信号与系统_第3章例题

合集下载

信号与系统习题答案第三章

信号与系统习题答案第三章

第三章习题基础题3.1 证明cos t , cos(2)t , …, cos()nt (n 为正整数),在区间(0,2)π的正交集。

它是否是完备集?解:(积分???)此含数集在(0,2)π为正交集。

又有sin()nt 不属于此含数集02sin()cos()0nt mt dt π=⎰,对于所有的m 和n 。

由完备正交函数定义所以此函数集不完备。

3.2 上题的含数集在(0,)π是否为正交集?解:由此可知此含数集在区间(0,)π内是正交的。

3.3实周期信号()f t 在区间(,)22T T-内的能量定义为222()TT E f t dt -=⎰。

如有和信号12()()f t f t +(1)若1()f t 与2()f t 在区间(,)22T T-内相互正交,证明和信号的总能量等于各信号的能量之和;(2)若1()f t 与2()f t 不是相互正交的,求和信号的总能量。

解:(1)和信号f(t)的能量为[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2)由1()f t 与2()f t 在区间内正交可得2122()()0T T f t f t dt -=⎰则有 22221222()()T T T T E f t dt f t dt --=+⎰⎰即此时和信号的总能量等于各信号的能量之和。

和信号的能量为(2)[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2吧?)由1()f t 与2()f t 在区间(,)22T T-内不正交可得2122()()0T T f t f t dt K -=≠⎰则有2222222212122222()()()()T T T T T T T T E f t dt f t dt K f t dt f t dt ----=++≠+⎰⎰⎰⎰即此时和信号的总能量不等于各信号的能量之和。

信号与系统答案西北工业大学段哲民信号与系统1_3章答案

信号与系统答案西北工业大学段哲民信号与系统1_3章答案

第一章 习 题1-1 画出下列各信号的波形:(1) f 1(t)=(2-e -t )U(t); (2) f 2(t)=e -t cos10πt ×[U(t-1)-U(t-2)]。

答案(1))(1t f 的波形如图1.1(a )所示.(2) 因t π10cos 的周期s T 2.0102==ππ,故)(2t f 的波形如图题1.1(b)所示.1-2 已知各信号的波形如图题1-2所示,试写出它们各自的函数式。

答案)1()]1()([)(1-+--=t u t u t u t t f)]1()()[1()(2----=t u t u t t f)]3()2()[2()(3----=t u t u t t f1-3 写出图题1-3所示各信号的函数表达式。

答案2002121)2(21121)2(21)(1≤≤≤≤-⎪⎩⎪⎨⎧+-=+-+=+=t t t t t t t f)2()1()()(2--+=t u t u t u t f)]2()2([2sin )(3--+-=t u t u t t f π)3(2)2(4)1(3)1(2)2()(4-+---++-+=t u t u t u t u t u t f1-4 画出下列各信号的波形:(1) f 1(t)=U(t 2-1); (2) f 2(t)=(t-1)U(t 2-1); (3) f 3(t)=U(t 2-5t+6); (4)f 4(t)=U(sin πt)。

答案(1) )1()1()(1--+-=t u t u t f ,其波形如图题1.4(a)所示.(2))1()1()1()1()]1()1()[1()(2---+--=--+--=t u t t u t t u t u t t f 其波形如图题1.4(b)所示.(3))3()2()(3-++-=t u t u t f ,其波形如图1.4(c)所示.(4) )(sin )(4t u t f π=的波形如图题1.4(d)所示.1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T 。

北理工-信号与系统-第三版-第三章-作业参考答案

北理工-信号与系统-第三版-第三章-作业参考答案
k 0



k
| u[k ] | ,有界
是非稳定系统
(e) 显然n<0时,h[n]=0,所以是因果系统;
k
| h[k ] | | u[k ] / n | ,无界
k


是非稳定系统
(f) 显然n<0时,h[n]=0,所以是因果系统;
| h[k ] |
(d)
y[n] x[n] h[n]
k
[k n ] [n k n ]
1 2

[n n1 n2 ]
3.11在LTI离散时间系统中 已知x[n]=u[n]时的零状态响应(单位阶跃响应)为s[n],求单位抽样响应h[n]; 已知h[n],求s[n].
y[n] - 4y[n-1] =2x[n]+3x[n-1];
令x[n]=δ[n],则有 h[n] – 4h[n-1] =2 δ[n]+3 δ[n-1];当n<0时,h[n]=0,得h[0]=2,h[1]=11,
特征方程为 λ-4=0, 得λ=4,
h[n]=c(4)nu[n],由h[1]=4c=11,c=11/4得 h[n]=(11/4)(4)nu[n-1]=11 (4)n-1u[n-1],考虑h[0]=2=2 δ[n],得 h[n]=2 δ[n]+11 (4)n-1u[n-1]。(n>0的解) (b).据图有同(a)一样的结果…。 (c).据图 y[n]=3y[n-1]- 2y[n-2]+ x[n]+2x[n-1]+x[n-2] ,即差分方程为 y[n] -3y[n-1]+2y[n-2] = x[n]+2x[n-1]+x[n-2], 先求

信号与系统 梁风梅主编 电子工业出版社 ppt第三章答案

信号与系统  梁风梅主编   电子工业出版社 ppt第三章答案

习题三3.1考虑一个连续时间LTI 系统,满足初始松弛条件,其输入)(t x 与输出)(t y 的关系由下列微分方程描述:d ()4()()d y t y t x t t+= (1)若输入(13)()()j t x t e u t -+=,求输出)(t y 。

(2)若输入()e cos(3)()t x t t u t -=,求输出)(t y 。

解:此系统的特征方程为40s += 所以4()t h y t Ae -= (1)(13)()()j tx t eu t -+=设(13)()e j t p y t Y -+= 则(13)(13)(13)(13j)e 4e e ,0j tj t j t Y Y t -+-+-+-++=>解得11336jY j -==+ 所以4(13)1()()()e e ()6t j t h p j y t y t y t A u t --+-⎛⎫=+=+ ⎪⎝⎭又因为初始松弛,所以106jA -+= 即16j A -=所以4(13)11()()()()()66t j th p j j y t y t y t e e u t --+--=+=+ (2)()cos(3)()t x t e t u t -=是(1)中(13)()()j tx t eu t -+=的实部,用2()x t 表示cos(3)()t e t u t -,用1()x t 表示(13)()j t e u t -+观察得{}21()Re ()x t x t =所以{}421111()Re ()cos(3)sin(3)()666t t t y t y t e e t e t u t ---⎛⎫==-++ ⎪⎝⎭3.2若离散时间LTI 系统的输入[]x n 与输出][n y 的关系由下述差分方程给出:][]1[25.0][n x n y n y =--求系统的单位冲激响应][n h 。

解:[]0.25[1][]h n h n n δ=-+因为该系统是因果的,所以0n <时,[]0h n =2231[0]0.25[1][0]01111[1]0.25[0][1]1044111[2]0.25[1][2]0444111[3]0.25[2][3]0444 (111)[]0.25[1][]0444n nh h h h h h h h h n h n n δδδδδ-=-+=+==+=⨯+==+=⨯+==+=⨯+==-+=⨯+=综上,1[][]4n h n u n = 3.3系统S 为两个系统1S 与2S 的级联:S1:因果LTI 系统,[]0.5[1][]w n w n x n =-+; S2: 因果LTI 系统,[][1][]y n ay n bw n =-+][n x 与][n y 的关系由下列差分方程给出:[]0.125[2]0.75[1][]y n y n y n x n +---=(1) 确定a 与b 。

信号与系统王明泉第三章习题解答

信号与系统王明泉第三章习题解答
(3)周期信号的傅里叶变换;
(4)频域分析法分析系统;
(5)系统的无失真传输;
(6)理想低通滤波器;
(7)系统的物理可实现性;
3.3本章的内容摘要
3.3.1信号的正交分解
两个矢量 和 正交的条件是这两个矢量的点乘为零,即:
如果 和 为相互正交的单位矢量,则 和 就构成了一个二维矢量集,而且是二维空间的完备正交矢量集。也就是说,再也找不到另一个矢量 能满足 。在二维矢量空间中的任一矢量 可以精确地用两个正交矢量 和 的线性组合来表示,有
条件1:在一周期内,如果有间断点存在,则间断点的数目应是有限个。
条件2:在一周期内,极大值和极小值的数目应是有限个。
条件3:在一周期内,信号绝对可积,即
(5)周期信号频谱的特点
第一:离散性,此频谱由不连续的谱线组成,每一条谱线代表一个正弦分量,所以此谱称为不连续谱或离散谱。
第二:谐波性,此频谱的每一条谱线只能出现在基波频率 的整数倍频率上。
(a)周期、连续频谱; (b)周期、离散频谱;
(c)连续、非周期频谱; (d)离散、非周期频谱。
答案:(d)
题7、 的傅里叶变换为
答案:
分析:该题为典型信号的调制形式
题8、 的傅里叶变换为
答案:
分析:根据时移和频移性质即可获得
题9、已知信号 如图所示,且其傅里叶变换为
试确定:
(1)
(2)
(3)
解:
(1)将 向左平移一个单位得到
对于奇谐函数,满足 ,当 为偶数时, , ;当 为奇数时, , ,即半波像对称函数的傅里叶级数展开式中只含奇次谐波而不含偶次谐波项。
(4)周期信号傅里叶级数的近似与傅里叶级数的收敛性
一般来说,任意周期函数表示为傅里叶级数时需要无限多项才能完全逼近原函数。但在实际应用中,经常采用有限项级数来代替无限项级数。无穷项与有限项误差平方的平均值定义为均方误差,即 。式中, , 。研究表明, 越大, 越小,当 时, 。

信号与系统课后习题与解答第三章

信号与系统课后习题与解答第三章

3-1 求图3-1所示对称周期矩形信号的傅利叶级数(三角形式和指数形式)。

图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数(FS )为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数(FS )的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为T e jE e jE e jE e jE t f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。

若:图3-22τT-2τ-重复频率kHz f 5= 脉宽 s μτ20=幅度 V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。

解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数(FS )的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n则的指数形式的傅利叶级数(FS )为∑∑∞-∞=∞-∞=⎪⎭⎫ ⎝⎛==n tjn n tjn n e n Sa TE eF t f 112)(1ωωτωτ其直流分量为TE n Sa T EF n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 若周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3))(1t f 与)(2t f 的基波幅度之比; (4))(1t f 基波与)(2t f 三次谐波幅度之比。

信号与系统第三章习题部分参考答案

信号与系统第三章习题部分参考答案
(5) t f (3t);
(7) (1 − t) f (1 − t) ;
(2) [1 + m f (t)]cosω0 t
(4) (t + 2) f (t); ( ) (6) e− jω0 t df t
dt
(8) f (t)∗ f (t − 3);
t
(9) ∫τ f (τ )dτ −∞
1−t / 2
(11) ∫ f (τ )dτ −∞
2π (sin π t )2 ↔ 2π (1− ⎜w⎜)[ε(w + 2π ) − ε(w − 2π )]
πt

即 (sin π t )2 ↔ (1− ⎜w⎜)[ε(ω + 2π ) − ε(w − 2π )]
πt

(3)双边指数信号
∵ e−a⎜t⎜

2a a2 + w2
(−∞
<
t
<
+∞)
∴ 2a a2 + w2
(13) f (t)∗ Sa(2t) (15) t df (1 − t)
dt
t+5
(10) ∫ f (τ )dτ −∞
(12) df (t) + f (3t ) − 2 e− jt ;
dt
(14) f (t) u(t)
(16) (t − 2) f (t)e j2(t−3)
解:(1) f 2 (t) + f (t) = f (t). f (t) + f (t) ↔ 1 [F (w}* F (w)] + F (w)
又 f (t) = 2 + cos⎜⎛ 2πt ⎟⎞ + 4sin⎜⎛ 5πt ⎟⎞
⎝3⎠

信号与系统练习题——第1-3章

信号与系统练习题——第1-3章

信号与系统练习题——第1-3章信号与系统练习题(第1-3章)一、选择题1、下列信号的分类方法不正确的是(A )A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、连续信号和离散信号2、下列离散序列中,哪个不是周期序列? (D )A 、165()3cos()512f k k ππ=+ B 、2211()5cos()712f k k ππ=+ C 、33()9sin()5f k k π= D 、433()7sin()45f k k π=+ 3、下列哪一个信号是周期性的?(C )。

A 、()3cos 2sin f t t t π=+;B 、()cos()()f t t t πε=;C 、()sin()76f k k ππ=+; D 、1()cos()53f k k π=+。

4、周期信号()sin6cos9f t t t =+的周期为(D )A 、πB 、2πC 、12π D 、23π5、周期信号()sin3cos f t t t π=+的周期为(C )。

A 、πB 、2πC 、无周期D 、13π 6、以下序列中,周期为5的是(D ) A. 3()cos()58f k k π=+ B. 3()sin()58f k k π=+ C. 2()58()j k f k eπ+= D. 2()58()j k f k e ππ+=7、下列说法正确的是(D )A 、两个周期信号()x t ,()y t 的和信号()()x t y t +一定是周期信号B 、两个周期信号()x t ,()y t 的周期分别为2()()x t y t +是周期信号C 、两个周期信号()x t ,()y t 的周期分别为2和π,则信号()()x t y t +是周期信号D 、两个周期信号()x t ,()y t 的周期分别为2和3,则信号()()x t y t +是周期信号8、下列说法不正确的是(A )A 、两个连续周期信号的和一定是连续周期信号B 、两个离散周期信号的和一定是离散周期信号C 、连续信号()sin(),(,)f t t t ω=∈-∞+∞一定是周期信号D 、两个连续周期信号()x t ,()y t 的周期分别为2和3,则信号()()x t y t +是周期信号9、(52)f t -是如下运算的结果(C )A 、(2)f t -右移5B 、(2)f t -左移5C 、(2)f t -右移25 D 、(2)f t -左移25 10、将信号()f t 变换为(A )称为对信号()f t 的平移。

【信号与系统(郑君里)课后答案】第三章习题解答

【信号与系统(郑君里)课后答案】第三章习题解答

【信号与系统(郑君⾥)课后答案】第三章习题解答3-1 解题过程:(1)三⾓形式的傅⽴叶级数(Fourier Series ,以下简称 FS )f ( t ) = a ++∞cos ( n ω t) + b sin ( n ω t ) a 0 ∑ n 1n 1 n =1式中ω1 =2π,n 为正整数,T 1 为信号周期T 11 t +T(a )直流分量a 0 = 0 ∫ 1 f ( t ) dtT1 t2 t +T(b )余弦分量的幅度a n = 0∫ 1f ( t ) cos ( n ω1t ) dtT1 t 02 t +T(c )正弦分量的幅度b n = 0 ∫ 1f ( t ) sin ( n ω1t ) dtT 1 t(2)指数形式的傅⽴叶级数+∞f ( t ) = ∑ F ( n ω1 )e jn ω1tn == F ( n ω1 ) = 1 ∫t 0 +T 1f ( t ) e ? jn ω1t dt T 1 t 0F n =1( a n ? jb n ) F ? n = 1 ( a n + jb n ) 2 2由图 3-1 可知, f ( t ) 为奇函数,因⽽a 0 = a n = 0 4 Tb n = T ∫02= 2Eπ n4TE2EEf (t ) sin ( n ω t ) dt =sin ( n ω t ) dt = cos ( n ω t = 1 ? cos ( n π2T 1 ∫0 2 1 n t 1 n ) 1n = 2, 4,n = 1, 3,所以,三⾓形式的 FS 为2 E1 12π f ( t ) =sin ( ω1t ) +sin ( 3ω1t ) +sin ( 5ω1t ) +ω1 =π 3 5Tn = 0, ±2, ±4,F n = ? jb n jE=2 n = 0,± 1, ±3,n π1所以,指数形式的 FS 为f ( t ) = ? jE π ej ω1t+ πjE e ? j ω1t ? 3jE π e j 3ω1t + 3jEπ e ? j 3ω1t +3-15 分析:半波余弦脉冲的表达式 f ( t ) =πτ E cos t u t+ τ 2求 f ( t ) 的傅⽴叶变换有如下两种⽅法。

信号与系统课后答案第三章作业答案

信号与系统课后答案第三章作业答案

初始为 0, C2 -4
y f (t) -4e3tu(t) 4e2tu(t)
全响应= yx (t)+y f (t) 4e2tu(t)-2e3tu(t)
3-2 描述某 LTI 系统的微分方程为
d2 y(t) dt 2

3dy(t) dt来自2y(t)

df (t) dt

6
1
1
(2e1 e1 et ) u(t)
e1(2 et ) u(t)
(2)
f
(t)

a[u(t
s) 2

u(t
2)]
h(t) b[u(t 2) u(t 3)]
f
(t)

h(t)

ab[(t

1 2
)
u(t
1 2
)

(t

1 2
)
u(t
1) 2

tu(t)

1 4
(et

e3t
)u(t)

1 2
t
e3tu(t)

[
1 4
et

(
1 2
t

1 4
)e3t
]u
(t)
3-19 一 个 LTI 系 统 , 初 始 状 态 不 祥 。 当 激 励 为 f (t) 时 其 全 响 应 为
(2e3t sin 2t)u(t) ;当激励为 2 f (t) 时其全响应为 (e3t 2sin 2t)u(t) 。求
(1) 初始状态不变,当激励为 f (t 1) 时的全响应,并求出零输入相应、
零状态响应; (2) 初始状态是原来的两倍、激励为 2 f (t) 时系统的全响应。

信号与系统第三章习题答案

信号与系统第三章习题答案

d (t - 1) « e- jw
\ e-2( t -1)d (t - 1) « e- jw
(8) U (t ) - U (t - 3) Q 根据傅里叶变换的线性性质可得: 1 U (t ) « p d (w ) + jw 1 U (t - 3) « e - j 3w (p d (w ) + ) jw \ U (t ) - U (t - 3) « ( 1- e - j 3w )(p d (w ) + 1 ) jw
U (t - 1) « e - jw (pd (w ) +
t 1 U ( - 1) « 2e - j 2w (pd (2w ) + ) 2 j 2w Q d (aw ) = 1 d (w ) a
\ 2e- j 2wpd (2w ) = 2pd (2w )w =0 = pd (w ) \ 2e - j 2w (pd (2w ) +
e - jtd (t - 2 ) « e - j 2(w +1)
(6) e -2( t -1)d (t - 1) Q 根据傅里叶变换的性质 f (t ± t0 ) « e ± jwt0 F ( jw ) 可得: e -2( t -1)d (t - 1) = d (t - 1) d (t ) « 1 (t = 1)
d F ( jw ) - 2 F ( jw ) dw
y ''(t ) + 4 y '(t ) + 3 y (t ) = f (t ) y ''(t ) + 5 y '(t ) + 6 y (t ) = f '(t ) + f (t )
(1) 求系统的频率响应 H(jw)和冲激响应 h(t) ; (2) 若激励 f (t ) = e-2tU (t ) ,求系统的零状态响应 y f (t ) 。 解: 方程 1:

信号与系统 郑君里 第三章 连续系统频域分析

信号与系统  郑君里 第三章 连续系统频域分析

编辑状态下,图形演示平移T1/2再翻转。
第3章 连续时间信号频域分析
1.三角型傅里叶级数
让· 巴普蒂斯· 约瑟夫· 傅立叶(Jean
Baptiste Joseph Fourier,1768 –1830), 法国著名数学家、物理学家,1817年当 选为科学院院士,1822年任该院终身秘 书,后又任法兰西学院终身秘书和理工 科大学校务委员会主席,主要贡献是在 研究热的传播时创立了一套数学理论。 小行星10101号傅里叶星、他是名字被刻在埃菲尔铁塔的七十二位法国 科学家与工程师其中一位、约瑟夫.傅立叶大学 1807年向巴黎科学院呈交《热的传播》论文,推导出著名的热传导方 程,提出任一函数都可以展成三角函数的无穷级数。
������=−1
������ ������������1 ej������������1������
因此得到指数形式的傅里叶级数

������(������) =
������=−∞
������(������������1 )ej������������1������
第3章 连续时间信号频域分析
2.指数型傅里叶级数
������=1
������ ������ = ������0 +
������0 = ������0 = ������0
������������ = ������������ =
2 2 ������������ + ������������
������������ = ������������ cos ������������ = ������������ sin ������������
第3章 连续时间信号频域分析
(1) 三角型傅里叶级数系数的计算

北邮信号与系统课后答案第3章部分1

北邮信号与系统课后答案第3章部分1

为功率信号
(d) P lim 1 T0 u t 2 dt lim 1 T0 1dt 1
T0
2T0 T0
T0 2T0 0
2
为功率信号。
【知识点】能量信号、功率信号 3-3 对信号 f (t) 在数值和时间两方面进行运算变成 af (bt)
(1)如果在全部时间
t
内, f (t) 是具有能量为 W 的能量信号,
f1 t 1
f2 t 1
0
1
2
3t
0
1
2
3t
锯齿形脉冲
正弦脉冲
题 3-6 图
解:
3
0 f1 t f2 t d t
31 t sin
tdt
- t cos
t - 3 sin
3
t
03 3
3
2 30
3
3
sin
2
tdt
31 1 - cos 2 t d t 3
03
02
3
2
C12 2
t2
fe t
- sin t
3
3
3 t - 2 sin t sin tdt
sin 2
1t
4
3 cos 2 1 t 4
15 cos 4 1 t 4
...
2
A 1 T A
sin 2
1t
2
2A 3 cos 2 1t
2A 15 cos 4 1t 2 ...
AA
2A
2A
cos 2
1t
3 cos 2 1t
15 cos 4 1t
...
9
随着T , C12 ,当T
时使得 C12 0 。

信号与系统第三章(2)

信号与系统第三章(2)

F n ⋅ 2 πδ (ω − n ω
) )
= 2π
n = −∞


F n ⋅ δ (ω − n ω
0
即周期信号的傅里叶变换为
F (ω ) = 2π ∑ Fn ⋅ δ (ω − nω 0 )
−∞

上式表明:周期信号的频谱函数,是由无限多个冲激组 上式表明:周期信号的频谱函数, 成,这些冲激位于基频整数倍的频率 nω0处,每一冲激的 强度即为 2π Fn 。
3.5.1 单位冲激 δ (t )
由根据傅里叶变换的定义式, 由根据傅里叶变换的定义式,并且考虑到冲激函 数的抽(取)样性质,得 数的抽( 样性质,
F (ω ) = ∫ δ (t )e
−∞

− jωt
dt = ∫ δ (t )dt = 1
−∞

结论:
1、单位冲激信号在整个频率范围内具有恒定的频 、单位冲激信号在整个频率范围内具有恒定的频 恒定的 谱函数,为常数1,即冲激信号包含相对幅度相等的所 谱函数 为常数 即冲激信号包含相对幅度相等的所 有频率分量,相位都为 相位都为0. 有频率分量 相位都为 2、信号的持续时间与其频带宽度成反比。 反比。 、信号的持续时间与其频带宽度成反比
−∞ ∞ − jωt
dt = ∫ τ e
2 − 2
− jωt
dt =
e
−e − jω
j
ωτ
2
3.5.7 虚指数函数
利用傅里叶反变换定义和冲激函数的抽样性质, 利用傅里叶反变换定义和冲激函数的抽样性质,可得
1 F [δ (ω − ω 0 )] = 2π
−1
∫ δ (ω − ω )e
−∞ 0

信号与系统第3章习题和重点

信号与系统第3章习题和重点

ZB
3-26
已知 f (t) = f1(t) + f2(t)的频谱密度函数 F(ω) = 4Sa(ω) − j
4
ω

为偶函数, 为奇函数, 且 f1(t)为偶函数, f2(t)为奇函数,试求 f1(t)和 f2(t) 。 解:由题意知
f1(t) ↔4Sa(ω) = AτSa( 2 ∴f1(t) = 2g2(t)
F = n 1 T 1 T
∫ ∫
3T 4 T 4
f (t)e− jnω0tdt
L − 2 L 2 2 2 −2T −T 0 T 2T t
() 1
− jnω0 T 2 ) = 1 (1−e− jnπ )

=
T 1 δ (t) −δ (t − )e− jnω0tdt = (1−e T 2 T − 4
0
T
ZB
3-4 已知周期信号 f (t)的前四分之一周期的波形如图所 且其余每一段四分之一周期的波形要与之相同, 示,且其余每一段四分之一周期的波形要与之相同,试 整个周期的波形。 就下列情况分别画出 f (t)整个周期的波形。 为偶函数, 解:(1) f (t)为偶函数,且只含偶次谐波
f (t)

F(ω) =
∫ = e e ∫
=
−∞ 0 2t − jωt
e2tε(−t)e− jωtdt dt
−∞ (2− jω)t 0 e
2 − jω −∞
ZB
1 = 2 − jω 《信号与系统》SIGNALS AND SYSTEMS
3-19 设 f (t) ↔F(ω) ,试证: 试证: (1) ∫ ∞ f (t)dt = F(0) ) −
解: (2) 为非周期信号 T →∞

信号与系统-第三章习题讲解

信号与系统-第三章习题讲解

E
[Sa2 (
0
)e
j
( 0 2
)
Sa2 (
0
)e
j
( 0 2
)
]
4
4
4
3 39决 定 下 列 信 号 的 最 低 抽 样 频 率 与 奈 奎 斯 特 间 隔 : (1) : S a (1 0 0 t ); ( 2 ) : S a 2 (1 0 0 t ); (3 ) : S a (1 0 0 t ) S a (5 0 t ); ( 4 ) : S a (1 0 0 t ) S a 2 (6 0 t )
故 f ( t ) 2 E 1 s i n ( n t ) 2 E 1 s i n ( n 2 t )
n n 1 . 3 . 5 . . .
n n 1 . 3 . 5 . . .
T
= 2 E [sin ( t) 1 sin (3 t) 1 sin (5 t) ...]
1 2
[ (
0 ) (
0 )]* [
1 j
( )]
11
[
2 j( 0 )
j(
1
] 0)
2
[
(
0)
(
0 )]
j
2 0
2
2
[
(
0)
(
0 )]
单边正弦函数的傅立叶变换为:
F [sin( 0t)u (t)]
1 2
F T [sin( 0t)]* F T [u (t)]
1 2
0
b n
2 T1
T1 0
f
(t ) s in ( n 1t ) d t
2[
T 2
E
sin (n t)d t

信号与线性系统第三章答案(简)

信号与线性系统第三章答案(简)

3-9 求图题3-9所示各信号的傅里叶变换。

解:()()()()()()()1 222j j j ja j 1Sa e e 12b j 1j e T F E F T Tττττ---=⋅=-=--ωωωωωωωωω3-10 试求下列信号的频谱函数。

()()()()()()()()sgn()()()()t t f t e t f t t G t f t t f t e t εδε () -=--=-+=-=312234j212122113 4 2解:()()()()()()()j j e F F e Sa j ωωπδωω -+-=-=++3 121j 4 2j 223ωωω ()()()()()()F F j πδ ==-+- 34113 j j 4 j 22ωωωωω3-11 利用傅里叶变换的对称性求下列信号的频谱函数。

(1))2(π)2(π2sin )(1--=t t t f (2)()()f t G t =22解:()()()()()()F G e F Sa ω-==j2 124π1 j 2 j 2ωωωω3-12 已知信号f (t )的频谱函数F (j )如下,求信号f (t )的表达式。

()()();()()()(). 0001 j 3 j F F δεε =-=+--ωωωωωωωω解:()()()()().000j 11 3 Sa 2ππtf t e f t t == ωωω△3-13 利用傅立叶变换的微积分性质求图所示信号的频谱函数F (j )。

解:()[()cos()] 2j 2j F Sa =-ωωωω3-15 已知f (t )* f '(t ) (1-t )e -t ε(t ),求信号f (t )。

解:()()e t f t t ε-=±(b)3-17 利用频域卷积定理求下列信号的频谱函数。

()()cos ()f t t t ε=101 ω △()()()cos f t Sa t t π=22 22解:()()[()()] 00220j π1 j 2F δδ=++-+-ωωωωωωωω △()()F G G ππωω=-+ 2222 j (2)+(2)ω3-20 设f (t )为限带信号,频带宽度为 m ,其频谱F ( j )如图所示。

[信号与系统作业解答]第三章

[信号与系统作业解答]第三章

3-4 求下图所示周期三角信号的傅里叶级数(三角形式)。
解:从图中可知,周期信号的在[ T / 2,T / 2] 的表达式为
f (t)
2E T
t,
0
t
T /2
2E T
t
T /2 t 0
周期为T ,基频 0
2 T。
1)三角形式的傅里叶级数
f (t) a0
[an cos(n 0t) bn sin(n 0t)]
解:
f (t)cos( 0t)
F1( )
1 2
[F(
0) F(
0 )]
f (t)e j 0t F2( ) F(
0)
f (t)cos( 1t)
F3( )
1 2
[F(
1) F(
1)]
3-39 确定下列信号的最低抽样率与奈奎斯特间隔。
(1) Sa(100t )
(3)Sa(100t) Sa(50t)
解:(1)因为Sa(100t) 50G200( ) ,最高频率为 m 100 rad / s ,所以最低抽样
所以
F [fo(t)] 1 [F( ) 2
1 2F
[f (t)
F *( )]
f *( t)] j Im[F( )]
(2)因为 fr (t)
1 2
[f
(t)
f *(t)] ,
所以
F [fr (t)]
1 2F
[f (t)
f *(t)]
1 [F( ) F *( 2
)]
同样的, fi (t)
1 [f (t) 2j
1因为20010050sa最高频率为100所以最低抽样频率为2002又因为另一个分量1005025sa最高频率为100所以最低抽样频率为200341系统如图所示求最大抽样间隔max100020003000300030001000200010001000300010003000波形如下图所示可知的最高频率为3000要进行无失真的恢复则最低抽样频率为min6000对应的最大抽样间隔为maxmin波形如下图所示其中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

据傅立叶变换的对称性来求。
由前面知道,高度为 E ,宽度为τ 的对称矩形脉冲的频谱为
F() E Sa( )
根据傅立叶变换的对称性,有 2
F (t )
E
Sa(t
2
)
2
f
()
2E
G
()
2E
G ()
上式中,令 2c ,E=1,则有
c
Sa(c
t)
G2c
()
f (t) E
0 TT T
42
t
例:有一偶谐函数,其波形如图所示,求 j sin( )
( j)F( j)
2
因此有
F( j) 2A sin( ) ASa( )
2
2
[例4] 试求单位斜坡信号tu(t)的傅立叶变换。
[解] 已知单位阶跃信号傅立叶变换为: F[u(t)] () 1 j
利用频域微分特性可得:
F[tu(t)]
j d [ () d
1]
4. 信号的频谱分量主要集中在零频到第一个过零点 之间,工程中往往将此宽度作为有效带宽。
5. 脉冲宽度越窄,有限带宽越宽,高频分量越多。 即信号信息量大、传输速度快,传送信号所占用 的频带越宽。
例:求图(a)所示三脉冲信号的频谱。
f t
E
O
T
22
Tt
(a)三脉冲信号的波形
解:
令f0(t)表示矩形单脉冲信号,其频谱 函数为F0(ω),则
E 2
4E
2
n1,3,5L
1 n2
cos
2n
T
t
[例题3]
f (t)
2 1
f (t) 1.5
Sa ( n ) cos(nt )
n1
2
2
-4 -3 -2 -1
1 2 34
t
f1(t)
2
-4 -3 -2 -1
1 2 34
f2 (t)
1
t
f2 (t) 0.5
n1
Sa ( n ) cos(nt )
周期信号的傅立叶级数表示
例:将图示的对称方波信号展成三角形式傅立叶级数
f t
1
0 T/2 T
t
1
解:直接代入公式有
a0
1 T
T 0
f
(t)dt
0
直接代入公式有
T
T
an
2 T
2 T
f
(t) cosn0tdt
2 T
0
(1) cosn0tdt
T
2 T
2 0
(1) cosn0tdt
2
2
0
T
2 T
1
T
2 T
4
(2
4t T
)
c
osn1tdt]
0

f1(t) F1(), f2 (t) F2 ()

a f1(t) b f2 (t) a F1() b F2 ()
其中,a, b 均为常数。
说明:相加信号的频谱等于各个单独信号的频谱之和。
例: u(t) 1 1sgn(t) F () π () 1
0
f (t) (1 t )u(t ) u(t) (1 t )u(t) u(t )
对其求一阶、二阶导数得
t
df (t) 1 u(t ) u(t) 1 u(t) u(t )
dt
d
2 f (t) dt 2
1
[
(t
)
(t
)
2
(t)]
例:已知截平斜变信号如图所示,求它的频谱 F(ω)
T T
2
f (t)
E
TT t
2
例:有一偶函数,其波形如图所示,求其傅立 叶展开式并画出其频谱图。
解: f(t) 在一个周期内可写为如下形式
f (t)
2E t T 2E t
T
0tT 2
T t0 2
f(t) 是偶函数,故 bn 0
2
a0 T
T
2 T
2
f (t)dt
2[ T
T 2 0
2Etdt T
A
T
sin n0
2
n0
=
A
T
Sa n0
2
2
2
2
所以f (t)
Fne jn0t
n
A
T
Sa( n0 )e jn0t
n=-
2
例:试求图示周期矩形脉冲在有效频带宽度 0 ~ 2 内谐波分量所具 有的平均功率占整个信号平均功率的百分比,其中已知 A=1, T=0.25s,
τ=0.05s。
f t
A
2
2
•[解] 无延时且宽度为的矩形脉冲信号f(t) 如右图,
其对应的频谱函数为
F( j) A Sa( )
2 因为 f1(t) f (t T ) 故,由延时特性可得
F1( j) F ( j)e-jT
A Sa( )e-jT
2
例: 求取样信号
f
(t)
c
Sa(c
t) 的频谱。
解: 此题直接用傅立叶变换的定义公式求信号频谱很麻烦,这里根
F0 ()
E
Sa
2
F0
E
O (b)

f (t) 8 (1)n1 1 sin 2n t
2 n2 j1
n2
T
An
8
2
31 0 11
-8 9 2
8
25 2
51
j 1,2,L
[例1]试求图示延时矩形脉冲信号f1(t)的频谱函数F1(j)。
f1 (t )
A
f (t)
A
0
T
t
0
t
f (t)
解: f(t) 在一个周期内可写为如下形式
2 4t T t T
1
f (t)
T
4
2
4t T tT
T
4
4
T 2
TT
T
42
t
2 4t T
T t T
2
4
an 2 T
T
2 T
2
f
(t) cosn1tdt
2 T
[
T
4 T
(2
2
4t T
)
c
os
n1tdt
T 4 T 4
4t T
cosn1tdt
]
4
Tn1
c os n1t
2 T
4
4
8
n2 2
sin
n
2
8
n1
(1) 2
2n2
n为奇数
0
n为偶数
[例题] 试求图示非周期矩形脉冲信号的频谱函数
[解] 非周期矩形脉冲信号f(t)的时域表示式为
f
(t)
A, 0,
| t | / 2 | t | / 2
由傅立叶正变换定义式,可得
F( j)
n = 2, 4, 6, n = 1, 3, 5,
f
(t)
4
[sin 0t
1 3
sin
3
0t
1 5
sin
5
0
t
1 n
sin n 0t
]
例: 将图示周期矩形脉冲信号展成指数形式傅立叶级数
f t
A
解: 直接代入公式有
T
T
t
22
Fn
1 T
T 2
T
f (t)e-jn0tdt
1 T
2
Ae - jn0t dt
j
1
)n F(
F ( j) j) F
(0)
(
)
j
tn
f
(t)
jn
dF n ( j) d n
谢谢观看! 2020
0 2E
T 2
T
tdt] E
An E
11 31
51
0
4E 2
4E 9 2
4E 25
2
an 4
T
T 2 0
2Et T
cosn1tdt
(1
2
T
)
8E T2
[
t
n1
sin
n1t
T
2 0
T 2 0
1
n1
sin
1tdt]
2E
(n )2
[(1)n
1]
4E
(n )2
0
(n为奇数) (n为偶数)
f (t)
0
f (t) cos0t
A
/2
/2
t
0
F ( j)
0
0
[例3]试利用微分特性求矩形脉冲信号的频谱函数。
f (t)
A
f '(t)
(A)
• [解]
t
0
2
2
/2 0
f '(t) A (t ) A (t )
2
2
/2
t
(A)
由时域微分特性
j
-j
F[ f '(t)] Ae 2 Ae 2
f (t) sin n1tdt
(1
2
T
)
4 T
T 2 0
2t T
sin
n1tdt
T
8 T2
(
t
n1
c os n1t
1
(n1 ) 2
sin
n1t)
2 0
2 (1)n1
n
f (t ) 2 (1)n1 1 sin 2n t
n1
nT
相关文档
最新文档