPN绕NP的中点旋转180°得到△MNP,设四边形BPMN与△ABC重叠部分图形的面积为S,点P的运动时间为t秒.(1)点M到BC的距离为.(用含t的式子表示)(2)若线段MN与AC交于点E,当t为何值时,射线BE将四边形BPMN的面积分成1:3的两部分.(3)当四边形BPMN与△ABC重叠部分为四边形时,求S与t的函数关系式.(不要求写出对应自变量取值范围)7.(2021•吉林模拟)如图,∠MAN=45°,在边AM上取一点B,使AB=6cm,过点B作BD⊥AN,垂足为点D,以AB,AD为邻边作▱ABCD.动点P从点A出发,以1cm/s的速度在射线AB 上运动,过点P作PE⊥AM,交AN于点E,以AP,AE为邻边作▱APQE.设点P运动时间为t (s).(1)用含t的代数式表示AE的长;(2)当点Q落在BD边上时,求t的值;(3)当△APE与△BCD重叠部分图形是轴对称图形时,求出t的取值范围;(4)若点P从点A开始运动的同时,点K从点C出发,沿C﹣B﹣D﹣C方向做循环运动.已知点K在CB,BD边上的运动速度是cm/s,在CD边上的运动速度是每秒4cm/s.直接写出点K落在△PQE内部时t的取值范围.8.(2020•市北区二模)如图,在平行四边形ABCD中,AB=8,AD=10,AB和CD之间的距离是8,动点P在线段AB上从点A出发沿AB方向以每秒2个单位的速度匀速运动;动点Q在线段BC上从点B出发沿BC的方向以每秒1个单位的速度匀速运动,过点P作PE⊥AB,交线段AD于点E,若P,Q两点同时出发,设运动时间为t秒,0<t≤3.(1)当t为何值时,BE平分∠ABC?(2)连接PQ,CE,设四边形PECQ的面积为S,求出S与t的函数关系式;(3)是否存在某一时刻t,使得CE∥QP?若存在,请直接给出此时t的值(不必写说理过程);若不存在,请说明理由.9.(2020•城阳区一模)如图,在平行四边形ABCD中,BD⊥AD,AB=20.AD=12.动点G 在线段AD上,点G从点A出发沿AD方向以每秒2个单位长的速度匀速运动;动点H在线段CD 上,点H从点C出发沿CD的方向以每秒2个单位长的速度匀速运动,过点G作EG⊥AD.交线段AB于点E.若G、H两点同时出发,当其中一点到达终点时整个运动随之停止,设运动时间为t秒.(1)当t为何值时,四边形HDAE是平行四边形?(2)设△EHG的面积为S,求出S与t的函数关系式;(3)是否存在某一时刻t,使得△EHG的面积S最大?若存在,求出此时t的值;求出此时最大面积S;若不存在,请说明理由;(4)是否存在某一时刻t,使得△EHG的面积S是平行四边形ABCD面积的?若存在,求出此时t的值;若不存在,请说明理由.10.(2020•唐山二模)如图,在平行四边形ABCD中,AB=9,AD=13,tan A=,P是射线AD上一点,连接PB,沿PB将三角形APB折叠,得三角形A′PB.(1)当∠DPA′=10°时,∠APB=度;(2)当PA′⊥BC时,求线段PA的长度;(3)当点A′落在平行四边形ABCD的边所在的直线上时,求线段PA的长度;(4)直接写出:在点P沿射线AD运动过程中,DA′的最小值是多少?题型四:菱形综合题一.解答题(共3小题)1.(2020•于洪区模拟)如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)线段AO的长为;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AM=AC;(3)连接EM.若△AFM的周长为3,请直接写出△AEM的面积.2.(2021•惠山区校级一模)在四边形AEBC中,点P是平面内不与点A、C重合的任意一点,连接AP,将线段AP绕点P逆时针旋转与∠ACB相同的度数得到线段DP,连接AD、BD、CP.(1)观察猜想:如图1,当四边形AEBC为菱形,且∠ACB=60°时,的值是,直线BD与直线CP相交所成的较小角的度数是°;(2)类比探究:如图2,当四边形AEBC为正方形时,请写出的值及直线BD与直线CP相交所成的较小角的度数,并就图2的情形说明理由;(3)解决问题:当四边形AEBC为正方形时,若点M、N分别是CA、CB的中点,点P在直线MN上,请直接写出点C、P、D在同一直线上时的值.3.(2021•集贤县模拟)在菱形ABCD中,射线BM从对角线BD所在的位置开始绕着点B逆时针旋转,旋转角为α(0°<α<180°),点E在射线BM上,∠DEB=∠DAB.(1)当∠DAB=60°时,BM旋转到图①的位置,线段BE,DE,AE之间的数量关系是;(2)在(1)的基础上,当BM旋转到图②的位置时,探究线段BE,DE,AE之间的数量关系,并证明;(3)将图②中的∠DAB=60°改为∠DAB=90°,如图③,其他条件不变,请直接写出线段BE,DE,AE之间的数量关系.题型五:梯形综合题一.解答题(共2小题)1.(2020•新都区模拟)如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=32,DC=24,AD=42,动点P从点D出发,沿射线DA的方向以每秒4个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒2个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设△BPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?(3)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.2.(2018•南关区校级一模)如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=4,DC=3,AD=6.动点P从点D出发,沿射线DA的方向,在射线DA上以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设△BPQ的面积为s,直接写出s与t之间的函数关系式是(不写取值范围).(2)当B,P,Q三点为顶点的三角形是等腰三角形时,求出此时t的值.(3)当线段PQ与线段AB相交于点O,且2OA=OB时,直接写出tan∠BQP=.(4)是否存在时刻t,使得PQ⊥BD若存在,求出t的值;若不存在,请说明理由.题型六:筝形综合题一.解答题(共2小题)1.(2021•朝阳区校级三模)观察图片中的风筝,它们的主体部分可以看成是一个四边形,这类四边形的特征是两组邻边分别相等,我们把这样的四边形叫做“筝形”.(1)提出猜想通过观察、测量等方法猜想筝形的对角线有什么性质,写出你的猜想.(写出一个即可)(2)证明猜想.(结合图1写出已知,求证,并证明).(3)解决问题.如图2,在筝形ABCD中,∠DAB=60°,∠ABC=∠ADC=90°,AB=AD=6,求对角线AC的长.2.(2019•河南一模)四边形是我们在学习和生活中常见的图形,而对角线互相垂直的四边形也比较常见,比如筝形、菱形、图1中的四边形ABCD等.它们给我们的学习和生活带来了很多的乐趣和美感.(1)如图2,在四边形ABCD中,AB=AD,CB=CD,则AC与BD的位置关系是,请说明理由.(2)试探究图1中四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,请写出证明过程.(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE的长.【真题训练】一.填空题(共1小题)1.(2021•张家界)如图,在正方形ABCD外取一点E,连接DE,AE,CE,过点D作DE的垂线交AE于点P,若DE=DP=1,PC=.下列结论:①△APD≌△CED;②AE⊥CE;③点C到直线DE的距离为;④S正方形ABCD=5+2,其中正确结论的序号为.二.解答题(共9小题)2.(2015•盐城)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.3.(2015•淮安)阅读理解:如图①,如果四边形ABCD满足AB=AD,CB=CD,∠B=∠D=90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图①所示的“完美筝形”纸片ABCD先折叠成如图②所示形状,再展开得到图③,其中CE,CF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB′,FD′相交于点O.简单应用:(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是;(2)当图③中的∠BCD=120°时,∠AEB′=°;(3)当图②中的四边形AECF为菱形时,对应图③中的“完美筝形”有个(包含四边形ABCD).拓展提升:当图③中的∠BCD=90°时,连接AB′,请探求∠AB′E的度数,并说明理由.4.(2018•云南)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为l.(1)若△ABE的面积为30,直接写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求l的值.5.(2016•镇江)如图1,在菱形ABCD中,AB=6,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t=秒时,DF的长度有最小值,最小值等于;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y关于时间t的函数表达式.6.(2016•枣庄)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,∠BAD=60°,且AB>6.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.7.(2016•长春)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为;当OO′⊥AD时,t的值为.8.(2015•海南)如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点.(1)求证:△ADP≌△ECP;(2)若BP=n•PK,试求出n的值;(3)作BM⊥AE于点M,作KN⊥AE于点N,连接MO、NO,如图2所示,请证明△MON是等腰三角形,并直接写出∠MON的度数.9.(2014•绥化)在菱形ABCD和正三角形BGF中,∠ABC=60°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,易证:PG=PC.(不必证明)(2)如图2,当点F在AB的延长线上时,线段PC、PG有怎样的数量关系,写出你的猜想,并给与证明;(3)如图3,当点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,写出你的猜想(不必证明).10.(2014•沈阳)如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B 重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.。

2023年九年级数学中考专题:二次函数综合压轴题(特殊四边形问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(特殊四边形问题)(含简单答案)
12.如图,抛物线 经过 、 两点,与y轴交于点C,D是抛物线上一动点,设点D的横坐标为 ,连结 .
(1)求抛物线的函数表达式.
(2)当 的面积等于 的面积的 时,求m的值.
(3)当 时,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B、D、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的的坐标;若不存在,请说明理由.
(3)点 的坐标为 , ,
5.(1) ,
(2)2
(3) 或 或
6.(1)
(2)
(3)矩形的周长
7.(1) , ;
(2)存在, 或 ;
(3) 或 或 或 .
8.(1) ,
(2)当 时,
(3)存在, 或 或
9.(1)
(2) 的面积最大值为4
(3)四边形 能构成菱形,点 的坐标为 或
10.(1)
(2)
(3)存在, 或 或
15.如图所示,在矩形 中,把点 沿 对折,使点 落在 上的 点.已知 .
(1)求 点的坐标;
(2)如果一条不与抛物线对称轴平行的直线与抛物线仅一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过 ,且直线 是该抛物线的切线.求抛物线的解析式.并验证点 是否在该抛物线上.
(3)在(2)的条件下,若点 是位于该二次函数对称轴右侧图象上不与顶点重合的任意一点,试比较 与 的大小(不必证明),并写出此时点 的横坐标 的取值范围.
11.(1) ;
(2) ;
(3) 、 、 .
12.(1)
(2)
(3)M的坐标为 或 或 或
13.(1)
(2)13.5
(3)存在, , 或
14.(1)
(2)点 的坐标为 或 或 或
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题复习(3) 特殊四边形
一、选择题
1. 如图,在△ABC 中,点E ,D ,F 分别在边AB ,BC ,CA 上,且DE//CA ,DF//BA .下列四个判断中,不正..确.
的是( ) A. 四边形AEDF 是平行四边形
B. 如果∠BAC=90°,那么四边形AEDF 是矩形
C. 如果AD 平分∠BAC,那么四边形AEDF 是菱形
D. 如果AD⊥BC 是AB =AC ,那么四边形AEDF 是正方形
第1题图 第3题图 第4题图 2.下列命题正确的是( )
A .对角线互相平分的四边形是菱形;
B .对角线互相平分且相等的四边形是菱形
C .对角线互相垂直且相等的四边形是菱形;
D .对角线互相垂直且平分的四边形是菱形.
3.如图,两张宽度相等的纸条交叉重叠,重合部分是( )
A .平行四边形
B .菱形
C .矩形
D .正方形
4.如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连DF ,∠CDF
等于( ) A .80° B.70° C.65° D.60°
5.如图,矩形ABCD 中,AB=3,BC=5过对角线交点O 作OE⊥AC 交AD 于E 则AE 的长是( )
A .1.6
B .2.5
C .3
D .3.4

5题图
第6题图 第7题图
6.如图,将矩形ABCD 沿对角线
BD 折叠,使C 落在C '处,BC '交AD 于E ,则下列结论不一定成立的是( )
A .AD BC '=
B .EBD EDB ∠=∠
C
D
C '
A B
E
C
D
E
C .ABE CB
D △∽△ D .sin AE
ABE ED
∠=
7、 如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,5
4
A cos =,则下列结论①DE =3cm ;②E
B =1cm ;③2ABCD 15S cm =菱形中正确的个数为( )
A .3个
B .2个
C .1个
D .0个
8、顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )
A .矩形
B .直角梯形
C .菱形
D .正方形
9、如图,正方形ABCD 中,点E 在BC 的延长线上,AE 平分∠DAC,则下列结论:(1)∠E=22.5° (2) ∠AFC=112.5°(3) ∠AC E=135° (4)AC=CE .(5) AD∶CE=1∶2. 其中正确的有( ) A.5个 B.4个 C.3个 D.2个 、
9题图 10题图 11题图
10 如图所示,正方形ABCD 中,E 、F 是对角线AC 上两点,连接BE 、BF 、DE 、DF ,则添加下列哪一个条件可以判定四边形BEDF 是菱形( )
A 、∠1=∠2
B 、BE =DF
C 、∠EDF =60°
D 、AB =AF
11、如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5和11,则b 的面积为( ) A .4
B .6
C .16
D .55
12如图,正方形ABCD 的面积为1,M 是AB 的中点,则图中阴影部分的面积是( ) A .3
10
B .
13
C .25
D .
49
a
b
c
A
B
D
C
E
F
1
2
12题图
D
A
C
B
M 红



D
M
A
F
E
C
N
B
(13题图)
13、如图,一个四边形花坛ABCD ,被两条线段MN EF ,分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是1234S S S S ,,,,若MN AB DC ∥∥,EF DA CB ∥∥,则有( ) A .14S S = B .1423S S S S +=+ C .1423S S S S =
D .都不对
二、填空题
1、如图,将矩形纸ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,若EH =3厘米,EF =4厘米,则边AD 的长是___________厘米.
1题图 2题图 3题图
2、将边长分别为2、
3、5的三个正方形按如图方式排列,则图中阴影部分的面积为 . 3、如图,已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 .
4如图,在菱形ABCD 中,72ADC ∠=,AD 的垂直平分线交对角线BD 于点P ,垂足为E ,连接CP ,则
CPB ∠=________度.
4题图 5题图 6题图
5、如图,正方形ABCD 的边长为1cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2

6、如图,四边形ABCD 中,E F G H ,,,分别是边AB BC CD DA ,,,的中点.请你添加一个条件,使四边形EFGH 为菱形,应添加的条件是 .
B C
D
A
P
F C
D
D C
B A
E
P
A D H
G
C
F B
E
11.(2008黑龙江黑河)如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四
边形EFGB 也是矩形,且2EF BE =,则AFC S =△ 2
cm .
12
,45ABC ∠=,则点
D 的坐标为 .
13、如图,正方形ABCD ,以AB 为边分别在正方形内、外
作等边△ABE 、△ABF ,则∠CFB=_______,若AB=4,则AFBE 四边形S =_________.
14、如图,E 为正方形ABCD
边BC 延长线上一点,且CE=BD ,AE 交DC 于F ,则∠AFC=________.
15.如图,把两个大小完全相同的矩形拼成“L ”型图案,则FAC ∠= ,FCA ∠= 。

16.边长为a 的正方形,在一个角剪掉一个边长为的b 正方形,则所剩余图形的周长为 。

17.已知菱形一个内角为120,且平分这个内角的一条对角线长为8cm ,则这个菱形的周长为 。

18.如图,矩形纸片ABCD ,长AD =9cm ,宽AB =3 cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长为 ,折痕EF 的长为 。

19、右图是用8个大小一样边长为整数的矩形搭成的,其中中间阴影部分是一边长为2的正方形,试写出符合要求的三个不同的矩形边长_____________
20、如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、
13题图
E
B
C
D
A
F
14题图 E B
C
D
A
G
F
15题图
18题图
D
C B
A F E
G A
D
C
E
F G
B
1题图
BC的中点,则PM+PN的最小值是_____________.
A
B C
D
P
M N。

相关文档
最新文档