复数的基本概念与基本运算

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数的基本概念与基本运算

一、《考试说明》中复数的考试内容(1)数的概念的发展,复数的有关概念(实数、虚数、纯虚数、复数相等、共轭复数、模);(2)复数的代数表示与向量表示;(3)复数的加法与减法,复数的乘法与除法,复数的三角形式,复数三角形式的乘法与乘方,复数三角形式的除法与开方;(4)复数集中解实系数方程(包括一元二次方程、二项方程)。二、考试要求(1)使学生了解扩充实数集的必要性,正确理解复数的有关概念.掌握复数的代数、几何、三角表示及其转换;(2)掌握复数的运算法则,能正确地进行复数的运算,并理解复数运算的几何意义;(3)掌握在复数集中解实数系数一元二次方程和二项方程的方法.(4)通过内容的阐述,带综合性的例题和习题的训练,继续提高学生灵活运用数学知识解题的能力.(5)通过数的概念的发展,复数、复平面内的点及位置向量三者之间的联系与转换的复习教学,继续对学生进行辩证观点的教育.三、学习目标(1)联系实数的性质与运算等内容,加强对复数概念的认识;?(2)理顺复数的三种表示形式及相互转换:z = r(cosθ+isinθ) , OZ(Z(a,b)) , z=a+bi (3)正确区分复数的有关概念;(4)掌握复数几何意义,注意复数与三角、解几等内容的综合;复(5)正确掌握复数的运算:复数代数形式的加、减、乘、除;三

角数实数集集形式的乘、除、乘方、开方及几何意义;虚数单位i及1的立方虚根纯虚数集ω的性质;模及共轭复数的性质;(6)掌握化归思想——将复数问题实数化(三角化、几何化);(7)掌握方程思想——利用复数及其相等的有关充要条件,建立相应的方程,转化复数问题。四、本章知识结构与复习要点1.知识体系表解 1 1/16页2.复数的有关概念和性质:(1)i称为虚数单位,规定2i,,1,形如a+bi的数称为复数,其中a,b?R.(2)复数的分类(下面的a,b均为实数) (3)复数的相等设复数,那么的充要zz,zabizabiababR,,,,,,(,,,)121112221122条件是:.abab,,且1122 (4)复数的几何表示复数z=a+bi(a,b?R)可用平面直角坐标系内点Z(a,b)来表示.这时称此平面为复平面,x轴称为实轴,y轴除去原点称为虚轴.这样,全体复数集C与复平面上全体点集是一一对应的. 2 2/16页复数

z=a+bi.在复平面内还可以用以原点O为起点,以点Z(a,b) abR,,,,向量所成的集合也是一一对应的(例外的是复数0对应点O,看成零向量).(7)复数与实数不同处?任意两个实数可以比较大小,而任意两个复数中至少有一个不是实数时就不能比较大小.?实数对于四则运算是通行无阻的,但不是任何实数都可以开偶次方.而复数对四则运算和开方均通行无阻.3.有关计算:?**n4k,rrkNrN,,,nN,ii,i怎样计算?(先求n被4除所得的余数,),,,,1313?,,,,i、,,,,i

是1的两个虚立方根,并且:

122222113322 ,,,,1,,,,,,,,,,12122121,,12 ,,,,,1 ,,,,,,1212 21? 复数集内的三角形不等式是:z,z,z,z,z,z,其中左边在复数121212z、z对应的向量共线且反向(同向)时取等号,右边在复数z、z对应的向量共1212线且同向(反向)时取等号。nn? 棣莫佛定理是:,,r(cos,,isin,),r(cosn,,isinn,)(n,Z)? 若非零复数z,r(cos,,isin,),则z的n次方根有n个,即:2k,2k,,,,,nz,r(cos,isin)(k,0,1,2,?,n,1) knn它们在复平面内对应的点在分布上有什么特殊关系?nrn 3 3/16页,,z,2,z,3(cos,isin),z? 若,复数z、z对应的点分别是A、B,

则?12121331,AOB(O为坐标原点)的面积是,2,6,sin,33。232? z=。z,z? 复平面内复数z对应的点的几个基本轨迹:?轨迹为一条射线。argz,,,(为实常数), ?轨迹为一条射线。

arg(zz,),,(z是复常数,,是实常数),00 ?轨迹是一个圆。z,z,r(r 是正的常数),0 ?轨迹是一条直线。z,z,z,z(z、z是复常数),1212 ?轨迹有三种可能z,z,z,z,2a(z、z是复常数,a是正的常数),1212情形:a)当时,轨迹为椭圆;b)当时,轨迹为一条线段;2a,z,z2a,z,z1212c)当时,轨迹不存在。

2a,z,z12 ?z,z,z,z,2a(a是正的常数),轨迹有三种可能情形:a)

当122a,z,z时,轨迹为双曲线;b) 当2a,z,z时,轨迹为两条射线;c) 当12122a,z,z时,轨迹不存在。12 五、高考命题规律分析复数在过去几年里是代数的重要内容之一,涉

及的知识面广,对能力要求较高,是高考热点之一。但随着新教材对复数知识的淡化,高考试题比例下降,因此考生要把握好复习的尺度。从近几年的高考试题上看:复数部分考查的重点是基础知识题型和运算能力题型。基础知识部分重点是复数的有关概念、复数的代数形式、三角形式、两复数相等的充要条件及其应用,复平面内复数的几何表示及复向量的运算。主要考点为复数的模与辐角主值,共轭复数的概念和应用。若只涉及到一、二个知识点的试题大都集中在选择题和填空题;若涉及几个知识点的试题,往往是中、高档题目,解答此类问题一般要抓住相应的概念进行正确的变换,对有些题目,往往用数形结合可获得简捷的解法。有关复数n次乘方、求4 4/16页辐角(主值)等问题,涉及到复数的三角形式,首先要将所给复数转化为三角形式后再进行变换。复数的运算是高考中复数部分的热点问题。主要考查复数的代数和三角形式的运算,复数模及辐角主值的求解及复向量运算等问题。基于上述情况,我们在学习“复数”一章内容时,要注意以下几点:(1)复数的概念几乎都是解题的手段。因此在学习复数时要在深入理解、熟练掌握复数概念上下功夫。除去复数相等、模、辐角、共轭复数的三角形式和代数式,提供了将“复数问题实数化”的手段。复数的几何意义也是解题的一个重要手段。(2)对于涉及知识点多,与方程、三角、解析几何等知识综合运用的思想

相关文档
最新文档