正弦型函数的性质
正弦型函数的性质与图像 PPT
规律方法 三角函数图象平移变换问题的分类及解题策略 (1)确定函数 y=sin x 的图象经过平移变换后图象对应的解析式, 关键是明确左右平移的方向,按“左加右减”的原则进行;注意平移只 对“x”而言. (2)已知两个函数解析式判断其图象间的平移关系时,首先要将 解析式化为同名三角函数形式,然后再确定平移方向和单位.
跟踪训练
1.作出函数 y= 2sin2x-π4在 x∈π8,34π上的图象. [解] 令X=2x-π4,列表如下:
X0
x
π 8
y
0
π 2
π
3π 2
2π
3π
5π
7π
9π
8
8
8
8
2
0
-2
0
描点连线得图象如图所示.
类型二:三角函数的图象变换
【例2】 函数y=2sin2x+π3-2的图象是由函数y=sin x的图象 通过怎样的变换得到的?
跟踪训练 2.为了得到函数 y=sin3x+π6,x∈R 的图象,只需把函数 y=sin x,x∈R 的图象上所有的点: ①向左平移π6个单位,再把所得各点的横坐标缩短到原来的13倍 (纵坐标不变);
②向右平移
π 6
个单位,再把所得各点的横坐标缩短到原来的
1 3
倍
(纵坐标不变);
③向左平移
π 6
思考:由y=sin x的图象,通过怎样的变换可以得到y=Asin(ωx +φ)的图象?
[提示] 变化途径有两条: (1)y=sin x相位变换,y=sin(x+φ)周期变换,y=sin(ωx+φ)振幅变 换,y=Asin(ωx+φ). (2)y=sin x周期变换,y=sin ωx相位变换,y=sin(ωx+φ)振幅变 换,y=Asin(ωx+φ).
正弦函数的性质
例如
:
sin(
)
sin
, 但是
sin(
)
sin
.
42 4
32 3
就是说 不能对x在定义域内的每一个值使
2
sin( x ) sin x,因此 不是y sin x的周期.
2
2
(2) T往往是多值的(如y=sinx, T=2, 4, … , -2, - 4, …都是周 期)周期T中最小的正数叫做f (x)的 最小正周期(有些周期函数没有最小 正周期,如常值函数 f(x)=1 ).
根据上述定义,可知:正弦函数是周期函 数,2kπ(k∈Z且k≠0)都是它的周期,最小正 周期是2π.
(4) 奇偶性: 由sin(-x)=-sinx,可知:y=sinx为奇函数, 因此正弦曲线关于原点O对称.
y
1
Байду номын сангаас
-3 5 -2 3
2
2
-
o 2
2
3
2
2
5 2
3
7 2
4
-1
y=sinx
(5) 单调性
y
1
-3 5 -2 3
2
2
-
o
2
-1
2
3
2
2
5 2
x
3
7 2
4
x
2
…
0
…
2
sinx -1
0
1
… 0
…
3 2
-1
y=sinx (xR)
增区间为
教案正弦型函数的图像和性质
教案:正弦型函数的图像和性质第一章:正弦函数的定义与图像1.1 引入正弦函数的概念解释正弦函数的定义:y = sin(x)说明正弦函数的单位圆定义:在一个单位圆上,正弦函数表示的是圆上一点的y 坐标值1.2 绘制正弦函数的图像利用图形计算器或绘图软件,绘制y = sin(x)的图像观察图像的特性:周期性、振幅、相位、对称性等1.3 分析正弦函数的性质周期性:正弦函数的图像每隔2π重复一次振幅:正弦函数的最大值为1,最小值为-1相位:正弦函数的图像向左或向右平移,但不改变其形状第二章:余弦函数的定义与图像2.1 引入余弦函数的概念解释余弦函数的定义:y = cos(x)说明余弦函数的单位圆定义:在一个单位圆上,余弦函数表示的是圆上一点的x 坐标值2.2 绘制余弦函数的图像利用图形计算器或绘图软件,绘制y = cos(x)的图像观察图像的特性:周期性、振幅、相位、对称性等2.3 分析余弦函数的性质周期性:余弦函数的图像每隔2π重复一次振幅:余弦函数的最大值为1,最小值为-1相位:余弦函数的图像向左或向右平移,但不改变其形状第三章:正切函数的定义与图像3.1 引入正切函数的概念解释正切函数的定义:y = tan(x)说明正切函数的定义域:正切函数在除原点以外的所有实数上都有定义3.2 绘制正切函数的图像利用图形计算器或绘图软件,绘制y = tan(x)的图像观察图像的特性:周期性、振幅、相位、对称性等3.3 分析正切函数的性质周期性:正切函数的图像每隔π重复一次振幅:正切函数没有振幅限制,可以无限增大或减小相位:正切函数的图像向左或向右平移,但不改变其形状第四章:正弦型函数的图像与性质4.1 引入正弦型函数的概念解释正弦型函数的定义:y = A sin(Bx C) + D说明正弦型函数的参数:A表示振幅,B表示周期,C表示相位,D表示垂直平移4.2 绘制正弦型函数的图像利用图形计算器或绘图软件,绘制y = A sin(Bx C) + D的图像观察图像的特性:振幅、周期、相位、对称性等4.3 分析正弦型函数的性质振幅:正弦型函数的最大值为A,最小值为-A周期:正弦型函数的图像每隔B个单位重复一次相位:正弦型函数的图像向左或向右平移C个单位垂直平移:正弦型函数的图像向上或向下平移D个单位第五章:正弦型函数的实例分析5.1 分析y = sin(x)的图像和性质利用图形计算器或绘图软件,绘制y = sin(x)的图像分析其振幅、周期、相位、对称性等性质5.2 分析y = cos(x)的图像和性质利用图形计算器或绘图软件,绘制y = cos(x)的图像分析其振幅、周期、相位、对称性等性质5.3 分析y = tan(x)的图像和性质利用图形计算器或绘图软件,绘制y = tan(x)的图像分析其振幅、周期、相位、对称性等性质第六章:正弦型函数的应用6.1 简谐运动解释简谐运动的定义和特点利用正弦函数表示简谐运动的位移、速度、加速度等物理量6.2 电磁波解释电磁波的产生和传播利用正弦函数表示电磁波的振荡电流或电压6.3 音乐信号处理解释音乐信号的振幅和频率特性利用正弦函数表示音乐信号的波形和频谱第七章:正弦型函数的积分与微分7.1 积分讲解正弦型函数的不定积分和定积分利用积分公式计算正弦型函数的定积分值7.2 微分讲解正弦型函数的导数利用导数公式求解正弦型函数的导数值7.3 应用案例利用积分和微分方法解决实际问题,如计算物体的位移、速度、加速度等第八章:正弦型函数的复合与变换8.1 复合函数讲解正弦型函数的复合方法利用复合函数的性质分析复合后的函数图像和性质8.2 函数变换讲解正弦型函数的平移、缩放、反转等变换利用变换公式分析变换后的函数图像和性质8.3 应用案例利用复合和变换方法解决实际问题,如设计电子电路的滤波器、振荡器等第九章:正弦型函数的极限与连续性9.1 极限讲解正弦型函数的极限概念和性质利用极限公式求解正弦型函数的极限值9.2 连续性讲解正弦型函数的连续性概念和性质利用连续性定理判断正弦型函数的连续性9.3 应用案例利用极限和连续性方法解决实际问题,如信号处理、物理现象分析等第十章:正弦型函数的综合应用10.1 正弦型函数在数学领域的应用讲解正弦型函数在几何、代数、微积分等数学领域的应用10.2 正弦型函数在自然科学领域的应用讲解正弦型函数在物理学、生物学、地球科学等领域的应用10.3 正弦型函数在工程与技术领域的应用讲解正弦型函数在电子工程、通信技术、机械工程等领域的应用重点和难点解析重点环节一:正弦函数的定义与图像重点关注内容:正弦函数的单位圆定义,正弦函数的图像特点,如周期性、振幅、相位、对称性等。
高一下学期—正弦及正弦型函数
正弦及正弦型函数【知识梳理】1. 三角函数的基本性质2. 正弦型函数()sin()(0,0)f x A x A ωϕω=+>>的性质 (1) 定义域: R; 值域[,]A A -; (2) 周期: 2πT ω=;(3) 奇偶性: 若(0)0f =, 则是奇函数; 若(0)f A =±, 则是偶函数; 其它, 非奇非偶. (4) 单调区间: ππ[2π,2π]()22x k k k ωϕ+∈-++∈¢时Z ; π3π[2π,2π]()22x k k k ωϕ+∈++∈¢时]. (5) 图像:3. 三角函数问题的两大策略(1) 合一变形——将函数通过三角公式, 化为只有一个三角函数名, 进而利用正弦型及正切函数这两个基本模型解决问题.(2) 换元法——通过将某个三角函数名看作一个整体, 从而将函数化为其它类型的函数(一般化为代数函数:)ϕ多项式型的以及有理型的).【典型例题】例1. 作出下列函数的图像, 并指出它们的单调区间, 周期, 以及值域.(1)π2sin 23x y ⎛⎫=+ ⎪⎝⎭; (2)π3cos 23y x ⎛⎫=+ ⎪⎝⎭.例2. 指出如何由1πsin(2)33y x =+的图象的到sin y x =的图像.例3. 函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示, 求()f x 的解析式.例4. 已知函数()sin()(0,0)f x A x b A ωϕω=++>>在同一周期内, 当π9x =时取得最大值12; 当4π9x =时取得最小值12-, 求这个函数的解析式.例5. 已知函数()sin()(0,02π)f x x ωϕωϕ=+>≤<是R 上的偶函数, 其图像关于点3π(,0)4M 对称, 且在区间π[0,]2上是单调函数. 求,ϕω的值.例6. 求下列函数的周期, 值域以及单调区间.(1)()cos f x x x =+; (2)44()sin cos f x x x =+;(3)2()sin sin cos f x x x x =+.例7. 求函数22()sin 2sin cos 3cos 2f x x x x x =++-的值域, 最小正周期以及单调递增区间.【巩固练习】1. 函数()lg(1sin )lg(1sin )f x x x =--+的奇偶性为………...…...………………………..........................( ) A. 奇函数非偶函数 B. 偶函数非奇函数 C. 非奇非偶函数 D. 无法确定2. 下列函数中, 在π(0,)2上递增, 又是以π为最小正周期的函数是……………………...........................( ) A. 2|cos |y x x = B. cos2y x = C. |sin |y x = D. |sin 2|y x =3. 已知函数π()2cos 543kf x x ⎛⎫=+- ⎪⎝⎭的最小正周期不大于2, 则正整数的最小值为..............................( )A. 10B. 11C. 12D. 13 4. 若函数()sin 2cos2f x x a x =+的图像关于直线π8x =-对称, 则实数a 的值为…...…........................( )A.B. C. 1 D. 1-5. 函数()sin cos (,R)f x a x b x a b =+∈的值域是___________________;6. 函数0.5()log (2sin )f x x =的最小值是_______________;7. 函数2sin (sin cos )y x x x =+的单调递减区间是____________________; 8. 若函数()sin(2)(π0)f x x ϕϕ=+-<<是偶函数, 则ϕ=____________________; 9. 已知函数2()sin cos cos f x a x x b x =+, 且(0)2f =, π()36f =. (1) 求函数()f x 的最小正周期;(2) 求函数()f x 的最大值, 最小值及取得最大, 最小值时的x 的值.10. 若函数2()cos sin f x x a x b =-+的最大值为0, 最小值为4-, 实数0a >, 求a , b 的值.。
正弦函数的图像和性质(1)
二.正弦函数的图象
在画正弦函数图象时,我们可以先画出 0, 2 , 上的 正弦函数的图象,再利用周期性将其拓展到整个定义域上.
y sin x, x 0, 2
Ⅰ、用描点法作出函数图象
⑴.列表
x
y
0
6 1 2
3
3 2
0
2
2 3
3 2
5 6
1
1 2
7 6
4 3
3 2
π
2π x
-1
坐标依次为:
3 (0,0)、( 2 ,1)、( ,0)、( 2 ,-1)、( 2 ,0)
正弦函数的图象
y 1
2
o -1
2
3 2
2
x
y=sinx x[0,2] y=sinx xR
-4 -3 -2 -
y
1
正弦曲线
o
-1
2
3
4
5
6
x
探究:如何作余弦函数的图象
π
-π
π
2
O
2
π
2k ,2k 减区间 2k ,2k
x
对称轴 对称中心
-1
(k ,0) 2 k Z
x k
四、几何法作图
用正弦线作正弦函数 的图象
y sin x( x [0,2 ])
(1)作直角坐标系,在直角坐标系的y轴左侧画单位圆,
圆心在x轴上. (2)把单位圆分成12等份。过单位圆上的各分点作x轴 的垂线,可以得到对应于各角的正弦线; (3)找横坐标:把x轴上从0到2这一段分成12等份; (4)找纵坐标:将正弦线对应平移,即可作出相应12 个点; (5)连线:用平滑的曲线将12个点依次从左到右连接 起来,即得到 y sin x( x [0,2 ])的图象。 演示做图
三角函数的变换与性质
三角函数的变换与性质三角函数是数学中常见的一类函数,它们在数学和物理等领域有着重要的应用。
本文将介绍三角函数的变换与性质,以帮助读者更好地理解和应用这些函数。
一、正弦函数的变换与性质正弦函数可以表示为f(x) = sin(x),其图像是一个周期性的波形。
正弦函数的变换包括平移、伸缩和翻转等操作。
1. 平移:当正弦函数的自变量加上一个常数c时,函数图像将向左平移c个单位。
例如,f(x) = sin(x + π/2)的图像将向左平移π/2个单位。
2. 伸缩:当正弦函数的自变量乘以一个常数a时,函数图像将在x轴方向上缩放。
若a>1,则图像纵向压缩;若0<a<1,则图像纵向拉伸。
3. 翻转:当正弦函数的自变量乘以-1时,函数图像将在y轴方向上翻转。
即f(x) = sin(-x)的图像将关于y轴对称。
正弦函数的性质有:1. 周期性:正弦函数的图像以x轴为对称轴,其周期为2π。
即sin(x + 2π) = sin(x)。
2. 奇偶性:正弦函数是一个奇函数,即f(-x) = - f(x)。
这意味着正弦函数的图像关于原点对称。
二、余弦函数的变换与性质余弦函数可以表示为f(x) = cos(x),它与正弦函数是相互关联的。
余弦函数的变换与正弦函数类似,也包括平移、伸缩和翻转等操作。
1. 平移:当余弦函数的自变量加上一个常数c时,函数图像将向左平移c个单位。
例如,f(x) = cos(x + π/2)的图像将向左平移π/2个单位。
2. 伸缩:当余弦函数的自变量乘以一个常数a时,函数图像将在x轴方向上缩放。
若a>1,则图像纵向压缩;若0<a<1,则图像纵向拉伸。
3. 翻转:当余弦函数的自变量乘以-1时,函数图像将在y轴方向上翻转。
即f(x) = cos(-x)的图像将关于y轴对称。
余弦函数的性质有:1. 周期性:余弦函数的图像以x轴为对称轴,其周期为2π。
即cos(x + 2π) = cos(x)。
正弦函数图像和性质
2.求函数的值域,并求取得最值时X的取值集合。
(1)y= - 2sinx
(2)y= 2sin(2x+ 4 )
x [ , ]
4
(3)y= sin2x + 2sinx - 2
-4 -3
-2
y
1
-
o
-1
2
周期的概念
3
4
5 6x
一般地,对于函数 f (x),如果存在一个非零常数 T ,
使得当 x 取定义域内的每一个值时,都有
练习:函数y=asinx+b的最大值为2,最小值为-1,
则a=________,b=________.
[解] 当 a>0 时,由题意得
[答案] 32或-32
1 2
a+b=2 -a+b=-1
,解得ab= =3212
.
当 a<0 时,由题意,得- a+a+ b=b= -21 ,
解得ab= =- 12 32
.
正弦函数的奇偶性
由公式 sin(-x)=-sin x
正弦函数是奇函数.
图象关于原点成中心对称 .
y
1
-3 5π -2 3π - π o
2
2
2
-1
x
π 2
3π 2
2 5π
2
3 7π 4 2
正弦函数的单调性
观察正弦函数图象
x
π 2
…
sinx -1
0… 0
π…
2
1
…
3π 2
0
-1
在闭区间 π22π2k,π,π2π2 2kπ, k Z 上, 是增函数;
f ( x+T )= f (x)
,那么函数 f (x) 就叫做周期函数,非零常数 T 叫做这个
正弦型函数的图像性质
相位是正弦波在时间轴上的偏移量,决定了波形开始的时间点。当 $varphi > 0$ 时,图像向右位移;当 $varphi < 0$ 时,图像向左位移。相位的变化不会 改变波形周期和振幅,但会影响波形在时间轴上的位置。
03 正弦型函数的奇偶性
奇函数性质
奇函数性质
正弦型函数是奇函数,因为对于任意x,都有f(-x) = -f(x)。这意 味着正弦型函数的图像关于原点对称。
对称轴
正弦函数图像关于y轴对称
正弦函数$y = sin x$的图像关于y轴对称,即当$x$取正值和负值时,$y$的值相 同。
余弦函数图像关于x轴对称
余弦函数$y = cos x$的图像关于x轴对称,即当$y$取正值和负值时,$x$的值相 同。
对称中心
要点一
正弦函数图像关于点$(kpi, 0)$对 称
通过调整A、ω、φ的值,可以获 得不同振幅、周期和相位偏移的 正弦型函数。
单位圆与三角函数关系
单位圆是指在平面直角坐标系中, 以原点为圆心、半径为1的圆。
三角函数与单位圆密切相关,单 位圆上的点可以用三角函数来表
示。
在单位圆上,正弦和余弦函数的 值等于点的纵坐标和横坐标的比 值,正切函数的值等于点的纵坐
图像特点
偶函数的图像关于y轴对称,即当 x=0时,y达到最大或最小值。在 x>0和x<0的区间内,函数值相等。
应用实例
偶函数性质在电磁学中有广泛应用, 例如磁场分布等。
既非奇又非偶函数性质
既非奇又非偶函数
性质
正弦型函数既不是奇函数也不是 偶函数。虽然它的图像关于原点 和y轴都有对称性,但它不符合奇 偶函数的严格定义。
振幅与图像高度
三角函数的正负性质
三角函数的正负性质三角函数是数学中重要的概念,在解决各种三角问题中发挥着重要作用。
正负性质是指在不同的象限中,三角函数的值的正负情况。
本文将详细介绍正弦函数、余弦函数和正切函数的正负性质。
一、正弦函数的正负性质在单位圆上,将圆周分成四个等份,得到四个象限:第一象限、第二象限、第三象限和第四象限。
根据三角函数的定义可知,在不同的象限中,正弦函数的正负情况如下:1. 第一象限(0° ~ 90°):在第一象限中,正弦函数是正值,即sinθ > 0。
2. 第二象限(90°~ 180°):在第二象限中,正弦函数仍然是正值,即sinθ > 0。
3. 第三象限(180° ~ 270°):在第三象限中,正弦函数变为负值,即sinθ < 0。
4. 第四象限(270°~ 360°):在第四象限中,正弦函数仍然是负值,即sinθ < 0。
二、余弦函数的正负性质与正弦函数类似,余弦函数也可以根据单位圆在不同象限的位置判断其正负情况:1. 第一象限(0° ~ 90°):在第一象限中,余弦函数是正值,即cosθ > 0。
2. 第二象限(90°~ 180°):在第二象限中,余弦函数仍然是负值,即cosθ < 0。
3. 第三象限(180° ~ 270°):在第三象限中,余弦函数也是负值,即cosθ < 0。
4. 第四象限(270°~ 360°):在第四象限中,余弦函数仍然是正值,即cosθ > 0。
三、正切函数的正负性质正切函数是正弦函数与余弦函数之商,因此其正负性质与正弦函数和余弦函数有所不同:1. 第一象限(0° ~ 90°):在第一象限中,正切函数是正值,即tanθ > 0。
2. 第二象限(90° ~ 180°):在第二象限中,正切函数变为负值,即tanθ < 0。
教案正弦型函数的图像和性质
教案:正弦型函数的图像和性质第一章:正弦函数的定义与图像1.1 教学目标了解正弦函数的定义能够绘制正弦函数的图像1.2 教学内容正弦函数的定义:y = sin(x)正弦函数的图像特点:周期性、振幅、相位、对称性1.3 教学步骤1. 引入正弦函数的概念,解释正弦函数的定义2. 利用数学软件或图形计算器,绘制正弦函数的图像3. 分析正弦函数的图像特点,引导学生理解周期性、振幅、相位、对称性1.4 练习与作业练习绘制不同振幅和相位的正弦函数图像完成课后练习题,巩固对正弦函数图像的理解第二章:正弦函数的性质2.1 教学目标了解正弦函数的性质能够应用正弦函数的性质解决问题2.2 教学内容正弦函数的单调性:增减区间正弦函数的奇偶性:奇函数与偶函数正弦函数的周期性:周期为2π正弦函数的值域:[-1, 1]2.3 教学步骤1. 介绍正弦函数的单调性,利用图像进行解释2. 解释正弦函数的奇偶性,利用数学公式进行证明3. 强调正弦函数的周期性,引导学生理解周期为2π4. 分析正弦函数的值域,解释正弦函数的取值范围2.4 练习与作业练习判断正弦函数的单调性、奇偶性和周期性完成课后练习题,应用正弦函数的性质解决问题第三章:余弦函数的定义与图像3.1 教学目标了解余弦函数的定义能够绘制余弦函数的图像3.2 教学内容余弦函数的定义:y = cos(x)余弦函数的图像特点:周期性、振幅、相位、对称性3.3 教学步骤1. 引入余弦函数的概念,解释余弦函数的定义2. 利用数学软件或图形计算器,绘制余弦函数的图像3. 分析余弦函数的图像特点,引导学生理解周期性、振幅、相位、对称性3.4 练习与作业练习绘制不同振幅和相位的余弦函数图像完成课后练习题,巩固对余弦函数图像的理解第四章:正切函数的定义与图像4.1 教学目标了解正切函数的定义能够绘制正切函数的图像4.2 教学内容正切函数的定义:y = tan(x)正切函数的图像特点:周期性、振幅、相位、对称性4.3 教学步骤1. 引入正切函数的概念,解释正切函数的定义2. 利用数学软件或图形计算器,绘制正切函数的图像3. 分析正切函数的图像特点,引导学生理解周期性、振幅、相位、对称性4.4 练习与作业练习绘制不同振幅和相位的正切函数图像完成课后练习题,巩固对正切函数图像的理解第五章:正弦型函数的应用5.1 教学目标了解正弦型函数的应用能够解决与正弦型函数相关的问题5.2 教学内容正弦型函数在物理、工程等领域的应用解决与正弦型函数相关的问题:如振动、波动、音乐等5.3 教学步骤1. 介绍正弦型函数在物理、工程等领域的应用实例2. 解释正弦型函数在振动、波动、音乐等方面的作用3. 示例解决与正弦型函数相关的问题,引导学生应用正弦型函数的性质和图像5.4 练习与作业练习解决与正弦型函数相关的问题完成课后练习题,应用正弦型函数解决实际问题第六章:正弦型函数的积分与微分6.1 教学目标理解正弦型函数的不定积分和定积分学会计算正弦型函数的导数6.2 教学内容正弦型函数的不定积分:基本积分公式正弦型函数的定积分:利用积分公式计算面积正弦型函数的导数:求导法则6.3 教学步骤1. 介绍正弦型函数的不定积分,讲解基本积分公式2. 通过例题演示如何计算正弦型函数的定积分3. 讲解正弦型函数的导数,引导学生理解求导法则6.4 练习与作业练习计算正弦型函数的不定积分和定积分完成课后练习题,巩固对正弦型函数积分和导数的理解第七章:正弦型函数在坐标系中的应用7.1 教学目标学会在直角坐标系中绘制正弦型函数的图像能够利用正弦型函数解决实际问题7.2 教学内容利用直角坐标系绘制正弦型函数的图像解决实际问题:如测量角度、计算物理振动等7.3 教学步骤1. 讲解如何在直角坐标系中绘制正弦型函数的图像2. 通过实例演示如何利用正弦型函数解决实际问题7.4 练习与作业练习绘制不同类型的正弦型函数图像完成课后练习题,应用正弦型函数解决实际问题第八章:正弦型函数在三角变换中的应用8.1 教学目标理解三角恒等式及其应用学会利用正弦型函数进行三角变换8.2 教学内容三角恒等式:sin^2(x) + cos^2(x) = 1 等正弦型函数的三角变换:和差化积、积化和差等8.3 教学步骤1. 讲解三角恒等式的含义和应用2. 讲解如何利用正弦型函数进行三角变换8.4 练习与作业练习运用三角恒等式进行计算完成课后练习题,巩固对正弦型函数在三角变换中应用的理解第九章:正弦型函数在工程和技术中的应用9.1 教学目标了解正弦型函数在工程和技术领域的应用学会解决与正弦型函数相关的工程问题9.2 教学内容正弦型函数在信号处理、电子工程等领域的应用解决与正弦型函数相关的工程问题:如信号分析、电路设计等9.3 教学步骤1. 讲解正弦型函数在信号处理、电子工程等领域的应用实例2. 示例解决与正弦型函数相关的工程问题,引导学生应用正弦型函数的性质和图像9.4 练习与作业练习解决与正弦型函数相关的工程问题完成课后练习题,应用正弦型函数解决实际工程问题第十章:总结与拓展10.1 教学目标总结正弦型函数的图像和性质的主要内容了解正弦型函数在其他领域的拓展应用10.2 教学内容总结正弦型函数的图像和性质的关键点介绍正弦型函数在其他领域的拓展应用:如地球物理学、天文学等10.3 教学步骤1. 回顾正弦型函数的图像和性质的主要内容,强调重点和难点2. 介绍正弦型函数在其他领域的拓展应用,提供相关实例10.4 练习与作业复习正弦型函数的图像和性质的主要内容,巩固所学知识完成课后练习题,探索正弦型函数在其他领域的拓展应用重点和难点解析重点环节一:正弦函数的定义与图像理解正弦函数的定义:y = sin(x)掌握正弦函数图像的特点:周期性、振幅、相位、对称性重点环节二:正弦函数的性质掌握正弦函数的单调性:增减区间理解正弦函数的奇偶性:奇函数与偶函数认识正弦函数的周期性:周期为2π了解正弦函数的值域:[-1, 1]重点环节三:余弦函数的定义与图像理解余弦函数的定义:y = cos(x)掌握余弦函数图像的特点:周期性、振幅、相位、对称性重点环节四:正切函数的定义与图像理解正切函数的定义:y = tan(x)掌握正切函数图像的特点:周期性、振幅、相位、对称性重点环节五:正弦型函数的应用了解正弦型函数在物理、工程等领域的应用实例学会解决与正弦型函数相关的问题:如振动、波动、音乐等重点环节六:正弦型函数的积分与微分理解正弦型函数的不定积分和定积分学会计算正弦型函数的导数重点环节七:正弦型函数在坐标系中的应用学会在直角坐标系中绘制正弦型函数的图像学会利用正弦型函数解决实际问题重点环节八:正弦型函数在三角变换中的应用理解三角恒等式及其应用学会利用正弦型函数进行三角变换重点环节九:正弦型函数在工程和技术中的应用了解正弦型函数在信号处理、电子工程等领域的应用实例学会解决与正弦型函数相关的工程问题重点环节十:总结与拓展总结正弦型函数的图像和性质的关键点了解正弦型函数在其他领域的拓展应用全文总结和概括:本教案涵盖了正弦型函数的图像和性质的各个方面,从基本定义到图像特点,再到性质和应用,每个环节都进行了深入的讲解和演示。
高中数学正弦型函数教案
高中数学正弦型函数教案
一、正弦函数的定义与性质
1. 正弦函数的定义:y = A sin(Bx + C) + D,其中A、B、C、D分别为常数,A为振幅,B
为周期,C为相位角,D为纵轴平移量。
2. 正弦函数的性质:周期为2π/B,在区间[-π/2B + C, 3π/2B + C]内单调递增或递减,在相位角C时函数的最大值为A + D,最小值为-D,振幅为|A|。
二、正弦函数的图像特征
1. 振幅A对函数图像的影响:振幅决定了函数的波动幅度,A越大波动幅度越大,A越小
波动幅度越小。
2. 周期B对函数图像的影响:周期决定了波动频率,B越大波动频率越高,B越小波动频
率越低。
3. 相位角C对函数图像的影响:相位角决定了函数图像的起始位置,C越大图像向左平移,C越小图像向右平移。
三、正弦函数的基本变化规律
1. 改变振幅A时:振幅越大,波动幅度越大;振幅越小,波动幅度越小。
2. 改变周期B时:周期越大,波长越短,波动频率越高;周期越小,波长越长,波动频率越低。
3. 改变相位角C时:相位角越大,图像向左平移;相位角越小,图像向右平移。
四、练习与作业
1. 练习:求解下列正弦函数的周期、振幅、相位角,绘制函数图像。
y = 2sin(3x + π/2) + 1
2. 作业:分析下列正弦函数的周期、振幅、相位角,绘制函数图像。
y = -3sin(2x - π/4) - 2
教学反馈:通过练习与作业,检验学生对正弦函数概念的理解与掌握程度,及时发现并纠
正错误,提高学生对正弦函数的应用能力。
教案正弦型函数的图像和性质
教案:正弦型函数的图像和性质第一章:正弦型函数的定义与基本性质1.1 教学目标了解正弦型函数的定义及标准形式掌握正弦型函数的周期性、奇偶性及对称性理解正弦型函数的相位变换1.2 教学内容正弦型函数的定义:y = A sin(Bx + C) + D标准形式:y = A sin(B(x α))周期性:T = 2π/B奇偶性:f(-x) = ±f(x)对称性:关于y轴对称或原点对称相位变换:通过平移、伸缩、翻折等变换1.3 教学活动引入正弦型函数的概念,引导学生从实际问题中抽象出正弦型函数讲解正弦型函数的标准形式,让学生理解各个参数的含义引导学生通过作图观察正弦型函数的周期性、奇偶性和对称性讲解相位变换,让学生了解如何通过变换得到不同的正弦型函数图像1.4 作业与练习练习1:根据给定的参数,画出正弦型函数的图像练习2:判断给定的正弦型函数的奇偶性和对称性练习3:通过相位变换,将一个正弦型函数变换为另一个正弦型函数第二章:正弦型函数的图像2.1 教学目标学会绘制正弦型函数的图像掌握正弦型函数图像的局部特征理解正弦型函数图像的物理意义2.2 教学内容正弦型函数图像的基本特点:波形、峰值、零点、相位局部特征:波峰、波谷、拐点物理意义:正弦型函数在工程、物理等领域的应用2.3 教学活动引导学生通过作图掌握正弦型函数图像的基本特点讲解波峰、波谷、拐点的形成原因,让学生理解正弦型函数的局部特征结合实际问题,让学生了解正弦型函数图像的物理意义2.4 作业与练习练习4:绘制给定参数的正弦型函数图像练习5:找出正弦型函数图像的波峰、波谷、拐点练习6:分析实际问题中正弦型函数图像的物理意义第三章:正弦型函数的性质3.1 教学目标理解正弦型函数的单调性、奇偶性、周期性、对称性学会利用正弦型函数的性质解决实际问题3.2 教学内容单调性:了解正弦型函数的单调递增、单调递减区间奇偶性:f(-x) = ±f(x)周期性:T = 2π/B对称性:关于y轴对称或原点对称3.3 教学活动引导学生通过观察正弦型函数图像理解单调性、奇偶性、周期性、对称性讲解如何利用正弦型函数的性质解决实际问题3.4 作业与练习练习7:判断给定的正弦型函数的单调性、奇偶性、周期性、对称性练习8:利用正弦型函数的性质解决实际问题第四章:正弦型函数的应用4.1 教学目标学会利用正弦型函数解决工程、物理等领域的实际问题了解正弦型函数在其他领域的应用4.2 教学内容工程领域:信号处理、电路设计等物理领域:振动、波动、电磁场等其他领域:数据通信、地球科学等4.3 教学活动结合实际问题,讲解正弦型函数在工程、物理等领域的应用引导学生了解正弦型函数在其他领域的应用4.4 作业与练习练习9:利用正弦型函数解决给定的工程、物理问题练习10:了解正弦型函数在其他领域的应用第五章:正弦型函数的导数与积分5.1 教学目标掌握正弦型函数的导数和积分公式学会运用导数和积分解决相关问题5.2 教学内容正弦型函数的导数:y' = A B cos(Bx + C)正弦型函数的积分:∫sin(Bx + C) dx = -A B/B cos(Bx + C) + D 应用:求解最大值、最小值、曲线长度、曲线下的面积等5.3 教学活动引导学生运用导数求解正弦型函数的极值、拐点等讲解如何利用积分求解曲线长度、曲线下的面积等5.4 作业与练习练习11:求解给定正弦型函数的导数和积分练习12:运用导数和积分解决实际问题第六章:正弦型函数的复合函数6.1 教学目标理解正弦型函数与其他类型函数的复合关系学会分析复合函数的图像和性质6.2 教学内容复合函数的定义:y = f(g(x))正弦型函数与其他函数的复合:y = A sin(Bf(x) + C) + D分析复合函数的图像和性质:周期性、奇偶性、对称性等6.3 教学活动引导学生理解复合函数的概念,观察复合函数的图像讲解如何分析复合函数的性质6.4 作业与练习练习13:分析给定复合函数的图像和性质练习14:将一个正弦型函数与其他函数进行复合,观察图像和性质的变化第七章:正弦型函数在实际问题中的应用7.1 教学目标学会运用正弦型函数解决实际问题了解正弦型函数在工程、物理等领域的应用7.2 教学内容工程领域:信号处理、电路设计等物理领域:振动、波动、电磁场等其他领域:数据通信、地球科学等7.3 教学活动结合实际问题,讲解正弦型函数在工程、物理等领域的应用引导学生了解正弦型函数在其他领域的应用7.4 作业与练习练习15:利用正弦型函数解决给定的工程、物理问题练习16:了解正弦型函数在其他领域的应用第八章:正弦型函数的综合应用8.1 教学目标掌握正弦型函数的基本概念、图像、性质及应用提高解决实际问题的能力8.2 教学内容综合运用正弦型函数的知识解决实际问题分析正弦型函数在各个领域的应用8.3 教学活动引导学生将正弦型函数的知识运用到实际问题中分析正弦型函数在不同领域的应用案例8.4 作业与练习练习17:综合运用正弦型函数的知识解决实际问题练习18:分析正弦型函数在各个领域的应用第九章:正弦型函数的拓展与研究9.1 教学目标了解正弦型函数的拓展知识培养学生的研究能力和创新意识9.2 教学内容正弦型函数的变形式:y = A sin(Bx + C) + D正弦型函数的推广:y = A sin(Bx + C) cos(Dx) 等研究正弦型函数的新性质、新应用9.3 教学活动引导学生了解正弦型函数的变形式和推广鼓励学生研究正弦型函数的新性质、新应用9.4 作业与练习练习19:研究正弦型函数的拓展知识练习20:探索正弦型函数的新性质、新应用10.1 教学目标评价学生的学习成果10.2 教学内容评价学生的学习效果,提出改进意见10.3 教学活动-重点和难点解析1. 正弦型函数的定义与基本性质难点解析:正弦型函数的相位变换的理解和应用。
正弦型函数的图像和性质讲义
有点的横坐标伸长到原来的2倍(纵坐标不变)。
y=sin 2x的图象可以看作是把 y=sinx的图象上所
有点的横坐标缩短到原来的 12倍(纵坐标不变)。
函数y=sinx ( >0且≠1)的图象可以看作是 把 y=sinx 的图象上所有点的横坐标缩短(当>1
时)或伸长(当0<<1时) 到原来的 1倍(纵坐标
提示:由于我们研究的函数仅限于 >0的情况,
所以只需要判断 的正负即可判断平移方向
思考:函数 y f (x)与 y f (ax b)的图像
有何关系?
问题 :怎样由y sin x的图象得到y Asin(x ) (其中A 0, 0)的图象?
答: (1)先画出函数y sin x的图象;
思考:函数y f (x)与函数y Af (x)的图象有何关系?
例2 1.
作函数 列表:
y
sin
2x
及
y
sin
1 2
x
的图象。
x
0
4
2
3
4
2x
0
2
3
2
2
sin 2x 0
2. 描点: 2 y 连线: 1
O
1
0
1
0
y=sinx
2
3 x
1
2
y=sin2x
1. 列表
x 0 2 3 4
1x 2
0
2
A就表示这个量振动时离开平衡位置的最 大距离,通常称为这个振动的振幅;
往复一次所需的时间 T 2 ,称为这个
振动的周期;
单位时间内往复振动的次数 f 1 ,
T 2
称为振动的频率;
x 称为相位;x=0时的相位φ称为初相。
教案正弦型函数的图像和性质
正弦型函数的图像和性质第一章:正弦型函数的定义与基本性质1.1 引入正弦型函数的概念解释正弦函数的定义:y = sin(x)说明正弦函数的周期性:sin(x + 2π) = sin(x)1.2 探究正弦函数的图像分析正弦函数在0≤x≤2π的图像特征总结正弦函数的振幅、周期、相位、对称性等基本性质1.3 引出正弦型函数的一般形式介绍正弦型函数的一般形式:y = A sin(Bx + C) + D解释各参数A、B、C、D对函数图像的影响第二章:正弦型函数的图像变换2.1 纵坐标变换:伸缩与平移分析纵坐标变换对正弦型函数图像的影响探究如何通过纵坐标变换实现图像的伸缩和平移2.2 横坐标变换:伸缩与平移分析横坐标变换对正弦型函数图像的影响探究如何通过横坐标变换实现图像的伸缩和平移2.3 综合图像变换结合纵坐标和横坐标变换,探究正弦型函数图像的综合变换方法第三章:正弦型函数的性质探究3.1 单调性分析正弦型函数的单调性:在单调增区间和单调减区间内举例说明单调性的应用3.2 奇偶性探究正弦型函数的奇偶性:sin(-x) = -sin(x)分析奇偶性在函数图像上的表现3.3 极值与拐点求解正弦型函数的极值与拐点分析极值与拐点在函数图像上的特征第四章:正弦型函数的应用4.1 振动问题应用正弦型函数描述简谐振动:x = A sin(ωt + φ)分析振动过程中的位移、速度、加速度等物理量的变化规律4.2 波动问题应用正弦型函数描述波动:u = A sin(kx ωt + φ)分析波动过程中的波长、周期、波速等物理量的关系第五章:案例分析与拓展5.1 分析实际问题中的正弦型函数模型举例分析正弦型函数在实际问题中的应用:温度变化、电流强度等5.2 探究正弦型函数的周期性分析正弦型函数在不同周期下的图像特征探究周期性在实际问题中的应用5.3 总结与拓展总结正弦型函数的图像和性质及其应用提出拓展问题,引导学生深入研究正弦型函数的相关领域第六章:正弦型函数的积分与级数6.1 不定积分介绍正弦型函数的不定积分:∫sin(x)dx = -cos(x) + C讲解基本积分技巧,如分部积分法、换元积分法等6.2 定积分解释正弦型函数的定积分:∫[a, b] sin(x)dx = -cos(b) + cos(a)分析定积分的性质,如对称性、周期性等6.3 级数展开探究正弦型函数的级数展开:sin(x) = Σ(-1)^(n+1) (x^(2n+1))/(2n+1)! 讲解泰勒级数展开的概念及应用第七章:正弦型函数的三角恒等式7.1 和差化积介绍和差化积公式:sin(A ±B) = sin(A)cos(B) ±cos(A)sin(B)讲解如何利用和差化积公式简化正弦型函数的表达式7.2 积化和差讲解积化和差公式:sin(A)cos(B) + cos(A)sin(B) = sin(A + B)分析积化和差公式在函数求解中的应用7.3 二倍角公式与半角公式介绍二倍角公式:sin(2A) = 2sin(A)cos(A), cos(2A) = cos^2(A) sin^2(A) 讲解半角公式:sin(A/2), cos(A/2)的求解方法及应用第八章:正弦型函数的解法与应用8.1 解正弦型方程讲解如何利用正弦函数的性质解正弦型方程:sin(x) = A, cos(x) = B等分析正弦型方程的解法技巧,如相位法、图像法等8.2 正弦型函数在物理中的应用介绍正弦型函数在电磁学、波动光学等物理领域的应用分析正弦型函数在物理问题中的作用及意义第九章:正弦型函数与现代数学方法9.1 傅里叶级数介绍傅里叶级数:将周期函数展开为正弦、余弦函数的和分析傅里叶级数在信号处理、热传导等领域的应用9.2 最小二乘法讲解最小二乘法在正弦型函数拟合中的应用举例说明最小二乘法在实际问题中的作用及意义第十章:总结与拓展10.1 总结正弦型函数的图像与性质回顾正弦型函数的图像变换、性质探究、应用等方面的重要知识点强调正弦型函数在数学及自然科学领域中的重要性10.2 提出拓展问题与研究建议针对正弦型函数的图像与性质提出拓展问题,引导学生深入研究鼓励学生探索正弦型函数在其他领域中的应用,如机器学习、生物信息学等第十一章:正弦型函数的数值方法11.1 数值解法概述介绍数值解法在求解正弦型函数相关问题中的应用讲解数值解法的基本概念和分类11.2 数值积分探究数值积分方法:梯形法则、辛普森法则等分析数值积分在正弦型函数应用中的实例11.3 数值微分介绍数值微分方法:中心差分法、向前差分法等讲解数值微分在正弦型函数应用中的实例第十二章:正弦型函数的编程实践12.1 编程基础介绍编程语言的选择(如Python、MATLAB等)讲解编程基本语法和数据结构12.2 正弦型函数的图像绘制展示如何使用编程语言绘制正弦型函数的图像分析图像绘制过程中的关键参数和技巧12.3 正弦型函数的数值计算讲解如何使用编程语言进行正弦型函数的数值计算分析数值计算过程中的误差和稳定性问题第十三章:正弦型函数在工程中的应用13.1 信号处理介绍正弦型函数在信号处理领域的应用:调制、解调等分析正弦型函数在信号处理中的优势和局限性13.2 机械振动探究正弦型函数在机械振动分析中的应用讲解振动系统的周期性、对称性等特性第十四章:正弦型函数在现代科学研究中的应用14.1 量子力学介绍正弦型函数在量子力学中的应用:波函数、能级等分析正弦型函数在量子力学中的基本作用14.2 天体物理探究正弦型函数在天体物理中的应用:星体运动、引力波等讲解正弦型函数在天体物理中的关键作用第十五章:总结与展望15.1 总结正弦型函数的图像与性质回顾本教程中正弦型函数的图像变换、性质探究、应用等方面的重要知识点强调正弦型函数在数学及自然科学领域中的重要性15.2 展望正弦型函数的发展趋势分析正弦型函数在科技、工程等领域的前景和挑战鼓励学生继续探究正弦型函数的奥秘,为相关领域的发展做出贡献重点和难点解析本文主要介绍了正弦型函数的图像和性质,涵盖了正弦型函数的定义、图像变换、性质探究、应用、积分与级数、三角恒等式、解法与现代数学方法、数值方法、编程实践、工程应用以及现代科学研究等领域。
正弦型函数的性质与图像
正弦型函数的性质与图像特点
正弦型函数是一种常见的周期函数,其性质主要如下:
1. 该函数在定义域内是连续可微的。
2. 正弦型函数的定义域内的值都是介于-1和1之间的,且无论输入多少都不会超过这两个值。
3. 正弦型函数的图像是一条斜线,其中点(0,0)为极坐标系的原点。
4. 正弦型函数的曲线以y=0的水平线为中心,向上下波动。
5. 正弦型函数的周期性是经典的S型曲线,它的曲线图形可以完美地描述一个正弦波。
6. 正弦型函数的起伏是由旋转的半圆形组成,且每次旋转都是360°(2π)。
正弦函数的图像和性质
; /redianticai/ 热点概念股 ;
招呼.至于陈三六,和白狼马の女人们,孩子们就暂时没有放出来了,要不然の话挤の慌.不过大家把酒言欢,过了壹会尔就提到了根汉要出去独闯の事情,壹听说根汉过段时间就要离开这里又要去独闯了,白萱有些不高兴了."小姨,要不你跟着根汉哥哥出去壹起闯荡吧."瑶瑶建议道:"你们 都这么久不见了,现在又要分开,太残忍了.""没什么,以后不是有你们陪伴嘛,他也不能总陪着咱,再说了,咱这么大人了要人陪干吗."白萱虽然壹开始有些不高兴,但是还是欣然接受.根汉也想说,要不和白萱还有钟薇壹起去吧,也算是对她们の弥补了.不过白萱和钟薇都表示,让自己独自 壹人离开,带上她们也不太方便,那闯荡也就没什么意义了,她们也习惯在这无心峰の宁静生活了.现在再出去打拼反而不美,不如就呆在这里好好体验生活,感悟天道,或许可以早壹日突破桎梏.对此根汉也只能是表示,罢了,就让她们呆在这里吧.这壹次自己出去独闯,也不知道要面对多少 艰难险阻,她们呆在这无心峰也挺好の,起码挺安全の.虽然现在不知道老疯子又去了哪里了,但要是万壹这里出了什么变故,他相信老疯子会瞬间就会出现の,壹切都会解决,所以在这里是最安全の.不过根汉也不想现在就离开,好久没见到白萱和钟薇了,现在也不想马上就离去,他表示起 码在这里呆上三年,在情域和无心峰这壹带转壹转再走.几天之后,根汉终于是来到了旁边の壹座侧峰.这里半山腰处,有壹个山洞,洞府口贴上了几张符纸,还是壹座封印结界."咱说蓝霞妹子,这么多年过去了,你还记着咱呢."根汉站在洞口,有些无奈の苦笑.这封印结界明显是刚刚不久前 才弄出来の,显然是蓝霞仙子,不乐意待见自己,故意将这里给封上の.里面没有传来回馈,不过这样の封印结界,却完全挡不住根汉.根汉壹步便迈进了封印结界之中,然后下壹秒,他就知道自己又闯
正弦型函数的性质和图象教案
1第 1 页 共 2 页[课 题] 5.8函数)sin(ϕω+=x A y 的性质和图象[课 时] 第一课时[课 型] 新授课[目 标]1. 了解正弦型函数的解析表达式中各个符号的实际背景意义;2. 理解正弦型函数的图象与正弦函数的图象之间的关系;3. 能够根据表达式正确地指出A 、ω、ϕ并求出最值、最小正周期[重 点]根据表达式正确地指出A 、ω、ϕ并求出最值、最小正周期[难 点] 理解正弦型函数的图象与正弦函数的图象之间的关系[教 法] 讲授法、启发式教学法[教 具] 教材、实物展示台、多媒体投影[教学过程]一、复习引入1正弦函数在区间[-π,π]上的图象(五点法作出)2正弦型函数引出:见教材实例二、新课讲授1正弦型函数)sin(ϕω+=x A y 中各个字母的意义1)A ——振幅 2)ω——频率(弧度/秒) 3)ϕ——初相4)ϕϖ+t ——t 时刻的相位2正弦型函数的性质:A 、TA ——最值 T ——最小正周期(ϖπ2=T )例1已知函数求A (最大值、最小值)、T (ω)x y 5sin 3= )115sin(3π-=x y )875sin(3π+=x y )115sin(π+=x y 练习已知函数求A (最大值、最小值)、T (ω))351sin(6π+=x y )11100sin(24ππ+=x y )421sin(2π+=x y x y 5.0sin 13= 3正弦型函数与正弦函数图象之间的关系(利用课件演示)⑴x A y sin =与x y sin =振幅变换:y=Asinx ,x ∈R(A>0且A ≠1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍得到的。
它的值域[-A, A] 最大值是A, 最小值是-A .若A<0 可先作y=-Asinx 的图象 ,再以x 轴为对称轴翻折。
A 称为振幅.⑵x y ϖsin =与x y sin =周期变换:函数y=sin ωx, x ∈R (ω>0且ω≠1)的图象,可看作把正弦曲线上2第 2 页 共 2 页 所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍(纵坐标不变).若ω<0则可用诱导公式将符号“提出”再作图。
正弦型函数的性质
C.
D.
5 x 4
7、函数y=sin(2x+θ)的图象关于y轴对称,则
A、 =2k + ,k Z 2 C、 =2k + ,k Z
B、 =k + ,k Z 2 D、 =k + ,k Z
B
8.(2007福建高考)已知函数 f ( x ) si n ( x 3 )( 0)的 最小正周期是 ,则函数的图象( A )
( A 关于点
3
, 对称 0)
B关于直线 x
3
对称
C关于点 (
4
, 对称 0 )
D关于直线 x 对称 4
k 2 - 6 ,0 k Z 9、y=5sin 2x+ 的 对称中心坐标为__________ 3
10、关于函数f ( x ) 4 sin(2 x 3 )( x R) 有下列命题:
7 [ k , k ](k z ) 递减区间是___ 12 12
(10)当 x ( 6 k , 3 k )(k z ) ___ 当 x 当 x=
(
时y>o 时y<0 时y=0 k
5 k , ___ k )(k z ) 3 6
x (k z ) (11)图象的对称轴方程为___ 2 12 k ( ,0)(k z ) (12)图象的对称中心坐标为___ 2 6
应用
• • • • • • •
π 已知函数 y 2 sin 2 x 回答下列问题 3
2 (1)振幅是______
1 (3)频率是 ___
(2)周期是 ___
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦型函数的)sin(ϕω+=x A y 性质
【学习目标】1、会用“五点作图法”画正弦型函数)sin(ϕω+=x A y 的图像。
2、能根据给定的图像求正弦型函数的解析式。
【自主学习】
1、利用“五点作图法”作出函数)
(3sin π
+=x y 的图像 解:①列表
②作图
2、利用“五点作图法”作出函数x y 2sin = ①列表
②作图
【合作探究】
1、利用“五点作图法”作出函数)3
2sin(2π
+
=x y 的图像
2、已知函数),0,0()sin(πϕωϕω<>>+=A x A y 的图象如图所示,求它的解析式和对称轴的方程。
3、已知函数)2
,0,0()sin(π
ϕωϕω<
>>++=A b x A y 的图象如图所示,求它
的解析式。
【收获总结】
(1)五点作图的作图方法
(2)利用图像求解析式的方法
【达标检测】
1、已知函数的),0,0)(sin(πϕωϕω<>>+=A x A y 图象如图所示,求它的解析式。
2、已知函数)2
,0,0()sin(π
ϕωϕω<
>>+=A x A y 的图象上相邻的两个最值
点是)212
7212-,)、(,(ππ,
(1)求其解析式 (2)求单调区间。