卧式容器(JB4731-2005)讲解

合集下载

JBT4731-2005钢制卧式容器讲稿

JBT4731-2005钢制卧式容器讲稿

JBT 4731-2005 钢制卧式容器讲稿1.适用范围JB/T 4731—2005《钢制卧式容器》相对于原来GB l50—1989第8章作了部分修订,如:取消圈座支承,增加鞍座轴向弯曲强度校核及附录A《有附加载荷作用时卧式容器的强度汁算》等。

JB/T 4731适用于设计压力不大于35MPa,在均布载荷作用下,由两个对称的鞍式支座支承的常压及受压卧式容器,它不适用于:——直接火焰加热及受核辐射作用的卧式容器;——经常搬运的卧式容器;——带夹套的卧式容器;一一作疲劳分析的卧式容器:卧式容器设计是先根据操作压力(内压、外压)确定壁厚,再依据自重、风、地震及其他附加载荷来校核轴向、剪切、周向应力及稳定性,卧式容器设计还包括支座位置的确定及支座本身的设计。

2.术语和定义.操作压力.设计压力.计算压力.试验压力设计温度工作温度试验温度计算厚度设计厚度名义厚度有效厚度3设计的一般规定3.1 设计压力的确定:(a)设计压力值应不低于操作压力;(b)装有超压泄放装置时,设计压力按GB150附录B确定设计压力;(c)液化气体,液化石油气的卧式容器,按《容规》规定确定设计压力;(d)真空容器的设计压力按承受外压考虑,当装用安全控制装置时,设计压力取 1.25倍的最大内外压差或0.1Mpa两者的较低值;当无安全控制装置时,设计压力取0.1Mpa。

3.2设计温度的确定:(a)设计温度不低于元件金属在工作时可能达到的最高温度。

对于0度以下的金属温度,设计温度不应高于元件金属在工作时可能达到的最低温度。

铭牌上应标志设计温度。

(b)低温卧式容器的设计温度按GB150附录C规定确定。

3.3元件金属温度确定(a)传热计算;(b)在已使用的同类容器上测定;(C)在使用过程中,金属温度接近介质温度时按内部介质温度确定。

3.4 对于有不同工况的卧式容器,应按最苛刻的工况设计,并在图样或技术文件中注明各工况的操作压力和操作温度。

3.5设计载荷(a).长期载荷设计压力——内压、外压;液体静压力;容器质量载荷——自身质量,容器所容纳的物料质量,保温层、梯子平台、接管等附件质量载荷。

卧式容器(JB4731-2005)教材

卧式容器(JB4731-2005)教材

《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
σ7 ,σ8 有加强圈时,承受F/4,Mφ是由加强圈,故第一项分母为A0 (加强圈组合截面面积)。第二项分母为I0 (加强圈组合截面惯性)。
σ7 是当有外加强圈时筒体内表面处的应力, 当有内加强圈时筒体外表面处的应力。
2013年陕西省压力容器设计人员培训班
《钢制卧式容器》
----JB/T 4731-2005
淡 勇
(教授)
西北大学化工学院 College of Chemical Engineering Northwest University
一. 前言
《钢制卧式容器》 ----JB/T 4731-2005
JB/T4731是1993年开始编写。1998年完成2000年版。后因
《钢制卧式容器》JB/T 47312005
2)地震及地震影响系数 考虑地震主要是为校核鞍座的强度。(请参见JB/T4731 P44 2节)
1)σ9 增加垫板起加强作用,此时由垫板承受部分Fs力(使鞍座腹板分开的), 即分母改为 Hsbo+brδre
这里有几点说明:
-地震力不考虑垂直地震力,取水平地震力; -地震力对鞍座的作用,其作用力取筒体轴线方向,因鞍座该方向抗弯性差; -卧式容器按放位置一般不高,风载相对地震较小,计算中没考虑,但对于按放
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
7.3.4 圆筒周向应力
它是由切向剪应力使筒体产生周向弯矩(切向剪力的水平、垂直分量对筒体取 矩)。其弯矩图如JB/T4731图7—5或下面图22.4.5-1。无加强圈或加强圈位于鞍 座平面内时,最大弯矩发生在鞍座边角处;加强圈靠近鞍座平面内时最大弯矩发

卧式容器

卧式容器

JB/T4731-2005 <<钢制卧式容器>>1.适用范围JB/T 4731—2005《钢制卧式容器》相对于原来GB l50—1989第8章作了部分修订,如:取消圈座支承,增加鞍座轴向弯曲强度校核及附录A《有附加载荷作用时卧式容器的强度汁算》等。

JB/T 4731适用于设计压力不大于35MPa,在均布载荷作用下,由两个对称的鞍式支座支承的常压及受压卧式容器,它不适用于:——直接火焰加热及受核辐射作用的卧式容器;——经常搬运的卧式容器;——带夹套的卧式容器;一一作疲劳分析的卧式容器:卧式容器设计是先根据操作压力(内压、外压)确定壁厚,再依据自重、风、地震及其他附加载荷来校核轴向、剪切、周向应力及稳定性,卧式容器设计还包括支座位置的确定及支座本身的设计。

2.术语和定义.操作压力.设计压力.计算压力.试验压力设计温度工作温度试验温度计算厚度设计厚度名义厚度有效厚度3设计的一般规定3.1 设计压力的确定:(a)设计压力值应不低于操作压力;(b)装有超压泄放装置时,设计压力按GB150附录B确定设计压力;(c)液化气体,液化石油气的卧式容器,按《容规》规定确定设计压力;(d)真空容器的设计压力按承受外压考虑,当装用安全控制装置时,设计压力取1.25倍的最大内外压差或0.1Mpa两者的较低值;当无安全控制装置时,设计压力取0.1Mpa。

3.2设计温度的确定:(a)设计温度不低于元件金属在工作时可能达到的最高温度。

对于0度以下的金属温度,设计温度不应高于元件金属在工作时可能达到的最低温度。

铭牌上应标志设计温度。

(b)低温卧式容器的设计温度按GB150附录C规定确定。

3.3元件金属温度确定(a)传热计算;(b)在已使用的同类容器上测定;(C)在使用过程中,金属温度接近介质温度时按内部介质温度确定。

3.4 对于有不同工况的卧式容器,应按最苛刻的工况设计,并在图样或技术文件中注明各工况的操作压力和操作温度。

JB-T 4730-2005 标准释义--前言

JB-T 4730-2005 标准释义--前言

JB-T 4730-2005 标准释义--前言目次前言..................................................................................................................218 引言..................................................................................................................222 第1章 JB/T4730.1通用要求..............................................................................225 第2章 JB/T4730.2射线检测..............................................................................231 第3章 JB/T4730.3超声检测..............................................................................247 第4章 JB/T4730.4磁粉检测..............................................................................271 第5章 JB/T4730.5渗透检测..............................................................................282 第6章 JB/T4730.6涡流检测..............................................................................290 第7章参考文献................................................................................................293 第8章使用实例 (295)217前言JB 4730—1994《压力容器无损检测》标准是《压力容器安全技术监察规程》(以下简称《容规》)及有关的产品标准等的配套标准,由全国压力容器标准化技术委员会(以下简称“容标委”)提出,全国压力容器标准化技术委员会制造分会归口,原机械部、化工部、劳动部和中国石油化工总公司联合发布的强制性行业标准。

(19)JB4731-2005钢制卧式容器(英)

(19)JB4731-2005钢制卧式容器(英)

JB/T 4731-2005ContentsForeword (2)1. Scope (3)2. Normative references (3)3. Terms and definitions (3)4. General rules (4)5. Material (12)6. Structure (13)7. Strength calculation (14)8. Manufacturing, inspection and acceptance (46)Appendix A (Informative Exhibit) Calibration and Calculation of Strength and Stability of Horizontal Vessels under Additional Load (49)Interpretations to JB/T 4731-200 (62)JB/T 4731-2005ForewordThis standard is stipulated based on Chapter 8: “Horizontal Vessels”of GB 150-1989---Steel Pressure Vessels through incorporation and revision of some contents in design calculation and supplement of requirements for manufacturing, inspection and acceptance of horizontal vessels. Such contents as horizontal vessels of normal pressure, manufacturing conditions as well as calculation of load as incurred by centralized mass and strength verification are supplemented simultaneously with the stipulation of this standard.This standard is compiled in reference to PD 5500-2003 Pressure Vessels of Indirect Fired Process and JIS B 8278-1993 Saddle supported horizontal pressure vessels based on practice in design, manufacturing and inspection of horizontal vessels in China in recent years.Appendix A to this standard belongs to normative exhibit.This standard will substitute JB/T 4731-2000 from the date of implementation. JB/T 4731-2000 has not been published due to references. The standard as substantially substituted is Chapter 8 of GB 150-1989---Steel Pressure Vessels.This standard is proposed by China Standardization Committee on Boilers and Pressure Vessels (SAC/TC 262)This standard is under the jurisdiction of China Standardization Committee on Boilers and Pressure Vessels (SAC/TC 262).This standard is drafted by Hualu Engineering & Technology Co., LtdMajor drafters of this standard: Pei Deyu, Liu Shaojuan and Wang XinjingPersonnel participating in compilation of this standard:Economics & Development Research Institute, SINOPEC: Shou Binan, Gu Zhenming, Li Jianguo, Wang Weiguo and Chen Chaohui.Hualu Engineering & Technology Co., Ltd: Li Zhaoliu Yang YongchengSinopec Engineering Incorporation: Li Shiyu and Yu CunyiNational Technology Center of Process Equipment: Huang Zhenglin and Qin ShujingLanzhou Petroleum Machinery Research Institute: Song BingtangSteel Horizontal Vessels1. ScopeThis standard specifies requirements for design, manufacturing, inspection and acceptance of steel horizontal vessels (hereinafter referred to as horizontal vessels).This standard is applicable to horizontal vessels with design pressure no more than 35MPa as supported by two symmetrical saddle supports under the uniformly distributed load.This standard is not applicable to the following horizontal vessels:a)Vessels subjecting to fired process and nuclear radiation;b)Horizontal vessels frequently transported;c)Vessels requiring fatigue analysis;d)Vessels with sleeves2. Normative referencesThe following standards contain provisions which, through reference in this text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to applicanes based on this standard encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. GB 150: Steel Pressure VesselsGB/T 700-1988: Carbon Structural SteelsGB/T 1804-2000: General Tolerances---Tolerances for Linear Dimensions without Individual Tolerance IndicationsGB/T 1591-1994: Low-alloy High-Strength Structural SteelsGB 50017-2003: Code for Design of Steel StructuresJB/T4712: Saddle SupportsJB 4733-1996: Explosive Stainless Clad Steel Plate for Pressure VesselsJB/T 4735-1997: Steel welded atmospheric pressure vesselsTechnologic Supervision Regulations On Safety Of Pressure Vessels (issued by formal State Administration of Quality and Technological Supervision in 1999)3. Terms and DefinitionsThe following terms and definitions are applicable to this standard.3.1 PressurePressure indicates gage pressure, if not specified.3.2 Working pressureWorking pressure is defined as the maximum pressure that may occur at the top of the vessel under normal operating conditions.3.3 Design pressureDesign pressure is defined as the maximum set pressure at the top of the vessel and shall be applied as the conditions of design load with the coincident design temperature. The design pressure shall be not less than the working pressure.3.4 Calculating pressureCalculating pressure is defined as the pressure used to determine the thickness of the vessel parts with the coincident design temperature.3.5 Test pressureTest pressure is defined as the pressure on the top of the vessel during pressure test for horizontal vessel.3.6 Design temperatureDesign temperature is defined as the set metal temperature of element under normal operating conditions of the vessel (the mean metal temperature through the cross section of the element). The design temperature shall be applied as the conditions of design load with the coincident design pressure.3.7 Test temperatureTest temperature is defined as the metal temperature of the shell during test.3.8 Thickness3.9 Calculated thicknessCalculated thickness refers to the thickness as obtained by using formula in GB 150 or JB/T 4735 and this standard. If necessary, thickness as required by other load shall be incorporated.3.10 Design thicknessDesign thickness refers to the sum of calculated thickness and corrosion allowance.3.11 Nominal thicknessNominal thickness is defined as the sum of the design thickness and the minus deviation of steel material thickness, then rounded off to the nearest greater thickness specified.3.12 Effective thicknessEffective thickness is defined as the nominal thickness minus the sum of the corrosion allowance and the minus deviation of steel material thickness.4. General rules4.1 The design, fabrication, testing and inspection, and acceptance of horizontal vessels must fully comply with all the applicable requirements of this standard, and be necessary to meet the requirements of appropriate laws, decrees and regulations issued by the Government.4.2 Scope of vessels4.2.1 Horizontal vessels connected with external pipelinesa) The first ring as connected through welding should be oriented towards the bevel end;b) The first threaded joint should be oriented towards the joint end;c) The first flanged sealing face;d) The first sealing face as connected with special connectors or pipe fittings.4.2.2 Bearing end seal and flat cap on connecting tube of horizontal vessel and fasteners.4.2.3 Welded joint between non-load bearing element and horizontal vessel.Elements other than joints, such as saddle support and saddle stiffener should also in compliance with provisions as stipulated in this standard or relevant standards.4.2.4 Overpressure discharging devices as directly connected with horizontal vessel should be in compliance with relevant provisions as stipulated in GB 150. Accessories, such as instruments connected to the horizontal vessel, should be selected as per relevant standards.4.3 Qualifications and responsibilities4.3.1 Qualifications4.3.1.1 The designer and the manufacturer of horizontal vessels shall maintain a sound quality control system.4.3.1.2 The designer must hold an appropriate designer certificate of horizontal vessels. The manufacturer must hold a fabrication license of horizontal vessels.4.3.1.3 Qualifications of manufacturer and inspector of horizontal vessels should be in compliance with relevant provisions as stipulated in JB/T 4735.4.3.2 Responsibilities4.3.2.1 Responsibilities of designera) The designer shall be responsible for the correctness and completeness of all design documents.b)The design documents of horizontal vessels shall at least consists of design calculation sheets and engineering drawings.c) Design drawings of horizontal vessels should be provided with seal of design certificate for pressure vessels.4.3.2.2 Responsibilities of manufacturer4.3.2.2.1 The manufacturer shall ensure the constructed horizontal vessels in conformity with the requirements as prescribed on the design drawings.4.3.2.2.2 The Inspection Department of the manufacturer shall make all of the inspections and tests in details as specified by the provisions of this standard and in accordance with the requirements as prescribed on drawings during the whole course of manufacturing process as well as after completion of construction. After that, the Inspection Department shall provide inspection report, and be responsible for their correctness and completeness.4.3.2.2.3 For each horizontal vessel, the manufacturer shall at least provide the following technical documents for review, which shall be well retained for a period of seven years at least:a) Fabricating procedure drawings or fabricating process cards;b) Material certificates and bills;c) Data sheets of welding procedures and heat treatment process cards;d) Records of those items at the manufacturer’s option permitted by applicable Standards;e) Testing and inspection records during the course of fabricating process and after completion;f) As-built drawings.4.3.2.2.4 The manufacturer shall fill a product certificate and submit it to the user after the safety authority has verified that the vessel was constructed in accordance with the requirements of this standard and the corresponding drawings.4.4 General design requirements4.4.1 Definition of design pressure4.4.1.1 Design pressure shall not be lower than the working pressure.4.4.1.2 For horizontal vessel provided with pressure relief device, the design pressure shall be determined in accordance with Appendix B to GB 150.4.4.1.3 For horizontal vessel filling with liquefied gases and liquefied petroleum gas, design pressure should be in compliance with relevant provisions as stipulated in Technologic Supervision Regulations On Safety Of Pressure Vessels.4.4.1.4 For horizontal vessels under vacuum conditions, the design pressure shall be considered as external pressure. When the vessel is provided with the safety device like vacuum relief valve, the design pressure may be taken as 1.25 times the maximum difference in pressure between inside and outside of a vessel, or the value of 0.1MPa, whichever is lesser. When there is no safety device, the design pressure shall be defined as 0.1MPa.4.4.2 Determination of design temperature4.4.2.1 Design temperature shall not be less than the probable maximum metal temperature of element under operating conditions. For metal temperature below 0℃, the design temperatureshall be equal to or less than the probable minimum metal temperature of the vessel. Design temperature should be indicated on the nameplate.4.4.2.2 For different metal temperatures for elements of horizontal vessels at working status, it is applicable to set design temperature for each element.4.4.2.3 Design temperature of low-temperature horizontal vessel is to be determined as per Appendix C to GB 150.4.4.2.4 The metal temperature of element may be determined by the calculation of heat transfer, or measured on the similar vessel in-service, or be determined in accordance with the inside medium temperature.4.4.3 For horizontal vessel under different operating conditions, the design of vessel shall conform to the most severe operating condition. The corresponding pressures and temperatures of different operating conditions shall be indicated on the drawings or other technical documents.4.4.4. LoadThe following loads and combined loads should be consider for design:a) Pressure;b) Static head of liquids;c) Weight of horizontal vessel (including internal parts) and the contents under the normal operating or testing conditions;d) Centralized and uniformly distributed gravity load of attached equipments, platforms, insulations and liningse) Seismic load;f) Acting force from supports;g) Friction to supports and other acting forces as incurred by thermal expansion;The following loads should be considered if necessary:h) Acting force from connected pipelines and other parts;i) Impact load incurred by violent fluctuation of pressure;j) Impact reactions such as those due to fluid shock;k) Impact from changes to pressure and temperature;l) Acting force incurred during lifting and transportation.4.4.5 Additions to the thicknessAdditions to the thickness shall be determined by Formula (4-1):Where C-thickness addition, mm;C1-minus deviation of material thickness, mm;C2-corrosion allowance, mm4.4.5.1 Minus deviation of steel C1The minus deviation of steel plate or pipe thickness shall be in compliance with the requirements as specified in corresponding steel standards. The minus deviation may be neglected, when it is not greater than 0.25mm, and not exceeds 6% of the nominal thickness.4.4.5.2 Corrosion allowance C2The corrosion allowance shall be considered to protect vessel elements subjected to thinning by corrosion, erosion or mechanical abrasion. Specific provisions are stipulated as follows:a) For elements subjected to corrosion or abrasion, the corrosion allowance shall be determined inaccordance with the specified life of the vessel and the corrosive rate of the medium relative to the material.b) It is applicable to select different corrosion allowance in view of varied degree of corrosion to elements in horizontal vessels;c) For horizontal vessels constructed of carbon steels or low-alloy steels, the corrosion allowance shall be provided not less than 1mm.4.4.6 Minimum thickness of shells after forming, exclusive of any corrosion allowance shall be:a) No less than 3mm for horizontal vessels constructed of carbon steels or low-alloy steels;b) No less than 2mm for horizontal vessels constructed of high-alloy steels.4.5 Allowable stress4.5.1 Allowable stress for load-bearing elements and bolts for horizontal pressure vessels under different temperatures should be selected as per GB 150. Basis for determination of allowable stress is stated as follows: Refer to Table 4-1 for steels other than bolts. Refer to Table 4-2 for bolts. Allowable stress for materials of common horizontal pressure vessels should be selected as per JB/T 4735., but not exceedTable 4-2 Basis for Determination of Allowable Stress (2)In the Table 4-1 and 4-2:Lower limit for typical tensile strength of steels, MPa;Yield strength or 0.2% non-proportional extension strength of steel materials under normal temperature, MPa;Yield strength or 0.2% non-proportional extension strength of steel materials under design temperature, MPa;Mean value of creep rupture strength at design temperature for rupture after 10, 000 hours, MPa;Creep limit at design temperature for 1% of the creep rate after 10, 000 hours, MPa.4.5.2 The allowable stress at 20℃shall be applied for those with the design temperature below 20℃.4.5.3 The allowable stress for stainless steel clad plate:When the bond area between the cladding and the base metal are constructed to meet the requirements of Class B2 in JB4733 or even better, and should the strength of cladding be taken into account in design, the allowable stress for the stainless steel clad plate at design temperature may be determined by Formula (4-2):In the formula:Allowable stress for the stainless steel clad plate at design temperature, MPa;Allowable stress for the base metal at design temperature, MPa;Allowable stress for the cladding at design temperature, MPa;Nominal thickness of the base metal, mmNominal thickness of the cladding, exclusive of corrosion allowance, mm.4.5.4 For antiseptic lining not connected with the shell of horizontal vessel to form an integral part, strength of antiseptic lining can be neglected during design calculation.4.5.5 For the combination of seismic or other loads as stipulated in 4.4.4, the wall stress of vessel shall not exceed 1.2 times the allowable stress.4.5.6 Steel materials other than those as stipulated in GB150 as selected for horizontal vessel should be in compliance with relevant provisions as stipulated in Appendix A to GB 150.4.5.7 Allowable axial compressive stressSmaller value of and B for allowable stress of materials under design temperature is to be selected as the allowable axial compressive stress of drum or the tube. Value B is to be calculated according to the following procedures:a) Calculation coefficient A with Formula (4-3):Where:A---Coefficient;Inner radius of drum or tube, mm;Effective thickness of drum or tube, mm.b) Refer to corresponding charts in GB 150 as per specific materials. If value B is on the right side of material line under design temperature, just cross this point to shift upward for intersection with material line under design temperature (use inset method for intermediate temperature). After that, further shift to the right side by crossing this intersection point to obtain value B. If coefficient A is on the left side of material line under design temperature, value B should be calculated with Formula (4-4):Where:Elastic modulus of materials under design temperature, MPa.4.5.8 Allowable stress for non-load bearing elements other than saddle support shall be selected as per Article 5.4. Allowable stress for critical internal parts and supporting ring as welded on the load-bearing shell shall be selected in reference to bearing elements; whereas that for other shall be determined as per provisions as stipulated in GB 50017.4.6 Coefficient of welded joint4.6.1 For horizontal vessels, coefficient of welded joints Φshould be determined as per welding procedures (single-side or double-side welding; with or without gasket) and NDE length for load-bearing elements.a) For double-welded butt joints or other butt joints of full penetration equivalent to a double welded joint:100% NDE: ;Spot NDE:b) For single-welded butt joints with backing strip fitted on the base metal along the whole length of weld root:100% NDE:Spot NDE:4.6.2 For common horizontal pressure vessels, coefficient of welded joint Φshould be determined as per relevant provisions in JB/T 4735.4.7 Pressure testHorizontal pressure vessels as fabricated should subject to pressure test Types, requirements and testing pressure for pressure test should be indicated on the drawings.4.7.1 Pressure test for horizontal pressure vesselsNormally, pressure test for horizontal pressure vessels is represented by hydraulic test. Testing liquids should be in compliance with provisions as stipulated in GB 150. It is applicable to proceed with air pressure test for horizontal vessels unavailable for hydraulic test. Horizontal pressure vessels should satisfy relevant requirements as stipulated in GB 150 during air pressure test.Horizontal vacuum vessels should subject to pressure test under internal pressure.4.7.1.1 Testing pressureMinimum value of testing pressure for horizontal pressure vessels should be in compliance with the following requirements. Upper limit of testing pressure should satisfy limitations on calibrated stress in Article 4.7.1.2.4.7.1.1.1 Internal horizontal pressure vesselsHydraulic test pressure should be determined as per Formula (4-5):Air pressure test pressure should be determined as per Formula (4-6):Where:Test pressure, MPa;Design pressure, MPa;Allowable stress of vessel part material at test temperature, MPA;Allowable stress of vessel part material at design temperature, MPa;Note:1. When the maximum allowable working pressure is specified on the vessel nameplate, the design pressure p in the formula above shall be replaced by the maximum allowable working pressure.2. When the materials of pressure vessel parts are different, the minimum value of willbe selected.4.7.1.1.2 Horizontal vacuum vesselsTest pressure shall be determined with Formula (4-7):Where:Test pressure, MPa;Design pressure, MPa4.7.1.2 Stress verification before pressure testCalculate stress of drum with Formula (4-8) before pressure test:Where:Stress of drum under testing pressure, MPa;Inner diameter of drum, mm;Test pressure, MPa.Effective thickness of drum, mm;should be verified as per Formula (4-9) and (4-10):For hydraulic test:For air pressure test:Where:Yield strength or 0.2% non-proportional extension strength of drum material at testing temperature, MPa;Coefficient of welded joint for drum.4.7.2 Pressure test for horizontal atmospheric pressure vesselsHorizontal atmospheric pressure vessels as fabricated should subject to hydraulic test. For specific testing requirements, please refer to relevant provisions as stipulated in JB/T 4735.4.7.2.1 Test pressureHydraulic test pressure should be determined with Formula (4-11):select the bigger value of the twoWhere:Test pressure, MPa;Design pressure, MPa;Allowable stress of vessel part material at normal temperature, MPa;Allowable stress of vessel part material at design temperature, MPa;4.7.2.2 Stress verification before pressure testCalculate stress of drum with Formula (4-12) before pressure test:Where:Stress of drum under testing pressure, MPa;Inner diameter of drum, mm;Test pressure, MPa.Effective thickness of drum, mm;should be verified as per Formula (4-13):Where:Yield strength or 0.2% non-proportional extension strength of drum material at testing temperature, MPa;Coefficient of welded joint for drum.4.7.3 For horizontal pressure vessels unavailable for pressure test as per provisions in Article 4.7.1, designer shall submit measures for safe operation of vessels to the technical official for approval and indications on drawings.4.8 Leak testIf vessels contain extremely toxic or highly toxic substances, a leak test shall be conducted on those vessels after pressure test.4.8.1 Airtight testAirtight test should be carried out as per relevant provisions in Technologic Supervision Regulations On Safety Of Pressure Vessels.4.8.2 Other leak testExcept for airtight test, other leak tests can be carried out by using such mediums as ammonia, halogen and helium. Testing methods and items should be indicated on drawings.Note: Grading of toxicity of medium should be in compliance with relevant provisions in Technologic Supervision Regulations On Safety Of Pressure Vessels.5. Material5.1 Steel material for pressure elements of horizontal pressure vessel, steel grade, heat treatment status and allowable stress should be in compliance with provisions as stipulated in GB 150.5.2 Steel material for pressure elements of horizontal atmospheric pressure vessel, steel grade, heat treatment status and allowable stress should be in compliance with provisions as stipulated inJB/T 4735.5.3 Steels for non-load bearing elements should be those as incorporated into the material standards. Steel materials for welded pieces should have perfect welding performance. Steels for critical internal parts and stiffening rings as welded on the pressure shell should be in compliance with provisions in Article 5.1.5.4 Selected saddle materials are listed in Table 5-1.5.5 Base plate for connection of saddle with drum should be of the same material as the drum.5.6 Select Q235 anchor bolts as stipulated in GB/T 700 or Q345 anchor bolts as stipulated inGB/T 159. Allowable stress for Q235 and Q345 anchor bolts should be up to 147 andrespectively. For other carbon steels, ; for other low-alloy steels,.6. Structure6.1 SupportsSelect saddle support for horizontal vessels (See Figure 7-1). When supports are welded to the vessel, one of support should be slide one or in rolling structure.6.1.1 Arrangement of supportsMake sure that distance A between support center and end seal tangent line is below or equal to 0.5Ra. If it is impossible, value A should be over 0.2L.6.1.2 Saddle supportIf saddle support for horizontal vessel is selected as per JB/T 4712, verification of strength of saddle support can be omitted if conditions as stipulated in JB/T 4712 can be satisfied. Otherwise, it is necessary to proceed with strength verification as per Article 7.4.6.2 Perforation and connecting tubeHorizontal vessel should be provided with manhole, manual hole or access hole in addition to technical connecting tubes as required. Outlet should be arranged at the lowest point at vessel bottom. If it is impossible to arrange outlet at drum bottom, it is applicable to arrange bottom insert tube as shown in Figure 6-1. The minimum liquid discharge clearance B1 on the bottom insert tube end should be able to ensure adequate discharge space.All holes and stiffeners on the horizontal vessel should be in compliance with relevant provisions in GB 150.All holes and stiffeners on the horizontal atmospheric pressure vessel should be in compliance with relevant provisions in JB/T 4735.6.3 Arrangement of stiffening ringFigure 6-1: Structure of Outlet on Horizontal Vessel6.3 Arrangement of stiffening ringStiffening ring should be complete or nearly complete. Connection structure between stiffening ring and shell should be in compliance with relevant provisions in GB 150.6.3.1 In view of the fact that horizontal vessel is under local stress, it is applicable to set internal and external stiffening rings on the saddle plane (See Figure 7-8) or at the periphery of saddle plane (See Figure 7-9).6.3.2 In view of instability of horizontal vessel under external force, setting and calculation of stiffening ring should be in compliance with provisions as stipulated in GB 150.7. Strength calculation7.1 Calculate the strength of pressure elements of horizontal vessel as per relevant provisions in GB 150 or JB/T 4735 before checking calculation of strength and stability as per Article 7.3 and 7.4.In view of centralized load as incurred by accessory equipments (4.4.4d), it is applicable to proceed with checking calculation of strength and stability as per Appendix A (Informative Exhibit).7.2 Symbol descriptionDistance between center line of saddle base plate and end seal tangent line (See Figure 7-1), mm;切线Tangent line鞍式支座边角处Saddle support cornerThe sum of combined cross sectional area of all stiffening rings and effective stiffening sections of drum on one saddle, mm2Value as determined in reference to design external pressure as stipulated in GB 15 at design temperature, MPa;Value as determined with external pressure design methods as stipulated in GB 150 atnormal temperature, MPa;Inner diameter of drum, mm;Outer diameter of drum, mm;Counterforce of each support, N;The sum of inertia moment combined cross sectional area of all stiffening rings andeffective stiffening sections of drum on one saddle to sectional spindle X-X (See Figure 7-8, 7-9), mm4Load combination coefficient,Coefficient, refer to Table 7-1 and Table 7-9;Distance of end seal tangent line (See Figure 7-1), mm;Axial bending moment at the drum center, N-mm;Axial bending moment of drum at the saddle, N-mm;Average radius of drum, , mm;Inner radius of spherical part of disk end seal, mm;Inner radius of drum, mm;Axial width of drum, mmWidth of stiffening ring (See Figure 7-8 and 709), mmEffective width of drum, , mm;Effective width of drum when calculating combined cross sectional area of drumandstiffening rings, , mm;Width of saddle base plate (See Figure 7-6), mm;Gravitational acceleration, ;Depth of end seal camber, mm;Coefficient, when the vessel is not welded to the saddle; when the vessel is welded to the saddle;Mass of vessel (including mass of vessel itself, mass of water and medium filled as well as accessories and heat-insulation layer), kg;Design pressure, MPaCalculated pressure, MPa;。

JBT4731-2005钢制卧式容器讲稿

JBT4731-2005钢制卧式容器讲稿

(c)鞍座垫板材料应与壳体材料相同;
(d)地脚螺栓宜选用符合 GB/T700 规定的 Q235 或符合 GB/T1591 规定的 Q345。
如采用其他碳素钢,则 ns=1,6; 如采用其他低合金钢,则 ns≥2.0。
3.14 鞍式支座
卧式容器支座采用 JB/T4712 标准鞍座时,在满足 JB/T4712 所规定的条件时,可免去对 鞍座的强度校核;否则应按 JB/T4731-7.4 进行强度校核。
a)对有腐蚀或磨损的元件, 应根据预期的设计寿命和介质对金属材料的腐蚀速 率确定腐蚀裕量;
b)卧式容器各元件受到的腐蚀程度不同时,可采用不同的腐蚀裕 量;c)碳素钢或低合金钢卧式容器,腐蚀裕量不小于 1mm。 3.7 卧式容器筒体加工成形后不包括腐蚀裕量的最小厚度按下列规定: a)对碳素钢或低合金钢制卧式容器,不小于 3 mm; b)对高合金钢制卧式容器,不小于 2 mm。 3.8 不锈钢复合钢板的许用应力:
3.13 材料
(a) 卧式压力容器材料应 GB150 规定;卧式常压容器材料应 JB/T4735 规定
(b) 鞍座,焊在受压壳体上的重要内件,加强圈等非受压元件用钢应符合下列表中规 定:
使用温度℃
选用材料
许用应力 [σ]sa Mpa
0~250
Q235-B
147
-20~250
Q345
170
≤-20
16MnR
3.6 厚度附加量 C C=C1+C2 C1----钢材厚度负偏差, mm; C2----腐蚀裕量, mm.
钢板或钢管的厚度负偏差按相应钢材标准的规定。当钢材的厚度负偏差不大于 0.25mm,且不超过名义厚度的 0.6%时,在计算中负偏差可忽略不计。 3.6.1 腐蚀裕量 C2

卧式容器(JB4731-2005)

卧式容器(JB4731-2005)

设计温度(环境温度加上+20℃)
>0~250℃(相当环境温度-20℃~250℃) 0~-20℃(相当环境温度-20℃~-40℃) 20R
鞍座材料
Q235-A 16MnR,
对受介质温度影响的按介质温度另行选取。对 表5-1鞍座材料的选取将在 JB/T4712鞍座标准确定后作适当修改及通知。
《钢制卧式容器》JB/T 47312005
有些引用的标准更改而使.2000版没发行。本标准的出版,从编制初 稿、征求意见稿到报批稿,在全国容标委的领导下经过多位专家、人 士的审查、修改后方定稿了2005年版。这是多个单位、专家共同努力
下完成的,应当向这些人表示感谢。一个新标准从编写、出版到应用,
难免会出现不当或错误的地方,希望各单位及各位专家提出指正或发 表文章,以使标准更完善、先进。JB/T4731-2005主要增加内容:卧
3.3.3条 …对焊接结构尚应具有碳含量的合格保证。
《钢制卧式容器》JB/T 47312005
根据此条Q235-A不能应用。因为BG700在1992年第1号修改单中说明“Q235-A中的
碳含量不作为交货条件” ,即在法律上碳含量是不能保证。因此JB/T4731中考虑
的是Q235-B。对于使用温度<-20℃的用16MnR主要是该材料在容器制造中用的较多。 最近网上有人认为按表5-1选材要求太严,而且在计算实例中用的是Q235-A,前后 不一致,故昨早秘书长同有关编审人员协商处理意见如下:
《钢制卧式容器》JB/T 47312005
JB/T4731-2000版
为Q235-A、Q235-AF、16Mn、16MnR。
JB/T4731-2005版选用是这样: GB50017-2003〈钢结构设计规范〉中 3.3.2条 下列情况下的承重结构和构件不应采用Q235沸腾钢:

JB4730.1-2005通用要求介绍

JB4730.1-2005通用要求介绍

承压设备法规标准体系
4、技术法规(第四层次) 安全监察规程类:《蒸汽锅炉安全技术监察规 程》、《热水锅炉安全技术监察规程》、《压力容 器安全技术监察规程》、《超高压容器安全监察规 程》、《气瓶安全监察规程》、《液化气体汽车罐 车安全监察规程》、《压力管道安全管理与监察规 定 》、《医用氧舱安全管理规定 》、《有机热载 体炉安全技术监察规程》等.
该标准94年1月29日正式发布,94年 5月1日实施。1995年2月原劳动部下达 1995年第65号文“关于贯彻执行JB473094《压力容器无损检测》标准的通知”, 要求压力容器行业的设计、选材、制造、 安装、使用、检验和修理等一律执行 JB4730-94标准。
JB4730-94标准贯彻执行近10年来,对规 范压力容器的管理,保障压力容器产品质量, 提高压力容器行业设计、选材、制造、使用、 检验水平,减少爆炸事故等方面起到了积极的 作用。但是在贯彻执行中也发现了不少问题, 如:有些《容规》中包括的有色金属材料制压 力容器的检测方法在标准中尚没有反映;压力 管道的检测内容缺口比较大;与锅炉行业的关 系不够明确;射线检测部分尚有一些条款不尽 完善,此外在用锅炉、压力容器及压力管道的 无损检测内容尚无标准规范可循等等。

承压设备法规标准体系
1、法律:《特种设备安全监察法》(第一层次) 2、法规:《特种设备安全监察条例》 (第二层次) 3、规章(管理规定、办法):《特种设备事故处理 规定》、《进出口特种设备监督管理办法》、《特 种设备质量监督与安全监察规定》、《特种设备检 验检测机构管理规定 》、《特种设备行政许可实施 办法》、《特种设备注册登记与使用管理规则 》等。 (第三层次)
承压设备标准体系(锅炉)
一、锅炉产品标准:JB/T10094-99《工业锅炉 通用技术条件》、JB/T6696-93《电站锅炉技 术条件》、JB/T7985-95《常压热水锅炉通用 技术条件》、JB/T6503-92《烟道式余热锅炉 通用技术条件》、GB/T1921-98《热水锅炉参 数系列》、GB/T3166-88《工业蒸气锅炉参数 系列》、 JB/T7090-93《余热锅炉参数系列 氧气转炉余热锅炉》JB/T6508-92氧气转炉余 热锅炉技术条件》等。

JBT4730.1-2005通用

JBT4730.1-2005通用

承压设备无损检测JB/T4730.1-2005JB4730标准修订工作情况1、2000年1月成立标准修订组,3月完成了JB4730 标准(征求意见稿)。

上报锅炉局以及全国压力容器标委会和全国锅炉标委会,并发至行业近80个单位征求意见。

2、标准修订组根据回函意见并广泛地征求了有关方面的意见,在此基础上提出了JB4730标准(征求意见讨论稿),根据锅炉局及锅容标会的要求,修订稿的适用范围包括锅炉、压力容器及压力管道。

3、2001年9月按锅容委标会暨制造分会要求,标准修订组在合肥经讨论修改,并提出JB4730《征求意见修订稿》。

4、2002年3月根据锅炉局和锅容标会要求,在JB4730《征求意见修订稿》加入在用检测内容,完成送审稿(草稿)。

5、2002年9月根据锅炉局和锅容标委会的指示精神,将送审稿分为6个部分(包括通用要求、射线、超声、磁粉、渗透、涡流等)。

6、送审稿于2002年10月在张家界经制造分会初审通过。

7、2003年3月在锅炉局和锅容标委会直接领导下,对标准修进行讨论,取得共识。

会后又分别在南昌、北京等地对标准的六个部分分别讨论定稿。

8、2003年9月在全国锅容标委员会的组织下,在北京进行标准汇稿。

9、2004年5月在全国锅炉压力容器无损检测Ⅲ级人员考核换证班上对送审稿进行征求意见。

10、 2004年8月在全国锅容标委会的组织下,在沈阳进行标准汇稿和统稿。

11、2004年9月在全国锅容标委会的组织下,在北京进行标准的定稿,标准更名为JB4730-《承压设备无损检测》,并报全国锅容标委会委员审查。

12、2005年3月11~16日在北京根据全国锅容标委会审查情况,召开JB/T4730《承压设备无损检测》定稿会,并整理报批。

13、05年3月31日在北京将JB4730标准修订情况向特种设备安全监察局锅炉容器处、管道处和综合处作了汇报,获得共识和认可。

14 、国家发展与改革委员会2005年7月26日颁布JB4730-2005《承压设备无损检测》标准,并明确规定2005年11月1日正式执行。

钢制卧式容器

钢制卧式容器


考虑支座处局部应力时,可设置内、外加强圈于鞍 座平面上或靠近支座平面处。

考虑卧式容器外压失稳时,加强圈的设置及计算
应符合GB150的相应规定。
四、埋地卧式容器的设计计算
1.
对于储存易燃易爆的介质具有良好的防火防爆效
果,有时还可以部分减少占地面积;
2.
除承受介质内压、物料质量作用外,还必须考虑

应尽量使支座中心到封头切线的距离小于或等于0.5 的圆筒平均半径,无法满足时应不大于0.2倍封头切 线间距。

对于L/Di≥15且壁厚较薄的卧式容器,为避免支座
跨距过大导致圆筒产生严重变形及应力过大,可以
考虑设置三个及以上支座。

无论双、三或多鞍座,都必须只有一个为固定支座, 其余为滑动支座,以减少圆筒体因热胀、冷缩
或圆筒体及物料质量引起的对支座产生的附
加载荷。 2. 除设置必需的工艺接管外,还应根据需要设 置人孔、手孔或检查孔。容器底部最低点宜 设置排净口。不能在圆筒底部设排净口时, 可设置插底管。插底管端部最小排液间隙应 能保证足够的排净空间。
3.加强圈

加强圈应是整圈或相当于整圈的,加强圈与壳体的 连接结构应符合GB150的相关规定。
7. 许用应力 按GB150选取 8. 焊接接头系数 9. 压力试验 10. 泄露试验 11. 材料

受压元件用材料按GB150规定; 常压容器选材按JB/T4735规定;
鞍座用材料见下表:
鞍座与圆筒相连接的垫板应与圆筒材料相同。 三、结构 1.支座

卧式容器支座采用鞍式支座。当支座焊在容器上时, 其中一个支座应采用滑动支座或滚动结构。
地面土层质量,以及可能有地下水浸没而对筒体

JB 4730.1-2005 通用部分 宣贯 袁榕

JB 4730.1-2005 通用部分 宣贯 袁榕

承压设备标准体系(压力容器)
1、产品标准:GB150-98《钢制压力容器》、GB12337-99 《钢制球形储罐》、GB/T15386-94《空冷式换热器》、 GB151-99《钢制管壳式换热器》、GB16409-96《板式换热 器》、GB16749-97《压力容器波形膨胀节》、JB4710-92《钢 制塔式容器》、JB4731《钢制卧式容器》、GB18442-2001 《低温绝热压力容器》、GBJ50094-98《球形储罐施工及验收 规范》、GB12130-95《医用高压氧舱》等。 2、材料标准:GB6654-96《压力容器用钢板》、GB353196《低温压力容器用低合金钢钢板》、JB4726-2000《压力容 器碳素钢和低合金钢锻件》、JB4727-2000《低温压力容器用 碳素钢和低合金钢锻件》、JB4728-2000《压力容器用不锈钢 锻 件 》 、 JB4733-96《 压 力 容 器 爆 炸 不 锈 复 合 钢 板 》 、 GB6655-86《多层压力容器用低合金钢钢板》、GB6479-2000 《高压化肥设备用高压无缝钢管》、GB/T9948-88《石油裂化 用无缝钢管》、GB/T12771-2000《流体输送用不锈钢焊接钢 管》、GB/T14976-94《流体输送用不锈钢焊接钢管》等。 3、零部件标准:JB/T4700-2000《压力容器法兰分类与 技术条件》、JB/T4701-2000《甲型平焊法兰》、JB/T47027
承压设备无损检测特点
1、无损检测应与破坏性检测相接合:无损检测的最大特点 是在不损伤材料和工件结构的前提下检测,具有一般检测所 无可比拟的优越性。但是无损检测不能代替破坏性检测,也 就是说对承压设备进行评价时,应将无损检测结果与破坏性 检测结果(如爆破试验等)进行对比,才能作出准确的判断。 2、正确选用无损检测时间:在进行承压设备无损检测时, 应根据检测目的,结合设备的特点,选择合适检测时间。 3、正确选用最适当无损检测方法:由于各种检测方法都具 有一定的特点,为提高检测结果可靠性,应根据设备材质、 制造方法、工作介质、使用条件和失效模式,预计可能产生 的缺陷种类、形状、部位和取向,选择合适的无损检测方法。 4、综合应用各种无损检测方法:任何一种无损检测方法都 不是万能的,每种方法都有自己的优点和缺点。应尽可能多 用几种检测方法,互相取长补短,以保障承压设备安全运行。 此外在无损检测的应用中,还应充分认识到,检测的目的 不是片面追求过高要求的“高质量”,而是应在充分保证安 全性和合适风险率的前提下,着重考虑其经济性。只有这样, 无损检测在承压设备的应用才能达到预期目的。 4

JB/T4731讲稿

JB/T4731讲稿

主讲内容:JB/T 4731-2005《钢制卧式容器》议程约3小时概述●钢制卧式容器的适用范围●材料的选用●支座●开孔及接管●钢制卧式容器的计算●钢制卧式容器的制造及检验●JB/T4731与GB150、NB/T47003.1之间的关系●新容规对JB/T4731的主要影响词汇●卧式容器●鞍式支座●法兰接管支座人孔手孔紧固件●圆筒轴向应力切向剪应力圆筒周向应力轴向弯矩压力温度均布载荷厚度材料试验压力制造及检验一. 钢制卧式容器的适用范围1●①本标准适用于设计压力不大于35MPa 是指●---。

--------------------。

--------------------。

---------------------。

---------●-0.1 -0.02 0.1 35MPa●卧式真空容器卧式常压容器卧式压力容器●GB150 NB/T47003.1 GB150●即:适用于钢制卧式常压容器与钢制卧式压力容器;一. 钢制卧式容器的适用范围2●②均布载荷,两个位置对称的鞍式支座支承的钢制卧式容器。

●③本标准不适用带夹套的卧式容器,主要是因有夹套后,夹套筒体的受力情况、抗弯断面系数等与假设不符。

二. 材料的选用1●①卧式容器的受压元件选材按GB150中的规定;●②鞍座与圆筒相连接的垫板与圆筒材料相同;●③地脚螺栓宜选用GB/T 700规定的Q235或符合GB/T 1591规定的Q345(设计温度≤-20℃时选用);●④螺母:选用与地脚螺栓材质相匹配;●⑤鞍座材料的选用按表5-1:P9二. 材料的选用2表5-1:鞍座材料的选用设计温度,℃(环境温度加20 ℃)鞍座材料许用应力[σsa],MPa0~250(-20~250 )Q235-A147 0~-20(-20~-40 )Q245R153三.支座●1.支座:卧式容器支座采用鞍式支座(P10图7-1)。

●当支座焊在容器上时,其中的一个支座应采用滑动●支座滚动支座。

第八章 钢制卧式容器

第八章 钢制卧式容器

第八章 钢制卧式容器第一节 卧式容器受力分析【学习目标】 学习JB /T 4731-2005《钢制卧式容器》,掌握双鞍座支承卧式容器的受力状态分析和容器强度计算.一、JB /T 4731《钢制卧式容器》标准简介JB /T 4731-2005《钢制卧式容器》标准规定了钢制卧式容器的设计、制造、检验和验收的要求。

该标准适用于设计压力不大于35MPa ,在均布载荷作用下,由两个位置对称的鞍式支座支承的卧式容器。

二、双鞍座支承卧式容器结构1、支座卧式容器支座采用鞍式支座(见图8-1)。

当支座焊在容器上时,其中的一个支座应采用滑动支座或滚动结构。

卧式容器一般采用双鞍座支承,两个鞍座对称相向布置。

2、支座的配置支座的位置应尽量使支座中心到封头切线的距离A 小于或等于0.5R a (R a :圆筒的平均半径,R a =R i +δn /2),当无法满足这一要求时,A 值不宜大于0.2L 。

图8-1 鞍式支座支承的卧式容器三、双鞍座支承卧式容器受力分析1、支座反力 2mg F2、圆筒轴向弯矩圆筒轴向最大弯矩位于圆筒中间截面或鞍座平面上(见图8-2)。

图8-2 卧式容器载荷、支座反力、剪力及弯矩图(1)圆筒中间横截面上的轴向弯矩计算:()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+=L A L h L h R FL M iia 43412142221(2)鞍座平面上的轴向弯矩计算:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+---=L h AL h R L A FA M ii a 341211222 3、圆筒剪力最大剪力位于圆筒支座处横截面上(见图8-2),剪力计算:⎪⎪⎪⎪⎭⎫ ⎝⎛+-=342i h L A L F V 4、圆筒周向弯矩 圆筒鞍座平面上还存在周向弯矩的作用(见图8-3)。

图8-3 圆筒周向弯矩图 当无加强圈或加强圈在鞍座平面内时,其最大弯矩点在鞍座边角处,Mp =K 6FR a ;当加强圈靠近鞍座平面时,其最大弯矩点在靠近横截面水平中心线处,每个加强圈上的最大弯曲力矩Mp =K 6FR a /n (n 为加强圈个数)。

JB4730-2005-标准介绍

JB4730-2005-标准介绍



3.JB/T4730.2-2005介绍 22


3.2 (胶片基础作用)
影像颗粒度 微粒:0.1~0.3μ m 细粒:0.3~0.5μ m 中粒:0.5~0.7μ m 粗粒:0.7~1.1μ m

3.JB/T4730.2-2005介绍 23
3.2 (胶片基础作用) (2)识别缺陷条件: |⊿D |≥⊿Dmin 识别信号 |⊿D | ≥(3~5)σ D 确认缺陷信号


3.JB/T4730.2-2005介绍 18
3.2(技术规定的基本结构线索)



射线照相检 验技术级别


胶片类型 透照布置 透照参数 辅助技术 技术控制
底片质量
缺陷检验
评片技术
3.JB/T4730.2-2005介绍 19


规定体现射线照相检验技术的构成:
基础(胶片) 基本技术(透照布置;透照参数) 辅助技术(散射防护;增感;暗室处理技术) 技术控制(检验过程处于受控状态): 按照这个基本线索,对有关技术作出规定, 实现: 技术 影像质量 (评片技术)缺陷检验
3.JB/T4730.2-2005介绍 35


不同分类性能对照
EN ISO GB/T JIS ASTM C1 T1 T1 T1 特 Ⅰ C2 C3 T2 T2 T2 C4 C5 T3 T3 T3 Ⅱ C6 T4 T4 T4 Ⅲ


(3)认可规定2(3.8.3):
在用检测: A级→AB级 认可提出:结构、环境、设备的限制; 某些条件不满足要求 认可条件:检测方技术负责人批准; 采取补偿措施; 采用其他无损检测方法补充检验

第八章 钢制卧式容器

第八章 钢制卧式容器

第八章 钢制卧式容器第一节 卧式容器受力分析【学习目标】 学习JB /T 4731-2005《钢制卧式容器》,掌握双鞍座支承卧式容器的受力状态分析和容器强度计算.一、JB /T 4731《钢制卧式容器》标准简介JB /T 4731-2005《钢制卧式容器》标准规定了钢制卧式容器的设计、制造、检验和验收的要求。

该标准适用于设计压力不大于35MPa ,在均布载荷作用下,由两个位置对称的鞍式支座支承的卧式容器。

二、双鞍座支承卧式容器结构1、支座卧式容器支座采用鞍式支座(见图8-1)。

当支座焊在容器上时,其中的一个支座应采用滑动支座或滚动结构。

卧式容器一般采用双鞍座支承,两个鞍座对称相向布置。

2、支座的配置支座的位置应尽量使支座中心到封头切线的距离A 小于或等于0.5R a (R a :圆筒的平均半径,R a =R i +δn /2),当无法满足这一要求时,A 值不宜大于0.2L 。

图8-1 鞍式支座支承的卧式容器三、双鞍座支承卧式容器受力分析1、支座反力 2mg F2、圆筒轴向弯矩圆筒轴向最大弯矩位于圆筒中间截面或鞍座平面上(见图8-2)。

图8-2 卧式容器载荷、支座反力、剪力及弯矩图(1)圆筒中间横截面上的轴向弯矩计算:()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+=L A L h L h R FL M iia 43412142221(2)鞍座平面上的轴向弯矩计算:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+---=L h AL h R L A FA M ii a 341211222 3、圆筒剪力最大剪力位于圆筒支座处横截面上(见图8-2),剪力计算:⎪⎪⎪⎪⎭⎫ ⎝⎛+-=342i h L A L F V 4、圆筒周向弯矩 圆筒鞍座平面上还存在周向弯矩的作用(见图8-3)。

图8-3 圆筒周向弯矩图 当无加强圈或加强圈在鞍座平面内时,其最大弯矩点在鞍座边角处,Mp =K 6FR a ;当加强圈靠近鞍座平面时,其最大弯矩点在靠近横截面水平中心线处,每个加强圈上的最大弯曲力矩Mp =K 6FR a /n (n 为加强圈个数)。

JBT 4731-2005 钢制卧式容器讲稿

JBT 4731-2005 钢制卧式容器讲稿

JBT 4731-2005 钢制卧式容器讲稿1.适用范围JB/T 4731—2005《钢制卧式容器》相对于原来GB l50—1989第8章作了部分修订,如:取消圈座支承,增加鞍座轴向弯曲强度校核及附录A《有附加载荷作用时卧式容器的强度汁算》等。

JB/T 4731适用于设计压力不大于35MPa,在均布载荷作用下,由两个对称的鞍式支座支承的常压及受压卧式容器,它不适用于:——直接火焰加热及受核辐射作用的卧式容器;——经常搬运的卧式容器;——带夹套的卧式容器;一一作疲劳分析的卧式容器:卧式容器设计是先根据操作压力(内压、外压)确定壁厚,再依据自重、风、地震及其他附加载荷来校核轴向、剪切、周向应力及稳定性,卧式容器设计还包括支座位置的确定及支座本身的设计。

2.术语和定义.操作压力.设计压力.计算压力.试验压力设计温度工作温度试验温度计算厚度设计厚度名义厚度有效厚度3设计的一般规定3.1 设计压力的确定:(a)设计压力值应不低于操作压力;(b)装有超压泄放装置时,设计压力按GB150附录B确定设计压力;(c)液化气体,液化石油气的卧式容器,按《容规》规定确定设计压力;(d)真空容器的设计压力按承受外压考虑,当装用安全控制装置时,设计压力取1.25倍的最大内外压差或0.1Mpa两者的较低值;当无安全控制装置时,设计压力取0.1Mpa。

3.2设计温度的确定:(a)设计温度不低于元件金属在工作时可能达到的最高温度。

对于0度以下的金属温度,设计温度不应高于元件金属在工作时可能达到的最低温度。

铭牌上应标志设计温度。

(b)低温卧式容器的设计温度按GB150附录C规定确定。

3.3元件金属温度确定(a)传热计算;(b)在已使用的同类容器上测定;(C)在使用过程中,金属温度接近介质温度时按内部介质温度确定。

3.4 对于有不同工况的卧式容器,应按最苛刻的工况设计,并在图样或技术文件中注明各工况的操作压力和操作温度。

3.5设计载荷(a).长期载荷设计压力——内压、外压;液体静压力;容器质量载荷——自身质量,容器所容纳的物料质量,保温层、梯子平台、接管等附件质量载荷。

JB4730-2005讲解稿解析

JB4730-2005讲解稿解析

JB4730-2005讲解稿解析JB/T4730-2005承压设备无损检测第三部分:超声波检测讲解稿讲解人:姚志忠一、JB/T4730.3超声检测主要修改内容1. 承压设备用原材料零部件超声检测①增加了奥氏体钢板,镍及镍合金板材及双相不锈钢板材超声检测。

②锻件探伤中增加了对壁厚小于3N工件材质衰减系数测定计算公式进行修正。

③增加了承压设备用铝及铝合金板材,钛及钛合金板材超声检测的内容。

④承压设备用复合钢板检测适用于轧制和爆炸复合钢板,对基板材料和复层材料作了明确规定。

⑤增加双相钢锻件超声检测(双相钢为铁素体加奥氏体或珠光体加奥氏体的机械混合物,在甲氨为介质的设备中大量应用)奥氏体含量<50%,按JB/T4730.3-4.2规定检测,奥氏体含量在50%~80%之间时,应进行对比试验,根据对比试验结果确定采用JB/T4730.3中4.2规定还是4.7规定进行超声检测。

当奥氏体含量>80%时,可采用JB/T4730.3中4.7规定进行超声检测。

2. 承压设备焊接接头超声波检测①板厚检测范围扩大到6~400mm,增加6~8mm对接焊缝超声检测附录。

目的:满足厚壁容器(如加氢反应器等)和薄壁容器(如制冷设备和压缩机等辅助压力容器等)的检测要求。

②增加焊接接头超声检测等级分类的内容。

将焊接接头检测分为A、B、C三个级别。

③增加钢制承压设备T型焊接接头超声检测(主要用于锅炉和换热器)。

④增加奥氏体钢对接焊接接头超声检测内容。

3. 压力管道和管子环向对接焊接接头超声检测①增加壁厚≥4.0mm,外径为32~159mm或壁厚≥4.0~6mm,外径≥159mm的钢制压力管道和管子环向对接焊接接头超声检测内容。

②规定压力管道和管子焊接接头纵焊缝、螺旋焊缝超声检测可按本标准进行(满足长输管道检测要求)。

③增加壁厚大于或等于5mm,外径为80mm~159mm;或壁厚5.0~8mm,外径大于或等于159mm铝及铝合金接管环焊缝超声检测内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

τh≤1.25[σ]t-σh
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 4731-
7.3.4 圆筒周向应力
2005
它是由切向剪应力使筒体产生周向弯矩(切向剪力的水平、垂直分量对筒体取 矩)。其弯矩图如JB/T4731图7—5或下面图22.4.5-1。无加强圈或加强圈位于鞍 座平面内时,最大弯矩发生在鞍座边角处;加强圈靠近鞍座平面内时最大弯矩发 生在筒体水平中心线靠下一点处。
内压容器 外压容器
正常操作 σ2,σ3 σ1,σ4,
水压试验 σT2,σT3 σT2,σT3
冲水不加压 σT1,σT4, σT1,σT4,
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 4731-
7.3 切向剪应力
2005
它是由支座反力在支座处筒体上引起的切向剪应力。
1)当鞍座平面处有加强圈时最大剪应力发生在筒体水平中心线处(见下a) 。 2)当鞍座平面处无加强圈时最大剪应力发生在筒体水平中心线下鞍座边角处(见
最近网上有人认为按表5-1选材要求太严,而且在计算实例中用的是Q235-A,前后 不一致,故昨早秘书长同有关编审人员协商处理意见如下:
设计温度(环境温度加上+20℃)
鞍座材料
>0~250℃(相当环境温度-20℃~250℃)
Q235-A
0~-20℃(相当环境温度-20℃~-40℃)
16MnR,
20R
对受介质温度影响的按介质温度另行选取。对 表5-1鞍座材料的选取将在 JB/T4712鞍座标准确定后作适当修改及通知。
2005
4.3 由于卧式常压容器与卧式压力容器分别属于不同规范,它们在设计、制造、检验等方面的资 格与职则有差别,故对不同容器的要求将分别与GB150、JB4735中的条款相对应。
4.4.1.3 指〈容规〉的第34—36条。
4.5到4.8 基本与GB150、JB4735一致。
5 材料
5.4 鞍座材料的选用
JB/T4731-2000版 为Q235-A、Q235-AF、16Mn、16MnR。
JB/T4731-2005版选用是这样:
GB50017-2003〈钢结构设计规范〉中
3.3.2条 下列情况下的承重结构和构件不应采用Q235沸腾钢:
焊接结构 定了。
2)…..承受静力荷载的受弯及受拉的重要承重结构。此条把Q235-AF的应用否
《钢制卧式容器》JB/T 47312005
加强时,它位于筒体的顶部;不被加强时位于靠近水平中心线处。(主要
因为支座处顶部筒体发生瘪塌,见图22.4.2) 7.3.2.3 圆筒轴向应力校核 本节列出校核σ1,σ2,σ3,σ4的取值,这在计算机上计算是简单没问 题的,而手工计算时可以简化取其可能产生的较大值,见JB/T4731编制 说明第3条 表2 列出了可能出现的最大值(46页)
浅蝶封头
r=0.10Di hi=0.388Ri
7.3.2.2 筒体轴向应力 σ1,σ2,σ3,σ4,
如把筒体视为D0厚的梁, 这4个应力即是发生在梁最外层的拉及压应力 ,可视为 一次膜应力。σ1,,σ2 分别发生在两支座中间段筒体的顶、底部。σ4发生在支座 处筒体的底部。而σ3,当筒体被封头或有加强圈
二 内容说明(下面按标准中章节顺序号)
1。范围
本标准适用于设计压力不大于35MPa 是指
---。-------------------------。-------------------------。--------------------------。--------------------
- 0.1
-0.02
0.1
35MPa
卧式真空容器
卧式常压容器
卧式压力容器
GB150
JB4735
GB150
d) 体的受力情况、抗
弯断面系数等与假设不符。
2--4.4节 与GB150基本一致,作为一个独立标准,从完整性上是必须的。
《钢制卧式容器》JB/T 4731-
《钢制卧式容器》JB/T 4731-
2005
7 强度计算
简单介绍σ1,,σ2,σ3,σ4,σ5,σ6 ,σ‘6 ,σ7 ,σ8,σ9,及τ,τh 各应力的 性质及位置。
7.3.2.1 注意, 公式(7-2)(7-3)中的hi 对不同的封头,其应取不同值代入
标准椭圆封头
hi=0.5Ri
标准蝶型封头 r=0.15Di hi=0.45Ri
下b) 。
3)当筒体被封头加强时,最大剪应力发生在筒体鞍座边角处。 根据ZICK假设,封头对筒体相当一个支撑,而支撑点在封头的切线处,如图8-7
左下所示在封头上部产生向下的剪力,而支座处为向上的剪力。这两个剪力的水
平分量使封头产生水平拉力QX 该拉力使封头产生剪应力τh (公式见P15)
强度校核 τ≤0.8[σ]t
难免会出现不当或错误的地方,希望各单位及各位专家提出指正或发 表文章,以使标准更完善、先进。JB/T4731-2005主要增加内容:卧 式常压容器;强度计算中增加周向应力考虑鞍座垫板增强作用;鞍座 设计考虑地震载荷;制造技术条件;附录A有集中载荷时强度计算。
《钢制卧式容器》JB/T 47312005
3.3.3条 …对焊接结构尚应具有碳含量的合格保证。
《钢制卧式容器》JB/T 4731-
2005
根据此条Q235-A不能应用。因为BG700在1992年第1号修改单中说明“Q235-A中的 碳含量不作为交货条件” ,即在法律上碳含量是不能保证。因此JB/T4731中考虑 的是Q235-B。对于使用温度<-20℃的用16MnR主要是该材料在容器制造中用的较多。
2013年陕西省压力容器设计人员培训班
《钢制卧式容器》
----JB/T 4731-2005 淡 勇 (教授)
西北大学化工学院 College of Chemical Engineering Northwest University
《钢制卧式容器》
一. 前言
----JB/T 4731-2005
JB/T4731是1993年开始编写。1998年完成2000年版。后因 有些引用的标准更改而使.2000版没发行。本标准的出版,从编制初 稿、征求意见稿到报批稿,在全国容标委的领导下经过多位专家、人 士的审查、修改后方定稿了2005年版。这是多个单位、专家共同努力 下完成的,应当向这些人表示感谢。一个新标准从编写、出版到应用,
相关文档
最新文档