高中物理知识点总结:动量守恒定律知识讲解
高中物理动量守恒定律知识点总结
![高中物理动量守恒定律知识点总结](https://img.taocdn.com/s3/m/3b2f855453d380eb6294dd88d0d233d4b14e3fdd.png)
高中物理动量守恒定律知识点总结动量守恒定律是高中物理中的重要概念,它描述了封闭系统内物体的总动量在没有外力作用下保持不变的现象。
掌握动量守恒定律对于解决物理问题和理解自然现象都有着重要的意义。
本文将对高中物理中关于动量守恒定律的知识点进行总结。
1. 动量的定义动量是物体运动的属性,它定义为物体的质量与速度的乘积。
记作p,公式为p=mv,其中m表示物体的质量,v表示物体的速度。
动量的单位是千克·米/秒(kg·m/s)。
2. 动量守恒定律动量守恒定律是指在没有外力作用的封闭系统中,系统内各物体的动量之和保持不变。
如果系统内没有外力作用,那么系统的总动量在时间上将保持不变。
3. 弹性碰撞弹性碰撞是指碰撞过程中物体之间能量完全转化,并且碰撞前后物体的相对速度方向不变。
在弹性碰撞中,动量守恒定律成立。
示例1:两个质量相同的弹性小球碰撞后,它们的速度互换。
4. 非弹性碰撞非弹性碰撞是指碰撞过程中物体之间的能量不完全转化,部分能量会被损耗或转化为其他形式的能量。
在非弹性碰撞中,动量守恒定律同样成立。
示例2:一个移动的球与静止的球碰撞,碰撞后它们合并成为一个共同运动的球。
5. 动量守恒定律在实际问题中的应用动量守恒定律广泛应用于解决实际物理问题。
以下是一些常见问题的解决思路:- 交通事故中定性分析:根据车辆碰撞前后的速度和质量来判断碰撞事故的严重程度和责任。
- 火箭发射问题:通过控制燃料的喷射速度和质量来实现火箭的推进。
- 乒乓球运动问题:分析球拍和球的质量、速度等因素,解释球拍对球的击打效果。
6. 动量守恒定律的应用范围和条件动量守恒定律适用于封闭系统,即系统内没有外力作用。
在实际应用中,通常可以将系统限定为感兴趣的部分,将其他物体视为环境,以简化问题分析。
7. 动量守恒定律与能量守恒定律的关系动量守恒定律与能量守恒定律都是描述自然规律的重要定律。
两者之间存在着密切的关系,但又不完全等同。
高中物理【动量守恒定律】知识点、规律总结
![高中物理【动量守恒定律】知识点、规律总结](https://img.taocdn.com/s3/m/7305e1db7e21af45b307a8f3.png)
2.反冲 (1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量, 这种现象叫反冲运动. (2)特点:系统内各物体间的相互作用的内力_远__大__于___系统受到的外力.实例:发射 炮弹、爆竹爆炸、发射火箭等. (3)规律:遵从动量守恒定律. 3.爆炸问题 爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且_远__大__于___系统所受 的外力,所以系统动量_守__恒___.
的动量
系统性 研究的对象是相互作用的两个或多个物体组成的系统 动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动
普适性 的微观粒子组成的系统
2.应用动量守恒定律的解题步骤 (1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程). (2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒). (3)规定正方向,确定初、末状态动量. (4)由动量守恒定律列出方程. (5)代入数据,求出结果,必要时讨论说明.
两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒,在
相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为
“人船模型”问题.
2.“人船模型”的特点
(1)两物体满足动量守恒定律:m1v1-m2v2=0. (2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比
2.弹性碰撞的结论 两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为 m1、速度为 v1 的小 球与质量为 m2 的静止小球发生正面弹性碰撞为例,则有 m1v1=m1v1′+m2v2′ 12m1v21=12m1v1′2+12m2v2′2
【总结提升】 碰撞问题解题策略 (1)抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解. (2)可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足: v1=mm11- +mm22v0、v2=m12+m1m2v0. (3)熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度.
动量守恒定律模块知识点总结
![动量守恒定律模块知识点总结](https://img.taocdn.com/s3/m/297ae2604a35eefdc8d376eeaeaad1f3469311a1.png)
动量守恒定律模块知识点总结1. 动量的定义:动量是物体的质量乘以其速度。
它是一个矢量量,具有方向和大小。
动量的单位是千克·米/秒(kg·m/s)。
2.动量守恒定律的表述:在一个封闭系统中,如果没有外力作用,系统的总动量保持不变。
3.封闭系统:一个封闭系统是指在其中没有物质和能量的交换。
在这样的系统中,动量守恒定律适用。
4.动量守恒定律的推导:动量守恒定律可以从牛顿第二定律得到。
根据牛顿第二定律,力的改变率等于质量乘以加速度。
由此可得,力的合力等于质量的改变率乘以加速度。
在没有外力作用的情况下,加速度为零,即质量的改变率为零。
因此,合力为零,即总动量保持不变。
5.动量守恒的实验验证:动量守恒定律可以通过实验进行验证。
例如,在弹性碰撞中,两个物体碰撞后会发生反弹,但它们的总动量保持不变。
同样,在爆炸中,物体会分散开来,但它们的总动量仍然保持不变。
6.动量的相对性:动量的大小取决于观察者的参考系。
在不同的参考系中,同一物体的动量可能有不同的值。
然而,动量守恒定律是绝对的,不依赖于参考系。
7.动量守恒定律的应用:动量守恒定律可以应用于各种各样的物理系统中。
它可以解释弹性碰撞、爆炸、火箭发射、流体力学、原子物理等现象。
8.动量的转移:当一个物体受到力的作用时,它的动量会改变。
力的作用时间越长,物体的动量改变越大。
例如,用手击打一个静止的球,手对球施加一个力,球就会获得动量,从而产生运动。
9.爆炸与合并:在爆炸中,物体会分散开来,它们的动量之和保持不变。
在合并中,物体会聚集到一起,它们的动量之和同样保持不变。
10.变质量系统:当系统中的物体具有不同的质量时,动量守恒定律仍然成立。
在这种情况下,需要考虑质量的改变对总动量的影响。
总的来说,动量守恒定律是一个重要的物理定律,它描述了封闭系统中总动量的保持不变性。
通过理解和应用动量守恒定律,我们可以解释和预测各种物理现象,并应用于工程和科学研究中。
高中物理:动量守恒定律
![高中物理:动量守恒定律](https://img.taocdn.com/s3/m/fad2937fc950ad02de80d4d8d15abe23482f03f8.png)
高中物理:动量守恒定律【知识点的认识】1.内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变,这就是动量守恒定律.2.表达式:(1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)△p1=﹣△p2,相互作用的两个物体动量的增量等大反向.(4)△p=0,系统总动量的增量为零.3.动量守恒定律的适用条件(1)不受外力或所受外力的合力为零.不能认为系统内每个物体所受的合外力都为零,更不能认为系统处于平衡状态.(2)近似适用条件:系统内各物体间相互作用的内力远大于它所受到的外力.(3)如果系统在某一方向上所受外力的合力为零,则在这一方向上动量守恒.【命题方向】题型一:动量守恒的判断例子:如图所示,A、B两物体的质量比m A:m B=3:2,它们原来静止在平板车C上,A、B间有一根被压缩了的弹簧,A、B与平板车上表面间动摩擦因数相同,地面光滑.当弹簧突然释放后,则有()A.A、B系统动量守恒B.A、B、C系统动量守恒C.小车向左运动D.小车向右运动分析:在整个过程中三个物体组成的系统合外力为零,系统的动量守恒.分析小车的受力情况,判断其运动情况.解答:A、B,由题意,地面光滑,所以A、B和弹簧、小车组成的系统受合外力为零,所以系统的动量守恒.在弹簧释放的过程中,由于m A:m B=3:2,A、B所受的摩擦力大小不等,所以A、B组成的系统合外力不为零,动量不守恒.故A错误.B正确;C、D由于A、B两木块的质量之比为m1:m2=3:2,由摩擦力公式f=μN=μmg知,A对小车向左的滑动摩擦力大于B对小车向右的滑动摩擦力,在A、B相对小车停止运动之前,小车的合力所受的合外力向左,会向左运动,故C正确,D错误.故选:BC.点评:本题关键掌握系统动量守恒定律的适用条件:合外力为零,并能通过分析受力,判断是否系统的动量是否守恒,题目较为简单!题型二:动量守恒的应用例子:如图所示,C是放在光滑的水平面上的一块木板,木板的质量为3m,在木板的上面有两块质量均为m的小木块A和B,它们与木板间的动摩擦因数均为μ.最初木板静止,A、B两木块同时以方向水平向右的初速度v0和2v0在木板上滑动,木板足够长,A、B始终未滑离木板.求:(1)木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B所发生的位移;(2)木块A在整个过程中的最小速度.分析:(1)A、B两木块同时水平向右滑动后,木块A先做匀减速直线运动,当木块A与木板C的速度相等后,A、C相对静止一起在C摩擦力的作用下做匀加速直线运动;木块B 一直做匀减速直线运动,直到三个物体速度相同.根据三个物体组成的系统动量守恒求出最终共同的速度,对B由牛顿第二定律和运动学公式或动能定理求解发生的位移;(2)当木块A与木板C的速度相等时,木块A的速度最小,根据系统的动量守恒求解A 在整个过程中的最小速度,或根据牛顿第二定律分别研究A、C,求出加速度,根据速度公式,由速度相等条件求出时间,再求解木块A在整个过程中的最小速度.解答:(1)木块A先做匀减速直线运动,后做匀加速直线运动;木块B一直做匀减速直线运动;木板C做两段加速度不同的匀加速直线运动,直到A、B、C三者的速度相等为止,设为v1.对A、B、C三者组成的系统,由动量守恒定律得:mv0+2mv0=(m+m+3m)v1解得:v1=0.6v0木块B滑动的加速度为:a=μg,所发生的位移:x==(2)A与C速度相等时,速度最小,此过程A和B减少的速度相等,有:mv0+2mv0=(m+3m)v A+mv Bv0﹣v A=2v0﹣v B解得:v A=0.4v0答:(1)木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B所发生的位移是;(2)木块A在整个过程中的最小速度是0.4v0.点评:本题是木块在木板上滑动的类型,分析物体的运动过程是解题基础,其次要把握物理过程所遵守的规律,这种类型常常根据动量守恒和能量守恒结合处理.题型三:动量守恒的临界问题如图所示,光滑的水平面上有一个质量为M=2m的凸型滑块,它的一个侧面是与水平面相切的光滑曲面,滑块的高度为h=0.3m.质量为m的小球,以水平速度v0在水平面上迎着光滑曲面冲向滑块.试分析计算v0应满足什么条件小球才能越过滑块.(取g=1Om/s2)分析:小球越到滑块最高点速度水平向右,以滑块和和小球组成的系统为研究对象;根据动量守恒和过程系统机械能守恒列出等式;根据题意要越过滑块,应有v1>v2,我们解决问题时取的是临界状态求解.解答:设小球越过滑块最高点的速度为v1,此时滑块的速度为v2,根据动量守恒得:mv0=mv1+2mv2此过程系统机械能守恒,根据机械能守恒得:mv02=mv12+2mv22+mgh小球要越过滑块,应有v1>v2,至少也要有v1=v2,设v1=v2=v,上述两式变为mv0=(m+2m)vmv02>(m+2m)v2+mgh解得v0>3m/s答:小球要越过滑块,初速度应满足v0>3m/s.点评:应用动量守恒定律时要清楚研究的对象和守恒条件.把动量守恒和能量守恒结合起来列出等式求解是常见的问题.题型四:动量与能量的综合例子:如图所示,光滑水平面上放置质量均为M=2kg的甲、乙两辆小车,两车之间通过一感应开关相连(当滑块滑过两车连接处时,感应开关使两车自动分离,分离时对两车及滑块的瞬时速度没有影响),甲车上表面光滑,乙车上表面与滑块P之问的动摩擦因数μ=0.5,一根轻质弹簧固定在甲车的左端,质量为m=1kg的滑块P(可视为质点)与弹簧的右端接触但不相连,用一根细线拴在甲车左端和滑块P之间使弹簧处于压缩状态,此时弹簧的弹性势能E0=10J,弹簧原长小于甲车长度,整个系统处于静止状态.现剪断细线,滑块P滑上乙车后最终未滑离乙车,g取10m/s2.求:(1)滑块P滑上乙车前的瞬时速度的大小;(2)滑块P滑上乙车后相对乙车滑行的距离.分析:(1)因地面光滑,所以滑块P在甲车上滑动的过程中,符合动量守恒的条件,同时除了弹簧的弹力做功之外,没有其他的力做功,所以机械能也是守恒的,分别应用动量守恒和机械能守恒列式求解,可得出滑块P滑上乙时的瞬时速度.(2)滑块P滑上乙车时,甲乙两车脱离,滑块和乙车做成了系统,经对其受力分析,合外力为零,动量守恒,可求出滑块和乙车的最终共同速度,由能量的转化和守恒可知,系统减少的机械能转化为了内能,即为摩擦力与相对位移的乘积.从而可求出相对位移,即滑块P 在乙车上滑行的距离.解答:(1)设滑块P滑上乙车前的速度为v,以整体为研究对象,作用的过程中动量和机械能都守恒,选向右的方向为正,应用动量守恒和能量关系有:mv1﹣2Mv2=0…①E0=m+…②①②两式联立解得:v1=4m/s v2=1m/s(2)以滑块和乙车为研究对象,选向右的方向为正,在此动过程中,由动量守恒定律得:mv1﹣Mv2=(m+M)v共…③由能量守恒定律得:μmgL=+﹣(M+m)…④③④联立并代入得:L=m答:(1)滑块P滑上乙时的瞬时速度的大小为4m/s.(2)滑块P滑上乙车后最终未滑离乙车,滑块P在乙车上滑行的距离为m.点评:本题考察了动量守恒.机械能守恒和能量的转化与守恒.应用动量守恒定律解题要注意“四性”,①系统性.②矢量性.③同时性.机械能守恒的条件是只有重力(或弹簧的弹力)做功,并只发生动能和势能的转化.【解题方法点拨】1.应用动量守恒定律的解题步骤:(1)明确研究对象(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒);(3)规定正方向,确定初末状态动量;(4)由动量守恒定律列式求解;(5)必要时进行讨论.2.解决动量守恒中的临界问题应把握以下两点:(1)寻找临界状态:题设情境中看是否有相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界状态.(2)挖掘临界条件:在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等.正确把握以上两点是求解这类问题的关键.3.综合应用动量观点和能量观点4.动量观点和能量观点:这两个观点研究的是物体或系统运动变化所经历的过程中状态的改变,不对过程变化的细节作深入的研究,而只关心运动状态变化的结果及引起变化的原因,简单地说,只要求知道过程的始末状态动量、动能和力在过程中所做的功,即可对问题求解.5.利用动量观点和能量观点解题应注意下列问题:(1)动量守恒定律是矢量表达式,还可写出分量表达式;而动能定理和能量守恒定律是标量表达式,无分量表达式.(2)动量守恒定律和能量守恒定律,是自然界中最普遍的规律,它们研究的是物体系,在力学中解题时必须注意动量守恒条件及机械能守恒条件.在应用这两个规律时,当确定了研究对象及运动状态的变化过程后,根据问题的已知条件和求解的未知量,选择研究的两个状态列方程求解.(3)中学阶段凡可用力和运动解决的问题,若用动量观点或能量观点求解,一般比用力和运动的观点简便.。
高中物理选修一动量守恒知识点归纳
![高中物理选修一动量守恒知识点归纳](https://img.taocdn.com/s3/m/2aed097286c24028915f804d2b160b4e767f81e0.png)
高中物理选修一:动量守恒知识点归纳一、动量的概念1. 动量的定义:动量是物体运动状态的量度,是物体质量和速度的乘积,通常用符号 p 表示。
2. 动量的单位:国际单位制中,动量的单位是千克·米/秒(kg·m/s)。
3. 动量的方向:动量的方向与物体的运动方向一致。
二、动量定理1. 动量定理的表述:一个物体的动量改变量等于作用在该物体上的合外力的冲量。
2. 动量定理的数学表达:Δp = F·Δt,其中Δp表示动量的改变量,F表示合外力,Δt表示时间。
3. 动量定理的应用:可以用来分析物体在外力作用下的运动状态。
三、动量守恒定律1. 动量守恒定律的表述:在一个封闭系统内,如果合外力为零,则系统的总动量保持不变。
2. 动量守恒定律的数学表达:Σpi = Σpf,即系统最初的总动量等于系统最终的总动量。
3. 动量守恒定律的应用:可用来分析弹性碰撞和完全非弹性碰撞等情况下物体的运动状态。
四、弹性碰撞1. 弹性碰撞的特点:在碰撞过程中,动能守恒,动量守恒。
2. 弹性碰撞的数学表达:m1v1i + m2v2i = m1v1f + m2v2f,即碰撞前的总动量等于碰撞后的总动量。
3. 弹性碰撞的应用:可用来分析弹簧振子、弹性小球碰撞等实际问题。
五、完全非弹性碰撞1. 完全非弹性碰撞的特点:在碰撞过程中,动量守恒,动能不守恒。
2. 完全非弹性碰撞的数学表达:m1v1i + m2v2i = (m1 + m2)v,即碰撞前的总动量等于碰撞后物体的总动量。
3. 完全非弹性碰撞的应用:可用来分析汽车碰撞、弹性小球与粘性物体碰撞等实际问题。
六、动量守恒实验1. 实验装置:常用的实验装置包括弹簧振子、动量棒等。
2. 实验原理:利用实验装置,进行不同形式的碰撞实验,验证动量守恒定律。
3. 实验过程:通过记录实验数据,进行数据分析,验证动量守恒定律在实验中的应用。
七、动量守恒在日常生活和工程实践中的应用1. 交通事故分析:利用动量守恒定律,可以分析交通事故中车辆碰撞的情况,从而减少事故损失。
高中物理必备知识点:动量守恒定律及其应用总结
![高中物理必备知识点:动量守恒定律及其应用总结](https://img.taocdn.com/s3/m/2413a76f49d7c1c708a1284ac850ad02de8007d1.png)
高中物理必备知识点:动量守恒定律及其应用总结第二课时动量守恒定律及其应用第一关:基本关与高考前景基础知识一、动量守恒定律知识解释(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.(2)数学表达式①p=p′.也就是说,系统相互作用前的总动量P等于相互作用后的总动量P',如果有两个相互作用的物体,通常写为:m1v1+m2v2=m1v1'+m2v2'② δp=p′-p=0。
即系统总动量的增量为零.③δp1=-δp2.也就是说,相互作用系统中的物体被分成两部分,其中一部分动量的增量等于另一部分动量的增量,且方向相反(3)动量守恒定律成立的条件内力不会改变系统的总动量,而外力可以改变系统的总动量。
在以下三种情况下,可以使用动量守恒定律:①系统不受外力或所受外力的矢量和为零.② 系统上的外力远小于系统的内力。
例如,在碰撞或爆炸的瞬间,外力可以忽略③系统某一方向不受外力或所受外力的矢量和为零,或外力远小于内力,则该方向动量守恒(分动量守恒).灵活的学习和应用1.如图所示,a、b两物体的质量ma>mb,中间用一段细绳相连并在一被压缩的弹簧,放在平板小车c上后,a、b、c均处于静止状态.若地面光滑,则在细绳被剪断后,a、b从c上未滑离之前,a、b在c上向相反方向滑动过程中()a、如果a、B和C之间的摩擦力相同,由a和B组成的系统的动量守恒,由a、B和C组成的系统的动量也守恒b.若a、b与c之间的摩擦力大小不相同,则a、b组成的系统动量不守恒,a、b、c组成的系统动量也不守恒c、如果a、B和c之间的摩擦力不同,由a和B组成的系统的动量不守恒,但由a、B和c组成的系统的动量守恒d.以上说法均不对分析:当两个物体a和B形成一个系统时,弹簧力是内力,a、B和C之间的摩擦力是外力。
当a、B和C之间的摩擦力相反时,由a和B组成的系统的合力为零,动量守恒;当a、B和C之间的摩擦力不相等时,由a和B组成的系统上的组合外力不为零,对于由a、B和C组成的系统,动量不守恒,因为弹簧的弹性力以及a和B和C之间的摩擦力都是内力,无论a和B之间的摩擦力,B和C是否相等,由a、B和C组成的系统的合力为零,动量守恒,因此选项a和C是正确的,选项B和D是错误的答案:ac注:(1)动量守恒的条件是系统不受外力或组合外力为零。
动量动量守恒定律知识点总结
![动量动量守恒定律知识点总结](https://img.taocdn.com/s3/m/c9f49d49a9114431b90d6c85ec3a87c241288a1d.png)
动量动量守恒定律知识点总结
一、动量
定义:动量,又称线性动量,是描述物体运动状态的物理量,其定义为物体的质量和速度的乘积,用符号p表示。
动量是一个矢量,它的方向与速度的方向相同。
动量的国际单位制中的单位是kg·m/s,量纲为MLT⁻¹。
基本性质:
动量是矢量,具有大小和方向。
质点组的动量为组内各质点动量的矢量和。
动量是一个守恒量,在封闭系统中,如果没有外力作用,系统的总动量将保持不变。
动量是机械运动传递的量度,反映了物体运动的趋势和状态。
二、动量守恒定律
定义:动量守恒定律是自然界中最重要、最普遍的守恒定律之一。
它表明,如果一个系统不受外力作用,或者所受外力之和为零,那么这个系统的总动量将保持不变。
守恒条件:
系统不受外力或所受合外力为零(严格条件)。
系统内力远大于外力(近似条件)。
在某个方向上,外力之和为零,那么在这个方向上动量守恒。
适用范围:动量守恒定律不仅适用于宏观物体的低速运动,也适用于微观物体的高速运动。
无论内力是什么性质的力,只要满足守恒条件,动量守恒定律总是适用的。
三、动量守恒定律的应用
动量守恒定律在物理学中有广泛的应用,例如碰撞问题、爆炸现象、火箭发射等。
通过运用动量守恒定律,可以求解出碰撞后的速度、火箭发射的速度等问题。
综上所述,动量及动量守恒定律是物理学中的基本概念和定律,对于理解物体的运动状态和相互作用具有重要意义。
在实际应用中,需要结合具体情境和问题进行分析和求解。
高中物理力学知识汇总动量冲量动量定理动量守恒定律
![高中物理力学知识汇总动量冲量动量定理动量守恒定律](https://img.taocdn.com/s3/m/a7bf6e943968011ca2009131.png)
高中物理力学知识汇总动量冲量动量定理动量守恒定律【知识要点复习】1、动量是矢量,其方向与速度方向相同,大小等于物体质量和速度的乘积,即P=mv。
2、冲量也是矢量,它是力在时间上的积累。
冲量的方向和作用力的方向相同,大小等于作用力的大小和力作用时间的乘积。
在计算冲量时,不需要考虑被作用的物体是否运动,作用力是何种性质的力,也不要考虑作用力是否做功。
在应用公式I=Ft进行计算时,F应是恒力,对于变力,则要取力在时间上的平均值,若力是随时间线性变化的,则平均值为3、动量定理:动量定理是描述力的时间积累效果的,其表示式为I=ΔP=mv-mv0式中I表示物体受到所有作用力的冲量的矢量和,或等于合外力的冲量;ΔP是动量的增量,在力F作用这段时间内末动量和初动量的矢量差,方向与冲量的方向一致。
动量定理可以由牛顿运动定律与运动学公式推导出来,但它比牛顿运动定律适用范围更广泛,更容易解决一些问题。
4、动量守恒定律(1)内容:对于由多个相互作用的质点组成的系统,若系统不受外力或所受外力的矢量和在某力学过程中始终为零,则系统的总动量守恒,公式:(2)内力与外力:系统内各质点的相互作用力为内力,内力只能改变系统内个别质点的动量,与此同时其余部分的动量变化与它的变化等值反向,系统的总动量不会改变。
外力是系统外的物体对系统内质点的作用力,外力可以改变系统总的动量。
(3)动量守恒定律成立的条件a、不受外力b、所受合外力为零c、合外力不为零,但F内>>F外,例如爆炸、碰撞等。
d、合外力不为零,但在某一方向合外力为零,则这一方向动量守恒。
(4)应用动量守恒应注意的几个问题:a、所有系统中的质点,它们的速度应对同一参考系,应用动量守恒定律建立方程式时它们的速度应是同一时刻的。
b、无论机械运动、电磁运动以及微观粒子运动、只要满足条件,定律均适用。
(5)动量守恒定律的应用步骤。
第一,明确研究对象。
第二,明确所研究的物理过程,分析该过程中研究对象是否满足动量守恒的条件。
高中物理之动量守恒定律知识点
![高中物理之动量守恒定律知识点](https://img.taocdn.com/s3/m/84f973bdda38376bae1fae0e.png)
高中物理之动量守恒定律知识点动量守恒定律如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.这就是动量守恒定律。
系统:当我们的研究的对象是两个或多个物体时,我们说着两个物体组成了一个力学系统。
内力:两个物体属于一个系统内,那么他们之间的力叫做内力。
外力:系统以外的力叫做外力。
动量守恒定律表达式(1)m1v1+m2v2=m1v′1+m2v′2,两个物体组成系统相互作用前后,动量保持不变。
(2)Δp1=-Δp2,相互作用的两物体组成的系统,两物体的动量变化量大小相等、方向相反。
(3)Δp=0,系统的动量变化量为零。
对动量守恒定律的理解(1)矢量性:只讨论物体相互作用前后速度方向都在同一条直线上的情况,这时要选取一个正方向,用正负号表示各矢量的方向。
(2)瞬时性:动量是一个状态量,动量守恒指的是系统任一瞬时的动量恒定。
(3)相对性:动量的大小与参考系的选取有关,一般以地面为参考系。
(4)普适性:①适用于两物体系统及多物体系统;②适用于宏观物体以及微观物体;③适用于低速情况及高速情况。
动量守恒定律的简单应用1.应用动量守恒定律的条件(1)系统不受外力或系统所受的合外力为零。
(2)系统所受的合外力不为零,比系统内力小得多。
(3)系统所受的合力不为零,在某个方向上的分量为零。
2.运用动量守恒定律解题的基本思路(1)确定研究对象并进行受力分析和过程分析;(2)确定系统动量在研究过程中是否守恒;(3)明确过程的初、末状态的系统动量;(4)选择正方向,根据动量守恒定律列方程。
3.动量守恒条件和机械能守恒条件的比较(1)守恒条件不同:系统动量守恒是系统不受外力或所受外力的矢量和为零;机械能守恒的条件是只有重力或弹簧弹力做功,重力或弹簧弹力以外的其他力不做功。
(2)系统动量守恒时,机械能不一定守恒。
(3)系统机械能守恒时,动量不一定守恒。
习题演练1. 如图所示,质量为M的木块放在光滑的水平面上,质量为m的子弹以初速度水平射向木块,设木块没有被射穿且子弹受到的阻力f恒定,求(1)木块的最大速度;(2)木块的最短水平长度;(3)木块的速度达到最大时,子弹射入木块的深度与木块的位移之比;(4)子弹与木块相对运动过程系统产生的内能。
动量守恒单元知识点总结
![动量守恒单元知识点总结](https://img.taocdn.com/s3/m/06bb5624b94ae45c3b3567ec102de2bd9605dea9.png)
动量守恒单元知识点总结一、动量的概念1. 动量的定义动量是一个物体在运动中的物理量,它是一个矢量,方向与物体运动方向一致,大小等于物体的质量乘以其速度。
数学上可以表示为:\[p = mv\]其中,p表示物体的动量,m表示物体的质量,v表示物体的速度。
2. 动量和力的关系牛顿第二定律指出,物体的加速度与物体所受的合外力成正比,与物体的质量成反比。
即:\[F = ma\]将速度表示为对时间的导数,可以得到:\[F = m\frac{dv}{dt}\]再将速度表示为物体的动量与质量的比值,可以得到:\[F = \frac{dp}{dt}\]这表明,力等于动量的变化率,即动量和力有着密切的联系。
3. 动量守恒定律动量守恒定律是指在一个封闭系统中,当没有外部力的作用时,系统的总动量保持不变。
即系统内部物体的相互作用,虽然可以改变各自的动量,但总动量始终保持不变。
二、动量守恒定律的数学表达动量守恒定律可以用数学表达式来描述。
假设系统由n个物体组成,它们的质量分别为m1、m2、…、mn,速度分别为v1、v2、…、vn。
在系统内相互作用前后,物体的总动量分别为\[p_{i} = m_{i}v_{i}, i = 1,2,…,n\]根据动量守恒定律,系统内相互作用前后的总动量应当相等,即:\[p_{1} + p_{2} + … + p_{n} = p'_{1} + p'_{2} + … + p'_{n}\]其中,p'表示相互作用后物体的动量。
将各个物体的动量代入上式,并使用动量的矢量形式,可以得到:\[\sum_{i=1}^{n}m_{i}v_{i} = \sum_{i=1}^{n}m_{i}v'_{i}\]这就是动量守恒定律的数学表达式,它表明了系统内相互作用前后的总动量相等。
三、动量守恒定律的实际应用1. 弹道学在弹道学中,动量守恒定律被广泛应用。
当一颗子弹击中一个静止的物体时,子弹和物体之间会发生相互作用,但由于动量守恒定律,子弹和物体的总动量保持不变。
动量守恒定律知识点总结
![动量守恒定律知识点总结](https://img.taocdn.com/s3/m/4f663e5e6ad97f192279168884868762caaebbe4.png)
动量守恒定律知识点总结1.动量的定义:动量是物体的运动状态的量度,它等于物体的质量乘以其速度。
动量的大小和方向与物体的质量和速度有关。
2.动量守恒定律的表述:对于一个封闭系统,如果没有外力作用于系统,那么系统中物体的总动量将保持不变。
3. 动量守恒定律的数学表达式:如果一个系统中有n个物体,它们的质量分别为m1,m2,...,mn,速度分别为v1,v2,...,vn。
那么系统的总动量可以用公式表示为:P = m1v1 + m2v2 + ... + mnvn。
如果系统中没有外力作用,那么系统的总动量将保持不变。
4.动量守恒定律的推导:动量守恒定律可以通过牛顿第二定律和加法性质推导得到。
根据牛顿第二定律,物体的加速度与作用力成正比,与质量成反比。
如果没有外力作用,物体的加速度为零,即物体的速度不会改变,所以物体的动量也不会改变。
5.动量守恒定律的应用:动量守恒定律是解决碰撞问题的重要工具。
在碰撞过程中,物体相互作用力的大小和方向相等。
根据动量守恒定律,我们可以利用物体的质量和速度来计算碰撞后物体的速度。
6.完全弹性碰撞和非完全弹性碰撞:根据碰撞过程中动能是否守恒,碰撞可以分为完全弹性碰撞和非完全弹性碰撞。
在完全弹性碰撞中,动量和动能都守恒;而在非完全弹性碰撞中,动量守恒,但动能不一定守恒。
7.动量守恒定律的局限性:动量守恒定律只适用于没有外力作用的封闭系统。
在现实世界中,外力很难完全忽略,因此动量守恒定律只能作为近似估计使用。
总结:动量守恒定律是力学中的重要定律,它描述了一个封闭系统中的总动量保持不变。
动量守恒定律可以通过物体的质量和速度来计算碰撞后物体的速度。
但需要注意的是,动量守恒定律只适用于没有外力作用的封闭系统。
高中物理动量守恒定律知识点总结高中物理动量守恒定律
![高中物理动量守恒定律知识点总结高中物理动量守恒定律](https://img.taocdn.com/s3/m/ef2739c1650e52ea54189842.png)
高中物理动量守恒定律知识点总结|高中物理动量守恒定律一、动量守恒定律1、动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。
(碰撞、爆炸、反冲)注意:内力的冲量对系统动量是否守恒没有影响,但可改变系统内物体的动量。
内力的冲量是系统内物体间动量传递的原因,而外力的冲量是改变系统总动量的原因。
2、动量守恒定律的表达式m1v1+m2v2=m1v1/+m2v2/(规定正方向)△p1=—△p2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。
必须注意区别总动量守恒与某一方向动量守恒。
二、碰撞1、完全非弹性碰撞:获得共同速度,动能损失最多动量守恒。
2、弹性碰撞:动量守恒,碰撞前后动能相等。
特例1:A、B两物体发生弹性碰撞,设碰前A初速度为v0,B静止,则碰后速度,vB=.特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A的速度)3、一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。
4、人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv=MV(注意:几何关系)冲量与动量(物体的受力与动量的变化)1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}要重视实验物理学是一门以实验为基础的科学,许多物理概念、物理规律都是从自然现象的实验中总结出来的。
专题二 18 动量守恒定律(知识点完整归纳)
![专题二 18 动量守恒定律(知识点完整归纳)](https://img.taocdn.com/s3/m/ec047ebd7e21af45b207a81d.png)
18 动量守恒定律1.判断守恒的三种方法(1)理想守恒:不受外力或所受外力的合力为0,如光滑水平面上板块模型、电磁感应中光滑导轨的双杆模型.(2)近似守恒:系统内力远大于外力,如爆炸、反冲.(3)某一方向守恒:系统在某一方向上所受外力的合力为0,则在该方向上动量守恒,如滑块-斜面(曲面)模型.2.动量守恒定律的三种表达形式(1)m 1v 1+m 2v 2=m 1v 2′+m 2v 2′,作用前的动量之和等于作用后的动量之和(用的最多).(2)Δp 1=-Δp 2,相互作用的两个物体动量的增量等大反向.(3)Δp =0,系统总动量的增量为零.1.动量守恒定律应用技巧(1)确定所研究的系统,单个物体无从谈起动量守恒.(2)动量守恒定律是矢量式,书写时要规定正方向.(3)系统中各物体的速度是相对于地面的速度,若不是,则应转换成相对于地面的速度.(4)静止的原子核衰变过程动量守恒,若是α衰变,新核和α粒子在磁场中出现外切圆;若是β衰变,新核和β粒子在磁场中出现内切圆.2.反冲运动中的“人船”模型(1)条件:系统由两个物体组成且相互作用前静止,总动量为零.(2)运动特点:人动船动、人静船静、人快船快、人慢船慢、人左船右.(3)位移关系:由m 船x 船=m 人x 人 和x 船+x 人=L ,得x 人=m 船m 人+m 船L ,x 船=m 人m 人+m 船L .示例1 (动量守恒定律的应用)(2020·全国卷Ⅲ·15)甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图1中实线所示.已知甲的质量为1 kg ,则碰撞过程两物块损失的机械能为( )图1A .3 JB .4 JC .5 JD .6 J答案 A解析 根据题图图象,碰撞前甲、乙的速度分别为v 甲=5.0 m/s ,v 乙=1.0 m/s ,碰撞后甲、乙的速度分别为v 甲′=-1.0 m/s ,v 乙′=2.0 m/s ,碰撞过程由动量守恒定律得m 甲v 甲+m 乙v 乙=m 甲v 甲′+m 乙v 乙′,解得m 乙=6 kg ,碰撞过程损失的机械能ΔE =12m 甲v 甲2+12m 乙v 乙2-12m 甲v 甲′2-12m 乙v 乙′2,解得ΔE =3 J ,故选A. 示例2 (人船模型)如图2,质量为M 的小车静止在光滑的水平面上,小车AB 段是半径为R 的四分之一光滑圆弧轨道,BC 段是长为L 的水平粗糙轨道,两段轨道相切于B 点,一质量为m 的滑块在小车上从A 点静止开始沿轨道滑下,然后滑入BC 轨道,最后恰好停在C 点.已知小车质量M =3m ,滑块与轨道BC 间的动摩擦因数为μ,重力加速度为g .则( )图2A .全程滑块水平方向相对地面的位移大小为R +LB .全程小车相对地面的位移大小为R +L 4C .最终小车和滑块一起向左运动D .μ、L 、R 三者之间的关系为R =4μL答案 B解析 设全程小车相对地面的位移大小为s ,则滑块水平方向相对地面的位移大小为x =R +L-s ,A 错误.取水平向右为正方向,由水平方向动量守恒得:m x t -M s t =0,即m R +L -s t-M s t =0,结合M =3m ,解得 s =14(R +L ),x =34(R +L ),故B 正确.对整个过程,由动量守恒定律得:0=(m +M )v ′,得v ′=0,则最终小车和滑块均静止,C 错误.对滑块从A 点开始下滑到在C 处停止的过程中,由能量守恒定律可得mgR =μmgL ,得R =μL ,故D 错误. 示例3 (爆炸问题)(2018·全国卷Ⅰ·24改编)一质量为m 的烟花弹获得动能E 后,从地面竖直升空.当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E ,且均沿竖直方向运动.爆炸时间极短,重力加速度大小为g ,不计空气阻力和火药的质量.求爆炸后烟花弹向上运动的部分距地面的最大高度. 答案 2E mg解析 设爆炸时烟花弹距地面的高度为h 1,由机械能守恒定律有E =mgh 1火药爆炸后,烟花弹上、下两部分均沿竖直方向运动,设爆炸后瞬间其速度分别为v 1和v 2.由题给条件和动量守恒定律有12×12m v 12+12×12m v 22=E 12m v 1+12m v 2=0 由上式知,烟花弹两部分的速度方向相反,向上运动部分做竖直上抛运动.设爆炸后烟花弹上部分继续上升的高度为h 2,由机械能守恒定律有14m v 12=12mgh 2 联立可得,烟花弹向上运动部分距地面的最大高度为h =h 1+h 2=2E mg.。
高中动量守恒知识点总结
![高中动量守恒知识点总结](https://img.taocdn.com/s3/m/f2523824a88271fe910ef12d2af90242a895abf4.png)
高中动量守恒知识点总结一、动量的概念和计算动量是描述物体运动状态的一种物理量,它是物体质量和速度的乘积。
动量的定义可以用公式表示为:p=mv,其中p表示动量,m表示物体的质量,v表示物体的速度。
动量的单位是千克·米/秒(kg·m/s)。
在物理学中,动量是一个矢量量,考虑到其方向,通常用有向线段表示。
在实际问题中,我们可以利用动量的定义和计算方法来解决物体运动过程中的一些问题,比如计算碰撞中物体的速度变化、求解物体的力的作用时间等等。
二、动量守恒定律动量守恒定律指的是在一个封闭系统中,如果没有外力作用,该系统的动量总量在一段时间内保持不变。
也就是说,如果系统内部发生了相互作用,使得某些物体的动量发生了变化,那么这些变化的动量之和必须等于其他物体动量变化的负值,从而使得整个系统的动量总量保持不变。
动量守恒定律的数学表达式为:Σpi=Σpf,即系统在初态和末态的动量之和相等,其中Σpi 表示初态的动量之和,Σpf表示末态的动量之和。
动量守恒定律适用于很多物理现象的描述,比如弹性碰撞、完全非弹性碰撞、爆炸等等。
下面我们来分别讨论这些情况下的动量守恒定律的应用。
1. 弹性碰撞在弹性碰撞中,两个物体相互碰撞后会发生弹性形变,并且碰后两物体之间的相对速度方向和大小会发生变化,但整个碰撞过程中系统的动量总量不发生改变。
即系统在碰撞前后的总动量保持不变。
例如,如果一个质量为m1的小球以速度v1与一个质量为m2的小球以速度v2发生弹性碰撞,那么碰撞后两球的速度分别为v'1和v'2,根据动量守恒定律有:m1v1+m2v2=m1v'1+m2v'2。
2. 完全非弹性碰撞在完全非弹性碰撞中,碰撞发生后两个物体会粘在一起,形成一个整体,整个碰撞过程中动量总量也是守恒的。
在这种情况下,碰撞后整体的速度就是碰撞前两个物体速度的加权平均。
例如,如果一个质量为m1的小球以速度v1与一个质量为m2的小球以速度v2发生完全非弹性碰撞,那么碰撞后整体的速度v'可以表示为:v'=(m1v1+m2v2)/(m1+m2)。
动量守恒知识点总结
![动量守恒知识点总结](https://img.taocdn.com/s3/m/ac677240bdd126fff705cc1755270722182e591b.png)
动量守恒知识点总结一、动量守恒定律的内容。
1. 表述。
- 如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。
- 表达式:对于两个物体组成的系统,通常表示为m_1v_1 +m_2v_2=m_1v_1'+m_2v_2'(作用前总动量等于作用后总动量)。
二、动量守恒定律的适用条件。
1. 系统不受外力或者所受外力的矢量和为零。
- 例如,在光滑水平面上,两个滑块相互碰撞的系统,水平方向没有外力作用,系统在水平方向动量守恒。
2. 系统所受外力远小于内力。
- 如爆炸过程,炸药爆炸时内力(化学能转化为机械能产生的力)远远大于系统所受的外力(如空气阻力等),此时可近似认为系统动量守恒。
3. 系统在某一方向上不受外力或所受外力的矢量和为零,则系统在该方向上动量守恒。
- 例如,一个物体沿光滑斜面下滑,斜面静止在粗糙水平面上。
把物体和斜面看成一个系统,在水平方向系统不受外力,水平方向动量守恒;而在竖直方向系统受到重力和支持力,合力不为零,竖直方向动量不守恒。
三、动量守恒定律的应用。
1. 碰撞问题。
- 弹性碰撞。
- 特点:碰撞过程中系统的动量守恒,机械能也守恒。
- 对于两个物体的弹性碰撞,设质量分别为m_1、m_2,碰撞前速度分别为v_1、v_2,碰撞后速度为v_1'、v_2'。
- 根据动量守恒定律m_1v_1 + m_2v_2=m_1v_1'+m_2v_2',根据机械能守恒定律(1)/(2)m_1v_1^2+(1)/(2)m_2v_2^2=(1)/(2)m_1v_1'^2+(1)/(2)m_2v_2'^2。
- 当m_1 = m_2时,v_1'=v_2,v_2'=v_1,即两质量相同的物体发生弹性碰撞后交换速度。
- 非弹性碰撞。
- 特点:碰撞过程中系统动量守恒,但机械能不守恒,有一部分机械能转化为内能等其他形式的能。
- 完全非弹性碰撞是一种特殊的非弹性碰撞,碰撞后两物体粘在一起,以共同速度运动。
《动量守恒定律》 讲义
![《动量守恒定律》 讲义](https://img.taocdn.com/s3/m/4a45ceb0b04e852458fb770bf78a6529647d35ad.png)
《动量守恒定律》讲义一、什么是动量守恒定律在物理学中,动量守恒定律是一个非常重要的基本定律。
那什么是动量守恒定律呢?动量,简单来说就是物体的质量和速度的乘积。
如果一个物体的质量是 m,速度是 v,那么它的动量就是 p = mv。
动量守恒定律指的是:在一个不受外力或者所受合外力为零的系统中,系统的总动量保持不变。
这就好比是在一个封闭的房间里,房间里的各种物体相互碰撞、运动,如果没有外力来干扰这个房间里的情况,那么房间里所有物体的总动量始终不会改变。
为了更好地理解这个定律,我们来举几个例子。
比如在光滑水平面上,两个质量分别为 m1 和 m2 的小球,以速度 v1 和 v2 相向运动,发生碰撞后,它们的速度分别变为 v1' 和 v2'。
根据动量守恒定律,就有m1v1 + m2v2 = m1v1' + m2v2'。
再比如,火箭在太空中飞行。
火箭燃料燃烧产生的气体向后喷出,火箭向前飞行。
在这个过程中,火箭和喷出的气体组成的系统,其总动量是守恒的。
二、动量守恒定律的条件动量守恒定律可不是随便什么时候都能成立的,它有一定的条件。
首先,系统不受外力或者所受合外力为零。
这是最理想的情况,就像前面提到的光滑水平面上的两个小球碰撞。
其次,如果系统所受外力远远小于内力,在这种情况下,外力对系统的动量改变可以忽略不计,我们也可以近似认为系统的动量守恒。
比如爆炸过程,虽然爆炸时受到重力等外力的作用,但爆炸产生的内力远远大于外力,所以在短时间内可以认为动量守恒。
三、动量守恒定律的推导动量守恒定律可以通过牛顿运动定律推导出来。
假设一个由两个相互作用的物体组成的系统,它们之间的作用力和反作用力分别为 F1 和 F2。
根据牛顿第二定律,对于物体 1 有 F1 = dp1/dt,对于物体 2 有 F2 = dp2/dt。
因为作用力和反作用力大小相等、方向相反,即 F1 = F2,所以dp1/dt = dp2/dt。
动量守恒的知识点总结
![动量守恒的知识点总结](https://img.taocdn.com/s3/m/c9d5d64e0640be1e650e52ea551810a6f424c870.png)
动量守恒的知识点总结一、动量的定义和计算动量是描述物体运动状态的量,它的大小等于物体的质量乘以速度。
动量的定义可以用以下公式表示:\[p = mv\]其中,p代表动量,m代表物体的质量,v代表物体的速度。
动量的单位是千克·米/秒(kg·m/s)。
如果有多个物体参与运动,它们的总动量可以通过将它们每个物体的动量相加来计算:\[P_{\text{总}} = \sum_{i=1}^{n}m_iv_i\]其中,n代表参与运动的物体的数目,m_i和v_i分别代表第i个物体的质量和速度。
二、动量守恒定律的表述动量守恒定律可以用以下形式来表述:在一个封闭系统中,如果没有外力的作用,系统的总动量在任何时间点都是不变的。
这意味着在一个封闭系统中,即使物体相互碰撞或发生其他运动,它们的总动量始终保持不变。
三、弹性碰撞和非弹性碰撞在介绍动量守恒定律的应用时,我们常常会提到弹性碰撞和非弹性碰撞这两个概念。
1. 弹性碰撞:在弹性碰撞中,碰撞后物体之间不会发生能量损失,动能守恒。
在这种情况下,动量守恒定律成立,即碰撞前后系统的总动量保持不变。
2. 非弹性碰撞:在非弹性碰撞中,碰撞后物体之间会发生能量损失,动能不守恒。
在这种情况下,应用动量守恒定律时需要考虑动量守恒方程与能量守恒方程的结合。
四、动量守恒定律的应用动量守恒定律在物理学中有着广泛的应用,其中包括:1. 理论研究:在研究物体之间的相互作用时,动量守恒定律可以帮助我们预测物体的运动轨迹和速度。
2. 工程应用:在设计交通工具、运动器材和机械装置时,我们需要考虑动量守恒定律来确保系统的稳定性和安全性。
3. 碰撞实验:在物理实验中,通过测量碰撞前后物体的速度和质量来验证动量守恒定律。
五、动量守恒在天体物理学中的应用动量守恒定律在天体物理学中也有着重要的应用。
例如,当两个星球之间发生引力作用时,它们的总动量也会保持不变。
通过动量守恒定律,我们可以研究天体运动和行星运动的规律。
高三动量和动量守恒知识点
![高三动量和动量守恒知识点](https://img.taocdn.com/s3/m/080e5a5911a6f524ccbff121dd36a32d7275c774.png)
高三动量和动量守恒知识点动量和动量守恒知识点动量和动量守恒是物理学中重要的概念,对于理解物体运动和碰撞有着关键作用。
本文将对高三学生需要了解的动量和动量守恒的知识点进行详细介绍。
一、动量的定义和公式动量是一个物体运动状态的量度,它的定义是物体的质量乘以其速度。
动量的公式可以表示为:p = m * v其中,p表示动量,m表示物体的质量,v表示物体的速度。
动量的单位是千克·米/秒(kg·m/s)。
二、动量守恒定律动量守恒定律是指在一个封闭系统内,如果没有外力作用,系统的总动量保持不变。
这意味着系统中物体的总动量在碰撞或相互作用过程中保持不变。
三、弹性碰撞和完全非弹性碰撞1. 弹性碰撞在弹性碰撞中,物体之间发生碰撞后,动量守恒仍然成立,并且动能守恒也成立。
在弹性碰撞中,碰撞后物体的速度和能量都会发生变化。
2. 完全非弹性碰撞在完全非弹性碰撞中,碰撞后物体会粘合在一起,动量守恒仍然成立,但动能守恒不成立。
在非弹性碰撞中,碰撞后物体的速度会发生变化,但总的动量仍保持不变。
四、动量守恒定律在实际生活中的应用1. 计算碰撞后物体的速度根据动量守恒定律,可以计算碰撞发生后物体的速度。
通过求解动量守恒方程,可以得到碰撞后物体的速度。
2. 交通事故的分析动量守恒定律在交通事故分析中有重要应用。
通过分析碰撞前和碰撞后物体的质量和速度,可以判断事故发生的原因和责任。
3. 运动员的训练运动员在训练过程中,可以利用动量守恒定律来改变自己的速度和力量。
通过调整速度和质量的变化,可以提高运动员的表现。
五、动量守恒定律的限制条件动量守恒定律的适用条件是在一个封闭系统内,没有外力作用。
在实际情况中,很难完全符合这个条件,因此在碰撞过程中仍然可能存在一些能量损失。
六、总结动量和动量守恒是物理学中重要的概念,可以帮助我们理解物体的运动和碰撞。
动量的定义和公式可以用来计算物体的运动状态,而动量守恒定律则用于分析碰撞过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 教学内容:
第十六章动量守恒定律
1. 实验:探究碰撞中的不变量
2. 动量守恒定律(一)
3. 动量守恒定律(二)
二. 知识要点:
1. 理解碰撞过程中动量守恒的探究过程。
2. 理解动量守恒定律的理论推导过程,理解动量守恒的意义,记住动量守恒定律的三种表达式,会应用动量守恒解相关问题。
三. 重难点解析:
1. 碰撞中守恒量的探究
实验的基本思路
我们只研究最简单的情况?D?D两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动。
这种碰撞叫做一维碰撞。
与物体运动有关的物理量可能有哪些呢?在一维碰撞的情况下只有物体的质量和物体的速度。
设两个物体的质量分别为m2,碰撞前的速度分别为v1、v
v。
如果速度与我们设定的方向一致,取正值,否则取负值。
现在的问题是,碰撞前后哪个物理量可能是不变的?质量是不变的,但质量并不描述物体的运动状态,不是我们追寻的“不变量”。
速度在碰撞前后是变化的,但一个物体的质量与它的速度的乘积是不是不变量?如果不是,那么,两个物体各自的质量与自己的速度的乘积之和是不是不变量?也就是说,关系式v1
v2=v m2 是否成立?
或者,各自的质量与自己的速度的二次方的乘积之和是不变量?也就是说,关系式v m2 =v m2 是否成立?
也许,两个物体的速度与自己质量的比值之和在碰撞前后保持不变?也就是说,关系式
=是否成立?
也许……
碰撞可能有很多情形。
例如,两个质量相同的物体相碰撞,两个质量相差悬殊的物体相碰撞,两个速度大小相同、方向相反的物体相碰撞,一个运动物体与一个静止物体相碰撞……两个物体的质地不同,碰撞的情形也不一样。
例如两个物体碰撞时可能碰后分开,也可能粘在一起不再分开…我们寻找的不变量必须在各种碰撞的情况下都不改变,这样才符合要求。
需要考虑的问题
实验中首要的问题是如何保证碰撞是一维的,即如何保证两个物体在碰撞之前沿同一直线运动,碰撞之后还沿同一直线运动。
此外,还要考虑怎样测量物体的质量、怎样测量两个物体在碰撞前后的速度。
质量可以用天平测量,本实验要解决的主要问题是怎样保证物体沿同一直线运动和怎样测量物体的速度。
关于实验数据的处理,下面的表格可供参考。
填表时要注意:
如果小球碰撞后运动的速度与原来的方向相反,应该怎样记录?
对于每一种碰撞的情况都要填写一个类似的表格,举例来说,如果每个表格中第
一行第二列和第三列的求和的值都相等,那么很可能就是我们寻找的不变量。
结论:两个物体碰撞时质量与速度的乘积保持不变。
把质量与速度的乘积叫做动量,上述结论又可以叙述为,物体发生碰撞时总动量不变。
2. 动量守恒定律
我们用牛顿运动定律分析两个小球的碰撞。
可以看到,所得结论与动量守恒定律的结论相同。
如图所示,在水平桌面上做匀速运动的两个小球,质量分别是m1和m2,沿着同一直线向相同的方向运动,速度分别是v1和v2,且v2>v1。
当第二个小球追上
第一个小球时两球碰撞。
碰撞后的速度分别是v。
碰撞过程中第一个球所受另一个球对它的作用力是F1,第二个球所受另一个球对它的作用力是F2。
根据牛顿第三定律,F1与F1=一m1m2a1=,
把加速度的表达式代入 a1=一a2,移项后得到
v1 v2=v m2 (1)
它的物理意义是:两球碰撞前的动量之和等于碰撞后的动量之和。
这个结果与动量守恒定律是一致的。
从上面的分析还可以看出,两个物体碰撞过程中的每个时刻都有F1=一F2,因此上面(1)式对过程中的任意两时刻的状态都适用,也就是说,系统的动量在整个过程中一直保持不变。
因此,我们才说这个过程中动量是守恒的。
动量守恒定律的普适性
既然许多问题可以通过牛顿运动定律解决,为什么还要研究动量守恒定律?
从上面的例子可以看到,用牛顿定律解决问题要涉及整个过程中的力。
有的时候,力的形式很复杂,甚至是变化的,解起来很复杂,甚至不能求解。
但是动量守恒定律只涉及过程始末两个状态,与过程中力的细节无关。
这样,问题往往能大大简化。
除此之外,两者还有更深刻的差别。
近代物理的研究对象已经扩展到我们直接经验所不熟悉的高速(接近光速)、微观(小到分子、原子的尺度)领域。
实验事实证明,在这些领域,牛顿运动定律不再适用,而动量守恒定律仍然正确。
电磁场是现代物理学的重要研究对象,在下一章我们会看到,电磁场的运动,即电磁波,也具有动量,它与粒子的相互作用也遵守动量守恒定律。
动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。
随着学习的深入,同学们对此将有更深刻的体会。
3. 正确理解动量守恒定律
① 动量守恒有条件:系统不受外力或合外力为零是系统动量守恒的条件。
对速度大小,质量大小都没有限制。
若外力远小于内力,且作用时间很短,可以认为系统动量守恒。
若在某一方向上,系统不受外力或合外力为零,在这一方向上动量守恒。
② 守恒方程中速度v以地面为参考系叫参考系同一性
③ 状态的同时性
动量是一个状态量,只有瞬时意义。
动量守恒是指系统任一时刻总动量不变。
注意系统总动量不变不等于每个物体动量不变。
④ 动量守恒方程的矢量性。
动量是矢量,系统总动量也是矢量,动量守恒是指系统总动量的矢量不变。
列方程应按矢量的方向列方程,若选定正方向注意每个物体速度方向动量为正或为负。
(4)运用动量守恒定律解题步骤:
① 明确研究对象,一般选相互作用的物体系统为研究对象。
② 分析系统受外力和系统内力情况,判断是否动量守恒。
③ 选定正方向,确定作用前后两状态系统总动量。
④ 在同一地面参考系列动量守恒方程求解。
【典型例题
[例1] 水平面上质量的车以速度的速度滑行,
一人质量的人以水平速度迎面跳上车,当人与车不再有相对运动时,车速是多少?方向是什么方向?(设地面对车的摩擦可不计)
解析:人跳上车时,人与车有相互作用,取人车作为系统,系统水平方向不受外力,水平方向动量守恒。
取车的初速度方向为正。
人跳上车前,即将落到车上时刻为初态
总动量为
人与车等速时为末态,初速度v,总动量
由动量守恒得
最终车以与原来相反方向运动。
[例2] 光滑水平面上质量的木箱A以速度的速度滑行,前面有另一木箱B,,以速度相向滑行,若两木箱相撞后,A的速度减小为,B的速度多大?
解析:系统AB受合外力为零动量守恒,水平方向原来A的速度为正,由动量守恒列方程,设B的速度为
碰后B的方向与碰前方向相反。
[例3] 平静的湖面上浮着一只长L=6kg的船,船头上站着一质量为kg的人,开始时,人和船均处于静止。
若船行进时阻力很小,问当人从船头走到船尾时,船将行进多远?
解析:以人和船组成的系统为研究对象。
因船行进时阻力很小,船及人所受重力与水对船的浮力平衡,可以认为人在船上行走时系统动量守恒,开始时人和船都停止,系统总动量为零;当人在船上走动时,无论人的速度如何,系统的总动量都保持为零不变。
取人运动方向为正方向,设人对岸的速度为v相反,由动量守恒定律有
0=v+(一====
由图中几何关系可知sm SM ====
同方法一,可求得sM=0.5 A、mB=2mA,规定向右为正方向,B两球的动量均为6 kg?m/s,运动中两球发生碰撞,碰撞后A球的动量增量为一4m/s。
则()
A. 左方是A、A球,碰撞后B两球速度大小之比为1:10
C. 右方是A、A球,碰撞后B两球速度大小之比为1:10
7. 下图所示,轻弹簧与木块连接另一端固定在竖直的墙壁上,木块B放于光滑水平面上,弹簧处原长状态,一颗子弹A以水平速度射入木块内(此过程时间非常短),将弹簧压缩到最短,将子弹、木块、弹簧作为系统,则此系统在从子弹接触木块开始到弹簧被压缩至最短的过程中()
A. 动量守恒,机械能守恒
B. 动量不守恒,机械能不守恒
C. 动量守恒,机械能不守恒
D. 动量不守恒,机械能守恒
【试题答案】
1.(1)2倍;4倍
(2)动量改变12kg?m/s,向西;动能变化量为0 (3)6kg?m/s向西;33J
2. 3:4
3. 7.4m/s,与原方向相同
4. 88.2m/s;83.3m/s
5. A
6. A
7. B。