化工原理课程设计 (3)

合集下载

化工原理课程设计任务书

化工原理课程设计任务书

化工原理课程设计任务书(1)(一)设计题目在抗生素类药物生产过程中,需要用甲醇溶媒洗涤晶体,洗涤过滤后产生废甲醇溶媒,其组成为含甲醇46%、水54%(质量分数),另含有少量的药物固体微粒。

为使废甲醇溶媒重复利用,拟建立一套填料精馏塔,以对废甲醇溶媒进行精馏,得到含水量≤0.3%(质量分数)的甲醇溶媒。

设计要求废甲醇溶媒的处理量为吨/年,塔底废水中甲醇含量≤0.5%(质量分数)。

(二)操作条件1)操作压力常压2)进料热状态自选3)回流比自选4)塔底加热蒸气压力0.3Mpa(表压)(三)填料类型因废甲醇溶媒中含有少量的药物固体微粒,应选用金属散装填料,以便于定期拆卸和清洗。

填料类型和规格自选。

(四)工作日每年工作日为300天,每天24小时连续运行。

(五)厂址厂址为武汉地区。

(六)设计内容1、设计说明书的内容1)精馏塔的物料衡算;2)塔板数的确定;3)精馏塔的工艺条件及有关物性数据的计算;4)精馏塔的塔体工艺尺寸计算;5)填料层压降的计算;6)液体分布器简要设计;7)精馏塔接管尺寸计算;8)对设计过程的评述和有关问题的讨论。

2、设计图纸要求:1)绘制生产工艺流程图(A2号图纸);2)绘制精馏塔装配图(A1号图纸)。

(一) 设计题目丙酮吸收填料塔的设计:试设计一座填料吸收塔,用25℃的清水吸收空气中的丙酮。

已知入口空气中含丙酮量为50g ∙m -3(标态),干空气温度为35℃,压力为101.3kPa ,相对湿度为70%。

要求丙酮回收率99%。

(二) 设计操作条件(1)生产能力 处理气体量 m 3/h (按进料量计)(2)常压。

(三) 设计内容(1)吸收塔的物料衡算;(2)吸收塔的工艺尺寸计算;(3)填料层压降的计算;(4)液体分布器简要设计;(5)吸收塔接管尺寸计算;(6)绘制生产工艺流程图(A2号图纸);(7)绘制吸收塔装配图(A1号图纸);(8)绘制液体分布器施工图(可根据实际情况选作);(9)对设计过程的评述和有关问题的讨论。

化工原理课程设计

化工原理课程设计

辽宁科技大学课程设计说明书设计题目:化工原理学院、系:化学工程学院专业班级:学生姓名:指导教师:成绩:2014年7月7日化工原理课程设计目 录1.序 (3)1.1化工原理课程设计的目的和要求 ............................................................................... 3 1.2设计概述 .. (4)2.设计计算 (5)2.1物料衡算 ....................................................................................................................... 5 2.2计算塔顶温度、塔底温度及最小回流比的计算 . (6)2.2.1确定操作压力 ..................................................................................................... 6 2.2.2计算塔顶温度(露点温度) ............................................................................. 6 2.2.3计算塔底温度(泡点温度) ............................................................................. 7 2.2.4计算平均相对挥发度 ......................................................................................... 7 2.2.5计算最小回流比Rmin ....................................................................................... 7 2.3计算最佳操作回流比与塔板层数 ............................................................................... 8 2.4塔板结构计算:(设计塔顶第一块板) .. (16)2.4.1计算塔顶实际的汽液相体积流量 ................................................................... 16 2.4.2选取塔板间距T H ............................................................................................. 17 2.4.3计算液汽动能参数C ....................................................................................... 17 2.4.4计算液泛速度F U )(max U ................................................................................. 17 2.4.5空塔气速 ........................................................................................................... 18 2.4.6选取溢流方式及堰长同塔径的比值Dl w /: (18)2.4.7计算塔径 ........................................................................................................... 18 2.4.8计算塔径圆整后的实际气速: ....................................................................... 18 2.4.9在D=1.6m 时,塔板结构尺寸 ........................................................................ 19 2.5溢流堰高度wh 及堰上液层高度owh 的确定 (19)2.6板面筛孔布置的设计 (19)2.6.1选取筛孔直径d o=5mm (19)2.6.2计算开孔区面积a A (20)2.6.3开孔率 (20)2.6.4开孔面积 (20)2.6.5孔速 (20)2.7水力学性能参数计算及校核 (20)2.7.1液沫夹带分率的检验 (20)2.7.2塔板压降 (21)2.7.3液面落差的校验 (21)2.7.4塔板漏液状况的校验 (21)2.7.5降液管液泛情况的校验 (22)2.7.6液体在降液管内停留时间的校验 (22)2.8塔板负荷性能图及操作性能评价 (23)2.8.1负荷性能图 (23)2.8.2操作性能的评定 (25)2.9筛板设计计算的主要结果 (26)3.参考文献 (27)4.双组分连续精馏的流程图 (28)5.结束语 (29)1.序1.1化工原理课程设计的目的和要求课程设计是《化工原理》课程的一个总结性教学环节,是培养学生综合运用本门课程及有关选修课程的基本知识去解决某一设计任务的一次训练。

化工原理课程设计

化工原理课程设计

化工原理课程设计一、教学目标本节课的教学目标是使学生掌握化工原理的基本概念、基本理论和基本方法,包括流体的物理性质、流体力学基本方程、流动和压力降、气液平衡、传质过程等,培养学生分析和解决化工问题的能力。

1.掌握流体的密度、粘度、热导率等物理性质。

2.理解流体力学的基本方程,包括连续方程、动量方程和能量方程。

3.掌握流体流动和压力降的基本理论,包括层流和湍流、管道流动和开放流动等。

4.理解气液平衡的基本原理,包括相图、相律和相变换等。

5.掌握传质过程的基本方法,包括扩散、对流传质和膜传质等。

6.能够运用流体力学基本方程分析流体流动问题。

7.能够计算流体流动和压力降的基本参数,如流速、压力降等。

8.能够分析气液平衡问题,确定相态和相组成。

9.能够运用传质过程的基本方法分析和解决化工问题。

情感态度价值观目标:1.培养学生对化工原理学科的兴趣和热情。

2.培养学生严谨的科学态度和良好的职业道德。

3.培养学生团队协作和自主学习的意识。

二、教学内容本节课的教学内容主要包括流体的物理性质、流体力学基本方程、流动和压力降、气液平衡、传质过程等。

1.流体的物理性质:包括密度、粘度、热导率等,通过实例讲解其测量方法和应用。

2.流体力学基本方程:讲解连续方程、动量方程和能量方程,并通过实例分析其应用。

3.流动和压力降:讲解层流和湍流的特性,分析管道流动和开放流动的压力降计算方法。

4.气液平衡:讲解相图、相律和相变换的基本原理,并通过实例分析气液平衡问题。

5.传质过程:讲解扩散、对流传质和膜传质的基本方法,并通过实例分析传质问题的解决方法。

三、教学方法本节课采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。

1.讲授法:用于讲解流体的物理性质、流体力学基本方程、流动和压力降、气液平衡、传质过程等基本概念和理论。

2.讨论法:通过小组讨论,引导学生主动思考和分析化工问题,提高学生的分析和解决问题的能力。

3.案例分析法:通过分析实际化工案例,使学生更好地理解和应用化工原理,培养学生的实际操作能力。

化工原理课程设计第三版课程设计

化工原理课程设计第三版课程设计

化工原理课程设计第三版课程设计1. 概述本次课程设计旨在通过实际操作和分析,让学生深入了解化工原理的核心概念和应用技能。

在设计中,学生们将探索化工分离过程的原理、工艺流程设计以及设备的选择和优化等方面的知识。

2. 实验目的本课程设计旨在培养学生以下方面的能力:1.理解化工分离过程的基本原理和特点;2.掌握工艺流程设计和设备选择与优化的方法;3.培养实际操作和分析的能力,并通过设计和分析来掌握化工原理的应用技能。

3. 实验设备•微型蒸馏装置•真空干燥器•震荡器•多层螺旋板塔•分离漏斗•等温滴定计•气相色谱分析仪4. 实验内容4.1 实验1:蒸馏分离乙醇和水4.1.1 实验目的通过蒸馏操作分离出乙醇和水,并对蒸馏过程进行分析和优化,掌握蒸馏分离的基本原理和操作技能。

4.1.2 实验步骤1.分别称取50mL乙醇和水混合溶液,加入微型蒸馏装置中;2.开启蒸馏设备,调整冷却水温度和采样速率;3.收集蒸馏出的乙醇和水,分别测定其含量和纯度,记录数据;4.对蒸馏过程进行分析和优化,根据实验数据推算出最优的蒸馏条件。

4.1.3 实验结果在此处列出实验数据及分析结果。

4.2 实验2:干燥和筛分分离颗粒4.2.1 实验目的通过干燥和筛分操作分离出颗粒,并对操作过程进行分析和优化,掌握干燥和筛分的基本原理和操作技能。

4.2.2 实验步骤1.将颗粒放入真空干燥器内,开启干燥器并设定温度和干燥时间;2.在震荡器内加入干燥后的颗粒,进行筛分操作;3.对干燥和筛分过程进行分析和优化,根据实验数据推算出最优的操作条件。

4.2.3 实验结果在此处列出实验数据及分析结果。

4.3 实验3:多层螺旋板塔分离气体混合物4.3.1 实验目的通过在多层螺旋板塔内对气体混合物进行分离操作,分析其分离机理和选择最优的工艺条件。

4.3.2 实验步骤1.将混合气体通过多层螺旋板塔,进行分离处理;2.对分离后的气体进行收集和测量,记录数据;3.对分离过程进行分析和优化,选择最优的工艺条件。

化工原理课程设计

化工原理课程设计

化工原理课程设计题目:姓名:班级:学号:指导老师:设计时间:序言化工原理课程设计是综合运用《化工原理》课程和有关先修课程(《物理化学》,《化工制图》等)所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用。

通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等。

精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。

精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。

根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。

本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离。

目录一、化工原理课程设计任书 (3)二、设计计算 (3)1.设计方案的确定 (3)2.精馏塔的物料衡算 (3)3.塔板数的确定 (4)4.精馏塔的工艺条件及有关物性数据的计算 (8)5.精馏塔的塔体工艺尺寸计算 (10)6.塔板主要工艺尺寸的计算 (11)7.筛板的流体力学验算 (13)8.塔板负荷性能图 (15)9.接管尺寸确定 (30)二、个人总结 (32)三、参考书目 (33)(一)化工原理课程设计任务书板式精馏塔设计任务书一、设计题目:设计分离苯―甲苯连续精馏筛板塔二、设计任务及操作条件1、设计任务:物料处理量: 7万吨/年进料组成: 37%苯,苯-甲苯常温混合溶液(质量分率,下同)分离要求:塔顶产品组成苯≥95%塔底产品组成苯≤6%2、操作条件平均操作压力: kPa平均操作温度:94℃回流比:自选单板压降: <= kPa工时:年开工时数7200小时化工原理课程设计三、设计方法和步骤:1、设计方案简介根据设计任务书所提供的条件和要求,通过对现有资料的分析对比,选定适宜的流程方案和设备类型,初步确定工艺流程。

化工原理课程设计完整版

化工原理课程设计完整版

化工原理课程设计完整版一、教学目标本课程旨在让学生掌握化工原理的基本概念、理论和方法,了解化工生产的基本过程和设备,培养学生运用化工原理解决实际问题的能力。

具体目标如下:1.知识目标:(1)理解化工原理的基本概念和原理;(2)熟悉化工生产的基本过程和设备;(3)掌握化工计算方法和技能。

2.技能目标:(1)能够运用化工原理解决实际问题;(2)具备化工过程设计和优化能力;(3)学会使用化工设备和仪器进行实验和调试。

3.情感态度价值观目标:(1)培养学生的团队合作意识和沟通能力;(2)增强学生对化工行业的认识和兴趣;(3)培养学生对科学研究的热爱和责任感。

二、教学内容本课程的教学内容主要包括以下几个方面:1.化工原理基本概念和原理:包括溶液、蒸馏、吸收、萃取、离子交换等基本操作原理和方法。

2.化工生产过程和设备:包括反应器、换热器、蒸发器、膜分离设备等的基本结构和原理。

3.化工计算方法:包括物料平衡、热量平衡、质量平衡等计算方法。

具体教学大纲安排如下:第1-2周:化工原理基本概念和原理;第3-4周:化工生产过程和设备;第5-6周:化工计算方法。

三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:讲解基本概念、原理和方法,引导学生理解和掌握;2.案例分析法:分析实际案例,让学生学会运用化工原理解决实际问题;3.实验法:进行实验操作,培养学生的实践能力和实验技能;4.小组讨论法:分组讨论,培养学生的团队合作意识和沟通能力。

四、教学资源本课程的教学资源包括:1.教材:《化工原理》;2.参考书:相关化工原理的教材和学术著作;3.多媒体资料:教学PPT、视频、动画等;4.实验设备:反应器、换热器、蒸发器、膜分离设备等。

以上教学资源将用于支持教学内容和教学方法的实施,丰富学生的学习体验。

五、教学评估本课程的评估方式包括平时表现、作业、考试等多个方面,以全面客观地评价学生的学习成果。

1.平时表现:通过课堂参与、提问、小组讨论等形式的评估,考察学生的学习态度和理解能力。

化工原理课程设计三效逆流蒸发器

化工原理课程设计三效逆流蒸发器

培养工程实践能力
课程设计能够培养学生的工程实 践能力,包括问题分析、方案设 计、实验验证等方面的能力。
为后续课程打下基

化工原理课程设计为后续的专业 课程提供了必要的基础知识和实 践经验。
三效逆流蒸发器应用前景
高效节能
01
三效逆流蒸发器采用先进的逆流操作原理,具有高效节能的特
点,符合当前节能环保的要求。
未来发展趋势预测
随着化工行业的不断发展,对于高效、节能、环保的蒸发设备的需求将不 断增加。
三效逆流蒸发器作为一种先进的蒸发设备,将在未来得到更广泛的应用和 推广。
未来三效逆流蒸发器的发展将更加注重设备的性能提升、智能化和自动化 等方面的研究和应用。
THANKS
感谢观看
化工原理课程的地位
化工原理是化学工程与工艺专业的一门重要基础 课程,主要研究化工过程中的基本原理和规律。
3
蒸发器在化工过程中的应用
蒸发器是化工过程中常用的设备之一,用于将溶 液中的溶剂蒸发分离出来,得到纯净的溶质或浓 缩溶液。
化工原理课程设计意义
理论与实践结合
通过课程设计,将化工原理的理 论知识与实际应用相结合,加深 对理论知识的理解。
掌握了化工原理课程中的基本理论和方法,并将 其应用于实际工程问题中。
存在问题分析及改进建议
01
在设备设计方面,还需要进一步优化结构,提高设 备的稳定性和可靠性。
02
在工艺流程方面,需要进一步完善操作参数和控制 策略,以提高设备的运行效率和安全性。
03
在实验验证方面,需要加强对实验数据的分析和处 理,以更好地指导设备的设计和改进。
广泛应用
02
三效逆流蒸发器可应用于化工、制药、食品、环保等多个领域

化工原理课程设计柴诚敬

化工原理课程设计柴诚敬

化工原理课程设计 柴诚敬一、课程目标知识目标:1. 理解并掌握化工原理的基本概念,如流体力学、热力学、传质与传热等;2. 学会运用化学工程的基本原理分析典型化工过程中的现象与问题;3. 掌握化工流程设计的基本方法和步骤,能结合实际案例进行流程分析与优化。

技能目标:1. 能够运用数学工具解决化工过程中的计算问题,如物料平衡、能量平衡等;2. 培养学生运用实验、图表、模拟等方法对化工过程进行研究和评价的能力;3. 培养学生团队协作、沟通表达及解决实际问题的能力。

情感态度价值观目标:1. 培养学生对化工原理学科的兴趣和热爱,激发学习积极性;2. 增强学生的环保意识,使其认识到化工过程对环境的影响及责任感;3. 培养学生严谨、求实的科学态度,提高其创新意识和实践能力。

本课程针对高年级学生,结合化工原理课程性质,注重理论与实践相结合,旨在培养学生运用基本原理解决实际问题的能力。

教学要求以学生为中心,注重启发式教学,激发学生的主动性和创造性。

课程目标分解为具体学习成果,以便于后续教学设计和评估。

通过本课程的学习,使学生能够全面掌握化工原理知识,为未来从事化工领域工作打下坚实基础。

二、教学内容本章节教学内容主要包括:1. 化工流体力学基础:流体静力学、流体动力学、流体阻力与流动形态等;参考教材第二章:流体力学基础。

2. 热力学原理及应用:热力学第一定律、第二定律,以及理想气体、实际气体的热力学性质;参考教材第三章:热力学原理及其在化工中的应用。

3. 传质与传热过程:质量传递、热量传递的基本原理,以及相应的传递速率计算;参考教材第四章:传质与传热。

4. 化工过程模拟与优化:介绍化工过程模拟的基本方法,如流程模拟、动态模拟等,以及优化策略;参考教材第五章:化工过程模拟与优化。

5. 典型化工单元操作:分析各类单元操作的基本原理及设备选型,如反应器、塔器、换热器等;参考教材第六章:典型化工单元操作。

教学大纲安排如下:第一周:化工流体力学基础;第二周:热力学原理及应用;第三周:传质与传热过程;第四周:化工过程模拟与优化;第五周:典型化工单元操作。

化工原理 课程设计

化工原理 课程设计

requirements. Through the design process to become familiar with, the heat exchanger of each part of structure characteristics and working principle of purpose.
银川能源学院化工原理课程设计
目录
摘要..............................................................2 一、 设计任务书 .................................................3 1.设计题目......................................................3 2.设计目的......................................................3 3.设计原始数据..................................................3 4.设计内容......................................................3 二、概 述.....................................................4
1.列管式换热器的分类简介.......................................4 2.列管式换热器的结构............................................7 3.设计方案的确定................................................9 三、换热器的选型.................................................11 1.工艺计算及主要设备设计........................................11 2.确定物性数据..................................................11 3.计算总传热系数................................................12 4.工艺结构尺寸..................................................13 5.换热器核算....................................................14 四、设计结果一览表...............................................19 五、主要零件.....................................................20 1.封头..........................................................20 2.支座..........................................................20 3.垫片..........................................................20 六、设计评论.....................................................21 七、参考文献.....................................................21 八、列管式换热器工艺流程图.......................................22 九、致谢.........................................................22

化工原理课程设计

化工原理课程设计

化工原理课程设计
化工原理课程设计是化工类专业学生进行的重要学科实践之一。

以下是化工原理课程设计的设计要点和步骤:
1. 设计目标
设计之前,需要先确定设计目标和要求。

设计目标是设计的核心,影响着整个课程设计过程。

设计目标通常包括实现的工艺流程、化学反应原理、环境保护、经济性等方面的要求。

2. 计算过程
计算过程是课程设计中的重要部分。

具体包括:物料平衡、能量平衡、流量计算、设备选择、操作模式等设计内容。

针对不同的化工过程,设计者需要确定其具体计算过程,包括物质计算、反应热计算、设备参数计算等。

3. 设备选型
设备选型必须充分考虑工艺、工情参数。

应包括其物理、化学性能、结构形式、操作特点和精度等因素。

4. 安全措施
化工原理课程设计中的安全措施是至关重要的设计要点。

设计者需要对可能发生的危险或任何异常情况进行充分的防范,并在设计过程中设定预防措施和应急方案。

5. 材料运输、存储条件及成本
材料的运输、存储也是重要的设计要点。

需要考虑材料的物理性质、化学性质以及材料运输和存储的安全措施,并充分考虑成本问题。

6. 结果展示
化工原理课程设计中的结果展示是对整个设计的汇总总结,需要对流程、操作、设备、工艺以及经济性进行全面展示。

展示形式可以包括实验报告、设计报告、模拟演示等。

化工原理课程设计旨在培养学生的综合实践能力,充分发挥学生的创新和实践能力。

在完成设计过程中,学生需要充分考虑工艺、安全、环保和经济等多方面的因素。

《化工原理》课程设计教学大纲

《化工原理》课程设计教学大纲

《化工原理》课程设计教学大纲总学时:两周一、课程设计的目的和基本要求化工原理课程设计是继化工原理课程之后,综合运用化工原理和有关先修课程所学的基础知识,联系化工生产实际,针对实际设计任务而进行的化工设计实践,是化工类及其相近专业的综合性和实践性较强的实践教学环节。

通过化工原理课程设计,使学生了解工程设计的基本内容,掌握化工设计的主要程序和方法,培养学生分析和解决工程实际问题的能力。

在化工原理课程设计中学生需要根据设计的要求和基本数据,查阅相关文献资料,通过分析、优化,选择合适的方案和确定合理的流程、对过程和设备进行物料、能量、动量、相平衡等计算,通过论证和核算,确定操作条件和相关设备的结构尺寸。

化工原理课程设计强调工程观点、定量运算和设计能力的训练,强调理论与实际相结合,提高分析问题、解决问题的能力。

化工原理课程设计的基本要求如下:(1)熟悉查阅文献资料、搜集有关数据、正确选用计算公式。

(2)在兼顾技术上先进可行、经济上合理的前提下,综合分析设计任务要求,确定工艺流程,进行设备选型,并提出保证过程正常、安全运行所需要的检测和计量参数。

(3)准确迅速地进行工艺过程计算和主要设备的工艺尺寸计算。

(4)用精练的语言、简洁的文字、清晰的图表来表达设计思想和计算结果。

二、课程设计的主要内容(1)板式精馏塔的设计;(2)虹吸式再沸器的设计;(3)填料吸收塔的设计;(4)干燥器的设计;对于任一设计课题,要求学生完成以下设计内容:(1)设计方案确定。

对工艺流程、主要设备的形式等设计方案的确定原则进行简要的论述。

(2)工艺过程计算。

包括工艺参数的选定、物料衡算和热量衡算等。

(3)主要设备计算。

包括主要设备的工艺尺寸的计算等。

(4)典型辅助设备的选型与计算。

包括典型辅助设备主要工艺尺寸的计算、设备规格型号的选定等。

(5)工艺流程简图。

以单线图的形式绘制,应标绘出主体设备与辅助设备的外形、物流方向、主要参数测量点及图例等。

化工原理课程设计

化工原理课程设计

摘要在化工、石油、医药、食品等生产中,常需将液体混合物分离以达到提纯或回收有用组分的目的,而蒸馏就是其中一种方法。

随着化学工业的发展,蒸馏技术、设备及理论也有了很大的发展。

蒸馏操作的理论依据是借混合液中各组分挥发性的差异而达到分离的目的。

在操作中进行多次的气体部分冷凝或液体部分气化称为精馏。

习惯上,混合物中的易挥发组分称为轻组分,难挥发组分成为中组分。

为此,掌握气液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是非常重要的。

本设计中所需理论塔板数14块,其中精馏段7块,提馏段7块。

实际塔板数30块,其中精馏段15块,提馏段15块,全塔效率46.7%。

在板式塔主要工艺尺寸的设计计算中得出塔径为1.4米,设置了4个人孔,塔高为21.12米,操作弹性为3.02.。

通过验算,证明各指标数据均符合标准.关键词:精馏;筛板;全塔效率绪论塔设备是化工、炼油、石油化工、生物化工和制药等生产中广泛应用的气液传质设备。

根据塔内气液接触部件的结构形式,可分为板式塔和填料塔两类。

板式塔内设置一定数量的板塔,气体以鼓泡或喷射形式穿过板上的液层,进行传质与传热。

在正常操作下,气相为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。

填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(有时也采用并流向下)流动,气液两相密切接触进行传质和传热。

在正常操作下,气相为连续相,液相为分散相,气相组成呈连续变化,属微分逆流操作过程。

板式塔大致可分为两类:一类是有降液管塔板,如泡罩、浮阀、筛板、导向筛板、弓形、多降液管塔板等;另一类是无降液塔板,如穿流式筛板等。

在工业生产中,以有降液管式塔板应用最为广泛,其中筛板精馏塔是炼油、化工、石油化工等生产中广泛应用的汽液传质设备。

0.1 选择筛板塔的原因它的结构特点是塔板上开有许多均匀的小孔。

根据孔径的大小,分为小孔径筛板和大孔径筛板两类。

化工原理课程设计题目

化工原理课程设计题目

化工原理课程设计题目
化工原理课程设计题目:
设计题目
1、苯-甲苯混合液常压连续精馏塔设计;
2、乙醇-水混合液的常压连续精馏塔设计;
3、正戊烷-正己烷混合液的常压连续蒸馏塔设计
4、氯仿(三氯甲烷)-四氯化碳混合液的常压连续蒸馏塔设计;5、正庚烷-正辛烷混合液的常压连续蒸馏塔设计;
6、苯-氯仿混合液的常压连续蒸馏塔设计;
7、苯-苯乙烯混合液的常压连续蒸馏塔设计。

日处理原料量80吨,一天按20小时工作时计算。

原料液中轻组分含量41%,要求塔顶馏出液中轻组分含量不低于96%,釜液中重组分含量不低于96%(以上均为质量含量)。

用筛
板塔常压蒸馏。

(设计要求
1生产任务选择题目相同,需要对任务中的各数字进行改动,必须做到每人一题,且数据不同。


进料方式:自选q=1
乙醇和水:70吨/日,原料液轻组分为50%,馏出液轻组分98%,釜液重组分96%
2、设计内容
(1)实际塔板数的确定,加料板位置的确定,塔高的计算,塔径的计算
(2)塔顶冷凝器的选择计算,(选用列管式换热器)
(3)塔底再沸器热量恒算。

水蒸气的用量。

(4)原料储存设备和精馏塔之间距离8米,根据物料衡算和能量衡算,选择管路流动路线,管路尺寸,材料,管路中所需泵的型号。

3、说明
(1)计算过程中两组分的饱和蒸汽压可用Antoine方程计算,理论板数可用作图法求出。

由理论板数求实际板数时,全塔效率E可选
用经验值。

(2)计算塔高时,板间距选用经验值。

王卫东化工原理课程设计

王卫东化工原理课程设计

王卫东化工原理课程设计一、课程目标知识目标:1. 理解并掌握化工原理中的基本概念,如反应速率、化学平衡、传质过程等;2. 掌握化工过程中的基本计算方法,如物质的量、浓度、转化率等计算;3. 了解化工设备的基本原理和结构,如反应釜、塔设备、换热器等。

技能目标:1. 能够运用所学原理分析和解决实际问题,如设计简单的化工流程、计算反应所需物质量等;2. 能够运用实验方法和设备进行简单的化工实验,如测定反应速率、分析物质成分等;3. 能够运用图表、数据和文字表达实验结果,进行数据分析。

情感态度价值观目标:1. 培养学生对化工原理学科的兴趣和热情,激发探究精神;2. 培养学生的团队合作意识,学会与他人共同解决问题;3. 增强学生的环保意识,了解化工生产过程中的环保要求。

本课程针对高中年级学生,结合化工原理学科特点,注重理论联系实际,提高学生的实践操作能力。

课程目标具体、可衡量,旨在使学生掌握化工原理的基本知识,培养实际操作技能,同时注重情感态度价值观的培养,为后续学习打下坚实基础。

二、教学内容本章节教学内容依据课程目标,紧密结合教材,确保科学性和系统性。

主要包括以下部分:1. 化工原理基本概念:反应速率、化学平衡、传质过程等;- 教材章节:第一章 化工基本概念2. 化工过程中的基本计算方法:物质的量、浓度、转化率等计算;- 教材章节:第二章 化工计算3. 化工设备基本原理和结构:反应釜、塔设备、换热器等;- 教材章节:第三章 化工设备4. 实验方法和设备:测定反应速率、分析物质成分等;- 教材章节:第四章 化工实验方法5. 实际案例分析:设计简单的化工流程、计算反应所需物质量等;- 教材章节:第五章 化工案例分析教学进度安排如下:第一周:基本概念学习,反应速率和化学平衡;第二周:化工计算,物质的量、浓度、转化率;第三周:化工设备原理和结构;第四周:实验方法和设备,进行简单实验;第五周:实际案例分析,设计化工流程。

化工原理课程设计任务书

化工原理课程设计任务书

一、题目:设计一个连续精馏装置,用以分离苯(1)-甲苯(2)混合物二原始数据1.原料处理量:9.5吨/小时2.进料状态:饱和液体3.组成:x1=0.38 (质量分率)4.产品要求:x D=0.965 x w=0.015 (质量分率)5.冷凝器形式:全凝器6.冷却剂入口温度:30℃三、设计说明书内容1、流程简图2、工艺计算3、热量衡算4、塔板设计及浮阀布置(F1型浮阀)5、塔板水力学计算(包括负荷性能图)6、塔体基本设计和全塔安装图7、精馏塔附属设备设计(塔顶冷凝器、塔底再沸器和回流泵)8、计算结果汇总表9、分析与讨论一、题目:设计一个连续精馏装置,用以分离苯(1)-甲苯(2)混合物二原始数据1.原料处理量:9.5吨/小时2.进料状态:饱和液体3.组成:x1=0.46 (质量分率)4.产品要求:塔顶苯的回收率≮99%,塔底甲苯的回收率≮95%5.冷凝器形式:全凝器6.冷却剂入口温度:30℃三、设计说明书内容1、流程简图2、工艺计算3、热量衡算4、塔板设计及浮阀布置(F1型浮阀)5、塔板水力学计算(包括负荷性能图)6、塔体基本设计和全塔安装图7、精馏塔附属设备设计(塔顶冷凝器、塔底再沸器和回流泵)8、计算结果汇总表9、分析与讨论一、题目:设计一个连续精馏装置,用以分离苯(1)-甲苯(2)混合物二原始数据1.原料处理量:10.0吨/小时2.进料状态:液体分率0.13.组成:x1=0.46 (质量分率)4.产品要求:塔顶苯的回收率≮99%,塔底甲苯的回收率≮95%5.冷凝器形式:全凝器6.冷却剂入口温度:30℃三、设计说明书内容1、流程简图2、工艺计算3、热量衡算4、塔板设计及浮阀布置(F1型浮阀)5、塔板水力学计算(包括负荷性能图)6、塔体基本设计和全塔安装图7、精馏塔附属设备设计(塔顶冷凝器、塔底再沸器和回流泵)8、计算结果汇总表9、分析与讨论一、题目:设计一个连续精馏装置,用以分离苯(1)-甲苯(2)混合物二原始数据1.原料处理量:9.5吨/小时2.进料状态:饱和液体3.组成:x1=0.38 (质量分率)4.产品要求:x D=0.98 x w=0.03 (质量分率)5.冷凝器形式:全凝器6.冷却剂入口温度:30℃三、设计说明书内容1、流程简图2、工艺计算3、热量衡算4、塔板设计及浮阀布置(F1型浮阀)5、塔板水力学计算(包括负荷性能图)6、塔体基本设计和全塔安装图7、精馏塔附属设备设计(塔顶冷凝器、塔底再沸器和回流泵)8、计算结果汇总表9、分析与讨论一、题目:设计一个连续精馏装置,用以分离苯(1)-甲苯(2)混合物二原始数据1.原料处理量:10.0吨/小时2.进料状态:液体分率0.53.组成:x1=0.46 (质量分率)4.产品要求:塔顶苯的回收率≮98%,塔底甲苯的回收率≮97%5.冷凝器形式:全凝器6.冷却剂入口温度:30℃三、设计说明书内容1、流程简图2、工艺计算3、热量衡算4、塔板设计及浮阀布置(F1型浮阀)5、塔板水力学计算(包括负荷性能图)6、塔体基本设计和全塔安装图7、精馏塔附属设备设计(塔顶冷凝器、塔底再沸器和回流泵)8、计算结果汇总表9、分析与讨论一、题目:设计一个连续精馏装置,用以分离苯(1)-甲苯(2)混合物二原始数据1.原料处理量:10.5吨/小时2.进料状态:液体分率0.253.组成:x1=0.50 (质量分率)4.产品要求:塔顶苯的回收率≮99%,塔底甲苯的回收率≮98%5.冷凝器形式:全凝器6.冷却剂入口温度:30℃三、设计说明书内容1、流程简图2、工艺计算3、热量衡算4、塔板设计及浮阀布置(F1型浮阀)5、塔板水力学计算(包括负荷性能图)6、塔体基本设计和全塔安装图7、精馏塔附属设备设计(塔顶冷凝器、塔底再沸器和回流泵)8、计算结果汇总表9、分析与讨论一、题目:设计一个连续精馏装置,用以分离苯(1)-甲苯(2)混合物二原始数据1.原料处理量:11吨/小时2.进料状态:液体分率0.83.组成:x1=0.53 (质量分率)4.产品要求:塔顶苯的回收率≮99%,塔底甲苯的回收率≮96%5.冷凝器形式:全凝器6.冷却剂入口温度:30℃三、设计说明书内容1、流程简图2、工艺计算3、热量衡算4、塔板设计及浮阀布置(F1型浮阀)5、塔板水力学计算(包括负荷性能图)6、塔体基本设计和全塔安装图7、精馏塔附属设备设计(塔顶冷凝器、塔底再沸器和回流泵)8、计算结果汇总表9、分析与讨论一、题目:设计一个连续精馏装置,用以分离苯(1)-甲苯(2)混合物二原始数据1.原料处理量:11吨/小时2.进料状态:液体分率0.33.组成:x1=0.48 (质量分率)4.产品要求:塔顶苯的回收率≮99%,塔底甲苯的回收率≮96%5.冷凝器形式:全凝器6.冷却剂入口温度:30℃三、设计说明书内容1、流程简图2、工艺计算3、热量衡算4、塔板设计及浮阀布置(F1型浮阀)5、塔板水力学计算(包括负荷性能图)6、塔体基本设计和全塔安装图7、精馏塔附属设备设计(塔顶冷凝器、塔底再沸器和回流泵)8、计算结果汇总表9、分析与讨论一、题目:设计一个连续精馏装置,用以分离苯(1)-甲苯(2)混合物二原始数据1.原料处理量:11吨/小时2.进料状态:液体分率0.83.组成:x1=0.53 (质量分率)4.产品要求:塔顶苯的回收率≮99%,塔底甲苯的回收率≮98%5.冷凝器形式:全凝器6.冷却剂入口温度:30℃三、设计说明书内容1、流程简图2、工艺计算3、热量衡算4、塔板设计及浮阀布置(F1型浮阀)5、塔板水力学计算(包括负荷性能图)6、塔体基本设计和全塔安装图7、精馏塔附属设备设计(塔顶冷凝器、塔底再沸器和回流泵)8、计算结果汇总表9、分析与讨论一、题目:设计一个连续精馏装置,用以分离苯(1)-甲苯(2)混合物二原始数据1.原料处理量:10.0吨/小时2.进料状态:液体分率0.43.组成:x1=0.46 (质量分率)4.产品要求:塔顶苯的回收率≮98%,塔底甲苯的回收率≮95%5.冷凝器形式:全凝器6.冷却剂入口温度:30℃三、设计说明书内容1、流程简图2、工艺计算3、热量衡算4、塔板设计及浮阀布置(F1型浮阀)5、塔板水力学计算(包括负荷性能图)6、塔体基本设计和全塔安装图7、精馏塔附属设备设计(塔顶冷凝器、塔底再沸器和回流泵)8、计算结果汇总表9、分析与讨论。

化工原理教学设计样例

化工原理教学设计样例

化工原理教学设计样例第一部分:课程简介《化工原理教学设计样例》是一门旨在系统性地介绍化工原理的课程。

通过深入的理论讲解和丰富的实例分析,本课程旨在帮助学生建立对化工原理的扎实理解和应用能力,为他们今后的学习和工作打下坚实基础。

第二部分:教学目标本课程的教学目标包括:1. 理解化工原理的基本概念和理论框架;2. 掌握化工过程的基本原理和热力学、动力学等方面的知识;3. 能够应用化工原理的知识解决实际问题;4. 提高学生的创新能力和团队合作能力;第三部分:教学内容与方法1. 教学内容:本课程的主要内容包括但不限于:(1) 化工原理基本概念;(2) 化工热力学;(3) 化工动力学;(4) 化工传质过程;(5) 化工反应工程基础;(6) 化工流程模拟与优化;2. 教学方法:(1) 理论讲授:通过课堂授课,系统性地讲解化工原理的基本理论和概念,引导学生建立牢固的理论基础;(2) 实例分析:通过真实的案例分析,让学生了解化工原理在实际应用中的具体情况,培养学生的问题解决能力;(3) 实验操作:进行化工原理相关的实验操作,让学生通过亲自动手来观察和实践,加深对化工原理的理解;(4) 讨论交流:组织学生就特定的化工原理问题展开讨论,激发学生的思维,培养他们的团队合作能力。

第四部分:教学评价方式评价方式包括但不限于:1. 日常表现:包括出勤情况、课堂参与度等;2. 作业与实验报告:对学生的作业和实验报告进行评价;3. 期中、期末考试:进行笔试、实验操作等形式的考核;4. 课程设计:组织学生进行化工原理相关的课程设计,综合考察学生的综合能力。

第五部分:课程设置为了达到以上的教学目标,本课程设置如下:1. 第一章:化工原理基本概念2. 第二章:化工热力学3. 第三章:化工动力学4. 第四章:化工传质过程5. 第五章:化工反应工程基础6. 第六章:化工流程模拟与优化第六部分:总结《化工原理教学设计样例》旨在通过系统、全面的教学安排,引导学生深入理解化工原理的核心概念和方法,培养其分析问题、解决问题的能力,为今后的学习和工作奠定坚实基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理课程设计(3)文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]化工原理课程设计题目:姓名:班级:学号:指导老师:设计时间:序言化工原理课程设计是综合运用《化工原理》课程和有关先修课程(《物理化学》,《化工制图》等)所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用。

通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等。

精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。

精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。

根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。

本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离。

目录一、化工原理课程设计任书 (3)二、设计计算 (3)1.设计方案的确定 (3)2.精馏塔的物料衡算 (3)3.塔板数的确定 (4)4.精馏塔的工艺条件及有关物性数据的计算 (8)5.精馏塔的塔体工艺尺寸计算 (10)6.塔板主要工艺尺寸的计算 (11)7.筛板的流体力学验算 (13)8.塔板负荷性能图 (15)9.接管尺寸确定 (30)二、个人总结 (32)三、参考书目 (33)(一)化工原理课程设计任务书板式精馏塔设计任务书一、设计题目:设计分离苯―甲苯连续精馏筛板塔二、设计任务及操作条件1、设计任务:物料处理量: 7万吨/年进料组成: 37%苯,苯-甲苯常温混合溶液(质量分率,下同)分离要求:塔顶产品组成苯≥95%塔底产品组成苯≤6%2、操作条件平均操作压力: kPa平均操作温度:94℃回流比:自选单板压降: <= kPa工时:年开工时数7200小时化工原理课程设计三、设计方法和步骤:1、设计方案简介根据设计任务书所提供的条件和要求,通过对现有资料的分析对比,选定适宜的流程方案和设备类型,初步确定工艺流程。

对选定的工艺流程,主要设备的形式进行简要的论述。

2、主要设备工艺尺寸设计计算(1)收集基础数据(2)工艺流程的选择(3)做全塔的物料衡算(4)确定操作条件(5)确定回流比(6)理论板数与实际板数(7)确定冷凝器与再沸器的热负荷(8)初估冷凝器与再沸器的传热面积(9)塔径计算及板间距确定(10)堰及降液管的设计(11)塔板布置及筛板塔的主要结构参数(12)塔的水力学计算(13)塔板的负荷性能图(14)塔盘结构(15)塔高(16)精馏塔接管尺寸计算3、典型辅助设备选型与计算(略)包括典型辅助设备(换热器及流体输送机械)的主要工艺尺寸计算和设备型号规格的选定。

4、设计结果汇总5、工艺流程图及精馏塔工艺条件图6、设计评述四、参考资料《化工原理课程设计》天津大学化工原理教研室,柴诚敬刘国维李阿娜编;《化工原理》(第三版)化学工业出版社,谭天恩窦梅周明华等编;《化工容器及设备简明设计手册》化学工业出版社,贺匡国编;《化学工程手册》上卷化学工业出版社,化工部第六设计院编;《常用化工单元设备的设计》华东理工出版社。

二、设计计算1.设计方案的选定及基础数据的搜集本设计任务为分离苯一甲苯混合物。

由于对物料没有特殊的要求,可以在常压下操作。

对于二元混合物的分离,应采用连续精馏流程。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。

塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。

该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。

塔底设置再沸器采用间接蒸汽加热,塔底产品经冷却后送至储罐。

其中由于蒸馏过程的原理是多次进行部分汽化和冷凝,热效率比较低,但塔顶冷凝器放出的热量很多,但其能量品位较低,不能直接用于塔釜的热源,在本次设计中设计把其热量作为低温热源产生低压蒸汽作为原料预热器的热源之一,充分利用了能量。

塔板的类型为筛板塔精馏,筛板塔塔板上开有许多均布的筛孔,孔径一般为3~8mm,筛孔在塔板上作正三角形排列。

筛板塔也是传质过程常用的塔设备,它的主要优点有:(1) 结构比浮阀塔更简单,易于加工,造价约为泡罩塔的60%,为浮阀塔的80%左右。

(2) 处理能力大,比同塔径的泡罩塔可增加10~15%。

(3) 塔板效率高,比泡罩塔高15%左右。

(4) 压降较低,每板压力比泡罩塔约低30%左右。

筛板塔的缺点是:(1) 塔板安装的水平度要求较高,否则气液接触不匀。

(2) 操作弹性较小(约2~3)。

(3) 小孔筛板容易堵塞。

下图是板式塔的简略图表1 苯和甲苯的物理性质项目分子式分子量M沸点(℃)临界温度tC(℃)临界压强PC(kPa)苯A 甲苯BC6H6C6H5—CH3表2 苯和甲苯的饱和蒸汽压温度C0859095100105AP,kPaBP,kPa表3 常温下苯—甲苯气液平衡数据([2]:8P例1—1附表2)温度C0859095100105液相中苯的摩尔0分率汽相中苯的摩尔分率表4 纯组分的表面张力([1]:378P附录图7)温度8090100110120苯,mN/m甲苯,Mn/m20表5 组分的液相密度([1]:382P附录图8)温度(℃)8090100110120苯,kg/3m甲苯,kg/3m 814809805801791791778780763768表6 液体粘度μL([1]:365P)温度(℃)8090100110120苯(a)甲苯(a)表7常压下苯——甲苯的气液平衡数据2 精馏塔的物料衡算(1) 原料液及塔顶、塔底产品的摩尔分率 苯的摩尔质量 甲苯的摩尔质量0.37/78.110.4090.37/78.110.63/92.13F x ==+ (2)原料液及塔顶、塔底产品的平均摩尔质量0.40978.110.59192.1386.39F M kg kmol =⨯+⨯=(3)物料衡算 原料处理量70000000121.5486.39*7200F kmol h ==总物料衡算 =D +W 苯物料衡算 ×=+ W 联立解得 D = kmol /h W= kmol /h式中 F------原料液流量 D------塔顶产品量 W------塔底产品量3 塔板数的确定(1)理论板层数N T 的求取苯一甲苯属理想物系,可采用图解法求理论板层数。

①由手册查得苯一甲苯物系的气液平衡数据,绘出x ~y 图,见下图②求最小回流比及操作回流比。

采用作图法求最小回流比。

在上图中对角线上,自点e (,)作垂线ef 即为进料线(q 线),该线与平衡线的交点坐标为q y = , q x =故最小回流比为min 0.9570.5671.460.5670.346q q D qx y R y x --===--取操作回流比为min 2 2.92R R == ③求精馏塔的气、液相负荷2.9242.99125.53L R D =⨯=⨯=kmol h'(1)(1)(2.921)42.99168.52/V R D q F kmol h =+--=+⨯= (泡点进料:q=1)④求操作线方程 精馏段操作线方程为 提馏段操作线方程为 (2)逐板法求理论板又根据min (1)1[]11d D F fx x R x x α-=-α-- 可解得 α= 相平衡方程 2.4751(1)1 1.475x xy x xαα==+-+1D y x = = 1111111(1) 2.475(1)y y x y y y y ==+α-+-=320.7450.24420.850y x =+= 3333(1)y x y y ==+2.475-因为6x <f x 精馏段理论板 n=5555''5''0.042(1)y x y y ==+2.475-<w x 所以提留段理论板 n=4全塔效率的计算(查表得各组分黏度1μ=,2μ=) 捷算法求理论板数min 11/ln {ln[()()]}19.89818.8981W D m D Wx x N x x α-=-=-=- 由公式 0.5458270.5914220.002743/Y X X =-+ 代入 Y= 由min0.3165,102N N N N -==+精馏段实际板层数5/=≈, 提馏段实际板层数4/=≈8进料板在第11块板4 精馏塔的工艺条件及有关物性数据的计算(1)操作压力计算塔顶操作压力P= kPaD塔底操作压力P= kPaw每层塔板压降△P= kPa进料板压力P=+×10=F精馏段平均压力P m =(+)/2= kPa提馏段平均压力P m =(+)/2 = kPa(2)操作温度计算依据操作压力,由泡点方程通过试差法计算出泡点温度,其中苯、甲苯的饱和蒸气压由安托尼方程计算,计算过程略。

计算结果如下:塔顶温度t=℃w进料板温度t=℃F塔底温度t=℃w精馏段平均温度t=(+)/2 = ℃m提馏段平均温度t=(+)/2 =℃m(3)平均摩尔质量计算塔顶平均摩尔质量计算由x D=y 1=,代入相平衡方程得x 1=,0.90178.11(10.901)92.1379.50L Dm M kg kmol =⨯+-⨯=,0.95778.11(10.957)92.1378.71V Dm M kg kmol =⨯+-⨯=进料板平均摩尔质量计算由上面理论板的算法,得F y =, F x =,,0.63278.11(10.368)92.1383.27V F m M kg kmol =⨯+-⨯=,0.40978.11(10.409)92.1390.08L Fm M kg kmol =⨯+-⨯=塔底平均摩尔质量计算 由xw=,由相平衡方程,得yw=,0.07078.11(10.070)92.1390.59L wm M kg kmol =⨯+-⨯=精馏段平均摩尔质量,78.7183.2780.992V m M kg kmol kg kmol +==提馏段平均摩尔质量 (4)平均密度计算 ①气相平均密度计算由理想气体状态方程计算,精馏段的平均气相密度即,3 ,97.780.972.638.314(273.1588.45)m v mv mmP Mkg mRTρ⨯===⨯+提馏段的平均气相密度②液相平均密度计算液相平均密度依下式计算,即塔顶液相平均密度的计算由t D=℃,查手册得33812.7,806.7A Bkg m kg mρρ==塔顶液相的质量分率0.95778.110.8850.95778.1192.130.043Aα⨯==⨯+⨯,,10.885812.70.115807.6,813.01L Dm L Dmkg kmol ρρ=+=进料板液相平均密度的计算由tF=,查手册得33799.1,796.0A Bkg m kg mρρ==进料板液相的质量分率0.40978.110.370.40978.1192.130.591A α⨯==⨯+⨯塔底液相平均密度的计算 由t w =℃,查手册得33786.13,785.2A B kg m kg m ρρ== 塔底液相的质量分率 0.0778.110.060.0778.1192.130.93A α⨯==⨯+⨯,,10.06/786.130.94/785.2,783.4L wm L wm kg kmol ρρ=+=精馏段液相平均密度为 ,813.01781.25797.132L m kg kmol ρ+==提馏段液相平均密度为 ',781.25785.54783.42L m kg kmol ρ+==(5) 液体平均表面张力计算 液相平均表面张力依下式计算,即塔顶液相平均表面张力的计算 由 tD =℃,查手册得σA=m σB= mN/m σLDm=×+×= mN/m进料板液相平均表面张力的计算由t F=℃,查手册得σA= m N/m σB= m N/mσLFm=×+×= mN/m塔底液相平均表面张力的计算由 tD=℃,查手册得σA= mN/m σB= mN/mσLwm=×+×=m精馏段液相平均表面张力为σLm=(+)/2= mN/m提馏段液相平均表面张力为σ‘Lm=(+)/2= mN/m(6) 液体平均粘度计算液相平均粘度依下式计算,即lgμLm=Σxi lgμi塔顶液相平均粘度的计算由tD=℃,查手册得μA= mPa·s μB= mPa·slgμLDm=×lg+ ×lg解出μLDm= mPa·s进料板液相平均粘度的计算由tF=℃,查手册得μA= mPa·s μB= mPa·slg μLFm=×lg+ ×lg解出μLFm= mPa·s塔底液相平均粘度的计算由tw=℃,查手册得μA= mPa·s μB= mPa·slgμLwm=×lg+ ×lg解出μLwm= mPa·s精馏段液相平均粘度为μLm=+/2= mPa·s提馏段液相平均粘度为μ‘Lm=+/2= mPa·s(7)气液负荷计算精馏段:提馏段:5 精馏塔的塔体工艺尺寸计算(1) 塔径的计算的选定很重要,它与塔高、塔径、物系性质、分离效率、塔的操塔板间距HT作弹性,以及塔的安装、检修等都有关。

相关文档
最新文档