整式的加减单元测试题(含答案)

合集下载

七年级数学-整式的加减单元测试题及答案

七年级数学-整式的加减单元测试题及答案

七年级数学-整式的加减单元测试题及答案七年级数学-整式的加减单元测试题一、选择题(每小题2分,共20分)1.在代数式中,x2-5,-1,x2-3x+2,π,5/x,x2+1/x+1,-3π整式有()A。

3个 B。

4个 C。

5个 D。

6个2.单项式-3πxy2z2的系数和次数分别是()A。

-π,5 B。

-1,6 C。

-3π,6 D。

-3,73.下面计算正确的是()A。

3x2-x2=3 B。

3a2+2a3=5a5 C。

3+x=3x D。

-0.25ab+1/4ab=04.多项式-x2-1/2x-1的各项分别是()A。

-x2,1/2x,1 B。

-x2,-1/2x,-1 C。

-x2,1/2x,-1 D。

x2,-1/2x,-15.已知2x3y2和-3x3my2是同类项,则式子4m-24的值是()A。

20 B。

-20 C。

28 D。

-286.下面各题去括号错误的是()A。

x-(6y-1/2)=x-6y+1/2B。

2m+(-n+1/3a-b)=2m-n+1/3a-bC。

-1/2(4x-6y+3)=-2x+3y+3D。

(a+1/2b)-(-1/3c+2/7)=a+1/2b+1/3c-2/77.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()元。

A。

4m+7n B。

28mn C。

7m+4n D。

11mn8.减去-4x等于3x2-2x-1的代数式是()A。

3x2-6x-1 B。

5x2-1 C。

3x2+6x-1 D。

3x2+2x-19.已知下列一组数,用代数式表示第n个数:1、3/4、5/9、7/16、9/25……则第n个数为()A。

2n-1/n B。

n2-4/n C。

2n-1/n2 D。

2n+1/n210.如果a-b=1/2,那么-3(b-a)的值时()A。

-3/5 B。

2/3 C。

3/2 D。

1/6二、填空题(每小题3分,共30分)11.在代数式中,xy,-3,-1/4x2+1,x-y,-m2n,1/x,4-x2,ab2,2/x+3单项式有5个,多项式有3个。

人教版数学七年级上册第二章整式的加减单元检测题(含答案)

人教版数学七年级上册第二章整式的加减单元检测题(含答案)

人教版数学七年级上学期第二章整式的加减测试一、选择题1.化简-16(x-0.5)的结果是( )A. -16x-0.5B. -16x+0.5C. 16x-8D. -16x+82.以下判断正确的是( )A. 单项式xy没有系数B. -1是单项式C. 23x2是五次单项式D. 是单项式3.已知整式x2y的值是2,则5x2y+5xy-7x-(4x2y+5xy-7x)的值是( )A. -4B. -2C. 2D. 44.单项式-32xy2z3的系数和次数分别是( )A. -1,8B. -3,8C. -9,6D. -9,35.如果-33a m b2是7次单项式,则m的值是( )A. 6B. 5C. 4D. 26.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为( )A. 29B. -6C. 14D. 247.已知a<b,那么a-b和它的相反数的差的绝对值是( )A. b-aB. 2b-2aC. -2aD. 2b8.下面不是同类项的是( )A. -2与12B. 2m与2nC. -2a2b与a2bD. -x2y2与12x2y2二、填空题9.若单项式2x2y m与−x n y3的和仍为单项式,则m+n的值是___________.10.若单项式-a2x b m与a n b y-1可合并为a2b4,则xy-mn=___________.11.把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,排在第三项的是___________.12.若a2m−5b2与-3ab3-n的和为单项式,则m+n=___________.13.把(x-1)当做一个整体,合并3(x-1)2-2(x-1)3-5(1-x)2+(1-x)3的结果为___________.14.如果在数轴上表示a,b 两个实数的点的位置如图所示,那么|a﹣b|+|a+b|化简的结果为_____.15.数a在数轴上的位置如图所示,式子|a-1|-|a|的化简结果是___________.16.化简:-2a2-[3a2-(a-2)]=___________.三、解答题17.完成下表18.若-mx2y|n-3|是关于x、y的10次单项式,且系数是8,求m+n的值.19.去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.20.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和21.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.答案与解析一、选择题1.化简-16(x-0.5)的结果是( )A. -16x-0.5B. -16x+0.5C. 16x-8D. -16x+8【答案】D【解析】【分析】根据去括号法则及乘法分配律解答即可.【详解】由去括号法则及乘法分配律可得:-16(x-0.5)=-16x+8.故选D.【点睛】本题考查了去括号法则及乘法分配律,熟练运用去括号法则及乘法分配律是解决问题的关键.2.以下判断正确的是( )A. 单项式xy没有系数B. -1是单项式C. 23x2是五次单项式D. 是单项式【答案】B【解析】【分析】根据单项式的有关概念进行解答即可.【详解】A、单项式xy的系数是1,故错误;B、-1是单项式,故正确;C、23x2是2次单项式,故错误;D、是分式,故错误.故选:B.【点睛】本题考查了单项式,单项式的系数,次数,熟记单项式的系数,次数的定义是解题的关键.3.已知整式x2y的值是2,则5x2y+5xy-7x-(4x2y+5xy-7x)的值是( )A. -4B. -2C. 2D. 4【答案】C【解析】【分析】原式去括号合并后,将已知整式的值代入计算即可求出值.【详解】∵x2y=2,∴原式=5x2y+5xy-7x-4x2y-5xy+7x=x2y=2.故选:C.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.4.单项式-32xy2z3的系数和次数分别是( )A. -1,8B. -3,8C. -9,6D. -9,3【答案】C【解析】分析:根据单项式系数和次数的定义求解.详解:单项式﹣32xy2z3的系数和次数分别是﹣9,6.故选C.点睛:本题考查了单项式的系数和次数,注意单项式中数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.如果-33a m b2是7次单项式,则m的值是( )A. 6B. 5C. 4D. 2【答案】B【解析】【分析】根据单项式次数的定义来求解.所有字母的指数和叫做单项式的次数.【详解】根据单项式次数的定义,所有字母的指数和为7,即m+2=7,则m=5.故选:B.【点睛】灵活掌握单项式次数的定义,根据题意列方程,是解题的关键.6.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为( )A. 29B. -6C. 14D. 24【答案】B【解析】【分析】先对原式合并同类项,再把a=-5代入化简后的式子计算即可.【详解】原式=a-1,当a=-5时,原式=-5-1=-6.故选:B.【点睛】本题考查了整式的化简求值.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.7.已知a<b,那么a-b和它的相反数的差的绝对值是( )A. b-aB. 2b-2aC. -2aD. 2b【答案】B【解析】试题分析:a﹣b的相反数是b﹣a,可得a﹣b和它的相反数为:(a﹣b)﹣(b﹣a)=2a﹣2b,又因为a<b,可知2a ﹣2b<0,所以|(a﹣b)﹣(b﹣a)|=2b﹣2a.解:依题意可得:|(a﹣b)﹣(b﹣a)|=2b﹣2a.故选B.考点:整式的加减.8.下面不是同类项的是( )A. -2与12B. 2m与2nC. -2a2b与a2bD. -x2y2与12x2y2【答案】B【解析】【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,结合选项即可得出答案.【详解】A、-2与12是同类项,所以A选项错误;B、在2m与2n中,字母不相同,它们不是同类项,所以B选项正确;C、﹣2a2b与a2b是同类项,所以C选项错误;D、与是同类项,所以D选项错误.故选B.【点睛】此题考查同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,难度一般.二、填空题9.若单项式2x2y m与−x n y3的和仍为单项式,则m+n的值是___________.【答案】5【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m=3,n=2,再代入代数式计算即可.【详解】由题意知单项式2x2y m与−x n y3是同类项,∴n=2,m=3,∴m+n=5,故答案为:5.【点睛】本题考查同类项的知识,注意掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.若单项式-a2x b m与a n b y-1可合并为a2b4,则xy-mn=___________.【答案】-3【解析】【分析】因为单项式-a2x b m与a n b y-1可合并为a2b4,而只有几个同类项才能合并成一项,非同类项不能合并,可知此三个单项式为同类项,由同类项的定义可先求得x、y、m和n的值,从而求出xy-mn的值.【详解】∵单项式-a2x b m与a n b y-1可合并为a2b4,则此三个单项式为同类项,则m=4,n=2,2x=2,y-1=4,x=1,y=5,则xy-mn=1×5-4×2=-3.【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.11.把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,排在第三项的是___________.【答案】-5a2b【解析】【分析】先把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,然后找出符合条件的项即可.【详解】多项式2ab2-5a2b-7+a3b3按字母b的降幂排列为:a3b3+2ab2-5a2b-7.故答案为:-5a2b.【点睛】本题主要考查的是多项式概念,掌握多项式按照某一字母的升降幂排列的方法是解题的关键.12.若a2m−5b2与-3ab3-n的和为单项式,则m+n=___________.【答案】4【解析】【分析】直接利用合并同类项法则得出关于m,n的等式进而求出答案.【详解】∵a2m−5b2与-3ab3-n的和为单项式,∴2m-5=1,2=3-n,解得:m=3,n=1.故m+n=4.故答案为:4.【点睛】此题主要考查了单项式,正确把握合并同类项法则是解题关键.13.把(x-1)当做一个整体,合并3(x-1)2-2(x-1)3-5(1-x)2+(1-x)3的结果为___________.【答案】-2(x-1)2-3(x-1)3【解析】【分析】根据互为相反数的偶次幂相等,互为相反数的奇次幂互为相反数,可化成同类项,根据合并同类项,可得答案.【详解】原式=3(x-1)2-2(x-1)3-5(x-1)2-(x-1)3=-2(x-1)2-3(x-1)3,故答案为:-2(x-1)2-3(x-1)3.【点睛】本题考查了合并同类项,利用互为相反数的偶次幂相等,互为相反数的奇次幂互为相反数化成同类项是解题关键.14.如果在数轴上表示a,b 两个实数的点的位置如图所示,那么|a﹣b|+|a+b|化简的结果为_____.【答案】-2a【解析】【分析】先由数轴上a,b的位置判断出其符号,再根据其与原点的距离距离判断出a,b绝对值的大小,代入原式求值即可.【详解】由数轴可a<0,b>0,a<b,|a|>b,所以a-b<0,a+b<0,∴|a-b|+|a+b|=-a+b-a-b=-2a,故答案为:-2a.【点睛】本题考查了数轴的概念、整式的加减、绝对值的性质等,熟练掌握正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0是解题的关键.15.数a在数轴上的位置如图所示,式子|a-1|-|a|的化简结果是___________.【答案】1【解析】先根据点a在数轴上的位置判断出a的符号,再去绝对值符号,合并同类项即可.解:∵由图可知,a<0,∴a﹣1<0,∴原式=1﹣a+a=1.故答案为:1.16.化简:-2a2-[3a2-(a-2)]=___________.【答案】-5a2+a-2【解析】【分析】去括号,然后合并同类项即可.【详解】-2a2-[3a2-(a-2)]= -2a2-[3a2-a+2]= -2a2-3a2+a-2=-5a2+a-2.故答案为:-5a2+a-2【点睛】本题考查整式的化简,注意去括号时符号的变化.三、解答题17.完成下表【答案】详见解析.【解析】【分析】根据单项式的系数和次数的定义解答即可.【详解】x的系数是1,次数是1;-2mn的系数是-2,次数是2;的系数是,次数是4.填表如下:【点睛】此题考查了单项式的有关定义,熟练掌握单项式的系数和次数的的定义是解答此题的关键.18.若-mx2y|n-3|是关于x、y的10次单项式,且系数是8,求m+n的值.【答案】m+n=3或m+n=-13.【解析】【分析】利用单项式的定义得出m的值,进而利用单项式次数的定义得出n的值,进而得出答案.【详解】因为-mx2y|n-3|是关于x、y的10次单项式,且系数是8,所以m=-8,且2+|n-3|=10,解得n=11或-5,则m+n=3或m+n=-13.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数的定义是解题关键.19.去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.【答案】(1)4x-3y;(2)a2-a+1.【解析】【分析】(1)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变;(2)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变.【详解】(1)(x-2y)-(y-3x)=x-2y-y+3x=4x-3y;(2)3a2−[5a−(a−3)+2a2]+4=3a2−(5a−a+3+2a2)+4=3a2−5a+a-3-2a2+4=a2-a+1.【点睛】解决本题是要注意去括号时符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.20.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和【答案】这三名同学的年龄的和是(4m-5)岁.【解析】解:因为小红的年龄比小明的年龄的2倍少4岁,所以小红的年龄为岁.又因为小华的年龄比小红的年龄的还多1岁,所以小华的年龄为(岁),则这三名同学的年龄的和为答:这三名同学的年龄的和是岁.21.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.【答案】-5.【解析】【分析】根据单项式及单项式次数的定义,可得出a、b的值,代入代数式即可得出答案.【详解】∵(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,∴,解得:,则a2-3ab+b2=9-18+4=-5.【点睛】本题考查了单项式的知识,属于基础题,掌握单项式的定义及单项式次数的定义是解答本题的关键。

【名校习题6套】人教版数学七年级上册第二章整式的加减单元测试及答案.doc

【名校习题6套】人教版数学七年级上册第二章整式的加减单元测试及答案.doc

人教版七年级上册第二章整式的加减单元测试一、选择题(每题3分,共21分)1. 下列说法正确的是( )A.213x π的系数为13B.212xy 的系数为12x C. ()23x -的系数为3D. ()23x π-的系数为3π-2. 下列各组式子中,是同类项的是( )A. 2233x y xy -与B. 222x x 与C. 32xy yx -与D. 55xy yz 与3. 下面计算正确的是( )A. 2233x x -=B. 235325a a a +=C. 33x x +=D. 10.2504ab ba -+=4. 如果12a b -=,那么()3b a --的值是( ) A. 35-B. 23C.32D.165. 将()()()24x y x y x y +++-+合并同类项得( )A. x y +B. x y -+C. x y --D. x y -6. 若8a =,3b =,且a b <,则a b -的值为( )A. 11-B. 5-C. 5-或5D. 11-或5-7. 观察图中正方形四个顶点所标的数字规律,可知数2013应标在( )A. 第503个正方形的左上角B. 第503个正方形的右下角C. 第504个正方形的左上角D. 第504个正方形的右下角二、填空题(每题3分,共21分)8. 已知单项式23m a b 与4123n a b --人教版数学七年级上册通关宝典(9)-《整式的加减》单元检测一、选择题(共10小题;共30分) 1. 下列说法正确的是 A.的系数是 B. 单项式 的系数为 ,次数为C. 的次数为D. 的系数为2. 下列说法中,正确的有①的系数是;②的次数是;③多项式的次数是;④和都是整式.A. 个B. 个C. 个D. 个3. 多项式的次数及最高次项的系数分别是A. ,B. ,C. ,D. ,4. 在如图所示的年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是星期一星期二星期三星期四星期五星期六星期日A. B. C. D.5. 化简的结果等于A. B. C. D.6. 若,则的值为A. B. C. D.7. 若与是同类项,则的值为A. B. C. D.8. 已知,当时,的值是,当时,的值是A. B. C. D. 无法确定9. 古希腊著名的毕达哥拉斯学派把,,,这样的数称为“三角形数”,而把,,,这样的数称为“正方形数”.从图形可以发现,任何一个大于的“正方形数”,都可以看作两个相邻“三角形数”之和.下列等式中符合这一规律的是A. B. C. D.10. 下面每个表格中的四个数都是按相同规律填写的:根据此规律确定的值为A. B. C. D.二、填空题(共6小题;共18分)11. 如果,则.12. 单项式的系数是,次数是.13. 如果是五次多项式,那么.14. 填空:;.15. 若与的和是单项式,则式子的值是.16. 下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是.三、解答题(共6小题;共52分)17. 去括号,并合并同类项:(1);(2).18. 将式子,分别反过来,你得到两个怎样的等式?(1)比较你得到的等式,你能总结添括号的法则吗?(2)根据上面你总结出的添括号法则,不改变多项式的值,把它的后两项放在:①前面带有“”号的括号里;②前面带有“”号的括号里.19. 如果关于的多项式不含项和人教版数学七年级上册第2章《整式的加减》单元检测试题及答案一、选择题(每小题3分,共18分)1.计算3a3+a3,结果正确的是()A .3a 6B .3a 3C .4a 6D .4a 32.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( )A . 6B . -6C . 12D . -123.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( )A .-2B .2 4.下列运算正确的是( )A .-2(3x-1)=-6x-1B .-2(3x-1)=-6x+1C .-2(3x-1)=-6x+2D .-2(3x-1)=-6x-2 5.化简a+a 的结果为( )A .2B .a 2C .2a 2D .2a 6.在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y ,0中,单项式共有( )A .5个B .6个C .7个D .8个二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________. 10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2016的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1.16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n+2-5x2-n+6是关于x的三次多项式,求代数式n3-2n+3的值.19.已知A=2x2+xy+3y-1,B=x2-xy.(1)若(x+2)2+|y-3|=0,求A-2B的值;(2)若A-2B的值与y的取值无关,求x的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a、b的式子表示)?并计算当a=300,b=200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值(先化简再求值).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2017的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)填写下表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.D2.D3.A4.C5.D6.B二、填空题7.﹣238.111a+809.-810.111.2c-a-b解析:由图可知a<c<0<b,∴a-c<0,b-c>0,∴原式=c-a-(b-c)=c-a-b+c=2c-a-b.故答案为2c-a-b.12.-4 解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a +b =a +b +c ,解得c =-4,a +b +c =b +c +6,解得a =6,∴数据从左到右依次为-4、6、b 、-4、6、b 、-4、6、-2.由题意易得第9个数与第6个数相同,即b =-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4. 三、解答题13.解:解:(1)原式=4a ;(3分)(2)原式=3a ﹣2﹣3a+15=13;(6分)14.解:2(x -3y )-(2y -x )=2x -6y -2y +x =3x -8y .(6分)15.解:原式=-9y +6x 2+3y -2x 2=4x 2-6y .(3分)当x =2,y =-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A ,∴A =2(a 2b +ab 2)+(a 2b -2ab 2)-ab 2=3a 2b -ab 2,(5分)∴捂住的多项式为3a 2b -ab 2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy+3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2, ∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2)=5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2017=0+2017=2017.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(-4)=-8.(9分)人教版初中数学七年级上册第2章《整式的加减》单元同步检测试题一、选择题(每小题3分,共18分) 1. 在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个C .7个D .8个 2.计算3a 3+a 3,结果正确的是( ) A .3a 6B .3a 3C .4a 6D .4a 33.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( ) A . 6B . -6C . 12D . -124.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( ) A .-2 B .25. 若x =1时,ax 3+bx +7式子的值为2033,则当x =﹣1时,式子ax 3+bx +7的值为( ) A .2018 B .2019 C .﹣2019 D .﹣20186. 据市统计局发布:2018年我市有效发明专利数比2017年增长12.5%.假定2019年的年增长率保持不变,2017年和2019年我市有效发明专利分别为a 万件和b 万件,则( ) A .b =(1+12.5%×2)a B .b =(1+12.5%)2a C .b =(1+12.5%)×2 a D .b =12.5%×2 a二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________. 10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2019的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1. 16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值. 19.已知A =2x 2+xy +3y -1,B =x 2-xy . (1)若(x +2)2+|y -3|=0,求A -2B 的值; (2)若A -2B 的值与y 的取值无关,求x 的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a、b 的式子表示)?并计算当a=300,b=200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值(先化简再求值).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2019的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)填写下表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参 考 答 案:一、选择题 1.B 2.D 3.D 4.A 5.C 6.B二、填空题7.﹣2 3 8.111a +80 9.-8 10.111.2c -a -b 解析:由图可知a <c <0<b ,∴a -c <0,b -c >0,∴原式=c -a -(b -c )=c -a -b +c =2c -a -b .故答案为2c -a -b .12.-4 解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a +b =a +b +c ,解得c =-4,a +b +c =b +c +6,解得a =6,∴数据从左到右依次为-4、6、b 、-4、6、b 、-4、6、-2.由题意易得第9个数与第6个数相同,即b =-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4. 三、解答题13.解:解:(1)原式=4a ;(3分)(2)原式=3a ﹣2﹣3a+15=13;(6分)14.解:2(x -3y )-(2y -x )=2x -6y -2y +x =3x -8y .(6分)15.解:原式=-9y +6x 2+3y -2x 2=4x 2-6y .(3分)当x =2,y =-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A ,∴A =2(a 2b +ab 2)+(a 2b -2ab 2)-ab 2=3a 2b -ab 2,(5分)∴捂住的多项式为3a 2b -ab 2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy+3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2, ∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52.22.解:(1)∵a 2+a =0,∴a 2+a +2019=0+2019=2019.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分) (3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(人教版初中数学七年级上册第2章《整式的加减》单元同步检测试题一、选择题(每小题3分,共18分) 1. 在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个 D .8个 2.计算3a 3+a 3,结果正确的是( ) A .3a 6B .3a 3C .4a 6D .4a 33.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( ) A . 6B . -6C . 12D . -124.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( ) A .-2 B .25. 若x =1时,ax 3+bx +7式子的值为2033,则当x =﹣1时,式子ax 3+bx +7的值为( ) A .2018 B .2019 C .﹣2019 D .﹣20186. 据市统计局发布:2018年我市有效发明专利数比2017年增长12.5%.假定2019年的年增长率保持不变,2017年和2019年我市有效发明专利分别为a 万件和b 万件,则( )A .b =(1+12.5%×2)aB .b =(1+12.5%)2aC .b =(1+12.5%)×2 aD .b =12.5%×2 a二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________. 10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2019的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1. 16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值. 19.已知A =2x 2+xy +3y -1,B =x 2-xy . (1)若(x +2)2+|y -3|=0,求A -2B 的值; (2)若A -2B 的值与y 的取值无关,求x 的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a 元,学生每人b 元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a 、b 的式子表示)?并计算当a =300,b =200时的旅游费用. 五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,当a=1,b=2时,求A ﹣2B+3C 的值(先化简再求值).22.阅读材料:“如果代数式5a +3b 的值为-4,那么代数式2(a +b )+4(2a +b )的值是多少?”我们可以这样来解:原式=2a +2b +8a +4b =10a +6b .把式子5a +3b =-4两边同乘以2,得10a +6b =-8.仿照上面的解题方法,完成下面的问题: (1)已知a 2+a =0,求a 2+a +2019的值; (2)已知a -b =-3,求3(a -b )-a +b +5的值;(3)已知a 2+2ab =-2,ab -b 2=-4,求2a 2+5ab -b 2的值. 六、(本大题共12分) 23.探究题.用棋子摆成的“T”字形图,如图所示:(1)填写下表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.B2.D3.D4.A5.C6.B二、填空题7.﹣238.111a+809.-810.111.2c-a-b解析:由图可知a<c<0<b,∴a-c<0,b-c>0,∴原式=c-a-(b-c)=c-a-b+c=2c-a-b.故答案为2c-a-b.12.-4解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a+b=a+b+c,解得c=-4,a+b+c=b+c+6,解得a=6,∴数据从左到右依次为-4、6、b、-4、6、b、-4、6、-2.由题意易得第9个数与第6个数相同,即b=-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4.三、解答题13.解:解:(1)原式=4a;(3分)(2)原式=3a﹣2﹣3a+15=13;(6分)14.解:2(x-3y)-(2y-x)=2x-6y-2y+x=3x-8y.(6分)15.解:原式=-9y+6x2+3y-2x2=4x2-6y.(3分)当x=2,y=-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A ,∴A =2(a 2b +ab 2)+(a 2b -2ab 2)-ab 2=3a 2b -ab 2,(5分)∴捂住的多项式为3a 2b -ab 2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy+3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2, ∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52.22.解:(1)∵a 2+a =0,∴a 2+a +2019=0+2019=2019.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分) (3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(人教版初中数学七年级上册第2章《整式加减》单元测试卷一、单选题(每小题只有一个正确答案) 1.下列各式:ab ,2x y -,2x,–xy 2,0.1,1π,x 2+2xy+y 2,其中单项式有( )A .5个B .4个C .3个D .2个2.多项式x 3–2x 2y 2+3y 2每项的系数和是( ) A .1B .2C .5D .63.若单项式–2335a bc 的系数、次数分别是m 、n ,则( )A .m=−35,n=6 B .m=35,n=6 C .m=–35,n=5 D .m=35,n=5 4.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy5.对[()]a b c d --+去括号后的结果是( ). A .a b c d --+ B .a b c d +-- C .a b c d -++D .a b c d -+-6.单项式﹣x 2y 的系数与次数分别是( ) A.-,3B.-,4C.-π,3D.-π,47.下列各式计算正确的是( ). A .(2)2a a b b --=- B .2(3)242xy y xy xy y --=- C .233336ab a b ab +=D .3()3xy y xy y +-=8.下列各组单项式属于同类项的是( ).A .2a 与22aB .3m -与2mC .223a b 与22ab D .22a 与23a9.一个两位数,十位上的数字比个位上的数字小2,设十位上的数字为x ,则这个两位数可以表示为( ). A .22x +B .22x -C .112x -D .112x +10.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .611.规定一种新运算,a *b =a +b ,a #b =a ﹣b ,其中a 、b 为有理数,化简a 2b *3ab +5a 2b #4ab 的结果为( ) A .6a 2b +abB .﹣4a 2b +7abC .4a 2b ﹣7abD .6a 2b ﹣ab12.一个多项式加上2325y y --得到多项式3546y y --,则原来的多项式为( ) A.325321y y y ++- B.325326y y y --- C.325321y y y +-- D.325321y y y ---二、填空题13.多项式2239x xy π++。

整式的加减单元测试题(含答案)

整式的加减单元测试题(含答案)

第二章 整式的加减单元测试姓名; 分值一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。

2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。

3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。

4、已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 。

5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。

6、计算:=-+-7533x x , )9()35(b a b a -+-= 。

7、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。

8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。

9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。

10、若≠+-m y x yx m n 则的六次单项式是关于,,)2(232 ,n = 。

11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。

12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。

二、选择题(每题3分,共30分)13、下列等式中准确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。

B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写准确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法准确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 18、下列各式中,去括号或添括号准确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x 19、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 22、下列计算中准确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x .30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a .五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:22,,(1)(5)50;3m x y x m -+=满足:2312722a b b a y 与+-)(是同类项. 求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。

人教版七年级上册第2章《整式的加减》单元测试卷(含答案)

人教版七年级上册第2章《整式的加减》单元测试卷(含答案)

人教版七年级上册第2章《整式的加减》单元测试卷满分100分姓名:___________班级:___________学号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.代数式1﹣的意义是()A.1与x的差的倒数B.1与x的倒数的差C.x的倒数与1的差D.1与1除以x的商3.下列说法正确的是()A.整式就是多项式B.π是单项式C.x4+2x3是七次二项次D.是单项式4.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y25.下列运算正确的是()A.4m﹣m=3B.a3﹣a2=a C.2xy﹣yx=xy D.a2b﹣ab2=06.去括号1﹣(a﹣b)=()A.1﹣a+b B.1+a﹣b C.1﹣a﹣b D.1+a+b7.以下各组多项式按字母a降幂排列的是()A.3a﹣7a2+2﹣a3B.﹣7a2+3a+2﹣a3C.﹣a3+3a+2﹣7a2D.﹣a3﹣7a2+3a+28.李老师用长为6a的铁丝做了一个长方形教具,其中一边长为b﹣a,则另一边的长为()A.7a﹣b B.2a﹣b C.4a﹣b D.8a﹣2b9.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定10.已知a﹣b=3,c+d=2,则(a﹣d)﹣2(b﹣c)+(b+3d)的值为()A.7B.5C.1D.﹣5二.填空题(共6小题,满分24分,每小题4分)11.单项式的系数是m,多项式a2b+2ab﹣3的次数是n,则m+n=.12.若3x n y3和﹣x2y m是同类项,则n﹣m=.13.去括号7x3﹣[3x2﹣(x+1)]=.14.“直播带货”是今年的热词.某“爱心助农”直播间推出特产甜瓜,定价8元/千克,并规定直播期间一次下单超过5千克时,可享受九折优惠.李叔叔在直播期间购买此种甜瓜m千克(m>5),则他共需支付元.(用含m的代数式表示)15.若x2+3x=2,则代数式2x2+6x﹣4的值为.16.若多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,则m=.三.解答题(共7小题,满分46分)17.(6分)把下列各代数式填在相应的大括号里.(只需填序号)(1)x﹣7,(2),(3)4ab,(4),(5)5﹣,(6)y,(7),(8)x+,(9),(10)x2++1,(11),(12)8a3x,(13)﹣1单项式集合{};多项式集合{};整式集合{}.18.(6分)合并同类项(1)3a+2a﹣7a (2)﹣4x2y+8xy2﹣9x2y﹣21xy2.19.(6分)如果关于x的多项式x4﹣(a﹣1)x3+5x2﹣(b+1)x﹣1不含x3项和x项,求a,b的值.20.(6分)先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.21.(7分)学完了《整式的加减》后,小刚与小强玩起了数字游戏:小刚对小强说:你任意写一个两位数,满足十位数字比个位数字大2;然后交换十位数字与个位数字,得到一个新的两位数;最后用其中较大的两位数减去较小的两位数.我就能知道这个差是多少.你知道这是为什么吗?这个差是多少呢?22.(7分)已知A=a2﹣2b2+2ab﹣3,B=2a2﹣b2﹣ab﹣(1)求2(A+B)﹣3(2A﹣B)的值(结果用化简后的a、b的式子表示);(2)当a=﹣,b=0时,求(1)中式子的值.23.(8分)某国际化学校实行小班制教学,七年级四个班共有学生(6m﹣3n)人,一班有学生m人,二班人数比一班人数的两倍少n人,三班人数比二班人数的一半多12人.(1)求三班的学生人数(用含m,n的式子表示);(2)求四班的学生人数(用含m,n的式子表示);(3)若四个班共有学生120人,求二班比三班多的学生人数?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.解:由代数式的定义得,代数式1﹣表示1与x的倒数的差,故B答案正确.故选:B.3.解:A、根据整式的概念可知,单项式和多项式统称为整式,故A错误;B、π是单项式,故B正确;C、x4+2x3是4次二项式,故C错误;D、是多项式,故D错误.故选:B.4.解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.5.解:(A)原式=3m,故A错误;(B)原式=a3﹣a2,故B错误;(D)原式=a2b﹣ab2,故D错误;故选:C.6.解:1﹣(a﹣b)=1﹣a+b,故选:A.7.解:多项式按字母a降幂排列的是﹣a3﹣7a2+3a+2.故选:D.8.解:另一边长=3a﹣(b﹣a)=3a﹣b+a=4a﹣b.故选:C.9.解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.10.解:原式=a﹣d﹣2b+2c+b+3d=(a﹣b)+2(c+d),当a﹣b=3,c+d=2时,原式=3+4=7,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵单项式的系数是m,∴m=﹣,∵多项式a2b+2ab﹣3的次数是n,∴n=3,则m+n=3﹣=.故答案为:.12.解:根据题意可得:n=2,m=3,∴n﹣m=2﹣3=﹣1.故答案为:﹣1.13.解:7x3﹣[3x2﹣(x+1)]=7x3﹣(3x2﹣x﹣1)=7x3﹣3x2+x+1.故答案为:7x3﹣3x2+x+1.14.解:由题意得:8×0.9m=7.2m,则他共需支付7.2m元.故答案为:7.2m.15.解:2x2+6x﹣4=2(x2+3x)﹣4把x2+3x=2代入上式,得原式=2×2﹣4=0故答案为016.解:3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值=3mx2﹣x2+4x﹣2+4x2﹣4x+5=(3m+3)x2+3,∵多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,∴3m+3=0,∴m=﹣1,故答案为:﹣1.三.解答题(共7小题,满分46分)17.解:单项式有:,4ab,y,8a3x,﹣1;多项式有:x﹣7,x+,,x2++1;整式有:x﹣7,,4ab,y,x+,,x2++1,8a3x,﹣1.故答案为:(2)(3)(6)(12)(13);(1)(8)(9)(10);(1)(2)(3)(6)(8)(9)(10)(12)(13).18.解:(1)原式=(3+2﹣7)a=﹣2a;(2)原式=(﹣4﹣9)x2y+(8﹣21)xy2=﹣13x2y﹣13xy2.19.解:根据题意得﹣(a﹣1)=0,﹣(b+1)=0,解得a=1,b=﹣1.20.解:原式=4xy﹣[x2+5xy﹣y2﹣2x2﹣6xy+y2]=4xy﹣[﹣x2﹣xy]=x2+5xy,当x=﹣1,y=2时,原式=x2+5xy=(﹣1)2+5×(﹣1)×2=﹣9.21.解:设原来的十位数,十位数字为x,则个位数字为:(x﹣2),故两位数是:10x+x﹣2=11x﹣2,交换十位数字与个位数字,得到的十位数是:10(x﹣2)+x=11x﹣20,故11x﹣2﹣(11x﹣20)=18,即较大的两位数减去较小的两位数的差为18.22.解:(1)2(A+B)﹣3(2A﹣B)=2A+2B﹣6A+3B=﹣4A+5B=﹣4(a2﹣2b2+2ab﹣3)+5(2a2﹣b2﹣ab﹣)=﹣4a2+8b2﹣8ab+12+10a2﹣5b2﹣2ab﹣1=6a2+3b2﹣10ab+11;(2)∵a=﹣,b=0,∴6a2+3b2﹣10ab+11=6×+11=12.23.解:(1)一班人数为:m人.二班人数为:(2m﹣n)人.三班人数为:人;(2)四班人数为:==;(3)由题意可得:6m﹣3n=120,则2m﹣n=40,故二班比三班多的学生数为:===20﹣12=8(人)答:二班比三班多8人.。

人教版数学七年级上册:第2章 整式的加减 单元测试卷(含答案)

人教版数学七年级上册:第2章 整式的加减  单元测试卷(含答案)

第二章《整式的加减》单元测试(满分:150分时间:120分钟) 一、选择题(每小题4分,共40分)1.下列各式中不是单项式的是( )A.a3B.-15C.0 D.3a2.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费( )A.(3a+4b)元 B.(4a+3b)元C.4(a+b)元 D.3(a+b)元3.-[a-(b-c)]去括号正确的是( )A.-a-b+c B.-a+b-cC.-a-b-c D.-a+b+c4.多项式xy2+xy+1是( )A.二次二项式 B.二次三项式C.三次二项式 D.三次三项式5.下列运算中,正确的是( )A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b-3ba2=0 D.5a2-4a2=16.若-x3y a与x b y是同类项,则a+b的值为( )A.2 B.3 C.4 D.57.若A=3x2-4y2,B=-y2-2x2+1,则A-B等于( )A.x2-5y2+1 B.x2-3y2+1C.5x2-3y2-1 D.5x2-3y2+18.已知x-3y=-3,则5-x+3y的值为( )A.0 B.2 C.5 D.89.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.此空格的地方被钢笔水弄污了,那么空格中的一项是( )A.-xy B.xy C.-7xy D.7xy10.如图,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个长方形,(不重复无缝隙),则长方形的长为( )A .2 cmB .2a cmC .4a cmD .(2a -2)cm二、填空题(每小题3分,共30分) 11.计算:2x +x =____________.12.单项式-2xy25的系数是____________,次数是____________.13.任写一个与-12a 2b 是同类项的单项式:____________.14.将多项式1-ab 2+a 3b -13a 2按字母a 降幂排列是________________.15.一个长方形的长为2a +3b ,宽为a +b ,则此长方形的周长为____________. 16.若式子mx 2+y 2-5x 2+5的值与字母x 的取值无关,则m 的值为____________. 17.某种商品原价是m 元,第一次降价打八折,第二次降价每件又减15元,第二次降价后每件的售价是____________元.18.一个多项式与2x 2-xy +3y 2的和是-2xy +x 2-y 2,则这个多项式是________________. 19.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________________.20.观察图形,则第n 个图形中三角形的个数为____________(用含n 的式子表示).三、(本大题12分) 21.(1)计算:①(3a 2+1)-(4a 3-3a 2); ②6a 2-[(5ab +a 2)+2ab];(2)先化简,再求值:2(x +x 2y)-23(6x 2y +3x)-y ,其中x =1,y =3.四、(本大题12分)22.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的12还多1岁,求这三名同学的年龄的和.五、(本大题14分)23.小明在计算一种多项式减去2a 2+a -5的差时,因忘了对两个多项式用括号括起来,因此减式后面的两项没有变号,结果得到的差是a 2+3a -1.据此你能求出这个多项A 式吗?这两个多项式的差应该是多少?六、(本大题14分)24.如图所示,将面积为a 2的小正方形和面积为b 2的大正方形放在同一水平面上(b >a >0).(1)用a ,b 表示阴影部分的面积;(2)计算当a =3,b =5时,阴影部分的面积.七、(本大题12分)25.阅读材料:我们知道,4x+2x-x=(4+2-1)x=5x,类似地,我们把(a+b)看成一个整体,则4(a +b)+2(a+b)-(a+b)=(4+2-1)(a+b)=5(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)看成一个整体,合并3(a-b)2-7(a-b)2+2(a-b)2的结果是____________;A.-6(a-b)2 B.6(a-b)2C.-2(a-b)2 D.2(a-b)2(2)已知x2+2y=5,求3x2+6y-21的值;拓广探索:(3)已知a-2b=3,2b-c=-5,c-d=10,求(a-c)+(2b-d)-(2b-c)的值.八、(本大题16分)26.某校团委组织了有奖征文活动,并设立了一、二、三等奖,根据设奖情况买了50件奖品,其二等奖奖品的件数比一等奖奖品的件数的2倍少10,各种奖品的单价如下表所示:如果计划一等奖奖品买x件,买50件奖品的费用是y元.(1)先填表,再用含x的式子表示y,并化简;(2)若一等奖奖品买10件,则共花费多少?参考答案:11.3x 12. 52-3 13. a 2b(答案不唯一) 14.1ab -a 31-b a 223+ 15.6a+8b 16.517. (0.8m-15) 18. -x 2-xy-4y 219.-b+c+a 20.4n21.①原式=3a 2+1-4a 3+3a 2=-4a+6a 2+1.②原式=6a 2-5ab-2ab=5a 2-7ab (2)原式=2x+2x 2y-4x 2y-2x-y=-2x 2y-y当x=1,y=3时,原式=-2×12×3-3=922. 因为小红的年龄比小明的年龄的2倍少4岁,所以小红的年龄为(2m-4)岁, 又因为小华的年龄比小红的年龄的21还多1岁, 所以小华的年龄为[21(2m-4)+1]岁, 则这三名同学的年龄的和为:m+(2m-4)+[21(2m-4)+1]=m+2m-4+(m-2+1)=4m-5(岁), 答:这三名同学的年龄的和是(4m-5)岁23.根据题意,得A=a 2+3a-1+2a 2-a+5=3a 2+2a+4.这两个多项式的差应该是(3a 2+2a+4)-(2a 2+a-5)=3a 2+2a+4-2a 2-a+5=a 2+a+9.24.(1)阴影部分的面积为21b 2+21a(a+b). (2)当a=3,b=5时,21b 2+21a(a+b)=21×25+21×3×(3+5)=249,即阴影部分的面积为249.25.(1)C(2)因为x2+2y=5,所以原式=3(x2+2y)-21=15-21=-6(3)因为a-2b=3,2b-c=-5,c-d=10,所以原式=a-c+2b-d-2b+c=a-d=a-2b+2b-c+c-d=(a-2b)+(2b-c)+(c-d)=3-5+10=826.(1)2x-10 60-3x依题意,得y=12x+10(2x-10)+5(60-3x)=12x+20x-100+300-15x=17x+200(2)当x=10时,17x+200=17×10+200=370.答:若一等奖奖品买10件,共花费370元。

七年级数学整式的加减单元测试题(含答案)

七年级数学整式的加减单元测试题(含答案)

第八章 整式的加减单元测试一、选择题(每小题3分,共30分) 1.在下列代数式mn bc a a b a xy a a 43,21,2009,,3,4,212-++中,单项式的个数是( ) A.3 B.4 C.5 D.62、在下列代数式3,23,1,2,21232-+++++x x yx b ab b a ab 中,多项式有( ) A.2个 B.3个 C.4个 D.5个3、单项式3432c b a 的系数和次数分别是( )A.1 , 9B.0 , 9C.31 , 9D.31, 244、下列各组单项式中,不是同类项的是( )A.321233ya y a 与 B.bm a mb a 226-与 C.3223与 D.3321-21xy y x 与5、多项式2232n m --是( ) A.二次二项式B.三次二项式C.四次二项式D.五次二项式6、若A 和B 都是4次多项式,则A+B 一定是( ) A.8次多项式 B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式7、一个多项式A 与多项式B=2x 2-3xy-y 2的和是多项式C=x 2+xy+y 2,则A 等于( ) A.2224y xy x -- B.2224y xy x ++- C.22223y xy x -- D.xy x 232- 8、在多项式5232+-xy x 中,最高次项是( ) A.x 3 B.x 3,xy 2 C.x 3 ,-xy 2 D.25 9、下列各项中,去括号正确的是( ) A.x 2-2(2x-y+2)=x 2-4x-2y+4 B.-3(m+n)-mn=-3m+3n-mnC.-(5x-3y)+4(2xy-y 2)=-5x+3y+8xy-4y 2D.ab-5(-a+3)=ab+5a-310.系数为21-且只含有x 、y 的四次单项式,可以写出( )A.1个B.2个C.3个D.4个 二、填空题(每小题3分,共30分)11、多项式-x 4+3x 3y-6x 2y 2-2y 4的次数是 .12、某厂今年的产值a 万元,若年平均增长率为x,则两年后的产值是 万元。

整式的加减 单元测试(含答案)

整式的加减 单元测试(含答案)

整式的加减 单元测试一、选择题(每小题3分,共15分):1.原产量n 吨,增产30%之后的产量应为( )(A )(1-30%)n 吨. (B )(1+30%)n 吨.(C )n+30%吨. (D )30%n 吨.2.下列说法正确的是( )(A )31a 2x 的系数为31. (B )221xy 的系数为x 21. (C )25x -的系数为5. (D )23x 的系数为3.3.下列计算正确的是( )(A )4x-9x+6x=-x. (B )02121=-a a . (C )x x x =-23. (D )xy xy xy 32=-.4.买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元.(A )4m+7n. (B )28mn. (C )7m+4n. (D )11mn.5.计算:3562+-a a 与1252-+a a 的差,结果正确的是( )(A )432+-a a (B )232+-a a (C )272+-a a (D )472+-a a .二、填空题(每小题4分,共24分):6.列示表示:p 的3倍的41是 . 7.34.0xy 的次数为 .8.多项式154122--+ab ab b 的次数为 . 9.写出235y x -的一个同类项 .10.三个连续奇数,中间一个是n ,则这三个数的和为 .11.观察下列算式:;1010122=+=- 3121222=+=-; 5232322=+=-;7343422=+=-; 9454522=+=-; ……若字母n 表示自然数,请把你观察到的规律用含n 的式子表示出来: .三、计算题(每小题5分,共30分):12.计算(每小题5分,共15分)(1)6321+-st st ; (2)67482323---++-a a a a a a ;(3)355264733---+++xy xy x xy xy ; 13. 计算(每小题6分,共12分)(1)2(2a-3b )+3(2b-3a );(2))]2([2)32(3)(222222y xy x x xy x xy x +------.14.先化间,再求值(每小题8分,共16分)(1))23(31423223x x x x x x -+--+,其中x=-3; (2))43()3(5212222c a ac b a c a ac b a -+---,其中a=-1,b=2,c=-2. 15.(9分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径r 米,广场长为a 米,宽为b 米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为500米,宽为200米,圆形花坛的半径为20米,求广场空地的面积(计算结果保留π)。

整式的加减测试题(含答案)

整式的加减测试题(含答案)

整式的加减单元测试题姓名: 得分:一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。

2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。

3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。

4、已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 。

5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。

6、计算:=-+-7533x x , )9()35(b a b a -+-= 。

7、计算:)2016642()201553(m m m m m m m m ++++-++++ = 。

8、-bc a 2+的相反数是 , π-3= 。

9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。

10、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。

11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。

12、多项式172332+--x x x 是 次 项式,最高次项是 。

二、选择题(每题3分,共30分) 13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x 14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。

B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍 15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a -- 17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( ) A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x 19、代数式,21a a +43,21,2009,,3,42mnbc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、6 20、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式 21、已知y x x n m n m 2652与-是同类项,则( ) A 、1,2==y x B 、1,3==y x C 、1,23==y x D 、0,3==y x 22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:;)()(,,0553212=+-m x y x m 满足2312722a b b a y 与+-)(是同类项,求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。

七年级数学上册《整式的加减》单元测试卷及答案

七年级数学上册《整式的加减》单元测试卷及答案

人教新版七年级上册《第2章整式的加减》单元测试(1)一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4 3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣44.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.46.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.17.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣109.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣411.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+112.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为.15.当k=时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=.17.已知a2+a﹣3=0,则2024﹣a2﹣a=.18.x2﹣2x+y=x2﹣().19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?人教新版七年级上册《第2章整式的加减》单元测试卷(1)参考答案与试题解析一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个【考点】整式.【分析】根据整式的定义,结合题意即可得出答案.【解答】解:整式有﹣mn,m,8,x2+2x+6,,,故选:C.2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式的系数与次数分别为,4,故选:D.3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣4【考点】合并同类项.【分析】根据合并同类项的法则判断即可得结论.【解答】解:﹣2x﹣2x=(﹣2﹣2)x=﹣4x.故选:B.4.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy【考点】同类项.【分析】根据同类项的概念逐一判断即可得.【解答】解:A.﹣a2b和ab2相同字母的指数不相同,不是同类项;B.a2和22所含字母不相同,不是同类项;C.﹣ab2和2b2a所含字母相同,且相同字母的指数也相同,是同类项;D.2ab与2xy所含字母不相同,不是同类项;故选:C.5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.4【考点】同类项.【分析】根据同类项的概念求出x、y的值,再代入所求式子计算即可.【解答】解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.6.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.1【考点】合并同类项.【分析】直接利用两式可以合并进而得出m=n+2,即可得出答案.【解答】解:∵﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m﹣n=2.故选:A.7.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定【考点】整式的加减.【分析】直接利用整式的加减运算法则计算进而得出答案.【解答】解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣10【考点】代数式求值.【分析】根据相反数的定义得:﹣2a﹣3b=﹣4,首先化简﹣4a﹣6b+1,然后把﹣2a﹣3b =﹣4代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a+3b=4,∴﹣2a﹣3b=﹣4,∴﹣4a﹣6b+1=2(﹣2a﹣3b)+1=﹣8+1=﹣7,故选:C.9.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1【考点】代数式求值;有理数的混合运算.【分析】根据题意一一计算即可判断.【解答】解:当m=﹣1,n=1时,y=2m﹣n+1=2×(﹣1)﹣1+1=﹣2,不合题意;当m=1,n=0时,y=2m+n=2×1+0=2,不合题意;当m=1,n=2时,y=2m﹣n+1=2×1﹣2+1=1,符合题意;当m=2,n=1时,y=2m+n=2×2+1=5,不合题意;故选:C.10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣4【考点】多项式.【分析】根据多项式的定义即可求解.【解答】解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.11.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+1【考点】多项式.【分析】字母b的最高次数为3,然后按照字母b的指数从高到低进行排列即可.【解答】解:1﹣5ab2﹣7b3+6a2b按字母b的降幂排列为﹣7b3﹣5ab2+6a2b+1.故选:D.12.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较【考点】整式的加减.【分析】首先计算两个整式的差,再通过分析差的正负性可得答案.【解答】解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>0,则B>A,故选:A.13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式【考点】多项式.【分析】根据多项式次数的定义知,该多项式的次数是5次,又因为次多项式有6个单项式组成,所以是五次六项式.【解答】解:多项式26﹣3x5+x4+x3+x2+x次数最高的项的次数是5,且有6个单项式组成,所以是五次六项式.故选:B.二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为2或1.【考点】多项式.【分析】根据多项式的次数定义和n是正整数得出4+n=6或4+n=5,求出n的值即可.【解答】解:∵x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,又∵n是正整数,∴4+n=6或4+n=5,∴n=2或n=1;故答案为:2或1.15.当k=2时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.【考点】合并同类项;多项式.【分析】根据多项式的概念即可求出答案.【解答】解:∵多项式x2+kxy﹣2xy﹣6中不含xy项,∴原式=x2+(k﹣2)xy﹣6令k﹣2=0,∴k=2故答案为:2.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=2.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.【解答】解:由单项式2x m y3与﹣3xy3n是同类项,得m=1,3n=3,解得m=1,n=1.∴m+n=1+1=2.故答案为:2.17.已知a2+a﹣3=0,则2024﹣a2﹣a=2021.【考点】代数式求值.【分析】由a2+a﹣3=0可得a2+a=3,再将a2+a=3整体代入要求的式子即可.【解答】解:∵a2+a﹣3=0,∴a2+a=3,∴2024﹣a2﹣a=2024﹣(a2+a)=2024﹣3=2021,故答案为:2021.18.x2﹣2x+y=x2﹣(2x﹣y).【考点】去括号与添括号.【分析】本题添了1个括号,且所添的括号前为负号,括号内各项改变符号.【解答】解:根据添括号的法则可知,x2﹣2x+y=x2﹣(2x﹣y),故答案为:2x﹣y.19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值14.【考点】整式的加减.【分析】先将代数式(5x+2)﹣(3xy﹣5y)化简为:5(x+y)﹣3xy+2,然后把x+y=3,xy=1代入求解即可.【解答】解:∵x+y=3,xy=1,∴(5x+2)﹣(3xy﹣5y)=5x+2﹣3xy+5y=5(x+y)﹣3xy+2=5×3﹣3×1+2=14.故答案为:14.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.【考点】合并同类项.【分析】这个式子的运算是合并同类项的问题.根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:原式=(3x2﹣3x2)+(2xy﹣3xy)+(4y2﹣4y2)=﹣xy.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.【考点】整式的加减—化简求值.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:原式=12a2+6a﹣2a2﹣3a+5=10a2+3a+5.当a=﹣2时,原式=10×(﹣2)2+3×(﹣2)+5=40﹣6+5=39.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.【考点】整式的加减—化简求值.【分析】(1)先去掉括号,再合并同类项即可得出答案;(2)先去掉括号,再合并同类项即可;(3)先把给出的式子进行化简,再代入x,y的值进行计算即可;(4)根据题意先列出算式,再合并同类项,最后把x,y的值进行计算即可.【解答】解:(1)(5a+4c+7b)+(5c﹣3b﹣6a)=5a+4c+7b+5c﹣3b﹣6a=5a﹣6a+7b﹣3b+4c+5c=﹣a+4b+9c;(2)(2a2b﹣ab2)﹣2(ab2+3a2b)=2a2b﹣ab2﹣2ab2﹣6a2b=2a2b﹣6a2b﹣ab2﹣2ab2=﹣4a2b﹣3ab2;(3)4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=1,y=﹣2时原式=(﹣2)2+5×1×(﹣2)=4﹣10=﹣6;(4)2A﹣B=2(4x2y﹣5xy2)﹣(3x2y﹣4y2)=8x2y﹣10xy2﹣3x2y+4y2=5x2y﹣10xy2+4y2当x=﹣2,y=1时,原式=5×(﹣2)2×1﹣10×(﹣2)×12+4×12=5×4×1﹣(﹣20)×1+4=20+20+4=44.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.【考点】合并同类项;多项式;绝对值;代数式求值.【分析】(1)先把多项式合并同类项,再令含x项的系数等于0,求出m、n的值即可;(2)先把多项式合并同类项,然后根据多项式不含二次项,得到关于m、n的一次方程,求出m、n的值,再代入计算即可.(3)根据四次三项式的概念,得关于k的方程,求解即可.【解答】解:(1)原式=(m﹣1)x2+(3+n)xy﹣2y2﹣2y+6.∵原式的值与x的值无关,∴m﹣1=0,3+n=0,∴m=1,n=﹣3,∴(m+n)3=(1﹣3)3=﹣8,(2)原式=(6m﹣1)x2+(4n+2)xy+2x+y+4,∵多项式不含二次项,∴6m﹣1=0,4n+2=0.∴.∴.(3)由题意得:|k|+1+2=4,∴k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?【考点】列代数式.【分析】(1)先表示出第二车间的人数,再表示出第三车间的人数即可;(2)把表示三个车间的人数的代数式相加即可得到答案;(3)先表示出调动后第一车间的人数,再用调动后第一车间的人数减去第三车间的人数即可.【解答】解:(1)∵第二车间的人数比第一车间人数的少20人,即人,而第三车间人数是第二车间人数的多10人,∴第三车间的人数为:人;(2)三个车间共有:人;(3)(x+10)﹣(x﹣15)=25(人),答:原第三车间人数比调动后的第一车间人数少25人.。

人教版七年级数学上册第2章《整式的加减》单元测试题(含解析)

人教版七年级数学上册第2章《整式的加减》单元测试题(含解析)

人教版七年级数学上册第2章《整式的加减》单元测试题一.选择题1.在代数式﹣7,m,x3y2,,2x+3y中,整式有()A.2个B.3个C.4个D.5个2.若5y﹣2x=3,则代数式4﹣10y+4x的值是()A.﹣3 B.﹣2 C.0 D.73.多项式3xy2﹣2y+1的次数及一次项的系数分别是()A.3,2 B.3,﹣2 C.2,﹣2 D.4,﹣24.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y25.下列说法正确的是()A.单项式3ab的次数是1B.3a﹣2a2b+2ab是三次三项式C.单项式的系数是2D.﹣4a2b,3ab,5是多项式﹣4a2b+3ab﹣5的项6.裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,则下列各式中,能正确表示这个商店第一季度的总利润的是()A.50(1+m)万元B.50(1+m)2万元C.[50+50(1+m)]万元D.[50+50(1+m)+50(1+m)2]万元7.下列计算正确的是()A.3a+4b=7ab B.3a﹣2a=1C.3a2b﹣2ab2=a2b D.2a2+3a2=5a28.若与的和是单项式,则a+b=()A.﹣3 B.0 C.3 D.69.已知A=x2+3y2﹣5xy与B=2xy+2x2﹣y2,则3A﹣B为()A.3x2+y2﹣3xy B.﹣x2+4y2﹣7xyC.x2+10y2﹣17xy D.5x2+8y2﹣13xy10.一个代数式加上﹣5+3x﹣6x2得到4x2﹣5x,则这个代数式是()A.10x2﹣8x+5 B.8x2﹣8x﹣5 C.2x2﹣8x+5 D.10x2﹣8x﹣5 11.下列去括号运算正确的是()A.﹣(x﹣y+z)=﹣x﹣y﹣zB.x﹣(y﹣z)=x﹣y﹣zC.x﹣2(x+y)=x﹣2x+2yD.﹣(a﹣b)﹣(﹣c﹣d)=﹣a+b+c+d12.一个多项式加上12y+7x+z2等于5y+3x﹣15z2,则这个多项式是()A.﹣7y﹣4x﹣16z2B.7y+4x+16z2C.17y+10x﹣14z2D.7y+4x﹣16z2二.填空题13.若a﹣2b=3,则4b﹣2a=.14.长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,则共需花费元.15.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.16.a的3倍与b的倒数的差,用代数式表示为.17.若代数式x2+x+3的值的值为7,则代数式的值为.18.已知关于x,y的多项式﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7不含二次项,则m+n=.19.已知三角形的周长为3m﹣n,其中两边的和为2m,则此三角形第三边的长为.20.甲、乙、丙三人有相同数量的小球.如果甲给乙2颗,丙给甲5颗,然后乙再给丙一些球,所给的数量与丙还有的球数量相同,那么乙最后剩下颗球.三.解答题21.在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式﹣2x2﹣4x+1的一次项系数,b是数轴上最小的正整数,单项式的次数为c.(1)a=,b=,c=.(2)请你画出数轴,并把点A,B,C表示在数轴上;(3)请你通过计算说明线段AB与AC之间的数量关系.22.一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长l;(2)花坛的面积S;(3)若a=8m,r=5m,求此时花坛的周长及面积(π取3.14).23.已知A=3a2b﹣2ab2+abc,小明错将“C=2A﹣B”看成“C=2A+B”,算得结果C=4a2b﹣3ab2+4abc.(1)求正确的结果的表达式;(2)小芳说(1)中结果的大小与c的取值无关,对吗?若a=2,b=,求(1)中代数式的值.24.先化简,再求值:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)的值,其中x=1,y=﹣2.25.先化简,再求值:2x2﹣[3(﹣x2+xy)﹣(xy﹣3x2)]+2xy,其中x是﹣2的倒数,y 是最大的负整数.参考答案1.解:在代数式﹣7,m,x3y2,,2x+3y中,整式有:﹣7,m,x3y2,2x+3y共4个.故选:C.2.解:∵5y﹣2x=3,∴原式=4﹣2×(5y﹣2x)=4﹣2×3=﹣2,故选:B.3.解:多项式3xy2﹣2y+1的次数是:3,一次项的系数是:﹣2.故选:B.4.解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.5.解:A、单项式3ab的次数是2,故此选项错误;B、3a﹣2a2b+2ab是三次三项式,故此选项正确;C、单项式的系数是,故此选项错误;D、﹣4a2b,3ab,﹣5是多项式﹣4a2b+3ab﹣5的项,故此选项错误;故选:B.6.解:∵裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,∴二月份的利润为50(1+m)万元,三月份的利润为50(1+m)2,∴这个商店第一季度的总利润是[50+50(1+m)+50(1+m)2]万元.故选:D.7.解:A、3a和4b不能合并,故本选项不符合题意;B、3a﹣2a=a,故本选项不符合题意;C、3a2b和﹣2ab2不能合并,故本选项不符合题意;D、2a2+3a2=5a2,故本选项符合题意;故选:D.8.解:根据题意可得:,解得:,所以a+b=3+0=3,故选:C.9.解:∵A=x2+3y2﹣5xy与B=2xy+2x2﹣y2,∴3A﹣B=3(x2+3y2﹣5xy)﹣(2xy+2x2﹣y2)=3x2+9y2﹣15xy﹣2xy﹣2x2+y2=x2+10y2﹣17xy.故选:C.10.解:由题意得:这个代数式=(4x2﹣5x)﹣(﹣5+3x﹣6x2)=4x2﹣5x+5﹣3x+6x2=10x2﹣8x+5.故选:A.11.解:A、原式=﹣x+y﹣z,不符合题意;B、原式=x﹣y+z,不符合题意;C、原式=x﹣2x﹣2y=﹣x﹣2y,不符合题意;D、原式=﹣a+b+c+d,符合题意,故选:D.12.解:根据题意得:(5y+3x﹣15z2)﹣(12y+7x+z2)=5y+3x﹣15z2﹣12y﹣7x﹣z2=﹣7y ﹣4x﹣16z2,故选:A.13.解:∵a﹣2b=3.4b﹣2a=2(2b﹣a)=2×(﹣3)=﹣6.故答案为:﹣6.14.解:根据单价×数量=总价得,共需花费(30m+15n)元,故答案为:(30m+15n).15.解:∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,∴n﹣2=0,1+|m﹣n|=3,∴n=2,|m﹣n|=2,∴m﹣n=2或n﹣m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.16.解:由题意可得:3a﹣.故答案为:3a﹣.17.解:∵x2+x+3=7,∴x2+x=4,∴原式=(x2+x)﹣5=×4﹣5=1﹣5=﹣4,故答案为:﹣418.解:﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7=﹣5x2y﹣(2n+3)xy+5my2+4x﹣7,∵多项式不含二次项,∴5m=0,2n+3=0,解得m=0,n=﹣1.5,∴m+n=﹣1.5,故答案为:﹣1.5.19.解:由题意可知:3m﹣n﹣2m=m﹣n.故答案为:m﹣n.20.解:设甲、乙、丙原来有a颗小球,乙最后剩下的小球有:a+2﹣(a﹣5)=a+2﹣a+5=7,故答案为:7.21.解:(1)多项式﹣2x2﹣4x+1的一次项系数是﹣4,则a=﹣4,数轴上最小的正整数是1,则b=1,单项式的次数为6,则c=6,故答案为:﹣4,1,6;(2)如图所示,,点A,B,C即为所求.;(3)AB=b﹣a=1﹣(﹣4)=5,AC=c﹣a=6﹣(﹣4)=10.∵10÷5=2,∴AC=2AB.22.解:(1)花坛的周长l=2a+2πr,(2)花坛的面积S=2ra+πr2,(3)l=2a+2πr=16+10π=47.4(米),S=2ra+πr2=2×5×8+3.14×25=158.5(平方米).23.解:(1)∵2A+B=C,∴B=C﹣2A=4a2b﹣3ab2+4abc﹣2(3a2b﹣2ab2+abc)=4a2b﹣3ab2+4abc﹣6a2b+4ab2﹣2abc=﹣2a2b+ab2+2abc;∴2A﹣B=2(3a2b﹣2ab2+abc)﹣(﹣2a2b+ab2+2abc)=6a2b﹣4ab2+2abc+2a2b﹣ab2﹣2abc=8a2b﹣5ab2;(2)小芳说的对,与c无关,将a=2,b=代入,得:8a2b﹣5ab2==6.24.解:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2=﹣6xy当x=1,y=﹣2时,原式=﹣6×1×(﹣2)=12.25.解:原式=2x2+5x2﹣2xy+xy﹣3x2+2xy=4x2+xy,∵x是﹣2的倒数,y是最大的负整数,∴x=﹣,y=﹣1,则原式=1.。

七年级数学整式的加减单元测试题(含答案)

七年级数学整式的加减单元测试题(含答案)

七年级数学整式的加减单元测试题(含答案)份报纸,若他获得了10元的利润,则a与b的关系式为a=。

b=。

16、将多项式3x3-2x2+5x+1与多项式2x3+4x2-3x+2相减,得到的结果多项式的次数是。

17、已知多项式P(x)=x3-3x2+2x-5,求P(2)的值。

18、将多项式4x3-5x2+3x-2分解因式,得到的结果是。

19、将多项式x4-2x3+3x2-4x+5除以x-2,商式为。

余式为。

20、将多项式2x4-5x3+3x2-7x+4乘以3x-2,得到的结果是。

第八章整式的加减单元测试一、选择题(每小题3分,共30分)1.在下列代数式a+1a+b13,4xy,a,2009,a2bc,-mn中,单项式的个数是()A.3B.4C.5D.62、在下列代数式ab,22xy,a2b3c4中,多项式有()A.2个B.3个C.4个D.5个3、单项式的系数和次数分别是()A.1,9B.0,9C.3,9D.3,244、下列各组单项式中,不是同类项的是()A.12ay与2ya3B.6a2mb与-a2bmC.23与32D.x3y与-xy35、多项式-23m2-n2是()A.二次二项式B.三次二项式C.四次二项式D.五次二项式6、若A和B都是4次多项式,则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式7、一个多项式A与多项式B=2x2-3xy-y2的和是多项式C=x2+xy+y2,则A等于()A.x2-4xy-2y2B.-x2+4xy+2y2C.3x2-2xy-2y2D.3x2-2xy8、在多项式x3-xy2+25中,最高次项是()A.x3B.x3,xy2C.x3,-xy2D.259、下列各项中,去括号正确的是()A.x2-2(2x-y+2)=x2-4x-2y+4B.-3(m+n)-mn=-3m+3n-mnC.-(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2D.ab-5(-a+3)=ab+5a-310.系数为-且只含有x、y的四次单项式,可以写出()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共30分)11、多项式-x4+3x3y-6x2y2-2y4的次数是4.12、某厂今年的产值a万元,若年平均增长率为x,则两年后的产值是a(1+2x)万元。

人教版数学七年级上册第二章整式的加减《单元测试》(含答案)

人教版数学七年级上册第二章整式的加减《单元测试》(含答案)

人教版七年级上册整式的加减测试卷第Ⅰ卷(选择题)一.选择题(共10小题)1.下列说法正确的是( )A. 单项式3πx2y3的系数是3B. 单项式﹣6x2y的系数是6C. 单项式﹣xy2的次数是3D. 单项式x3y2z的次数是52.下列各组单项式中,是同类项的是( )A. 与﹣x2yB. 2a2b与2ab2C. a与1D. 2xy与2xyz3.在下列各式:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有( )A. 2个B. 3个C. 4个D. 5个4.化简a﹣(b﹣c)正确的是( )A. a﹣b+cB. a﹣b﹣cC. a+b﹣cD. a+b+c5.多项式4xy2﹣3xy+12的次数为( )A. 3B. 4C. 6D. 76.一个多项式加上﹣2a+7等于3a2+a+1,则这个多项式是( )A. 3a2﹣a﹣6B. 3a2+3a+8C. 3a2+3a﹣6D. ﹣3a2﹣3a+67.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为( )A. 6B. 8C. 9D. 128.如图1为2018年5月份的日历表,某同学任意框出了其中的四个数字,如图2,若用m表示框图中相应位置的数字,则“?”位置的数字可表示为( )A. m+1B. m+5C. m+6D. m+79.下列各项去括号正确的是( )A. ﹣3(m+n)﹣mn=﹣3m+3n﹣mnB. ﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C. ab﹣5(﹣a+3)=ab+5a﹣3D. x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+410.若单项式2x3y2m与﹣3x n y2的差仍是单项式,则m+n的值是( )A. 2B. 3C. 4D. 5二.填空题(共6小题)11.﹣3xy﹣x3+xy3是_____次多项式.12.单项式﹣π2x2y的系数是_____,次数是_____.13.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)14.若两个单项式﹣3x m y2与﹣xy n的和仍然是单项式,则这个和的次数是_____.15.若关于x、y的代数式mx3﹣3nxy2+2x3﹣xy2+y中不含三次项,则(m﹣3n)2018=_____.16.若,,则的值为______________.三.解答题(共7小题)17.化简:(1)2a﹣4b﹣3a+6b(2)(7y﹣5x)﹣2(y+3x)18.通常用作差法可以比较两个数或者两个式子的大小.(1)如果a﹣b>0,则a b;如果a﹣b=0,则a b;如果a﹣b<0,则a b;(用“>”、“<”、“=”填空)(2)已知A=5m2﹣4(m﹣),B=7m2﹣7m+3,请用作差法比较A与B的大小.19.在对多项式(x2y+5xy2+5)﹣[(3x2y2+x2y)﹣(3x2y2﹣5xy2﹣2)]代入计算时,小明发现不论将x、y任意取值代入时,结果总是同一个定值,为什么?20.先化简,再求值:8a2﹣10ab+2b2﹣(2a2﹣10ab+8b2),其中a=,b=﹣.21.已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B“看成”2A+B“,算得结果C=4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值.22.对于有理数a,b定义a△b=3a+2b,化简式子[(x+y)△(x-y)]△3x23.从A地途径B地、C地,终点E地的长途汽车上原有乘客(6x+2y)人,在B地停靠时,上来(2x﹣y)人,在C地停靠时,上来了(2x+3y)人,又下去了(5x﹣2y)人.(1)途中两次共上车多少人?(2)到终点站E地时,车上共有多少人?答案与解析第Ⅰ卷(选择题)一.选择题(共10小题)1.下列说法正确的是( )A. 单项式3πx2y3的系数是3B. 单项式﹣6x2y的系数是6C. 单项式﹣xy2的次数是3D. 单项式x3y2z的次数是5【答案】C【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】A、单项式3πx2y3的系数是3π,故此选项错误;B、单项式-6x2y的系数是-6,故此选项错误;C、单项式-xy2的次数是3,正确;D、单项式x3y2z的次数是6,故此选项错误;故选C.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.2.下列各组单项式中,是同类项的是( )A. 与﹣x2yB. 2a2b与2ab2C. a与1D. 2xy与2xyz【答案】A【解析】【分析】直接利用同类项的定义分析得出答案.【详解】A、与-x2y,是同类项,符合题意;B、2a2b与2ab2,不是同类项,不合题意;C、a与1,不是同类项,不合题意;D、2xy与2xyz,不是同类项,不合题意;故选A.【点睛】此题主要考查了同类项,正确把握相关定义是解题关键.3.在下列各式:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】直接利用多项式的定义分析得出答案.【详解】ab,,ab2+b+1,-9,x3+x2-3中,多项式有:,ab2+b+1,x3+x2-3共3个.故选B.【点睛】此题主要考查了多项式,正确把握多项式定义是解题关键.4.化简a﹣(b﹣c)正确的是( )A. a﹣b+cB. a﹣b﹣cC. a+b﹣cD. a+b+c【答案】A【解析】【分析】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【详解】a-(b-c)=a-b+c.故选A.【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.顺序为先大后小.5.多项式4xy2﹣3xy+12的次数为( )A. 3B. 4C. 6D. 7【答案】A【解析】【分析】直接利用多项式的次数确定方法是解题关键.【详解】多项式4xy2-3xy+12的次数为,最高此项4xy2的次数为:3.故选A.【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.6.一个多项式加上﹣2a+7等于3a2+a+1,则这个多项式是( )A. 3a2﹣a﹣6B. 3a2+3a+8C. 3a2+3a﹣6D. ﹣3a2﹣3a+6【答案】C【解析】【分析】先根据题意列出算式,再去掉括号合并同类项即可.【详解】根据题意得:这个多项式为(3a2+a+1)-(-2a+7)=3a2+a+1+2a-7=3a2+3a-6,故选C.【点睛】本题考查了整式的加减和列代数式,能根据题意列出算式是解此题的关键.7.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为( )A. 6B. 8C. 9D. 12【答案】D【解析】【分析】设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个长方形面积的差.【详解】设重叠部分的面积为c,则a-b=(a+c)-(b+c)=35-23=12,故选D.【点睛】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.8.如图1为2018年5月份的日历表,某同学任意框出了其中的四个数字,如图2,若用m表示框图中相应位置的数字,则“?”位置的数字可表示为( )A. m+1B. m+5C. m+6D. m+7【答案】C【解析】【分析】由日历中数字可得答案.【详解】由于在日历中一行为七天,所以m正下面一个数为m+7,所以?为m+7-1m+6,所以答案选择C项.【点睛】本题考查了用已知数表示未知数,了解一行为七天是解决本题的关键.9.下列各项去括号正确的是( )A. ﹣3(m+n)﹣mn=﹣3m+3n﹣mnB. ﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C. ab﹣5(﹣a+3)=ab+5a﹣3D. x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+4【答案】B【解析】【分析】根据去括号法则逐个判断即可.【详解】A、-3(m+n)-mn=-3m-3n-mn,错误,故本选项不符合题意;B、-(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2,正确,故本选项符合题意;C、ab-5(-a+3)=ab+5a-15,错误,故本选项不符合题意;D、x2-2(2x-y+2)=x2-4x+2y-4,错误,故本选项不符合题意;故选B.【点睛】本题考查了去括号法则,能熟记去括号法则的内容是解此题的关键.10.若单项式2x3y2m与﹣3x n y2的差仍是单项式,则m+n的值是( )A. 2B. 3C. 4D. 5【答案】C【解析】【分析】根据合并同类项法则得出n=3,2m=2,求出即可.【详解】∵单项式2x3y2m与-3x n y2的差仍是单项式,∴n=3,2m=2,解得:m=1,∴m+n=1+3=4,故选C.【点睛】本题考查了合并同类项和单项式,能根据题意得出n=3、2m=2是解此题的关键.二.填空题(共6小题)11.﹣3xy﹣x3+xy3是_____次多项式.【答案】四【解析】【分析】直接利用多项式的次数确定方法分析得出答案.【详解】-3xy-x3+xy3是四次多项式.【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.12.单项式﹣π2x2y的系数是_____,次数是_____.【答案】(1). ﹣π2(2). 3【解析】【分析】由于单项式中数字因数叫做单项式的系数,所有字母的指数和是单项式的次数,由此即可求解.【详解】由单项式的系数及其次数的定义可知,单项式﹣π2x2y的系数是﹣π2,次数是3.故答案为:﹣π2,3.【点睛】此题主要考查了单项式的系数及其次数的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.13.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)【答案】x2y2【解析】【分析】根据单项式的定义即可求出答案.【详解】由题意可知:x2y2,故答案为:x2y2【点睛】本题考查单项式的定义,解题的关键是熟练运用单项式的定义,本题属于基础题型.14.若两个单项式﹣3x m y2与﹣xy n的和仍然是单项式,则这个和的次数是_____.【答案】3【解析】【分析】根据同类项的定义直接可得到m、n的值.【详解】因为两个单项式-3x m y2与-xy n的和仍然是单项式,所以m=1,n=2,所以这个和的次数是1+2=3,【点睛】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.15.若关于x、y的代数式mx3﹣3nxy2+2x3﹣xy2+y中不含三次项,则(m﹣3n)2018=_____.【答案】1【解析】【分析】不含三次项,则三次项的系数为0,从而可得出m和n的值,代入即可得出答案.【详解】∵代数式mx3-3nxy2+2x3-xy2+y中不含三次项,∴m=-2,-3n=1,解得:m=-2,n=-,∴(m-3n)2018=1.故答案为:1.【点睛】此题考查了多项式的知识,要求我们掌握多项式的次数、系数指的是哪一部分,难度一般.16.若,,则的值为______________.【答案】【解析】试题解析:m2+mn=-5①,n2-3mn=10②,①-②得:m2+mn-n2+3mn=m2+4mn-n2=-5-10=-15.故答案为:-15.三.解答题(共7小题)17.化简:(1)2a﹣4b﹣3a+6b(2)(7y﹣5x)﹣2(y+3x)【答案】(1)﹣a+2b;(2)﹣11x+5y.【解析】【分析】(1)直接合并同类项即可;(2)先去括号,然后合并同类项.【详解】(1)原式=﹣a+2b;(2)原式=7y﹣5x﹣2y﹣6x=﹣11x+5y.【点睛】本题考查了整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.18.通常用作差法可以比较两个数或者两个式子的大小.(1)如果a﹣b>0,则a b;如果a﹣b=0,则a b;如果a﹣b<0,则a b;(用“>”、“<”、“=”填空)(2)已知A=5m2﹣4(m﹣),B=7m2﹣7m+3,请用作差法比较A与B的大小.【答案】(1)>;=;<;(2)A<B.【解析】【分析】(1)根据题意,利用整式的加减法法则判断即可;(2)利用做差法判断即可.【详解】(1)如果a﹣b>0,则a>b;如果a﹣b=0,则a=b;如果a﹣b<0,则a<b;故答案为:>;=;<;(2)∵A﹣B=5m2﹣4(m﹣)﹣(7m2﹣7m+3)=﹣2m2﹣1<0,∴A<B.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.在对多项式(x2y+5xy2+5)﹣[(3x2y2+x2y)﹣(3x2y2﹣5xy2﹣2)]代入计算时,小明发现不论将x、y任意取值代入时,结果总是同一个定值,为什么?【答案】结果是定值,与x、y取值无关.【解析】【分析】原式去括号、合并同类项得出其结果,从而得出结论.【详解】(x2y+5xy2+5)-[(3x2y2+x2y)-(3x2y2-5xy2-2)]=x2y+5xy2+5-(3x2y2+x2y-3x2y2+5xy2+2)=x2y+5xy2+5-3x2y2-x2y+3x2y2-5xy2-2=(x2y-x2y)+(5xy2-5xy2)+(-3x2y2+3x2y2)+(5-2)=3,∴结果是定值,与x、y取值无关.【点睛】本题主要考查整式的加减-化简求值,解题的关键是掌握整式的加减运算顺序和运算法则.20.先化简,再求值:8a2﹣10ab+2b2﹣(2a2﹣10ab+8b2),其中a=,b=﹣.【答案】6a2﹣6b2,.【解析】【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】原式=8a2﹣10ab+2b2﹣2a2+10ab﹣8b2=6a2﹣6b2,当a=,b=﹣时,原式=.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21.已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B“看成”2A+B“,算得结果C=4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值.【答案】(1)﹣2a2b+ab2+2abc; (2)8a2b﹣5ab2;(3)0.【解析】【分析】(1)由2A+B=C得B=C-2A,将C、A代入后,再去括号后合并同类项化为最简即可;(2)将A、B代入2A-B,,再去括号后合并同类项化为最简即可;(3)由化简后的代数式中无字母c可知其值与c无关,将a、b的值代入计算即可.【详解】(1)∵2A+B=C,∴B=C-2A=4a2b-3ab2+4abc-2(3a2b-2ab2+abc)=4a2b-3ab2+4abc-6a2b+4ab2-2abc=-2a2b+ab2+2abc.(2)2A-B=2(3a2b-2ab2+abc)-(-2a2b+ab2+2abc)=6a2b-4ab2+2abc+2a2b-ab2-2abc=8a2b-5ab2.(3)对,与c无关,将a=,b=代入,得8a2b-5ab2=8××-5××=0.【点睛】本题考查了整式加减的应用,整式的加减实质上是去括号后合并同类项.熟知去括号法则和合并同类项法则是解题的关键.22.对于有理数a,b定义a△b=3a+2b,化简式子[(x+y)△(x-y)]△3x【答案】21x+3y【解析】整体分析:根据定义a△b=3a+2b,先小括号,后中括号依次化简[(x+y)△(x-y)]△3x.解:原式=[3(x+y)+2(x-y)]△3x=(3x+3y+2x-2y)△3x=(5x+y)△3x=3(5x+y)+6x=15x+3y+6x=21x+3y.23.从A地途径B地、C地,终点E地的长途汽车上原有乘客(6x+2y)人,在B地停靠时,上来(2x﹣y)人,在C地停靠时,上来了(2x+3y)人,又下去了(5x﹣2y)人.(1)途中两次共上车多少人?(2)到终点站E地时,车上共有多少人?【答案】(1)(4x+2y)人;(2)(5x+6y)人【解析】【分析】(1)将途中两次上车人数相加,计算即可求解;(2)将(1)中所求结果加上车上原有人数、减去下去的人数即可.【详解】(1)根据题意知,途中两次共上车2x﹣y+2x+3y=4x+2y(人);(2)6x+2y+4x+2y﹣(5x﹣2y)=10x+4y﹣5x+2y=5x+6y,故到终点站E地时,车上共有(5x+6y)人.【点睛】本题考查了整式的加减、去括号法则两个考点.能够根据题意正确列式是解题的关键.。

人教版数学七年级上册第二章整式的加减《单元测试》附答案

人教版数学七年级上册第二章整式的加减《单元测试》附答案

人教版数学七年级上学期第二章整式的加减测试一、选择题(20分)1.下列说法中正确的是()A. 单项式的系数是-2,次数是2B. 单项式a的系数是0,次数也是0C. 的系数是1,次数是10D. 单项式的系数是,次数是32.若单项式与是同类项,则m的值为()A. 4B. 2或-2C. 2D. -23.计算(3a2-2a+1)-(2a2+3a-5)的结果是()A. a2-5a+6B. 7a2-5a-4C. a2+a-4D. a2+a+64.当时,代数式的值为()A. B. C. D. 135.如果长方形周长为4a,一边长为a+b,,则另一边长为()A. 3a-bB. 2a-2bC. a-bD. a-3b6.一个两位数,十位数字是a,个位数字是b,则这个两位数为()A. abB. 10a +bC. 10b +aD. a +b7.观察图中给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为( ).A. 3n-2B. 3n-1C. 4n+1D. 4n-38.长方形的一边长为2a+b,另一边比它大a-b,则周长为( )A. 10a+2bB. 5a+bC. 7a+bD. 10a-b9.两个同类项的和是()A. 单项式B. 多项式C. 可能是单项式也可能是多项式D. 以上都不对10.如果A是3次多项式,B也是3次多项式,那么A+B一定是()A. 6次多项式B. 次数不低于3次的多项式C. 3次多项式D. 次数不高于3次的整式二、填空题(32分)11.单项式的系数是___________,次数是___________.12.2a4+a3b2-5a2b3+a-1是____次____项式.它的第三项是__________.把它按a的升幂排列是____________________.13.计算的结果为______________.14.一个三角形的第一条边长为(a+b)cm,第二条边比第一条边的2倍长b cm.则第三条边x的取值范围是__________.15.如图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n条“金鱼”需要火柴____________根.(用含n 的式子表示)……16.观察下列等式9-1=8,16-4=12,25-9=16,36-16=20……这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为______________.17.如图,阴影部分的面积用整式表示为_________.18.若:与的和仍是单项式,则_______19.若与所得的差是单项式,则m= ______n= ______.20.当k=______时,多项式-7kxy++7xy+5y中不含xy项.三、解答题(48分)21.(1)(2)(3)22.先化简再求值(1)9y-{159-[4y-(11x-2y)-10x]+2y},其中x=-3,y=2.(2) ,其中,.23.一个四边形的周长是48厘米,已知第一条边长a厘米,第二条边比第一条边的2倍长3厘米,第三条边等于第一、二两条边的和,写出表示第四条边长的整式.24.大客车上原有(3a-b)人,中途下去一半人,又上车若干人,使车上共有乘客(8a-5b)人,问中途上车乘客是多少人?当a=10,b=8时,上车乘客是多少人?25.若多项式-6xy+2x-3y与+bxy+3ax-2by的和不含二次项,求a、b的值。

人教版七年级上册数学第二章整式的加减单元检测(附答案)

人教版七年级上册数学第二章整式的加减单元检测(附答案)

人教版数学七年级上册第二章整式的加减综合能力测试第Ⅰ卷(选择题)一.选择题(共10小题,满分40分,每小题4分)1.下列代数式中,整式为()A. x+1B.C.D.2.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A. 7个B. 6个C. 5个D. 4个3.单项式2πr3的系数是()A. 3B. πC. 2D. 2π4.单项式2a3b的次数是()A. 2B. 3C. 4D. 55.对于式子:,,,3x2+5x-2,abc,0,,m,下列说法正确的是( )A. 有5个单项式,1个多项式B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式6.下列说法正确的是( )A. -的系数是-3B. 2m2n的次数是2C. 是多项式D. x2-x-1的常数项是17.如果2x a+1y与x2y b﹣1是同类项,那么的值是()A. B. C. 1 D. 38.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 99.下面计算正确的是()A. (m+1)a﹣ma=1B. a+3a2=4a3C. ﹣(a﹣b)=﹣a+bD. 2(a+b)=2a+b10.一个长方形的周长为6a+8b,其中一边长为2a﹣b,则另一边长为()A. 4a+5bB. a+bC. a+5bD. a+7b第Ⅱ卷(非选择题)二.填空题(共4小题,满分20分,每小题5分)11.下列代数式:(1)mn,(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+中,整式有______.(填序号)12.如果多项式(﹣a﹣1)x2﹣x b+x+1是关于x的四次三项式,那么这个多项式的最高次项系数是_____,2次项是_____13.如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a﹣b)米.问小明家楼梯的竖直高度(即:BC的长度)为_____米.14.若x=y+3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)+7等于_____.三.解答题(共9小题,满分90分)15.计算:(1)3xy﹣4xy﹣(﹣2xy)(2)(﹣3)2÷2÷(﹣)+4+22×(﹣)16.若3x m y n是含有字母x和y的五次单项式,求m n的最大值.17.已知多项式x2y m+1+xy2–3x3–6是六次四项式,单项式6x2n y5–m的次数与这个多项式的次数相同,求m+n的值.18.如果两个关于x、y的单项式2mx a y3与﹣4nx3a﹣6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m﹣2n﹣1)2017的值.19.若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值.20.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.21.嘉淇准备完成题目:化简:(x²+6x+8)-(6x+5x²+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?22.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:﹣(a2+4ab+4b2)=a2﹣4b2(1)求所捂的多项式(2)当a=﹣2,b=时,求所捂的多项式的值答案与解析第Ⅰ卷(选择题)一.选择题(共10小题,满分40分,每小题4分)1.下列代数式中,整式为()A. x+1B.C.D.【答案】A【解析】【分析】直接利用整式、分式、二次根式的定义分析得出答案.【详解】A、x+1是整式,故此选项正确;B、是分式,故此选项错误;C、是二次根式,故此选项错误;D、是分式,故此选项错误,故选A.【点睛】本题考查了整式、分式、二次根式的定义,熟练掌握相关定义是解题关键.2.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A. 7个B. 6个C. 5个D. 4个【答案】B【解析】【分析】分母中含有字母的式子一定不是多项式也不是单项式,因此其不是整式.所有单项式和多项式都是整式. 【详解】在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式有:π,x+xy,3x2+nx+4,﹣x,3,5xy,共有6个.故选:B【点睛】本题考核知识点:整式. 解题关键点:理解整式的意义.3.单项式2πr3的系数是()A. 3B. πC. 2D. 2π【答案】D【解析】【分析】根据单项式中的数字因数是单项式的系数求解即可.【详解】单项式2πr3的系数是2π.故选D.【点睛】本题考查了单项式的概念,单项式中的数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和.4.单项式2a3b的次数是()A. 2B. 3C. 4D. 5【答案】C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选:C.点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.5.对于式子:,,,3x2+5x-2,abc,0,,m,下列说法正确的是( )A. 有5个单项式,1个多项式B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式【答案】C【解析】分析:分别利用多项式以及单项式的定义分析得出答案.详解:,,,3x2+5x﹣2,abc,0,,m中:有4个单项式:,abc,0,m;2个多项式为:,3x2+5x-2.故选:C.点睛:此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.6.下列说法正确的是( )A. -的系数是-3B. 2m2n的次数是2C. 是多项式D. x2-x-1的常数项是1【答案】C【解析】分析:直接利用单项式以及多项式的定义分别分析得出答案.详解:A.﹣的系数是﹣,故此选项错误;B.2m2n的次数是3次,故此选项错误;C.是多项式,正确;D.x2﹣x﹣1的常数项是﹣1,故此选项错误.故选C.点睛:本题主要考查了单项式以及多项式,正确把握相关定义是解题的关键.7.如果2x a+1y与x2y b﹣1是同类项,那么的值是()A. B. C. 1 D. 3【答案】A【解析】【分析】根据同类项的概念可得a+1=2,b-1=1,解方程求得a、b的值,代入进行计算即可得.【详解】由题意得:a+1=2,b-1=1,解得:a=1,b=2,所以=,故选A.【点睛】本题考查了同类项,熟知所含字母相同,相同字母的指数也相同的项是同类项是解题的关键.8.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【答案】C【解析】分析:首先可判断单项式a m-1b2与a2b n是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m-1b2与a2b n的和仍是单项式,∴单项式a m-1b2与a2b n是同类项,∴m-1=2,n=2,∴m=3,n=2,∴n m=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.9.下面计算正确的是()A. (m+1)a﹣ma=1B. a+3a2=4a3C. ﹣(a﹣b)=﹣a+bD. 2(a+b)=2a+b【答案】C【解析】【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.【详解】A. (m+1)a﹣ma=a≠1,故此选项错误;B.a与3a2不是同类项,不能合并,故此选项错误;C. ﹣(a﹣b)=﹣a+b,故此选项正确;D. 2(a+b)=2a+2b≠2a+b,故此选项错误;故选C.【点睛】本题主要考查了合并同类项,去括号,关键是注意去括号时注意符号他变化,注意乘法分配律的应用,不要漏乘.10.一个长方形的周长为6a+8b,其中一边长为2a﹣b,则另一边长为()A. 4a+5bB. a+bC. a+5bD. a+7b【答案】C【解析】【分析】根据长方形的周长公式列出求边长的式子,再去括号,合并同类项即可.【详解】一个长方形的周长为6a+8b,一边长为2a﹣b,∴它的另一边长=(6a+8b )-( 2a﹣b)=3a+4b-2a+b=a+5b.故选C.【点睛】本题考查的是整式的加减的应用,熟知整式的加减实质上就是去括号合并同类项,正确列出算式是解答此题的关键.第Ⅱ卷(非选择题)二.填空题(共4小题,满分20分,每小题5分)11.下列代数式:(1)mn,(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+中,整式有______.(填序号)【答案】1)、(2)、(3)、(5)、(6)、(8).【解析】单项式和多项式统称整式,由此可得(1)mn,(2)m,(3),(5)2m+1,(6)都是整式,所以整式有(1)、(2)、(3)、(5)、(6)、(8).12.如果多项式(﹣a﹣1)x2﹣x b+x+1是关于x的四次三项式,那么这个多项式的最高次项系数是_____,2次项是_____【答案】(1). ﹣(2). 不存在【解析】【分析】由题意可得b=4,–a–1=0,求出a、b的值后再根据多项式的相关概念进行求解即可得.【详解】由题意得:b=4,–a–1=0,解得:a=–1,b=4,∴多项式–x 4+x+1的最高次项系数是–,2次项是0,故答案为:–;0.【点睛】本题考查了多项式的项数以及次数,熟练掌握多项式的项数及次数的概念是解题的关键.13.如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a﹣b)米.问小明家楼梯的竖直高度(即:BC的长度)为_____米.【答案】(a﹣2b)【解析】试题分析:根据平移可得蚂蚁所爬的距离=AB+BC,即3a-b=2a+b+BC.考点:代数式的减法计算14.若x=y+3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)+7等于_____.【答案】10【解析】【分析】由由x=y+3得x-y=3,整体代入原式计算即可.【详解】由x=y+3得x-y=3,将其代入要求的式子得:原式=,故答案为:10.【点睛】本题考查了整式的加减—化简求值,解题的关键是掌握整体代入思想的运用.三.解答题(共9小题,满分90分)15.计算:(1)3xy﹣4xy﹣(﹣2xy)(2)(﹣3)2÷2÷(﹣)+4+22×(﹣)【答案】(1)xy(2)-8【解析】【分析】(1) 先将括号去掉,然后根据合并同类项的法则:系数相加减,字母和字母的指数不变.据此合并即可;(2) 原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【详解】(1)原式=3xy﹣4xy+2xy=xy,(2)原式=9÷÷(﹣)+4+4×(﹣)=4×(﹣)+4﹣6=﹣6+4﹣6=﹣8【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.16.若3x m y n是含有字母x和y的五次单项式,求m n的最大值.【答案】9【解析】【分析】根据单项式的概念即可求出答案.【详解】因为3x m y n是含有字母x和y的五次单项式,所以m+n=5,且m、n均为正整数.当m=1,n=4时,m n=14=1;当m=2,n=3时,m n=23=8;当m=3,n=2时,m n=32=9;当m=4,n=1时,m n=41=4,故m n的最大值为9.【点睛】考查单项式的概念,解题关键是运用单项式的概念和分类讨论的思想.17.已知多项式x2y m+1+xy2–3x3–6是六次四项式,单项式6x2n y5–m的次数与这个多项式的次数相同,求m+n的值.【答案】5.【解析】【分析】根据多项式的次数和单项式的次数的定义进行分析解答即可.【详解】∵多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,∴2+m+1=6,解得:m=3,∵单项式26x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,∴2n=1+3=4,∴n=2.∴m+n=3+2=5.【点睛】熟知“(1)单项式的次数的定义:单项式中所有字母因数的指数之和叫做这个单项式的次数;(2)多项式的次数的定义:多项式的各项中,次数最高的项的次数就是这个多项式的次数”是解答本题的关键. 18.如果两个关于x、y的单项式2mx a y3与﹣4nx3a﹣6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m﹣2n﹣1)2017的值.【答案】(1)3(2)-1【解析】试题分析:(1)根据同类项的概念可得关于a 的方程,解方程即可得;(2)由已知可得2m-4n=0,从而得m-2n=0,代入进行计算即可得.试题解析:(1)∵关于x、y的两个单项式2mx a y3和﹣4nx3a﹣6y3是同类项,∴a=3a﹣6,解得:a=3;(2)∵2mx a y3+(﹣4nx3a﹣6y3)=0,则2m﹣4n=0,即m﹣2n=0,∴(m﹣2n﹣1)2017=(﹣1)2017=﹣1.19.若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值.【答案】【解析】【分析】与x无关说明含x的项都被消去,由此可得出m的值.【详解】(2mx2﹣x+3)﹣(3x2﹣x﹣4)=2mx2﹣x+3﹣3x2+x+4=(2m﹣3)x2+7,∵(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,∴2m﹣3=0,解得:m=.【点睛】本题考查整式的加减,解题的关键是正确理解(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关.20.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.【答案】(1)-3(2)【解析】【分析】(1)直接利用多项式的次数的确定方法得出m的值;(2)将x,y的值代入求出结果即可.【详解】(1)∵多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式,∴|m|﹣2+3=4,m﹣3≠0,解得:m=﹣3,(2)当x=,y=﹣1时,此多项式的值为:﹣6××(﹣1)3+()2×(﹣1)﹣2××(﹣1)2=9﹣﹣3=.【点睛】本题考查了多项式及绝对值的知识点,解题的关键是根据题意得出m的值.21.嘉淇准备完成题目:化简:(x²+6x+8)-(6x+5x²+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【答案】(1)﹣2x2+6;(2)a=5【解析】【分析】(1)由题意可先去括号,再合并同类项计算即可;(2)设“”是a,代入原式得到(a﹣5)x2+6,再根据“该题标准答案的结果是常数”,即可解答.【详解】(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.【点睛】本题考查了整式的加减,解题的关键是掌握合并同类项及去括号法则.22.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).【答案】101a+5050m.【解析】【分析】由阅读材料可以看出,100个数相加,用第一项加最后一项可得101,第二项加倒数第二项可得101,…,共100项,可分成50个101,在计算a+(a+m)+(a+2m)+(a+3m)+…+(a+100d)时,可以看出a共有100个,m,2m,3m,…100m,共有100个,m+100m=101m,2m+99d=101d,…共有50个101m,根据规律可得答案.【详解】a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…+100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m)=101a+101m×50=101a+5050m.【点睛】考查了整式的加法,关键是根据阅读材料找出其中的规律,根据规律得出解题的技巧.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:﹣(a2+4ab+4b2)=a2﹣4b2(1)求所捂的多项式(2)当a=﹣2,b=时,求所捂的多项式的值【答案】(1)2a2+4ab(2)4【解析】试题分析:(1)所捂的多项式是被减式,根据被减式=减式+差求解;(2)把a,b的值代入到(1)中所求的多项式中求值.试题解析:(1)所捂多项式=a2-4b2+a2+4b2+4ab=2a2+4ab;(2)当a=-1,b=时,所捂多项式=2×(-1)2+4×(-1)×=2-2=0.。

人教版初中数学七年级上册第二章《整式的加减》单元测试题(含答案)

人教版初中数学七年级上册第二章《整式的加减》单元测试题(含答案)

第二章《整式的加减》单元测试题一、选择题(每小题只有一个正确答案)1.已知一个多项式减去-2m结果等于m2+3m+2,这个多项式是()A.m2+5m+2B.m2-m-2C.m2-5m-2D.m2+m+22.下列各组单项式中,不是同类项的是()A. 3x2y与-2yx2B. 2ab2与-ba2C.xy3与5xy D. 23a与32a3.已知3xa-2是关于x的二次单项式,那么a的值为()A. 4B. 5C. 6D. 74.若-2am+4b4与5a2bn+1可以合并成一项,则mn的值是()A.-6B. 8C.-8D. 95.计算6a2-5a+3与5a2+2a-1的差,结果正确的是()A.a2-3a+4B.a2-3a+2C.a2-7a+2D.a2-7a+46.多项式a3-2a2b2+5b2的次数是()A. 2 B. 3 C. 4 D. 97.下列结论正确的是()A. 3x2-x+1的一次项系数是1B.xyz的系数是0C.a2b3c是五次单项式D.x5+3x2y4-2x3y是六次三项式8.有一组单项式:a2,-a32,a43,-a54…,请观察它们的构成规律,用你发现的规律写出第10个单项式为()A.a1010B.-a1010C.a1110D.-a11109.计算-3(x-2y)+4(x-2y)的结果是()A.x-2y B.x+2y C.-x-2y D.-x+2y10.有理数a,b,c在数轴上的位置如图所示,则|a+b|-2|c-b|+3|b+a|等于()A.-2b B. 0 C.-4a-b-3c D.-4a-2b-2c二、填空题11.去括号:3x-(a-b+c)=___________.12.a、b在数轴上的位置如图所示,化简|a+b|-2|a-b|=___________.13.有规律地排列着这样一些单项式:-xy,x2y,-x3y,x4y,-x5y,…,则第n个单项式(n≥1正整数)可表示为___________.14.10a-5减去(-5a+7)的差是___________.三、解答题15.化简:①4a2+3b2+2ab-3a2-4b2;①(2a-4b)-(3a+4b);①2(4a2b-10b3)+(-3a2b-20b3);①(-x2+3xy-4y3)-3(2xy-3y2).16.先化简,再求值:5(a2b+2ab2)-2(3a2b+5ab2-1),其中a=-2,b=2.17.已知多项式y4-x4+3x3y-1xy2-5x2y3.2(1)按字母x的降幂排列;(2)按字母y的升幂排列.18.观察下面有规律的三行单项式:x,2x2,4x3,8x4,16x5,32x6,…①-2x,4x2,-8x3,16x4,-32x5,64x6,…①2x2,-3x3,5x4,-9x5,17x6,-33x7,…①(1)根据你发现的规律,第一行第8个单项式为___________;(2)第二行第n个单项式为___________;(3)第三行第8个单项式为___________;第n个单项式为___________.答案解析1.【答案】D【解析】设这个多项式为M ,则M =(m 2+3m +2)+(-2m )=m 2+3m +2-2m =m 2+m +2 2.【答案】B【解析】A 、字母相同且相同字母的指数也相同,故A 正确; B 、相同字母的指数不同不是同类项,故B 错误; C 、字母相同且相同字母的指数也相同,故C 正确; D 、字母相同且相同字母的指数也相同,故D 正确. 3.【答案】A【解析】因为3xa -2是关于x 的二次单项式, 所以a -2=2, 解得a =4 4.【答案】C【解析】根据题意可得m +4=2,n +1=4, 解得m =-2,n =3, 所以mn =-8. 5.【答案】D【解析】(6a 2-5a +3)-(5a 2+2a -1) =6a 2-5a +3-5a 2-2a +1 =a 2-7a +4. 6.【答案】C【解析】a 3-2a 2b 2+5b 2的次数是4. 7.【答案】D【解析】A 、3x 2-x +1的一次项系数是-1,故错误; B 、xyz 的系数是1,故错误; C 、a 2b 3c 是六次单项式,故错误; D 、正确. 8.【答案】D【解析】注意观察各单项式系数和次数的变化, 系数依次是1(可以看成是11),-12,13,-14…据此推测,第十项的系数为-110;次数依次是2,3,4,5…据此推出,第十项的次数为11.所以第十个单项式为-a11.10 9.【答案】A【解析】-3(x-2y)+4(x-2y)=-3x+6y+4x-8y=x-2y.10.【答案】D【解析】因为由图可知,a<b<0<c,|a|>|b|>c,所以a+b<0,c-b>0,b+a<0,所以原式=-(a+b)-2(c-b)-3(b+a)=-a-b-2c+2b-3b-3a=-4a-2b-2c.11.【答案】3x-a+b-c【解析】3x-(a-b+c)=3x-a+b-c.12.【答案】-3a+b【解析】由数轴可得b+a<0,a-b>0,则|a+b|-2|a-b|=-a-b-2(a-b)=-3a+b13.【答案】(-x)n y【解析】第n个单项可表示为(-x)n y14.【答案】15a-12【解析】(10a-5)-(-5a+7)=10a-5+5a-7=15a-12.15.【答案】解:①原式=(4-3)a2+(3-4)b2+2ab=a2+2ab-b2;①原式=2a-4b-3a-4b=-a-8b;①原式=8a2b-20b3-3a2b-20b3=5a2b-40b3;①原式=-x2+3xy-4y3-6xy+9y2=x2-4y3-3xy+9y2.【解析】①直接合并同类项即可;①①①先去括号,再合并同类项即可.16.【答案】解:原式=5a2b+10ab2-6a2b-10ab2+2=-a2b+2,当a=-2,b=2时,原式=-8+2=-6.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.17.【答案】解:(1)按字母x的降幂排列:−x4+3x3y−5x2y3−1xy2+y4;2(2)按字母y的升幂排列:−x4+3x3y−5x2y3−1xy2+y4.2【解析】(1)根据x的指数的从大到小顺序排列即可;(2)根据y的指数的从小到大顺序排列即可.18.【答案】(1)128x8(2)(-2)nxn(3)-129x9(-1)n+1(1+2n-1)xn+1【解析】通过观察很容易得到三组数据数字因数、字母次数之间的关系,根据规律写出相应的式子即可.解:因为第一行的每个单项式,数字因数后面都是前面的2倍,字母次数与这个单项式是第几个有关,根据这个规律可得第一行第8个单项式为 128x8;因为第二行的每个单项式,数字因数后面都是前面的(-2)倍,字母次数与这个单项式是第几个有关,根据这个规律可得第n个单项式为(-2)nxn;通过观察第三行的这组单项式,这组单项式符合(-1)n+1(1+2n-1)xn+1,第8个单项式是-129x9;第n个单项式为(-1)n+1(1+2n-1)xn+1.。

2024-2025学年七年级数学上册第四章 整式的加减 单元测试题(含解析)

2024-2025学年七年级数学上册第四章 整式的加减 单元测试题(含解析)

第四章 整式的加减考试范围:全章的内容; 考试时间:120分钟; 总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列代数式中b,−3ab,3x ,m +n2,x 2+y 2,−3,12ab 2c 3中,单项式共有( )A .6个B .5个C .4个D .3个2.下列各组式子中,不是同类项的是( )A .12x 3y 和−12y 3x B .−2a 和18a C .2025和−5D .−2a 3y 和−52ya 33.下列合并同类项的结果中,正确的是( )A .−3ab−3ab =0B .3a 2−a 2=3C .2m 3+3m 3=5m 6D .y−3y =−2y4.下列添括号正确的是( )A .a−b +c =a−(b +c )B .a−b +c =a−(−b−c )C .a−b +c =a−(b−c )D .a−b +c =a−(−b +c )5.下列说法正确的是( )A .−19πx 2的系数是−19B .3xy 2的次数是2C .0.5x 2与−5x 2不是同类项D .4x 2+3x−1是二次三项式6.若关于x 的多项式(12x 2+mx )+(4x−7)中不含一次项,则m 的值是( )A .4B .2C .−4D .4或−47.按一定规律排列的单项式:−x 、2x 2、−3x 3、4x 4、−5x 5、……,第n 个单项式是( )A .(−1)n x nB .(−1)n nx nC .(−1)n +1nx nD .(−1)n +1x n8.若P =12(x 2−y 2+3),Q =12(x 2−2y 2+2),则P ,Q 的大小关系是( )A . P >QB . P <QC . P =QD . P ≤Q9.已知m +n =−2,mn =−4,则整式2(mn−3m )−3(2n−mn )的值为( )A .8B .−8C .16D .−1610.已知2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,若10+ba =102×ba ,则a +b =( ).A .19B .21C .99D .109二、填空题(本大题共6小题,每小题3分,共18分)11.单项式 −2x 2y 35的系数与次数的乘积为 .12.若a m−2b n +7与−3a 4b 4是同类项,则m−n 的值为 13.写出一个含有x,y 的五次三项式,其中最高次项的系数为−2,常数项为6.14.若多项式x 7y 2−4x n +2y 2+x 2y 3−6是按字母x 降幂排列的,则整数n 的值可以是 (写出一个即可)15.a 是不为2的有理数,我们把22−a 称为a 的“哈利数”.如:3的哈利数”是22−3=−2,−2的“哈利数”是22−(−2)=12,已知a 1=3,a 2是a 1的“哈利数”,a 3是a 2的“哈利数”,a 4是a 3的“哈利数”,…,依此类推,则a 2024=.16.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为y cm ,宽为x cm )的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是cm .(用含x 或y 的代数式来表示)三、(本大题共4小题,每小题6分,共24分)17.化简:(1)p 2+3pq−6−8p 2+pq ;(2)3(2x 2−xy )−4(x 2+xy−6).18.先化简,再求值:2x 2−[−3(−13x 2−23xy )−2y 2]+2xy ,其中(x−12)2+|y +1|=0.19.化简2(a 2b−1)−[2(a 2b−1)−3ab 2+2],下面是甲、乙两同学的部分运算过程:(1)甲同学解法的依据是 ;乙同学解法的依据是 ;(填序号)①加法结合律;②加法分配律;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程:20.如果两个关于x、y的单项式2mx a+1y2与−4nx3y2是同类项(其中xy≠0).(1)求a的值.(2)如果这两个单项式的和为零,求(m−2n−1)2021的值.四、(本大题共3小题,每小题8分,共24分)21.已知A=2x2+xy+3y−1,B=x2−xy.(1)化简A−2B;(2)若2A−4B的值与y的值无关,求x的值.22.a,b,c三个数在数轴上的位置如图所示,且|a|=|b|.(1)比较a,−a,−c的大小;(用>连接)(2)化简|a+b|−|a−b|+|a+c|−|b−c|.23.如图,公园有一块长为(2a−1)米,宽为a米的长方形土地(一边靠着墙),现将三面留出宽都是b米的小路,余下部分设计成花圃ABCD,并用篱笆把花圃不靠墙的三边围起来.(1)花圃的宽AB为______米,花圃的长BC为______米;(用含a,b的式子表示)(2)求篱笆的总长度;(用含a,b的式子表示)(3)若a=30,b=5,篱笆的单价为60元/米,请计算篱笆的总价.五、(本大题共2小题,每小题12分,共24分)24.在小学学习正整数的加减时,我们会用“列竖式”的方法帮助计算,在进行整式的加减运算时也可以用类似的方法,如果把两个或几个整式按同一字母降幂(或升幂)排列,并将各同类项对齐,就可以列竖式进行加减了,比如计算(−3x3+5x2−7)+(2x−3+3x2)就可以列竖式为−3x3+5x2−7+3x2+2x−3−3x3+8x2+x−10根据上述材料,解决下列问题.已知:A=−3x−2x3+1+x4,B=2x3−4x2+x(1)将A按照x降幂排列为______;(2)仿照上面方法列竖式计算.A+B;(3)小丽说也可以用类似的方法列竖式计算A−B,请你试一试;(4)你能列竖式计算:3A−2B吗?25.我们知道,2x+3x−x=(2+3−1)x=4x,类似地,我们也可以将(a+b)看成一个整体,则2(a+b)+3(a+b)−(a+b)=(2+3−1)(a+b)=4(a+b).整体思想是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.请根据上面的提示和范例,解决下面的题目:(1)把(x−y)2看成一个整体,求2(x−y)2−5(x−y)2+(x−y)2合并的结果;n=4,求8m−6n+5的值;(2)已知2m−32(3)已知a−2b=−5,b−c=−2,3c+d=6,求(a+3c)−(2b+c)+(b+d)的值.参考答案:1.C解:在b,−3ab,3x ,m +n2,x 2+y 2,−3,12ab 2c 3中单项式有:b ,−3ab ,−3,12ab 2c 3,共4个.故选:C .2.A选项A ,12x 3y 和−12y 3x 字母相同,但相同字母的指数不相同,不是同类项;选项B ,−2a 和18a 字母相同,且相同字母的指数也相同,是同类项;选项C ,2025和−5两个常数项也是同类项;选项D ,−2a 3y 和−52ya 3虽然字母顺序不同,但字母相同,且相同字母的指数也相同,是同类项.故选:A 3.D解:−3ab−3ab =−6ab ,故选项A 中计算错误,不符合题意;3a 2−a 2=2a 2,故选项B 中计算错误,不符合题意;2m 3+3m 3=5m 3,故选项C 中计算错误,不符合题意;y−3y =−2y ,故选项D 中计算正确,符合题意;故选:D .4.C解∶A .a−b +c =a−(b−c ),选项A 错误;B .a−b +c =a−(b−c ) ,选项B 错误;C .a−b +c =a−(b−c ),选项C 正确;D .a−b +c =a +(−b +c ),选项D 错误;故选:C .5.D解:A 、−19πx 2的系数是−19π,原说法错误,不符合题意;B 、3xy 2的次数是2+1=3,原说法错误,不符合题意;C 、0.5x 2与−5x 2是同类项,原说法错误,不符合题意;D 、4x 2+3x−1是二次三项式,原说法正确,符合题意;故选:D .6.C解:(12x 2+mx )+(4x−7)=12x 2+mx +4x−7=12x 2+(m +4)x−7,∵多项式(12x 2+mx )+(4x−7)中不含一次项,∴m +4=0,解得:m =−4,故选:C .7.B解:按一定规律排列的单项式:−x 、2x 2、−3x 3、4x 4、−5x 5、……,奇数项符号为负、偶数项符号为正,则符号满足的规律是(−1)n ;除符号外,系数是正整数,则除符号外系数规律是n ;字母是x ,指数为正整数,则字母规律是x n ;综上所述,第n 个单项式是(−1)n nx n ,故选:B .8.A解:∵P =12(x 2−y 2+3),Q =12(x 2−2y 2+2)∴P−Q =12(x 2−y 2+3)−12(x 2−2y 2+2)=12y 2+12=12(y 2+1)∵y 2≥0,y 2+1≥1∴P−Q =12(y 2+1)≥12>0即P >Q 故选:A 9.B解:原式=2mn−6m−6n +3mn =5mn−6(m +n )=−20+12=−8.故选:B .10.D解:第一个:2+23=22×23,第二个:3+38=32×38,第三个:4+415=42×415,第四个:5+524=52×524,……第n个:(n+1)+n+1(n+1)2−1=(n+1)2×n+1(n+1)2−1∵10+ba =102×ba所以b=10,a=102−1=99所以a+b=10+99=109故答案为:D.11.−2解:∵单项式−2x2y35的系数为:−25,次数为:5,∴单项式−2x2y35的系数与次数的乘积为:−25×5=−2.故答案为:−2.12.9解:∵a m−2b n+7与−3a4b4是同类项,∴m−2=4且n+7=4,解得:m=6,n=−3,∴m−n=6−(−3)=6+3=9,故答案为:9.13.−2x4y+xy+6(答案不唯一)解:根据题意,此多项式是:−2x4y+xy+6(答案不唯一),故答案为:−2x4y+xy+6(答案不唯一).14.3(答案不唯一)解:∵多项式x7y2−4x n+2y2+x2y3−6是按字母x降幂排列,∴3≤n+2≤6,∴1≤n≤4,∵n为整数,∴n=1或2或3或4.故答案为:3(答案不唯一)15.43解:∵a1=3,∴a2=22−3=−2,a3=22−(−2)=12,a4=22−12=43,a5=22−43=3,∴该数列每4个数为1周期循环,∵2024÷4=506,∴a2024=a4=43,故答案为:43.16.4x设小长方形的长为a,宽为b,根据题意得:阴影部分周长和为:2(3b+a)+2(x−3b)+2(x−a)=2a+6b+2x−6b+2x−2a=4x(cm),故答案为:4x.17.(1)−7p2+4pq−6(2)2x2−7xy+24(1)解:p2+3pq−6−8p2+pq=(1−8)p2+(3+1)pq−6=−7p2+4pq−6;(2)解:3(2x2−xy)−4(x2+xy−6)=6x2−3xy−4x2−4xy+24=2x2−7xy+24.18.x2+2y2,214解:原式=2x2−(x2+2xy−2y2)+2xy=2x2−x2−2xy+2y2+2xy=x2+2y2,∵(x−12)2+|y+1|=0,∴x=1,y=−1,2原式=(12)2+2×(−1)2=14+2=214.19.(1)①,③(2)解答见解析(1)甲同学解法的依据是加法结合律;乙同学解法的依据是乘法分配律.故答案为:①,③;(2)甲同学:原式=[2(a2b−1)−2(a2b−1)]+3ab2−2=3ab2−2;乙同学:原式=2a2b−2−(2a2b−2−3ab2+2)=2a2b−2−2a2b+2+3ab2−2=3ab2−2.20.(1)2(2)−1(1)解:由同类项的定义可得:a+1=3,解得a=2;(2)解:∵两个单项式的和为零,∴2mx3y2−4nx3y2=(2m−4n)x3y2=0,∴2m−4n=0,即m−2n=0,∴(m−2n−1)2021=(0−1)2021=(−1)2021=−121.(1)3xy+3y−1(2)x=−1(1)解:A−2B=2x2+xy+3y−1−2(x2−xy)=2x2+xy+3y−1−2x2+2xy=3xy+3y−1;(2)2A−4B=2(2x2+xy+3y−1)−4(x2−xy)=4x2+2xy+6y−2−4x2+4xy=6xy+6y−2=(6x+6)y−2,∵2A−4B的值与y的值无关,∴6x+6=0,∴x=−1.22.(1)−c>a>−a(2)−2a(1)解:根据数轴上a,b,c三个数的位置,可得a>0>b>c,∵a>0>b,|a|=|b|,∴a=−b,a>−a,∵b>c,∴−b<−c,∴a<−c,∴−c>a>−a;(2)解:∵a=−b,a>b,−c>a,b>c,∴a+b=0,a−b>0,a+c<0,b−c>0,∴|a+b|−|a−b|+|a+c|−|b−c|=0−a+b−a−c−b+c=−2a.23.(1)(a−b);(2a−2b−1);(2)所用篱笆的总长度为(4a−4b−1)米;(3)全部篱笆的造价为5940元.(1)解:由题意得,AB=(a−b)米,BC=(2a−1)−2b=(2a−2b−1)米,故答案为:(a−b),(2a−2b−1)(2)解:由图可得,花圃的长为(2a−1−2b)米,宽为(a−b)米,∴篱笆的总长度为(2a−1−2b)+2(a−b)=2a−1−2b+2a−2b=(4a−4b−1)米;(3)解:当a=30,b=5时,篱笆的造价为(4a−4b−1)×60=(4×30−4×5−1)×60=5940元,答:全部篱笆的造价为5940元.24.(1)x4−2x3−3x+1(2)x4−4x2−2x+1(3)x4−4x3+4x2−4x+1(4)3x4−10x3+8x2−11x+3(1)解:∵A=−3x−2x3+1+x4,∴将A按x的降幂排列是:A=x4−2x3−3x+1;(2)解:A+B=(x4−2x3−3x+1)+(2x3−4x2+x)列竖式如下:x4−2x3−3x+1+2x3−4x2+xx4−4x2−2x+1∴A+B=x4−4x2−2x+1;(3)解:A−B=(x4−2x3−3x+1)−(2x3−4x2+x),列竖式如下:x4−2x3−3x+1−2x3−4x2+xx4−4x3+4x2−4x+1∴A−B=x4−4x3+4x2−4x+1;(4)解:x4−2x3−3x+1×33x4−6x3−9x+3,2x3−4x2+x×24x3−8x2+2x3A−2B=(3x4−6x3−9x+3)−(4x3−8x2+2x)列竖式如下:3x4−6x3−9x+3−4x3−8x2+2x3x4−10x3+8x2−11x+3∴3A−2B=3x4−10x3+8x2−11x+3.25.(1)−2(x−y)2;(2)21;(3)−1.(1)解:2(x−y)2−5(x−y)2+(x−y)2=(2−5+1)(x−y)2=−2(x−y)2.(2)解:∵2m−32n=4,∴8m−6n+5=4(2m−32n)+5=4×4+5=21.(3)解:∵a−2b=−5,b−c=−2,3c+d=6,∴(a+3c)−(2b+c)+(b+d)=a+3c−2b−c+b+d=(a−2b)+(b−c)+(3c+d)=−5−2+6=−1.。

人教版七年级上第二章《整式的加减》单元测试题(含参考答案)

人教版七年级上第二章《整式的加减》单元测试题(含参考答案)

第二章《整式的加减》单元测试题一、选择题(每小题只有一个正确答案)1.下列运算正确的()A.(b2)3=b5B.x3÷x3=x C.5y3•3y2=15y5D.a+a2=a32.单项式的系数是( )A.B.πC.2D.3.关于多项式0.3x2y﹣2x3y2﹣7xy3+1,下列说法错误的是()A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y降幂排列为﹣7xy3﹣2x3y2+0.3x2y+14.组成多项式2x2-x-3的单项式是下列几组中的()A.2x2,x,3B.2x2,-x,-3C.2x2,x,-3D.2x2,-x,35.下列各式按字母x的降幂排列的是()A.-5x2-x2+2x2B.ax3-2bx+cx2C.-x2y-2xy2+y2D.x2y-3xy2+x3-2y26.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A.7个B.6个C.5个D.4个7.多项式x|m|-(m-4)x+7是关于x的四次三项式,则m的值是( )A.4B.-2C.-4D.4或-48.已知有理数a,b,c在数轴上所对应点的位置如图所示,则代数式|a|+|a+b|+|c -a|-|b-c|=( )A.-3a B.2c-a C.2a-2b D.b9.如果|x-4|与(y+3)2互为相反数,则2x-(-2y+x)的值是( )A.-2B.10C.7D.610.已知M=4x2-x+1,N=5x2-x+3,则M与N的大小关系为( )A.M >N B.M<N C.M=N D.无法确定11.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:(2a2+3ab-b2)-(-3a2+ab +5b2)=5a2-6b2,一部分被墨水弄脏了.请问空格中的一项是( )A.+2ab B.+3ab C.+4ab D.-ab12.下列是由一些火柴搭成的图案,图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n○个图案用多少根火柴( )A.4n+3B.5n-1C.4n+1D.5n-4二、填空题13.单项式的系数是__,次数是__.14.请写出一个系数是-2,次数是3的单项式:________________.15.三个连续奇数,中间的一个是n,则这三个数的和是________.16.在代数式3xy2,m,6a2-a+3,,2,4x2yz-xy2,,中,单项式有________个,多项式有________个,整式有________个.17.已知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为_____.三、解答题18.化简:(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)19.化简(1)5x2+x+3+4x﹣8x2﹣2(2)(2x3﹣3x2﹣3)﹣(﹣x3+4x2)(3)3(x2﹣5x+1)﹣2(3x﹣6+x2)20.已知:关于x的多项式2ax3-9+x3-bx2+4x3中,不含x3与x2的项.求代数式3(a2-2b2-2)-2(a2-2b2-3)的值.21..设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,(1)求B-2A(2)若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.22.观察下列三行数:0,3, 8,15,24, …2,5,10,17,26, …②0,6,16,30,48, …③(1)第①行数按什么规律排列的,请写出来?(2)第②、③行数与第①行数分别对比有什么关系?)(3)取每行的第个数,求这三个数的和23.有这样一道题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=,y=-1.”甲同学把“x=”错抄成“x=-”,但他计算的结果也是正确的,试说明理由,并求出正确结果.参考答案1.C【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则.详解:A、(b2)3=b6,故此选项错误;B、x3÷x3=1,故此选项错误;C、5y3•3y2=15y5,正确;D、a+a2,无法计算,故此选项错误.故选:C.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键.2.D【解析】试题分析:单项式的系数是:.故选D.考点:单项式.3.B【解析】多项式0.3x2y﹣2x3y2﹣7xy3+1,有四项分别为:0.3x2y,﹣2x3y2,﹣7xy3,+1,最高次为5次,是五次四项式,故A正确;四次项的系数是-7,故B错误;常数项是1,故C正确;按y降幂排列为﹣7xy3﹣2x3y2+0.3x2y+1,故D正确,故符合题意的是B选项,故选B.4.B【解析】多项式是由多个单项式组成的,在多项式2x2﹣x﹣3中,单项式分别是2x2,﹣x,﹣3,故选:B.5.C【解析】【分析】根据题意将各式按字母x的降幂排列,就是要求x的指数从高到低排列.【详解】A. -5x2-x2+2x2,指数相同,不符合条件;B. ax3-2bx+cx2,没有按x降幂排列;C. -x2y-2xy2+y2,有按x降幂排列;D. x2y-3xy2+x3-2y2,没有按x降幂排列.故选:C【点睛】本题考核知识点:字母的降幂排列. 解题关键点:理解幂的意义.6.B【解析】【分析】分母中含有字母的式子一定不是多项式也不是单项式,因此其不是整式.所有单项式和多项式都是整式.【详解】在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式有:π,x+xy,3x2+nx+4,﹣x,3,5xy,共有6个.故选:B【点睛】本题考核知识点:整式. 解题关键点:理解整式的意义.7.C【解析】分析:根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.详解:∵多项式x|m|−(m−4)x+7是关于x的四次三项式,∴|m|=4,-(m-4)≠0,∴m=-4.故选:C.点睛:本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.8.A【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据数轴上点的位置得:b<a<0<c,∴a+b<0,c﹣a>0,b-c<0,则原式=﹣a﹣a﹣b+c﹣a+b﹣c=﹣3a.故选A.【点睛】本题考查了整式的加减,熟练掌握运算法则是解答本题的关键.9.A【解析】【分析】利用互为相反数两数之和为0列出关系式,根据非负数的性质求出x与y的值,原式去括号合并后代入计算即可求出值.【详解】∵|x﹣4|与(y+3)2互为相反数,即|x﹣4|+(y+3)2=0,∴x=4,y=﹣3,则原式=2x+2y﹣x=x+2y=4﹣6=﹣2.故选A.【点睛】本题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解答本题的关键.10.B【解析】分析:用N-M,去括号合并同类项后,根据差的符号情况可判断M与N的大小关系.详解:M=4x2-x+1,N=5x2-x+3,∴N-M=(5x2-x+3)-(4x2-x+1)=5x2-x+3-4x2+x-1=x2+2≥0,∴M<N.故选B.点睛:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.11.A【解析】【分析】将等式右边的已知项移到左边,再去括号,合并同类项即可.【详解】依题意,空格中的一项是:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)﹣(5a2﹣6b2)=2a2+3ab﹣b2+3a2﹣ab﹣5b2﹣5a2+6b2=2ab.故选A.【点睛】本题考查了整式的加减运算.解决此类题目的关键是运用移项的知识,同时熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.12.C【解析】分析:注意认真观察图形,根据图形很容易发现规律:第n个图形是4n+1,可得答案..详解:第一个图需要5根.第二个图需要9根.比第一个图多4根.依此类推,第n个图中需要5+4(n-1)=4n+1.故选:C.点睛:此题考查了图形的变化类,关键是从图中特殊的例子推理得出一般的规律,本题的规律是每个图案都比上一个图案多一个五边形,但只增加4根火柴.13.4【解析】【分析】单项式就是数与字母的乘积,数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,据此即可求解.【详解】单项式的系数是:,次数是:1+3=4.故答案为:;4.【点睛】本题主要考查了单项式的系数与次数的定义,在写系数时,注意不要忘记前边的符号是解答此题的关键.14.-2a3(答案不唯一)【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解】系数是-2,次数是3的单项式有:-2a3.(答案不唯一)故答案是:-2a3(答案不唯一).【点睛】考查了单项式的定义,注意确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.15.3n【解析】【分析】中间数为n,分别表示出其它两个数,求和即可.【详解】由题意得,其它两个数为:n-2,n+2,则三个数的和=n-2+n+n+2=3n.故答案为:3n.【点睛】本题考查了整式的加减,关键是表示出这三个连续奇数,属于基础题.16.336【解析】分析:根据单项式、多项式、整式的概念解答即可.详解:3xy2,m,2是单项式;6a2-a+3,4x2yz-xy2,是多项式;3xy2,m,6a2-a+3,2,4x2yz-xy2,是整式;,的分母中含有字母,不是整式(是分式).故答案为:3,3,6.点睛:本题考查了整式、单项式、多项式的识别,只含有加、减、乘、乘方的代数式叫做整式;其中不含有加减运算的整式叫做单项式,单独的一个数或衣蛾字母也是单项式;含有加减运算的整式叫做多项式.17.1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为:118.x2﹣3xy+2y2.【解析】【分析】根据括号前是正号,去掉括号及正号,各项都不变,括号前是负号,去掉括号及负号,各项都变号,可去括号,再根据系数相加字母部分不变,合并同类项.【详解】原式=3x2﹣xy﹣2y2﹣2x2﹣2xy+4y2=3x2﹣2x2﹣xy﹣2xy﹣2y2+4y2= x2﹣3xy+2y2.【点睛】本题考查了去括号与添括号,根据法则去括号添括号是解题的关键.19.(1)﹣3x2+5x+1;(2)3x3﹣7x2﹣3;(3)x2﹣21x+15.【解析】试题分析:(1)根据整式的加减法,合并同类项即可;(2)根据整式的加减法,先去括号,再合并同类项即可;(3)根据整式的加减法,先根据乘法分配律去括号,再合并同类项即可.试题解析:(1)5x2+x+3+4x﹣8x2﹣2=(5-8)x2+(1+4)x+(3-2)=-3x2+5x+1(2)(2x3﹣3x2﹣3)﹣(﹣x3+4x2)= 2x3﹣3x2﹣3+x3-4x2=3 x3﹣7x2-3(3)3 (x2﹣5x+1)﹣2 (3x﹣6+x2)=3x2﹣15x+3-6x+12-2x2=x2-21x+1520.【解析】【分析】根据已知条件得出2a+1+4=0,﹣b=0,求出a、b的值,再去括号,合并同类项,最后代入求值即可.【详解】∵关于x的多项式2ax3﹣9+x3﹣bx2+4x3中,不含x3与x2的项,∴2a+1+4=0,﹣b=0,∴a=﹣2.5,b=0,∴3(a2﹣2b2﹣2)﹣2(a2﹣2b2﹣3)=3a2﹣6b2﹣6﹣2a2+4b2+6=a2﹣2b2=(﹣2.5)2﹣2×02=.【点睛】本题考查了整式的加减和求值,解答此题的关键是能根据整式的加减法则进行化简,难度不21.(1)﹣7x﹣5y;(2)-1.【解析】分析:(1)、根据多项式的减法计算法则得出答案;(2)、根据非负数的性质得出x 和y的值,然后根据B-2A=a进行代入得出a的值.详解:解:(1)、B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+2x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣4x﹣4y=﹣7x﹣5y(2)、∵|x﹣2a|+(y﹣3)2=0 ∴x=2a,y=3又B﹣2A=a,∴﹣7×2a﹣5×3=a,∴a=﹣1.点睛:本题主要考查的是多项式的减法计算法则,属于基础题型.在解答这个问题的时候我们一定要注意去括号的法则.22.(1)规律是:,,,,…;(2)第②行的数是第①行相应的数+2得到的,第第③行的数是第①行相应数的2倍;(3)【解析】【分析】通过观察归纳可得:第①行数规律是序数平方减1,即,, ,,….通过观察归纳可得: 第②行的数是第①行相应的数+2得到的,第第③行的数是第①行相应数的2倍.【详解】(1)规律是:,,,,….(2)第②行的数是第①行相应的数+2得到的,第第③行的数是第①行相应数的2倍,(3)=【点睛】本题主要考查数字规律,解决本题的关键是要熟练掌握分析数字规律的方法.23.2【解析】【分析】原式去括号合并得到结果,即可作出判断.解:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=-2y3.因为化简后的结果中不含x,所以原式的值与x的取值无关.当x=,y=-1时,原式=-2×(-1)3=2.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.。

人教版七年级数学第二章《整式的加减》单元测试题(含答案)

人教版七年级数学第二章《整式的加减》单元测试题(含答案)

人教版七年级数学第二章《整式的加减》单元测试题(含答案)时间:120分钟满分:120分一、选择题(共10小题,满分30分,每小题3分)1.(3分)下列各式中,不是代数式的是()A.﹣3B.a2﹣2a C.2x+3=0D.2.(3分)代数式,2x+y,a2b,,,0.5中整式的个数()A.3个B.4个C.5个D.6个3.(3分)下列各组两项中,是同类项的是()A.xy与﹣xy B.ac与abcC.﹣3ab与﹣2xy D.3xy2与3x2y4.(3分)已知m,n满足6m﹣8n+4=2,则代数式12n﹣9m+4的值为()A.0B.1C.7D.105.(3分)若a2﹣2a﹣6=0,则代数式的值是()A.1B.6C.﹣6D.﹣16.(3分)下列各式运算正确的是()A.2(b﹣1)=2b﹣2B.a2b﹣ab2=0C.2a3﹣3a3=a3D.a2+a2=2a47.(3分)如图,在矩形ABCD中放入正方形AEFG,正方形MNRH,正方形CPQN,点E 在AB上,点M、N在BC上,若AE=4,MN=3,CN=2,则图中右上角阴影部分的周长与左下角阴影部分的周长的差为()A.5B.6C.7D.88.(3分)已知x2﹣3x﹣12=0,则代数式3x2﹣9x+5的值是()A.31B.﹣31C.41D.﹣419.(3分)若□+(﹣x2+1)=3x﹣2,则□表示的多项式是()A.﹣x2+1+3x﹣2B.﹣x2+1﹣(3x﹣2)C.x2﹣1+3x﹣2D.x2+1﹣3x+210.(3分)若A=x2﹣2xy,B xy+y2,则A﹣2B为()A.3x2﹣2y2﹣5xy B.x2﹣2y2﹣3xyC.﹣5xy﹣2y2D.3x2+2y2二、填空题(共5小题,满分15分,每小题3分)11.(3分)如果单项式x m﹣1y2n与x3y m+2是同类项,那么mn的值是.12.(3分)一公路全长xkm,汽车的速度是每小时ykm,如需提前1小时到达,则汽车的速度应变为每小时km.13.(3分)某个数值转换器原理如图所示:若开始输入x的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2021次输出的结果是.14.(3分)一本笔记本原价a元,降价后比原来便宜了b元,小玲买了3本这样的笔记本,比原来便宜了元.15.(3分)若2x﹣3y=1,则﹣4x+6y+5的值为.三、解答题(共8小题,满分75分)16.(9分)先化简,再求值:(2x2﹣5x)﹣(3x2﹣4x+2)+x2,其中x.17.(9分)先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=﹣2,b=﹣1.18.(9分)已知A=5x2﹣mx+n,B=﹣3y2+2x﹣1,若A+B中不含一次项和常数项,求2(m2n ﹣1)﹣5m2n+4的值.19.(9分)已知关于x的多项式A,当A﹣(x﹣2)2=x(x+7)时,完成下列各题:(1)求多项式A;(2)若x2x+1=0,求多项式A的值.20.(9分)已知:A=3x2+2xy+3y﹣1,B=x2﹣xy.(1)计算:A﹣3B;(2)若A﹣3B的值与y的取值无关,求x的值.21.(10分)某花卉基地购买了一批水培植物营养液,已知甲种营养液每瓶2L,乙种营养液每瓶3L.(1)若花卉基地购买了甲种营养液m箱(每箱12瓶),乙种营养液n箱(每箱10瓶),共QL.用含m,n的式子表示Q;(2)若购进甲种营养液6×103瓶,乙种营养液5×104瓶,用科学记数法表示Q.22.(10分)毕业季,某文具批发店购进足够数量的甲、乙两种纪念册,已知每天两种纪念册的销售量共200本,两种纪念册的成本和售价如表:纪念册成本(元/本)售价(元/本)甲1216乙1518设每天销售甲种纪念册x本.(1)用含x的代数式表示该批发部每天销售这两种纪念册的成本,并化简;(2)当x=90时,求该文具批发店每天销售这两种纪念册获得的利润.23.(10分)某中学八年级(1)班5名老师决定带领本班x名学生去迁西景忠山旅游参观.该景区每张门票的票价为40元,现有A、B两种购票方案可供选择:方案A:教师全价,学生半价;方案B:不分教师与学生,全部六折优惠.(1)请用含x的代数式分别表示选择A,B两种方案所需的费用;(2)当学生人数x=50时,且只选择其中一种方案购票,请通过计算说明选择哪种方案更为优惠。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题(每题3分,共36分)
1、单项式23x -减去单项式y x x y x 2
222,5,4--的和,列算式为 , 化简后的结果是 。

2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。

3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式
为 。

4、已知:11=+x
x ,则代数式51)1(2010-+++x x x x 的值是 。

5、张大伯从报社以每份元的价格购进了a 份报纸,以每份元的价格售出了b 份报纸,剩余的以每份元的
价格退回报社,则张大伯卖报收入 元。

6、计算:=-+-7533x x , )9()35(b a b a -+-= 。

7、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。

8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。

9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。

10、若≠+-m y x y
x m n 则的六次单项式是关于,,)2(232 ,n = 。

11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。

12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。

二、选择题(每题3分,共30分)
13、下列等式中正确的是( )
A 、)25(52x x --=-
B 、)3(737+=+a a
C 、-)(b a b a --=-
D 、)52(52--=-x x
14、下面的叙述错误的是( )
A 、倍的和的平方的与的意义是2)2(2b a b a +。

B 、222b a b a 与的意义是+的2倍的和
C 、3)2(b
a 的意义是a 的立方除以2
b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍
15、下列代数式书写正确的是( )
A 、48a
B 、y x ÷
C 、)(y x a +
D 、211
abc 16、-)(c b a +-变形后的结果是( )
A 、-c b a ++
B 、-c b a -+
C 、-c b a +-
D 、-c b a --
17、下列说法正确的是( )
A 、0不是单项式
B 、x 没有系数
C 、37x x
+是多项式 D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( )
A 、c b a a c b a a +--=+--2)2(22
B 、)123(123-+-+=-+-y x a y x a
C 、1253)]12(5[3+--=---x x x x x x
D 、-)1()2(12-+--=+--a y x a y x
19、代数式,21a a + 4
3,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、6
20、若A 和B 都是4次多项式,则A+B 一定是( )
A 、8次多项式
B 、4次多项式
C 、次数不高于4次的整式
D 、次数不低于4次的整式
21、已知y x x n m n m 2652与-是同类项,则( )
A 、1,2==y x
B 、1,3==y x
C 、1,23==
y x D 、0,3==y x 22、下列计算中正确的是( )
A 、156=-a a
B 、x x x 1165=-
C 、m m m =-2
D 、33376x x x =+
三、化简下列各题(每题3分,共18分)
23、)312(65++
-a a 24、b a b a +--)5(2
25、-32009)2
14(2)2(++
--y x y x 26、-[]12)1(32--+--n m m
27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x
四、化简求值(每题5分,共10分)
29、)]21(3)13(2[22222x x x x x x ------- 其中:21=
x .
30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a .
五、解答题(31、32题各6分,33、34题各7分,共20分)
31、已知:22,,(1)
(5)50;3m x y x m -+=满足:2312722a b b a y 与+-)(是同类项. 求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。

32、已知:A=2244y xy x +- ,B=2
25y xy x -+,求(3A-2B )-(2A+B )的值。

33、试说明:不论x 取何值代数式)674()132()345(3
23223x x x x x x x x x +--+--+---++的值是不会改变的。

参考答案
一、填空题:1、]2)5(4[32222y x x y x x +-+---,y x x 2222+,2、-9, 9,
3、(答案不唯一),
4、-3 ,
5、-0.2a ,
6、108-x , 14a-4b ,
7、1005m ,
8、bc a 2-, 3-π,-1 , 9、2, 10、-2, 5, 11、6, -22,
12、三, 四,37x -, 1,
二、选择题:13~17题:A 、C 、C 、B 、D 18~22题:B 、C 、C 、B 、D
三、23、3-14a 24、3a -4b 25、-14x +2y +2009 26、m -3n +4 27、2y 2+3x 2-5z 2 28、0 四、29、51262--x x -2
19 30、b a ab 223- -10 五、31、x =5 y =2 m =0 -47 32、22167y xy x
+- 33、略
*。

相关文档
最新文档