高考数学《集合》专项练习(选择题含答案)
高中数学高考总复习集合习题及详解
高中数学高考总复习集合习题及详解一、选择题1.(09·全国Ⅱ)已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则∁U (M ∪N )=( )A .{5,7}B .{2,4}C .{2,4,8}D .{1,3,5,6,7}[答案] C[解析] M ∪N ={1,3,5,6,7}, ∴∁U (M ∪N )={2,4,8},故选C.2.(2010·烟台二中)已知集合M ={y |y =x 2},N ={y |y 2=x ,x ≥0},则M ∩N =( ) A .{(0,0),(1,1)} B .{0,1} C .[0,+∞)D .[0,1][答案] C[解析] M ={y |y ≥0},N =R ,则M ∩N =[0,+∞),选C.[点评] 本题极易出现的错误是:误以为M ∩N 中的元素是两抛物线y 2=x 与y =x 2的交点,错选A .避免此类错误的关键是,先看集合M ,N 的代表元素是什么以确定集合M ∩N 中元素的属性.若代表元素为(x ,y ),则应选A.3.设集合P ={x |x =k 3+16,k ∈Z },Q ={x |x =k 6+13,k ∈Z },则( )A .P =QB .P QC .P QD .P ∩Q =∅[答案] B[解析] P :x =k 3+16=2k +16,k ∈Z ;Q :x =k 6+13=k +26,k ∈Z ,从而P 表示16的奇数倍数组成的集合,而Q 表示16的所有整数倍数组成的集合,故P Q .选B.[点评] 函数值域构成的集合关系的讨论,一般应先求出其值域.如果值域与整数有关,可将两集合中的元素找出它们共同的表达形式,利用整数的性质求解或用列举法讨论.4.(文)满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( ) A .1 B .2C .3D .4[答案] B[解析] 集合M 必须含有元素a 1,a 2,并且不能含有元素a 3,故M ={a 1,a 2}或{a 1,a 2,a 4}.(理)(2010·湖北理,2)设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x },则A ∩B 的子集的个数是( )A .4B .3C .2D .1[答案] A[解析] 结合椭圆x 24+y 216=1的图形及指数函数y =3x 的图象可知,共有两个交点,故A ∩B 的子集的个数为4.5.(2010·辽宁理,1)已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A =( )A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}[答案] D[解析] 由题意知,A 中有3和9,若A 中有7(或5),则∁U B 中无7(或5),即B 中有7(或5),则与A ∩B ={3}矛盾,故选D.6.(文)(2010·合肥市)集合M ={x |x 2-1=0},集合N ={x |x 2-3x +2=0},全集为U ,则图中阴影部分表示的集合是( )A .{-1,1}B .{-1}C .{1}D .∅[答案] B[解析] ∵M ={1,-1},N ={1,2},∴M ∩N ={1}, 故阴影部分表示的集合为{-1}.(理)(2010·山东省实验中学)如图,I 是全集,A 、B 、C 是它的子集,则阴影部分所表示的集合是( )A .(∁I A ∩B )∩C B .(∁I B ∪A )∩C C .(A ∩B )∩∁I CD .(A ∩∁I B )∩C[答案] D[解析] 阴影部分在A 中,在C 中,不在B 中,故在∁I B 中,因此是A 、C 、∁I B 的交集,故选D.高考总复习含详解答案[点评] 解决这类题的要点是逐个集合考察,看阴影部分在哪些集合中,不在哪些集合中,注意不在集合M 中时,必在集合M 的补集中.7.已知钝角△ABC 的最长边长为2,其余两边长为a ,b ,则集合P ={(x ,y )|x =a ,y =b }所表示的平面图形的面积是( )A .2B .4C .π-2D .4π-2[答案] C[解析] 由题中三角形为钝角三角形可得①a 2+b 2<22;②a +b >2;③0<a <2,0<b <2,于是集合P 中的点组成由条件①②③构成的图形,如图所示,则其面积为S =π×224-12×2×2=π-2,故选C.8.(文)(2010·山东滨州)集合A ={-1,0,1},B ={y |y =cos x ,x ∈A },则A ∩B =( ) A .{0}B .{1}C .{0,1}D .{-1,0,1}[答案] B[解析] ∵cos0=1,cos(-1)=cos1,∴B ={1,cos1}, ∴A ∩B ={1}.(理)P ={α|α=(-1,1)+m (1,2),m ∈R },Q ={β|β=(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q =( )A .{(1,-2)}B .{(-13,-23)}C .{(1,-2)}D .{(-23,-13)}[答案] B[解析] α=(m -1,2m +1),β=(2n +1,3n -2),令a =β,得⎩⎪⎨⎪⎧ m -1=2n +12m +1=3n -2 ∴⎩⎪⎨⎪⎧m =-12n =-7∴P ∩Q ={(-13,-23)}.9.若集合M ={0,1,2},N ={(x ,y )|x -2y +1≥0且x -2y -1≤0,x 、y ∈M },则N 中元素的个数为( )A .9B .6C .4D .2[答案] C[解析] N ={(0,0),(1,0),(1,1),(2,1)},按x 、y ∈M ,逐个验证得出N .10.(文)已知集合{1,2,3,…,100}的两个子集A 、B 满足:A 与B 的元素个数相同,且A ∩B 为空集.若n ∈A 时,总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A .62B .66C .68D .74[答案] B[解析] 若24到49属于A ,则50至100的偶数属于B 满足要求,此时A ∪B 已有52个元素;集合A 取1到10的数时,集合B 取4到22的偶数,由于A ∩B =∅,∴4,6,8∉A ,此时A ∪B 中将增加14个元素,∴A ∪B 中元素个数最多有52+14=66个.(理)设⊕是R 上的一个运算,A 是R 的非空子集.若对任意a 、b ∈A ,有a ⊕b ∈A ,则称A 对运算⊕封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( )A .自然数集B .整数集C .有理数集D .无理数集[答案] C[解析] A :自然数集对减法,除法运算不封闭, 如1-2=-1∉N,1÷2=12∉N .B :整数集对除法运算不封闭,如1÷2=12∉Z .C :有理数集对四则运算是封闭的.D :无理数集对加法、减法、乘法、除法运算都不封闭. 如(2+1)+(1-2)=2,2-2=0,2×2=2,2÷2=1, 其运算结果都不属于无理数集. 二、填空题11.(文)已知集合A ={x |log 12x ≥3},B ={x |x ≥a },若A ⊆B ,则实数a 的取值范围是(-∞,c ],其中的c =______.[答案] 0[解析] A ={x |0<x ≤18},∵A ⊆B ,∴a ≤0,∴c =0.(理)(2010·江苏苏北四市、南京市调研)已知集合A ={0,2,a 2},B ={1,a },若A ∪B ={0,1,2,4},则实数a 的值为________.[答案] 2[解析] ∵A ∪B ={0,1,2,4},∴a =4或a 2=4,若a =4,则a 2=16,但16∉A ∪B ,∴a 2=4,∴a =±2,又-2∉A ∪B ,∴a =2.高考总复习含详解答案12.(2010·浙江萧山中学)在集合M ={0,12,1,2,3}的所有非空子集中任取一个集合,该集合恰满足条件“对∀x ∈A ,则1x∈A ”的概率是________.[答案]331[解析] 集合M 的非空子集有25-1=31个,而满足条件“对∀x ∈A ,则1x ∈A ”的集合A 中的元素为1,2或12,且12,2要同时出现,故这样的集合有3个:{1},{12,2},{1,12,2}.因此,所求的概率为331.13.(文)(2010·江苏,1)设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________.[答案] 1[解析] ∵A ∩B ={3},∴3∈B , ∵a 2+4≥4,∴a +2=3,∴a =1.(理)A ={(x ,y )|x 2=y 2} B ={(x ,y )|x =y 2},则A ∩B =________. [答案] {(0,0),(1,1),(1,-1)}.[解析] A ∩B =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x 2=y2x =y 2={(0,0),(1,1),(1,-1)}. 14.若A ={x |22x -1≤14},B ={x |log 116x ≥12},实数集R 为全集,则(∁R A )∩B =________.[答案] {x |0<x ≤14}[解析] 由22x -1≤14得,x ≤-12,由log 116x ≥12得,0<x ≤14,∴(∁R A )∩B ={x |x >-12}∩{x |0<x ≤14}={x |0<x ≤14}.三、解答题15.设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}. (1)若A ∩B ={2},求实数a 的值; (2)若A ∪B =A ,求实数a 的取值范围. [解析] (1)A ={1,2},∵A ∩B ={2},∴2∈B , ∴4+4(a +1)+(a 2-5)=0,∴a =-1或-3. (2)∵A ∪B =A ,∴B ⊆A ,由Δ=4(a +1)2-4(a 2-5)=8(a +3)=0得,a =-3. 当a =-3时,B ={2},符合题意;当a <-3时,Δ<0,B =∅,满足题意; 当a >-3时,∵B ⊆A ,∴B =A ,故⎩⎪⎨⎪⎧2(a +1)=-3a 2-5=2,无解. 综上知,a ≤-3.16.(2010·广东佛山顺德区质检)已知全集U =R ,集合A ={x |x 2-x -6<0},B ={x |x 2+2x -8>0},C ={x |x 2-4ax +3a 2<0},若∁U (A ∪B )⊆C ,求实数a 的取值范围.[解析] A ={x |-2<x <3},B ={x |x <-4,或x >2},A ∪B ={x |x <-4,或x >-2}, ∁U (A ∪B )={x |-4≤x ≤-2},而C ={x |(x -a )(x -3a )<0} (1)当a >0时,C ={x |a <x <3a },显然不成立. (2)当a =0时,C =∅,不成立.(3)当a <0时,C ={x |3a <x <a },要使∁U (A ∪B )⊆C ,只需⎩⎪⎨⎪⎧3a <-4a >-2,即-2<a <-43.综上知实数a 的取值范围是⎝⎛⎭⎫-2,-43. 17.(文)设集合A ={(x ,y )|y =2x -1,x ∈N *},B ={(x ,y )|y =ax 2-ax +a ,x ∈N *},问是否存在非零整数a ,使A ∩B ≠∅?若存在,请求出a 的值;若不存在,说明理由.[解析] 假设A ∩B ≠∅,则方程组⎩⎪⎨⎪⎧y =2x -1y =ax 2-ax +a 有正整数解,消去y 得, ax 2-(a +2)x +a +1=0(*)由Δ≥0,有(a +2)2-4a (a +1)≥0, 解得-233≤a ≤233.因a 为非零整数,∴a =±1,当a =-1时,代入(*),解得x =0或x =-1, 而x ∈N *.故a ≠-1.当a =1时,代入(*),解得x =1或x =2,符合题意. 故存在a =1,使得A ∩B ≠∅, 此时A ∩B ={(1,1),(2,3)}.(理)(2010·厦门三中)已知数列{a n }的前n 项和为S n ,且(a -1)S n =a (a n -1)(a >0,n ∈N *). (1)求证数列{a n }是等比数列,并求a n ;(2)已知集合A ={x |x 2+a ≤(a +1)x },问是否存在实数a ,使得对于任意的n ∈N *,都有S n ∈A ?若存在,求出a 的取值范围;若不存在,说明理由.[解析] (1)①当n =1时,∵(a -1)S 1=a (a 1-1),∴a 1=a (a >0)高考总复习含详解答案②当n ≥2时,由(a -1)S n =a (a n -1)(a >0)得, (a -1)S n -1=a (a n -1-1)∴(a -1)a n =a (a n -a n -1),变形得:a na n -1=a (n ≥2),故{a n }是以a 1=a 为首项,公比为a 的等比数列, ∴a n =a n .(2)①当a ≥1时,A ={x |1≤x ≤a },S 2=a +a 2>a ,∴S 2∉A , 即当a ≥1时,不存在满足条件的实数a . ②0<a <1时,A ={x |a ≤x ≤1} ∵S n =a +a 2+…+a n =a1-a (1-a n ),∴S n ∈[a ,a1-a),因此对任意的n ∈N *,要使S n ∈A ,只需⎩⎪⎨⎪⎧0<a <1a 1-a ≤1,解得0<a ≤12,综上得实数a 的取值范围是(0,12].。
高中数学集合习题附详解
高中数学集合习题附详解一、单选题1.已知集合102x A x x -⎧⎫=<⎨⎬-⎩⎭,{1}B x x =>-,则( )A .R AB ⊆ B .R A B ⊆C .B A ⊆D .A B ⊆ 2.若集合{|ln(2)1}A x Z x =∈-≤,则集合A 的子集个数为( )A .3B .4C .7D .83.已知集合{}21,A y y x x ==-∈Z ,{}25410B x x x =--≤,则A B =( ) A .{}1 B .{}0,1C .{}0,1,2D .{}1,3,54.已知集合2{|4120}A x x x =+-<,{|13}B x x =<≤,则A B =( ) A .()1,2- B .()1,2 C .(]1,3- D .(]1,3 5.设{}13A x x =-<≤,{}B x x a =>,若A B ⊆,则a 的取值范围是( ) A .{}3a a ≥ B .{}1a a ≤- C .{}3a a > D .{}1a a <- 6.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( )A .{}1B .{}1,2,3C .{}1,2D .{}1,0,1- 7.设集合{}A x x a =>,()(){}120B x x x =-->,若A B ⊆,则实数a 的取值范围是( ).A .(),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞8.正确表示图中阴影部分的是( )A .R M ∪NB .R M ∩NC .R (M ∪N )D .R (M ∩N )9.已知集合{},,A a b c =的所有非空真子集的元素之和等于12,则a b c ++的值为( )A .1B .2C .3D .410.已知集合{|13,N}A x x x =-<<∈,则A 的子集共有( )A .3个B .4个C .8个D .16个 11.已知集合(){}2log 2A x y x ==-,{}2xB y y ==,则A B =( )A .()0,2B .()1,2C .[)1,2D .(),2-∞ 12.若集合(){}ln 10A x x =-≤,{}2B x x =≥,则()R AB =( ) A .(2,2)- B .(1,2)C .[)1,2D .(1,2]13.已知集合{3,2,1,0,1}A =---,301x B x Z x +⎧⎫=∈<⎨⎬-⎩⎭,则A B =( ) A .[3,1)- B .[3,1]- C .{3,2,1,0,1}--- D .{2,1,0}--14.设集合{}{21,2,3|50}A B x x bx =---=++=,.若{}1A B ⋂=-,则B =( ) A .(-1,-3} B .{-1,3} C .{}1,5--D .{}1,5- 15.已知集合{4,3,2,1,0,1,2,3,4}A =----,2{|9}B x x =<,则A B =( ) A .{0,1,2,3,4} B .{3,2,1,0,1,2,3}---C .{2,1,0,1,2}--D .()3,3- 二、填空题16.如图,设集合,A B 为全集U 的两个子集,则A B =____________.17.集合(){},A x y y a x ==,(){},B x y y x a ==+,C A B =,且集合C 为单元素集合,则实数a 的取值范围是________.18.已知集合{}2A x x =<,{}2,0,1,2B =-,则A B =_______.19.已知集合 {}N 24x x A =∈<,{}220x x x B -<=则集合A B 的子集个数为___________.20.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.21.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______. 22.若非空且互不相等的集合M ,N ,P 满足:M N M ⋂=,⋃=N P P ,则M P =________.23.已知集合{}{}2560,A x x x B x x x =--<==-,则A B =__________. 24.若实数2a =,集合{}|13B x x =-<<,则a 与B 的关系是______.25.设集合{}2,3,4U =,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第6位的子集是_________.三、解答题26.已知集合{}220A x x x =+-≤,{}11B x m x m =-≤≤+. (1)若A B B ⋃=,求m 的取值范围;(2)若“x ∈B ”是“x ∈A ”的充分不必要条件,求m 的取值范围.27.已知集合()(){}20A x x a x a =---≤,{}220B x x x =+-<. (1)若0a =,求()R A B ;(2)若命题P :“x A ∀∈,x B ∉”是真命题,求实数a 的取值范围.28.已知全集U =R ,集合{}22150A x x x =--<,集合()(){}2210B x x a x a =-+-<. (1)若1a =,求U A 和U B ;(2)若A B A ⋃=,求实数a 的取值范围.29.已知集合{}213A x t x t =-≤≤-,{}215B x x =-<+<.(1)若A B =∅,求实数t 的取值范围;(2)若“x B ∈”是“x A ∈”的必要不充分条件,求实数t 的取值范围.30.集合{}30?180120?180,Z A k k k αα︒︒=︒+<<+︒∈,集合{}45?360135?360,Z B k k k ββ=-+<<+∈. (1)求A B ;(2)若全集为U ,求U ()A B ⋂.【参考答案】一、单选题1.D【解析】【分析】首先解分式不等式求出集合A ,再根据补集的定义求出R A 、R B ,再根据集合间解得基本关系判断可得;【详解】 解:由102x x -<-,等价于()()120x x --<,解得12x <<, 所以{}10|122x A x x x x -⎧⎫=<=<<⎨⎬-⎩⎭,{}R |12A x x x =≤≥或 又{1}B x x =>-,所以{}R 1B x x =≤-,所以A B ⊆故选:D2.B【解析】【分析】根据对数的运算性质,求得集合{3,4}A =,进而求得集合A 的子集个数,得到答案.【详解】由ln(2)1x -≤,可得202x x e->⎧⎨-≤⎩,解得22x e <≤+, 所以集合{|22}{3,4}A x Z x e =∈<≤+=,所以集合A 的子集个数为224=.故选:B.3.A【解析】【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得;【详解】解:由25410x x --≤,即()()5110x x +-≤,解得115x -≤≤, 所以{}215410|15B x x x x x ⎧⎫=--≤=-≤≤⎨⎬⎩⎭,又{}{}21,,3,1,1,3,5,A y y x x Z ==-∈=--,所以{}1A B ⋂=;故选:A4.B【解析】【分析】求出集合A 的解集,即可求出A B 的结果.【详解】 因为{}()()2|4120{|620}{|62}A x x x x x x x x =+-<=+-<=-<<, {|13}B x x =<≤,所以{|12}A B x x =<<,故选:B.5.B【解析】【分析】根据集合的包含关系,列不等关系,解不等式即可.【详解】由题:(,)B a =+∞,A B ⊆,则1a ≤-.故选:B6.C【解析】【分析】求出集合A 的解集,取交集运算即可.【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =.故选:C.7.D【解析】【分析】求解一元二次不等式解得集合B ,根据集合的包含关系,列出a 的不等关系,即可求得结果.【详解】()(){}120{2B x x x x x =-->=或1}x <, 因为A B ⊆,故可得2a ≥,即实数a 的取值范围是[)2,+∞.故选:D.8.B【解析】【分析】根据韦恩图直接分析即可【详解】图中阴影部分为M 的补集与集合N 相交的部分,即 R M N ⋂,故选:B.【点睛】本题主要考查了韦恩图分析交并补集的问题,属于基础题9.D【解析】【分析】根据真子集的定义进行求解即可.【详解】因为集合{},,A a b c =的所有非空真子集为:{}{}{}{}{}{},,,,,,,,a b c a b a c b c ,所以有123()124a b c a b a c b c a b c a b c ++++++++=⇒++=⇒++=,故选:D10.C【解析】【分析】根据题意先求得集合{0,1,2}A =,再求子集的个数即可.【详解】由{|13,N}A x x x =-<<∈,得集合{0,1,2}A =所以集合A 的子集有32=8个,故选: C11.A【解析】【分析】由对数函数定义域和指数函数值域可求得集合,A B ,由交集定义可得结果.【详解】由20x ->得:2x <,(),2A ∴=-∞;由20x >得:()0,B =+∞;()0,2A B ∴⋂=.故选:A.12.B【解析】【分析】分别解出集合A 和B ,再根据集合补集和交集计算方法计算即可.【详解】(){}{}(]ln 10|0111,2A x x x x =-≤=<-≤=, {}(][)2,22,B x x ∞∞=≥=--⋃+,()2,2B =-R ,∴()R A B =(1,2).故选:B.13.D【解析】【分析】根据解分式不等式的方法,结合集合交集的定义进行求解即可.【详解】 因为30311x x x +<⇒-<<-,所以{}2,1,0B =--,而{3,2,1,0,1}A =---, 所以A B ={2,1,0}--, 故选:D14.C【解析】【分析】根据交集结果得到1B -∈,所以150b -+=,解出6b =,从而解方程,求出B ={}1,5--.【详解】因为{1}A B ⋂=-,所以150b -+=,解得6b =,则2650x x ++=的解为1x =-或5x =-,故B ={}1,5--故选:C15.C【解析】【分析】求得集合{|33}B x x =-<<,结合集合交集的运算,即可求解.【详解】由题意,集合2{|9}{|33}B x x x x =<=-<<,又由集合{4,3,2,1,0,1,2,3,4}A =----,所以A B ={2,1,0,1,2}--.故选:C.二、填空题16.{}1,2,3,4,5【解析】【分析】由题知{}{}1,2,3,4,3,4,5A B ==,进而求并集即可.【详解】解:由题知{}{}1,2,3,4,3,4,5A B ==,所以{}1,2,3,4,5A B =.故答案为:{}1,2,3,4,517.[1,1]-【解析】【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1x y a =+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合,所以集合A ,B 表示的曲线有一个交点,所以a x x a =+有一个根当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1x y a =+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<,综上,实数a 的取值范围是[1,1]-,故答案为:[1,1]-18.{}0,1【解析】【分析】先求出集合A ,然后根据交集的定义求得答案.【详解】由题意,{}22A x x =-<<,所以{}0,1A B =.故答案为:{}0,1.19.2【解析】【分析】先求出A B 然后直接写出子集即可.【详解】{}{}N 240,1x x A ∈<==,{}{}22002x x x B x x -<=<<= {}1A B =,所以集合A B 的子集有∅,{}1.子集个数有2个.故答案为:2.20.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.21.0a ≤【解析】【分析】根据并集的运算结果列出不等式,即可得解.【详解】解:因为A B R =,所以0a ≤.故答案为:0a ≤.22.P【解析】【分析】推导出M N ⊆,N P ⊆,由此能求出MP P =. 【详解】 解:非空且互不相等的集合M ,N ,P 满足:M N M ⋂=,⋃=N P P , M N ∴⊆,N P ⊆,M P P ∴=.故答案为:P .23.{}|10x x -<≤【解析】【分析】求出集合A ,B ,依据交集的定义求出A B .【详解】 集合{}2560{|16}A x x x x x =--<=-<<,{}{}|0B x x x x x ==-=≤,{}|10A B x x ∴=-<≤.故答案为:{}|10x x -<≤.24.a B ∈【解析】【分析】根据元素与集合关系即可判断.【详解】因为2a =,满足123-<<,所以a B ∈.故答案为:a B ∈.25.{}2,4【解析】【分析】根据题意依次按“势”从小到大顺序排列,得到答案.【详解】根据题意,将全部的子集按“势”从小到大顺序排列为: ∅,{}2,{}3,{}4,{}2,3,{}2,4,{}3,4,{}2,3,4. 故排在第6的子集为{}2,4.故答案为:{}2,4三、解答题26.(1)[)3,+∞(2)(],0-∞【解析】【分析】(1)先求出{}21A x x =-≤≤,由A B B ⋃=得到A B ⊆,得到不等式组,求出m 的取值范围;(2)根据充分不必要条件得到B 是A 的真子集,分B =∅与B ≠∅两种情况进行求解,求得m 的取值范围.(1)220x x +-≤,解得:21x -≤≤,故{}21A x x =-≤≤, 因为A B B ⋃=,所以A B ⊆,故1211m m -≤-⎧⎨+≥⎩,解得:3m ≥, 所以m 的取值范围是[)3,+∞.(2)若“x ∈B ”是“x ∈A ”的充分不必要条件,则{}11B x m x m =-≤≤+是{}21A x x =-≤≤的真子集,当B =∅时,11m m ->+,解得:0m <,当B ≠∅时,需要满足:111211m m m m -≤+⎧⎪-≥-⎨⎪+<⎩或111211m m m m -≤+⎧⎪->-⎨⎪+≤⎩, 解得:0m =综上:m 的取值范围是(],0-∞27.(1){}12x x ≤≤(2)41a a ≤-≥或【解析】【分析】①由一元二次不等式的解,得出集合A,B ,然后根据集合的交和补运算即可求解. ②将命题P 为真,转化为集合之间的包含关系.(1)当0a =时,(){}{}2002A x x x x x =-≤=≤≤,{}{}22021B x x x x x =+-<=-<<,则{}21R C B x x x =≤-≥或,(){}12R A B x x ⋂=≤≤ (2){}21B x x =-<<,{}21R C B x x x =≤-≥或, 由命题P :“x A ∀∈,x B ∉”是真命题可知:()R A B ⊆()(){}{}202A x x a x a x a x a =---≤=≤≤+ 故221a a +≤-≥或,解得:41a a ≤-≥或.实数a 的取值范围为:41a a ≤-≥或28.(1)(][)35,U A =-∞-⋃+∞,,U B R =(2)[-【解析】【分析】(1)根据一元二次不等式的解法,求解集合()3,5A =-,B =∅,再根据补集运算求解即可;(2)由题知B A ⊆,再分B =∅和B ≠∅两种情况讨论求解即可;(1)解:由已知,()3,5A =-所以(][)35,U A =-∞-⋃+∞,当1a =时,(){}210B x x =-<=∅,所以U B R =,(2)若A B A ⋃=,则B A ⊆当B =∅时,1a =,适合题意故B ≠∅,从而1a ≠∵()()222110a a a --=-≥(当且仅当1a =时取等号)∴221a a >-,∴()221,B a a =- 由B A ⊆得221351a a a -≥-⎧⎪≤⎨⎪≠⎩,解之得1a -≤≤1a ≠ 综上所述,a的取值范围为[-29.(1)4,3t ⎛⎫∈+∞ ⎪⎝⎭(2)(1,)t ∈-+∞【解析】【分析】(1)首先求出集合B ,再对A =∅与A ≠∅两种情况讨论,分别得到不等式,解得即可; (2)依题意可得集合A B ,分A =∅与A ≠∅两种情况讨论,分别到不等式,解得即可;(1)解:由215x -<+<得解34x -<<,所以{}{}21534B x x x x =-<+<=-<<,又{}213A x t x t =-≤≤-若A B =∅,分类讨论:当A =∅,即213t t ->-解得43t >,满足题意; 当A ≠∅,即213t t -≤-,解得43t ≤时, 若满足A B =∅,则必有21443t t -≥⎧⎪⎨≤⎪⎩或3343t t -≤-⎧⎪⎨≤⎪⎩; 解得t ∈∅.综上,若A B =∅,则实数t 的取值范围为4,3t ⎛⎫∈+∞ ⎪⎝⎭. (2)解:由“x B ∈”是“x A ∈”的必要不充分条件,则集合A B ,若A =∅,即213t t ->-,解得43t >,若A ≠∅,即213t t -≤-,即43t ≤,则必有4321334t t t ⎧≤⎪⎪->-⎨⎪-<⎪⎩,解得413t -<≤, 综上可得,1t >-,综上所述,当“x B ∈”是“x A ∈”的必要不充分条件时,(1,)t ∈-+∞即为所求.30.(1){}30?360120?360,Z A B k k k αα⋂=+<<+∈ (2)U ()A B ⋂ {}210?360300?360,Z k k k αα=+<<+∈ 【解析】【分析】(1)先变形集合A ,再求交集;(2)先求补集,再求交集.(1) 解:因为{}30?180120?180,Z A k k k αα︒︒=+<<︒+︒∈ {}30?360120?360210?360300?360,Z k k k k k ααα︒︒︒=︒+︒<<︒+︒+<<+︒∈或所以 {}30?360120?360,Z A B k k k αα︒︒︒⋂=+︒<<+∈; (2)解:由(1),知U B {}135?360315?360,Z k k k γγ︒︒=+≤≤︒+︒∈ 故U ()A B ⋂{}210?360300?360,Z k k k αα=+<<+∈。
(完整版)高考数学《集合》专项练习(选择题含答案)
《集合》专项练习参考答案1.(2016全国Ⅰ卷,文1,5分)设集合,,则A ∩B =( ) (A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7}【解析】集合A 与集合B 的公共元素有3,5,故}5,3{=B A I ,故选B .2.(2016全国Ⅱ卷,文1,5分)已知集合,则A ∩B =( ) (A ) (B ) (C ) (D )【解析】由29x <得33x -<<,所以{|33}B x x =-<<,因为{1,2,3}A =,所以{1,2}A B =I ,故选D .3.(2016全国Ⅲ卷,文1,5分)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=( )(A ){48}, (B ){026},, (C ){02610},,, (D ){0246810},,,,, 【解析】由补集的概念,得{0,2,6,10}A B =ð,故选C .4.(2016全国Ⅰ卷,理1,5分)设集合,,则A ∩B =( )(A ) (B ) (C ) (D )【解析】对于集合A :解方程x 2-4x +3=0得,x 1=1,x 2=3,所以A ={x |1<x <3}(大于取两边,小于取中间).对于集合B :2x -3>0,解得x >23.3{|3}2A B x x ∴=<<I .选D .5.2016全国Ⅱ卷,理1,5分)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, 【解析】要使复数z 对应的点在第四象限,应满足3010m m +>⎧⎨-<⎩,解得31m -<<,故选A .6.(2016全国Ⅲ卷,理1,5分)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=>,则S ∩T =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞)(C) [3,+∞) (D)(0,2]U [3,+∞)7.(2016北京,文1,5分)已知集合{|24},{|3>5}A x x B x x x =<<=<或,则A B =I ( )(A ){|2<<5}x x (B ){|<45}x x x >或 (C ){|2<<3}x x (D ){|<25}x x x >或【解析】画数轴得,,所以,故选C .8.(2016北京,理1,5分)已知集合,,则( )(A )(B )(C )(D )【解析一】对于集合A :(解绝对值不等的常用方法是两边同时平方)|x |<2,两边同时平方{1,3,5,7}A ={|25}B x x =≤≤{123}A =,,,2{|9}B x x =<{210123}--,,,,,{21012}--,,,,{123},,{12},2{|430}A x x x =-+<{|230}B x x =->3(3,)2--3(3,)2-3(1,)23(,3)2(2,3)A B =I {|||2}A x x =<{1,0,1,2,3}B =-A B =I {0,1}{0,1,2}{1,0,1}-{1,0,1,2}-得x 2<4,解方程x 2=4得,x 1=-2,x 2=2,所以A ={x |-2<x <2}(大于取两边,小于取中间).所以A ∩B ={-1,0,1}.故选C .【解析二】对于集合A :(绝对值不等式解法二:|x |<2⇔-2<x <2).A ={x |-2<x <2}.所以A ∩B ={-1,0,1}.故选C .9.(2016上海,文理1,5分)设x ∈R ,则不等式31x -<的解集为_______.【答案】(24),【解析】试题分析:421311|3|<<⇔<-<-⇔<-x x x ,故不等式1|3|<-x 的解集为)4,2(.【解析一】对不等式31x -<:(解绝对值不等的常用方法是两边同时平方)|x -3|<1,两边同时平方得(x -3)2<1,解方程(x -3)2=1得,x 1=2,x 2=4,所以A ={x |2<x <4}.【解析二】对于集合A :(绝对值不等式解法二:|x -3|<1⇔-1<x -3<1,解得2<x <4).A ={x |2<x <4}.10.(2016山东,文1,5分)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B U ð=(A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}【答案】A11.(2016山东,理2,5分)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A ∪B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞【答案】C【解析】对于集合A :∵y =2x >0,∴A ={y |y >0}.对于集合B :∵x 2-1=0,解得x =±1,∴B ={x |-1<x <1}(大于取两边,小于取中间).∴A ∪B =(1,)-+∞12.(2016四川,文2,5分)设集合A ={x |1≤x ≤5},Z 为整数集,则集合A∩Z 中元素的个数是(A)6 (B)5 (C)4 (D)3【答案】B【解析】{1,2,3,4,5}A =Z I ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故A Z I 中元素的个数为5,选B .13.(2016四川,理1,5分)设集合{|22}A x x =-≤≤,Z 为整数集,则A I Z 中元素的个数是( )(A )3(B )4(C )5(D )6【答案】C【解析】由题意,知{2,1,0,1,2}A =--Z I ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故A I Z 中元素的个数为5,选C .14.(2016天津,文1,5分)已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则A B I = (A )}3,1{ (B )}2,1{ (C )}3,2{ (D )}3,2,1{ 【答案】A【解析】∵},12|{A x x y y B ∈-==,∴当x =1时,y =2×1-1=1;当x =2时,y =2×2-1=3;当x =3时,y =2×3-1=5.∴{1,3,5},{1,3}B A B ==I .选A .15.(2016天津,理1,5分)已知集合}{4,3,2,1=A ,}{A x x y y B ∈-==,23,则=B A I (A )}{1 (B )}{4 (C )}{3,1 (D )}{4,1 【答案】D 【解析】∵}{A x x y y B ∈-==,23,∴当x =1时,y =3×1-2=1;当x =2时,y =3×2-2=4;当x =3时,y =3×3-2=7;当x =4时,y =4×3-2=10.∴{14710}{14}B =A B =I ,,,,,.选D .16.(2016浙江,文1,5分)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U PQ U ()ð=( ) A .{1} B .{3,5} C .{1,2,4,6} D .{1,2,3,4,5}【答案】C17.(2016浙江,理1,5分)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(C R Q )=( )A .[2,3]B .(-2,3]C .[1,2)D .(−∞,−2]∪[1,+∞)【答案】B【解析】对于集合Q :∵x 2=4,解得x =±2,∴B ={x |x ≤-2或x ≥2}(大于取两边,小于取中间).18.(2016江苏,文理1,5分)已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B I _______.【答案】{}1,2-【解析】{}{}{}1,2,3,6231,2A B x x =--<<=-I I .故答案应填:{}1,2-19.(2015全国Ⅰ卷,文1,5分)已知集合A ={x |x =3n +2,n ∈N},B ={6,8,10,12,14},则集合A∩B 中元素的个数为( )A .5B .4C .3D .2【答案】D【解析】由已知得A ={2,5,8,11,14,17,…},又B ={6,8,10,12,14},所以A∩B ={8,14}.20.(2015全国Ⅱ卷,文1,5分)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∪B =( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3)【答案】A【解析】因为A =(-1,2),B =(0,3),所以A ∪B =(-1,3),故选A .21.(2014全国Ⅰ卷,文1,5分)已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3)【答案】B【解析】M∩N ={x |-1<x <3}∩{x |-2<x <1}={x |-1<x <1}.22.(2014全国Ⅱ卷,文1,5分)已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A∩B =( )A .∅B .{2}C .{0}D .{-2}【答案】B【解析】∵集合A ={-2,0,2},B ={x |x 2-x -2=0}={2,-1},∴A∩B ={2},故选B .23.(2013全国Ⅰ卷,文1,5分)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A},则A∩B=( )A .{1,4}B .{2,3}C .{9,16}D .{1,2}【答案】A【解析】∵B ={x |x =n 2,n ∈A}={1,4,9,16},∴A∩B ={1,4},故选A .24.(2013全国Ⅱ卷,文1,5分)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M∩N =( )A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1}【答案】C【解析】由题意得M∩N ={-2,-1,0}.选C .25.(2012全国卷,文1,5分)已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A =B (D )A∩B =∅【答案】B【解析】A ={x |-1<x <2},B ={x |-1<x <1},则B ⊂≠A ,故选B .26.(2011全国卷,文1,5分)已知集合M ={0,1,2,3,4},N ={1,3,5},P =M∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个【答案】B【解析】由题意得P =M∩N ={1,3},∴P 的子集为⌀,{1},{3},{1,3},共4个.27.(2010全国卷,文1,5分)已知集合,则 (A )(0,2)(B )[0,2](C )|0,2|(D )|0,1,2|【解析】,,选D28.(2009全国卷,文2,5分)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集,则集合中的元素共有( )(A)3个 (B )4个 (C )5个 (D )6个【解析】,.故选A .29.(2008全国卷,文1,5分)已知集合M ={x |(x +2)(x -1)<0},N ={x |x +1<0},则M∩N =( )A.(-1,1)B.(-2,1)C.(-2,-1)D.(1,2)【答案】C【解析】易求得{}{}|21,|1=-<<=<-M x x N x x ∴{}|21=-<<-I M N x x30.(2007全国卷,文1,5分)设{|210}S x x =+>,{|350}T x x =-<,则S T ⋂=A .∅B .1{|}2x x <C .5{|}3x x >D .15{|}23x x -<< 【答案】D .2,,4,|A x x x R B x x Z =≤∈=∈A B =I {}|22,{0,1,2}A x x B =-≤≤={}0,1,2A B =I U A B =U ()U A B I ð{3,4,5,7,8,9}A B =U {4,7,9}(){3,5,8}U A B A B =∴=I I ð。
人教版数学必修一集合专项练习(一)(含答案)
人教版数学必修一集合专项练习(一)第I卷(选择题)一、选择题(共10题,每题5分,共50分)1.已知全集U={0,1,2,3}且C U A={0,2},则集合A的真子集共有A.3个B.4个C.5个D.6个2.设U是全集,M,P,S是U的三个子集,则阴影部分所示的集合为A.(M∩P)∩SB.(M∩P)∪(∁U S)C.(M∩P)∪SD.(M∩P)∩(∁U S)3.若A={x|﹣1<x<2},B={x|1<x<3},则A∩B=A.{x|1<x<2}B.{x|﹣1<x<3}C.{x|1<x<3}D.{x|﹣1<x<2} 4.若U={1,2,3,4},M={1,2},N={2,3},则∁U(M∩N)=A.{1,2,3}B.{1,3,4}C.{2}D.{4}5.由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴德金提出了“戴德金分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割.试判断,对于任一戴德金分割(M,N),下列选项中不可能成立的是A.M没有最大元素,N有一个最小元素B.M没有最大元素,N也没有最小元素C.M有一个最大元素,N有一个最小元素D.M有一个最大元素,N没有最小元素6.已知集合A={0,1,2,3},集合B={x∈N||x|≤2},则A∩B=A.{3}B.{0,1,2}C.{1,2}D.{0,1,2,3}7.已知A={x|3-3x>0},则有A.3∈AB.1∈AC.0∈AD.-1∉A8.下列图形中,表示M⊆N的是A. B.C. D.9.下列四个命题::①a∈(A∪B)⇒a∈A; ②a∈(A∩B)⇒a∈(A∪B); ③A⊆B⇒A∪B=B; ④A∪B=A⇒A∩B=B.其中正确命题的个数是A.1B.2C.3D.410.设全集为U,定义集合M与N的运算:M*N={x|x∈M∪N且x∉M∩N},则N*(N*M)= A.M B.N C.M∩∁U N D.N∩∁U M第II卷(非选择题)二、填空题(共5题,每题5分,共25分)11.设M={0,1,2,4,5,7},N={1,4,6,8,9},P={4,7,9},则(M∩N)∪(M∩P)=.12.某班共50人,其中21人喜爱篮球运动,18人喜爱乒乓球运动,20人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.13.设全集S={1,2,3,4},且A={x∈S|x2-5x+m=0},若∁S A={2,3},则m=.},N=14.已知全集U=R,实数a,b满足a>b>0,集合M={x|b<x<a+b2{x|√ab<x<a},则M∩∁U N= .15.若数集A同时满足:(1)至少含有2个元素;(2)对任意不相等的a,b∈A,都有ab∈A,则称数集A关于乘法运算封闭.试写出一个关于乘法运算封闭的有限集合A=.三、解答题(共6题,共75分)16.(本题11分)对于集合A,B,我们把集合{(a,b)|a∈A,b∈B}记作A×B.例如,A={1,2},B={3,4},则有:A×B={(1,3),(1,4),(2,3),(2,4)}, B×A={(3,1),(3,2),(4,1),(4,2)},A×A={(1,1),(1,2),(2,1),(2,2)}, B×B={(3,3),(3,4),(4,3),(4,4)}.据此,试回答下列问题:(1)已知C={a},D={1,2,3},求C×D;(2)已知A×B={(1,2),(2,2)},求集合A,B;(3)若集合A中有3个元素,集合B中有4个元素,试确定A×B有几个元素.17.(本题12分)已知:集合A={x|x2+4x=0},集合B={x|x2+2(a+1)x+a2-1=0}(1)若A∪B=B,求a的值.(2)若A∩B=B,求a的值.18.(本题13分)设非空数集A={x|-2≤x≤a},B={y|y=2x+3,x∈A},C={y|y=x2,x∈A},若B∪C=B,求实数a的取值范围.19.(本题13分)己知集合A={x|0≤x−1≤2},R为实数集,B={x|1<x−a<2a+3}.(1)当a=1时,求A∪B及A∩C R B;(2)若A∩B≠φ,求a的取值范围.和g(x)=ln(−x2+4x−3)的定义域分别为集合A和B. 20.(本题13分)设函数f(x)=√a−x(1)当a=2,求函数y=f(x)+g(x)的定义域;(2)若A∩(∁R B)=A,求实数a的取值范围.21.(本题13分)已知集合A={x|ax2+x+1=0,x∈R},且A∩{x|x≥0}=∅,求实数a的取值范围.参考答案1.A【解析】本题考查集合的运算和真子集.因为U={0,1,2,3}且C U A={0,2},所以A={1,3},则A的真子集有3个;故选A.【备注】无2.D【解析】本题主要考查运用集合表示阴影部分.由题意,U是全集,M,P,S是U的三个子集,阴影部分是M与P的交集中的元素,同时还不在集合S中,即为(M∩P)∩(∁U S),故选D.【备注】无3.A【解析】本题考查集合的基本运算.由题意得A∩B={x|1<x<2}.选A.【备注】无4.B【解析】本题主要考查集合的交集补集的运算.由题意,M={1,2},N={2,3},M∩N ={2},则∁U(M∩N)={1,3,4},选B【备注】无5.C【解析】本题考查了学生对新定义的接受与应用能力,属于基础题.解:若M={x∈Q|x<0},N={x∈Q|x≥0};则M没有最大元素,N有一个最小元素0;故A正确;若M={x∈Q|x<√2},N={x∈Q|x≥√2};则M没有最大元素,N也没有最小元素;故B正确;若M={x∈Q|x≤0},N={x∈Q|x>0};M有一个最大元素,N没有最小元素,故D正确;M有一个最大元素,N有一个最小元素不可能,故C不正确;故选C.【备注】无6.B【解析】B={x∈N||x|≤2}={0,1,2},A∩B={0,1,2}.【备注】无7.C【解析】集合A是不等式3-3x>0的解集,即A={x|x<1},可知3∉A,1∉A,0∈A,-1∈A.故选C. 【备注】无8.C【解析】本题考查用韦恩图表示集合间的基本关系.对A,M与N相交;对B,N⊆M;对D,M与N没关系;对C,M⊆N.选C.【备注】无9.C【解析】a∈(A∪B)⇒a∈A或a∈B,所以①错,由交集、并集的定义,易知②③④正确.【备注】无10.A【解析】本题考查新定义问题.如图所示,由定义可知N*M为图中的阴影区域,∴N*(N*M)为图中阴影Ⅰ和空白的区域,∴N*(N*M)=M.选A.【备注】无11.{1,4,7}【解析】因为M∩N={1,4},M∩P={4,7},所以(M∩N)∪(M∩P)={1,4,7}.【备注】无12.12【解析】本题主要考查了集合中元素的个数问题.根据题意可知喜爱篮球运动的人数为21,喜爱乒乓球运动的人数为18,20人对这两项运动都不喜爱,设既喜爱篮球运动又喜爱乒乓球运动的人数为x,则21+18+20−x=50,解得x=9,所以喜爱篮球运动但不喜爱乒乓球运动的人数为21−9=12,故填12.【备注】无13.4【解析】思维导图由S和∁S A可求得A中元素确定x2-5x+m=0的根确定m的值因为S={1,2,3,4},∁S A={2,3},所以A={1,4},即1,4是方程x2-5x+m=0的两根,由根与系数的关系可得:m=1×4=4.【备注】无14.(b,√ab]【解析】本题主要考查不等式的性质、基本不等式、集合的基本运算.因为a>b>0,所以>√ab>b,则∁U N={x|x≤√ab或x≥a}, 则M∩∁U N={x|b<x≤√ab}a>a+b2【备注】无15.{0,1}(或{0,-1},{0,1,-1},{1,2}等)【解析】若集合A中有0,则0与任何实数的乘积均为0,满足条件,所以集合中可以有元素0.同理,可知集合中也可以有元素1.再适当补充其他元素即可.【备注】无16.(1)C×D={(a,1),(a,2),(a,3)}.(2)因为A×B={(1,2),(2,2)},所以A={1,2},B={2}.(3)从以上解题过程可以看出,A×B中元素的个数与集合A和B中的元素个数有关,即集合A 中的任何一个元素与B中的任何一个元素对应后,得到A×B中的一个新元素.若A中有m个元素,B中有n个元素,则A×B中应有(m×n)个元素.于是,若集合A中有3个元素,集合B中有4个元素,则A×B中有12个元素.【解析】集合中的创新问题是近年来高考命题的热点,这类问题主要以教材知识为背景,进行移植、迁移,旨在考查学生的理解能力和运用数学思想方法分析问题、解决问题的能力.求解集合中的新定义问题,主要抓两点:(1)紧扣新定义——首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题的关键所在;(2)用好集合的性质——集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键处用好集合的性质.【备注】无17.(1)A ={-4,0},若A ∪B =B,则B =A ={-4,0},解得a =1.(2)若A ∩B =B,则①若B 为空集,则Δ=4(a +1)2-4(a 2-1)=8a +8<0,则a <-1;②若B 为单元素集合,则Δ=4(a +1)2-4(a 2-1)=8a +8=0,解得a =-1,将a =-1代入方程x 2+2(a +1)x +a 2-1=0,得x 2=0得,x =0,即B ={0},符合要求;③若B =A ={-4,0},则a =1,综上所述,a ≤-1或a =1.【解析】本题主要考查集合的基本运算、集合间的基本关系,考查了分类讨论思想思想.(1)根据题意,由A ∪B =B 可得B =A ={-4,0},则结论易得;(2)由A ∩B =B 可得B ⊆A ,再分B 为空集、B 为单元素集合、B =A 三种情况讨论求解即可.【备注】无18.因为A ={x|-2≤x ≤a },B ={y|y =2x+3,x ∈A },所以B ={y|-1≤y ≤2a+3}.又B ∪C =B ,所以C ⊆B.①当-2≤a <0时,C ={y|a 2≤y ≤4},所以2a+3≥4,所以a ≥12,与条件矛盾. ②当0≤a ≤2时,C ={y|0≤y ≤4},所以4≤2a+3,解得a ≥12,此时12≤a ≤2.③当a >2时,C ={y|0≤y ≤a 2},所以a 2≤2a+3,结合二次函数y =a 2-2a-3的图象,可得-1≤a ≤3,此时2<a ≤3.综合①②③,得实数a 的取值范围为{a|12≤a ≤3}.【解析】无【备注】无19.(1)A ={x|0≤x −1≤2}={x|1≤x ≤3},当a =1时,B ={x|1<x −1<2×1+3}={x|2<x <6},A ∪B ={x|1≤x <6},C R B ={x|x ≤2或x ≥6},A ∩C RB ={x|1≤x ≤2},(2)由已知得A ={x|1≤x ≤3},B ={x|a +1<x <3a +3},∵A ∩B ≠φ,∴{a +1<33a +3>1a +1<3a +3,解得−23<a <2, 则a 的取值范围为(−23,2). 【解析】本题考查集合间的基本运算及关系.(1)先化简两集合,再借助数轴完成求解;(2)根据数轴分析两集合中不等式端点的大小关系,列出不等式即可得到参数a 的取值范围.【备注】无20.(1)a =2时,函数f (x )=√a−x =√2−x,g (x )=ln(−x 2+4x −3),∴函数y =f (x )+g (x )=√2−x ln(−x 2+4x −3),应满足{2−x >0−x 2+4x −3>0,解得{x <21<x <3,即1<x <2, 所以函数y 的定义域为(1,2).(2)∵A =(−∞,a),B =(1,3),∴∁R B =(−∞,1]∪[3,+∞),若A ∩(∁R B)=A ,则a ≤1,∴实数a 的取值范围是(−∞,1].【解析】本题考查对数函数,函数定义域的求解,集合的基本运算.(1)a =2时,求得y =f (x )+g (x )=√2−x +ln(−x 2+4x −3),应满足{2−x >0−x 2+4x −3>0,解得1<x <2,所以函数y 的定义域为(1,2).(2)求得A =(−∞,a),∁R B =(−∞,1]∪[3,+∞),因为A ∩(∁R B)=A ,则a ≤1.【备注】无21.当a =0时,A ={x|x+1=0,x ∈R }={-1},此时A ∩{x|x ≥0}=∅;当a ≠0时,∵A ∩{x|x ≥0}=∅,∴A =∅或关于x 的方程ax 2+x+1=0的根均为负数.①当A =∅时,关于x 的方程ax 2+x+1=0无实数根,Δ=1-4a <0,解得a >14 .②当关于x 的方程ax 2+x+1=0的根x 1,x 2均为负数时,{Δ=1-4a ≥0x 1+x 2=-1a <0x 1x 2=1a >0,解得{a ≤14a >0,即0<a ≤14. 综上所述,实数a 的取值范围为{a|a ≥0}.【解析】无【备注】无。
高中数学 集合专项训练含答案
高中数学 集合专项训练含答案一、单选题1.已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =( )A .2B .1C .0D .-12.已知集合{}42A x x =-<<,{}29B x x =≤,则A B ⋃=( )A .(]4,3-B .[)3,2-C .()4,2-D .[]3,3-3.设实数集为R ,集合{}1,0,1,2A =-,{}230B x x x =-≥,则()R A B ⋂=( )A .{}1,0-B .{}1,2C .{}1,0,1-D .{}0,1,24.已知集合{}220A x x x =+-<,{}1e ,R x B y y x -==∈,则A B =( )A .()2,0-B .()2,1-C .()0,1D .()1,+∞5.设集合{}|14A x x =<<,集合2{|230}B x x x =≤一一,则A B =( ) A .[一1,4) B .(一1,4)C .(1,3]D .(1,3)6.已知集合{1,1},{0,1}A B =-=,设集合{,,}C z z x y x A y B ==+∈∈∣,则下列结论中正确的是( ) A .A C ⋂=∅ B .A C A ⋃= C .B C B =D .A B C =7.设全集U =R ,集合{}{}13,0,1,2,3,4,5A x x B =≤≤=,则()U A B =( ) A .{0,4,5}B .{0,1,3,4,5}C .{4,5}D .{0}8.设集合{A x y =,(){}ln 2B y y x ==-,(){}2,C x y y x ==,则下列集合不为空集的是( ) A .A C B .B C ⋂ C .B A ⋂RD .A B C ⋂⋂9.已知集合{}2{63},3100S x x T x x x =∈-<<=--<Z∣∣,则S T ( ) A .{23}x x -<<∣ B .{1,0,1,2}- C .{52}xx -<<∣ D .{2,1,0,1,2}--10.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5D .[]2,511.()Z M 表示集合M 中整数元素的个数,设{}1|8A x x =-<<,{}|527B x x =-<<,则()Z A B =( )A .5B .4C .3D .212.已知集合{}21A x x =-<≤,{}2,1,0,1B =--,则A B =( )A .{}2,1,0,1--B .{}1,0,1-C .{}1,0-D .{}2,1,0--13.已知集合()(){}160M x x x =--<,{}1,2,3,5N =,则M N =( )A .{}1,2,3,5B .{}3,5C .{}2,3,5D .{}1,3,514.已知集合{}{}21,,13A x x n n Z B x x ==+∈=-<,则A B =( ) A .{1,3}B .{1,3,5,7,9}C .{3,5,7}D .{1,3,5,7}15.已知集合{}22280,03x A x x x B xx -⎧⎫=--≤=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}42x x -≤≤ B .{42x x -≤≤且3}x ≠- C .{}34x x -≤≤D .{34}x x -<≤二、填空题16.设集合{}{}23,650A x x B x x x =≤=-+≤,则A B =________.17.下列命题中正确的有________(写出全部正确的序号).①{2,4,6}⊆{2,3,4,5,6};②{菱形}⊆{矩形};③{x |x 2=0}⊆{0}; ④{(0,1)}⊆{0,1};⑤{1}∈{0,1,2};⑥{}|2x x ≥ {}|1x x >. 18.集合{}14A x x =-<≤,{}1,1,3B =-,则A B 等于_________. 19.已知A ,B 为非空集,I 为全集,且A B ≠,用适当的符号填空: (1)A B ______A B ; (2)A ______()I A A ⋃; (3)A B ______A ; (4)∅______A B ; (5)A A ⋂______A A ⋃; (6)A ∅______A ; (7)A ∅____()I A A ⋂____∅; (8)A B ____A ____A B . 20.已知[]x 表示不超过x 的最大整数.例如[2.1]2=,[ 1.3]2-=-,[0]0=,若{[]}A y y x x ==-∣,{0}∣=≤≤B y y m ,yA 是yB ∈的充分不必要条件,则m 的取值范围是______.21.已知集合{}1,3,5,6,8A =,{}2,3,4,6B =,则下图中阴影部分表示的集合为___________.22.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.23.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)24.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______.25.集合{12}A =,的非空子集是________________. 三、解答题26.设全集U =R ,集合(){}50A x x x =-<,集合{}21212B x a x a =-≤≤+.(1)当1a =时,求()()U U A B ⋂(2)若“x A ∈”是“x B ∈”的必要不充分条件,求a 的取值范围.27.已知函数()f x =的定义域为集合A ,{|}B x x a =<. (1)求集合A ;(2)若“x ∈A ”是“x ∈B ”的充分条件,求a 的取值范围.28.已知集合{}2,12xA y y x ==-≤≤,集合{}1ln 2B x x =<≤,集合{}22320,0C x x ax a a =-+≤>.(1)求A B ;(2)若C A ⊆,求实数a 的取值范围.29.设{}24,21,A a a=--,{}5,1,9B a a =--,已知{}9A B ⋂=,求a 的值.30.已知集合2{|40}A x x =-≥,集合{|1}B x m x m =<<-. (1)求A .(2)求A B A ⋃=,求m 的取值范围.【参考答案】一、单选题 1.B 【解析】 【分析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解. 【详解】对于集合N ,因为280a ∆=+>, 所以N 中有两个元素,且乘积为-2, 又因为N M ⊆,所以{}2,1N =-, 所以211a -=-+=-.即a =1. 故选:B. 2.A 【解析】 【分析】先求B ,再求并集即可 【详解】易得{}3|3B x x =-≤≤,故(]4,3A B ⋃=- 故选:A 3.B 【解析】 【分析】解出B 集合,得到B 的补集的范围,再与A 取交集. 【详解】解得{|30}B x x x =≥≤或,()R 03B =(,),()R {12}A B ⋂=,故选:B. 4.C 【解析】【分析】化简集合,A B 即得解. 【详解】解: {}{}22021A x x x x x =+-<=-<<,{}{}1e ,R 0x B y y x y y -==∈=>,所以()0,1A B =.故选:C 5.A 【解析】 【分析】解二次不等式求得集合B 然后根据并集的定义即得. 【详解】由2230x x --≤,解得13x -≤≤,[]1,3B ∴=-,又()1,4A =,[1,4)A B ∴⋃=-. 故选:A. 6.C 【解析】 【分析】由题意得{1,0,1,2}C =-,再由交集和并集运算求解即可. 【详解】由题意可知,{1,0,1,2}C =-,{1,1}A C ⋂=-,{}1,0,1,2A C C ⋃=-=,{0,1},{1,0,1}B C B A B C ⋂==⋃=-≠.故选:C 7.A 【解析】 【分析】由集合的补集和交集的运算可得. 【详解】 由题可得{1UA x x =<或3}x >,所以(){0,4,5}=UA B .故选:A .8.C 【解析】 【分析】先化简集合A ,B ,C ,再利用集合的类型和运算求解. 【详解】解:因为集合{{}2A x y x x ===≥,(){}ln 2B y y x R ==-=,且(){}2,C x y y x ==为点集,所以A C ⋂=∅,B C =∅,{}|2=<A x x R,{}|2⋂=<B A x x R ,A B C =∅,故选:C 9.B 【解析】 【分析】求解一元二次不等式解得集合T ,再求S T 即可. 【详解】因为{63}S x x =∈-<<Z∣{}5,4,3,2,1,0,1,2=-----, {}23100T x x x =--<∣()(){}|520{|25}x x x x x =-+<=-<<,故S T {}1,0,1,2=-. 故选:B. 10.D 【解析】 【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤, 即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 11.B 【解析】 【分析】先求得A B ,再根据()Z M 的定义求解. 【详解】解:因为{}1|8A x x =-<<,{}57|527|22⎧⎫=-<<=-<<⎨⎬⎩⎭B x x x x ,所以7|12⎧⎫=-<<⎨⎬⎩⎭A B x x ,所以()4=Z A B , 故选:B 12.B 【解析】 【分析】根据交集的定义即可得出答案. 【详解】解:因为{}|21A x x =-<≤,{}2,1,0,1B =--, 所以{}1,0,1A B =-. 故选:B. 13.C 【解析】 【分析】求出集合M ,利用交集的定义可求得结果. 【详解】()(){}{}16016M x x x x x =--<=<<,因此,{}2,3,5MN =.故选:C. 14.B 【解析】 【分析】先求出集合[)1,10B =,再根据集合的交集运算求得答案. 【详解】由题意得[){3}1,10B x =<=,其中奇数有1,3,5,7,9 又{}21,Z A x x n n ==+∈,则{}1,3,5,7,9A B ⋂=, 故选:B . 15.D 【解析】 【分析】分别解一元二次不等式以及分式不等式得集合A ,B ,再进行并集运算即可. 【详解】因为{}{}228024A x x x x x =--≤=-≤≤,{}20323x B xx x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 所以{}34A B x x ⋃=-<≤, 故选:D.二、填空题16.[1,3]【解析】 【分析】根据交集的定义求解即可. 【详解】解不等式2650x x -+≤ ,得()()150x x --≤ ,解得15x ≤≤ , 即[]1,5B = ,[]1,3A B ∴= ; 故答案为:[]1,3 . 17.①③⑥ 【解析】 【分析】根据集合间的基本关系中的子集、真子集的定义及元素与集合的关系即可求解. 【详解】对于①,2,4,6}{2,3,4,5,6∈,则{2,4,6}⊆{2,3,4,5,6},故①正确; 对于②,菱形不属于矩形,则{菱形} {矩形},故②不正确; 对于③,由20x =,解得0x =,则{x |x 2=0}⊆{0},故③正确; 对于④,()}{0,10,1∉,则{(0,1)}⊆{0,1},故④不正确;对于⑤,集合与集合不能用属于与不属于关系表示,所以{1}∈{0,1,2}不正确; 对于⑥,{}|2x x ≥ {}|1x x >,故⑥正确. 故答案为:①③⑥.18.{}1,3【解析】 【分析】由交集定义直接得到结果. 【详解】由交集定义知:{}1,3A B =. 故答案为:{}1,319. ⊆ ⊆ ⊆ ⊆ = = = = ⊆ ⊆ 【解析】 【分析】根据集合的交集,并集,补集的性质及子集、集合相等的概念求解. 【详解】由交集,并集,补集的运算及性质,结合子集、集合相等求解,直接写出答案即可. 故答案为:⊆,⊆,⊆,⊆,=,=,=,=,⊆,⊆20.[)1,+∞【解析】 【分析】由题可得{[]}[0,1)A yy x x ==-=∣,然后利用充分不必要条件的定义及集合的包含关系即求. 【详解】∵[]x 表示不超过x 的最大整数,∴[]x x ≤,[]01x x ≤-<,即{[]}[0,1)A yy x x ==-=∣, 又y A 是y B ∈的充分不必要条件,{0}∣=≤≤B y y m ,∴A B ,故m 1≥,即m 的取值范围是[)1,+∞. 故答案为:[)1,+∞.21.{}1,5,8【解析】 【分析】分析可知,阴影部分所表示的集合为{x x A ∈且}x B ∉,即可得解. 【详解】由图可知,阴影部分所表示的集合为{x x A ∈且}{}1,5,8x B ∉=. 故答案为:{}1,5,8. 22.12 【解析】 【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可. 【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.23.⊂【解析】 【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决. 【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂故答案为:⊂24.0a ≤【解析】 【分析】根据并集的运算结果列出不等式,即可得解. 【详解】解:因为A B R =, 所以0a ≤. 故答案为:0a ≤.25.{}{}12{12},,, 【解析】 【分析】结合子集的概念,写出集合A 的所有非空子集即可. 【详解】集合{1,2}A =的所有非空子集是{}{}12{12},,,. 故答案为:{}{}12{12},,,. 三、解答题26.(1)()[),15,-∞-+∞(2)⎛- ⎝⎭【解析】 【分析】(1)由补集和交集定义即可求得结果;(2)由必要不充分条件的定义可知B A ≠⊂,分别在B =∅和B ≠∅的情况下构造不等式组求得结果. (1){}05A x x =<<;当1a =时,{}13B x x =-≤≤;(][),05,U A ∴=-∞+∞,()(),13,U B =-∞-⋃+∞, ()()()[),15,U U A B =-+∴∞-∞.(2)由(1)知:{}05A x x =<<“x A ∈”是“x B ∈”的必要不充分条件,B A ,当B =∅时,满足B A ≠⊂;此时21212a a ->+,解得:10a -<<; 当B ≠∅时,221251201212a a a a+<⎧⎪->⎨⎪-≤+⎩,解得:0a ≤<;综上所述:a的取值范围为⎛- ⎝⎭. 27.(1)A ={x |-2<x ≤3}; (2)3a >. 【解析】(1)由算术平方根的被开方数大于等于0,分式的分母不等于0可求得集合A ; (2)由已知得A ⊆B ,由此可得a 的取值范围.(1)解:函数()f x =3020x x -≥⎧⎨+>⎩, 解得23x -<≤,即A ={x |-2<x ≤3}.(2)解:因为A ={x |-2<x ≤3},B ={x |x <a },且“x ∈A ”是“x ∈B ”的充分条件,所以A ⊆B , 所以3a >.28.(1)(],4e (2)1,22⎡⎤⎢⎥⎣⎦【解析】【分析】(1)先化简集合A ,B ,再利用交集运算求解;(2)根据0a >,化简集合[],2C a a =,再根据C A ⊆求解.(1)解:∵12x -≤≤, ∴1242x ≤≤, ∴集合1,42A ⎡⎤=⎢⎥⎣⎦. ∵1ln 2x <≤,∴2e x e <≤,∴集合(2,B e e ⎤=⎦. ∴(],4A B e ⋂=.(2)∵0a >, ∴{}()(){}[]2232020,2C x x ax a x x a x a a a =-+≤=--≤=. ∵C A ⊆, ∴01224a a a >⎧⎪⎪≥⎨⎪≤⎪⎩,解得122a ≤≤. ∴实数a 的取值范围是1,22⎡⎤⎢⎥⎣⎦. 29.-3【解析】根据{}9A B ⋂=,分219a -=和29a =,讨论求解.【详解】解:因为{}24,21,A a a =--,{}5,1,9B a a =--,且{}9A B ⋂=,所以当219a -=时,解得5a =,此时{}{}4,9,25,0,4,9A B =-=-,不符合题意; 当29a =时,解得3a =或3a =-,若3a =,则{}{}4,52,9,9,,2B A =--=-,不成立;若3a =-,则{}{}4,7,9,8,4,9A B =--=-,成立;所以a 的值为-3.30.(1){|22}A x x =-≤≤(2)[1,)-+∞【解析】【分析】(1)由不等式240x -≥,求得22x -≤≤,即可求解;(2)由A B A ⋃=,得到B A ⊆,列出不等式组,即可求解.(1)解:由240x -≥,即24x ≤,可得22x -≤≤,可得集合{|22}A x x =-≤≤.(2)解:因为{|22}A x x =-≤≤,且集合{|1}B x m x m =<<-,又因为A B A ⋃=,即B A ⊆,当B =∅时,即1m m ≥-,可得12m ≥,此时满足B A ⊆; 当B ≠∅时,则满足2121m m m m ≥-⎧⎪-≤⎨⎪<-⎩,解得112m -≤<, 综上可得,1m ≥-,即实数m 的取值范围[1,)-+∞.。
高考数学一轮复习《集合》复习练习题(含答案)
高考数学一轮复习《集合》复习练习题(含答案)一、单选题1.设集合{2,2,4,6}A =-,{}2120B x x x =+-<,则A B =( )A .(2,2)-B .{2,0,2}-C .{2,4}D .{2,2}- 2.已知22,{|1},{|log }U R A y y x B x y x ===-==,则A B =A .()1,1-B .(),1-∞C .(],1-∞-D .[)1,+∞ 3.已知全集,则 ( ) A . B . C . D .4.已知集合{}2,1,0,1,2A =--,{}21,B y y x x ==+∈R ,则A B =( ) A .∅ B .{}1,2 C .{}0,1,2 D .{}2,1,0,1,2-- 5.图中阴影表示的集合是( ).A .()U P Q C S ⋃⋂B .()U P QC S ⋂⋃ C .()U P Q C S ⋂⋂D .()U P Q C S ⋂⋂6.集合2101x A x x ⎧⎫-=≤⎨⎬+⎩⎭,集合()12log 1B x y x ⎧⎪==-⎨⎪⎩,则集合A B 等于( ) A .10,2⎡⎤⎢⎥⎣⎦ B .()1,-+∞ C .()1,1- D .[)1,-+∞7.已知集合{}2,A x x x Z =<∈,{}220B x x x =--<,则A B =( ) A .{}0,1 B .()0,1 C .{}1,0,1- D .()1,2- 8.设集合M={-1,0,1},N={x |2x =x },则M∩N=A .{-1,0,1}B .{0,1}C .{1}D .{0} 9.已知P ={小于π的自然数},则( )A .2P ∈B .2P ⊆C .{}2P ∈D .{}2P ⊇10.若2{|1}M y y x x R ,==-∈,22{|1,,}N x x y x R y R =+=∈∈,则M N ⋂=( ) A .()1,1- B .[]1,1- C .[)1,1- D .∅11.已知集合{}2,0,2A =-,{}2230B x x x =-->,集合P A B =⋂,则集合P 的子集个数是 A .1 B .2 C .3 D .412.若集合{0,1,2,3}A =,{1,2,4}B =,C A B =,则C 的子集共有A .2个B .3个C .4个D .6个二、填空题13.已知集合A 、B 与集合A@B 的对应关系如下表:A{1,2,3,4,5} {-1,0,1} {-4,8} B{2,4,6,8} {-2,-1,0,1} {-4,-2,0,2} A@B {1,3,6,5,8} {-2} {-2,0,2,8} 若A ={-2009,0,2018},B ={-2009,0,2019},试根据图表中的规律写出A@B =________.14.已知函数2,()4,x x m f x x x x m<⎧=⎨+≥⎩,且对任意p m <,存在q m ≥,使得()()0f p f q +=,则实数m 的取值范围是________.15.记{|()sin()A f x x θωθ==+为偶函数,ω是正整数},{|()(1)0}B x x a x a =---<,对任意实数a ,满足A B 中的元素不超过两个,且存在实数a 使A B 中含有两个元素,则ω的值是__________.16.已知全集U ={0,2,4,6,8},集合A ={0,4,6},则∁U A =_______.17.定义:若对非空数集P 中任意两个元素a 、b ,实施“加减乘除”运算(如+a b 、-a b 、a b ⨯、(0)a b b ÷≠),其结果仍然是P 中的元素,则称数集P 是一个“数域”.下列四个命题:①有理数集Q 是数域;②若有理数集Q M ⊆,则数集M 是数域;③数域必是无限集;④存在无穷多个数域;上述命题错误的序号是_________.18.定义全集的子集的特征函数为,这里表示在全集中的补集,那么对于集合,下列所有正确说法的序号是 .(1)(2)()1()U A A f x f x =-(3)()()()A B A B f x f x f x ⋃=+(4)()()()A B A B f x f x f x ⋂=⋅ 19.集合{}21,2,,31M a a a =--,{1,3}N =-,若3M ∈且N M ⊆,则a 的取值为________.20.被3除余1的所有整数组成的集合用描述法表示为_________.三、解答题21.已知集合{}220A x x x =+=,{}22(1)10B x x a x a =+++-=. (1)若m A ∈,求实数m 的值;(2)若A B B ⋃=,求实数a 的值.22.(1)设集合{|13}A x x =-<<,{|04}B x x =<<,求()R AC B ; (2)计算:232lg 5lg 48+-.23.已知集合{}2{|22}|540A x a x a B x x x =+-=-+≥. ⑴当3a =-时,求A B ,A B .⑵若A B φ⋂=,求实数a 的取值范围.24.对于任意的复数(,)z x yi x y R =+∈,定义运算P 为2()(cos sin )P z x y i y ππ=+. (1)设集合A ={|(),||1,Re ,Im P z z z z ωω=≤均为整数},用列举法写出集合A ; (2)若2()=+∈z yi y R ,()P z 为纯虚数,求||z 的最小值;(3)问:直线:9=-L y x 上是否存在横坐标、纵坐标都为整数的点,使该点(,)x y 对应的复数z x yi =+经运算P 后,()P z 对应的点也在直线L 上?若存在,求出所有的点;若不存在,请说明理由.25.已知集合{}U 17x R x =∈<≤,{}25A x R x =∈≤<,{}37B x R x =∈≤<,求: (1)A B ;(2)()U A B ⋂;26.已知函数()()()112232F x x x =-++的定义域为A ,集合()1,21B m m =-+,m R ∈若A B A =,求实数m 的取值范围.27.已知集合{}2|650A x x x =-+<,{}2|1216x B x -=<<,{}|ln()C x y a x ==-,全集为实数集R .(1)求A B 和()A B R ∩.(2)若A C ⋂=∅,求实数a 的范围.28.已知集合{|12}A x x =-≤≤,{|1}B x m x m =≤≤+.(1)当2m =-时,求()R C A B ;(2)若B A ⊆,求实数m 的取值范围.29.设全集{}22,3,23U a a =+-,16,26a A +⎧⎫=⎨⎬⎩⎭.若{}5U A =,求实数a 的值.参考答案1.D2.D3.C4.B5.C6.C7.A8.B9.A10.B11.B12.C13.{}2018,201914.(,0]-∞15.4、5、616.{2,8}17.②18.(1)(2)(4)19.3a =或1a =-20.{|31,}x x k k Z =+∈21.(1)0m =或2m =-;(2)1.22.(1)(){|10}R A C B x x =-<≤(2)2-. 23.(1)=[1,1][4,5],A B=R A B -(2)(1,)-+∞24.(1){0,1}A =;(2;(3)存在,(3,6)-或(3,12)-- 25.(1){}27x R x ∈≤<,(2){|13x x <<或57}x ≤≤, 26.()3,+∞27.(1) {}|16A B x x ⋃=<<,(){} |56R C A B x x ⋂=≤<.(2) 1a ≤. 28.(1)(){|22}R C A B x x x ⋃=-或;(2){|11}m m -≤≤ 29.2a =。
高中数学《集合》练习题 (120)
高中数学《集合》测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1] (2013年普通高等学校招生统一考试天津数学(理)试题(含答案))2.已知集合{}12,M x x x R =-≤∈,51,1P x x Z x ⎧⎫=≥∈⎨⎬+⎩⎭,则M P 等于 (A){}03,x x x Z <≤∈ (B){}03,x x x Z ≤≤∈ (C){}10,x x x Z -≤≤∈ (D){}10,x x x Z -≤<∈ (2005上海理)3.设P 、Q 为两个非空数集,定义集合P+Q={a+b|a ∈P ,b ∈Q}若P={0,2,5},Q={1,2,6},则P+Q 中元素的个数是A .9B .8C .7D .6(2005湖北理)4.设全集U={1,2,3,4,5,6} ,设集合P={1,2,3,4} ,Q{3,4,5},则P ∩(C U Q )=A.{1,2,3,4,6}B.{1,2,3,4,5}C.{1,2,5}D.{1,2}5.设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A =( ) A .{}3,2,1 B .{}4,2,1 C .{}4,3,2 D .{}4,3,2,1(2005江苏) 6.已知全集U=R,集合2{|1}P x x =≤,那么U P =( )()(,1)A -∞- ()(1,)B +∞ ()(1,1)C - ()(,1)(1,)D -∞-+∞(2011北京文1)7.已知M,N 为集合I 的非空真子集,且M,N 不相等,若()1,N C M M N ⋂=∅⋃=则( )(A)M (B) N (C)I (D)∅ (2011年高考辽宁卷理科2)8.若集合{}21|21|3,0,3x A x x B x x ⎧+⎫=-<=<⎨⎬-⎩⎭则A ∩B 是 (A ) 11232x x x ⎧⎫-<<-<<⎨⎬⎩⎭或 (B) {}23x x <<(C ) 122x x ⎧⎫-<<⎨⎬⎩⎭ (D) 112x x ⎧⎫-<<-⎨⎬⎩⎭ (2009安徽卷理)9.集合P={x|x R x 0∈≠,}∪{x|x R x 2∈≠,},Q={x|x<0}∪{x|0<x<2}∪{x|x>2} ,则集合P 与Q 的关系一定是-------------------------------------------------------------------------------( )A.Q ⊆PB.Q ⊃PC.Q ⊂PD.P=Q10.设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M ∩(N C U )= ( )A .{5}B .{0,3}C .{0,2,3,5}D . {0,1,3,4,5}(2004全国4文1)11.集合P ={x |x 2-16<0},Q ={x |x =2n ,n ∈Z },则P Q =(C )A.{-2,2}B.{-2,2,-4,4}C.{-2,0,2}D.{-2,2,0,-4,4}(2006湖北文)12.设全集U=R ,集合M={x ∣x>l},P={x ∣x 2>l},则下列关系中正确的是(A)M=P (B) M P ⊂ (C) P M ⊂ (D) ∅=⋂P M C U (2005北京理) 13.设集合()22{,|1}416x y A x y =+=,{(,)|3}x B x y y ==,则A B ⋂的子集的个数是 A .4 B .3 C .2 D .1(2010湖北理数)2.二、填空题14.设集合102M x x ⎧⎫=-<⎨⎬⎩⎭,{}210N x x =+>,则M N = ▲ .15.设集合11,,,2442k k M x x k Z N x x k Z ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭,则_______M N16.两边长分别为3,5的三角形中,第三条边可取的整数的集合用列举法表示为 {3,4,5,6,7} ,用描述法表示为 {x|2<x<8,x ∈N} 。
历年(2019-2023)高考数学真题分类(集合、常用逻辑用语与不等式)练习(附答案)
[答案解析]因为
1 ,所以
|
2
C. |3
16
|0
16 ;因为
4 ,所以
}.所以 ∩
|
A.
1 ,2
|0
B. 1 ,2
1|
1 ,得 1
2 ,所以 ∩
9. [2022 北京,4 分]已知全集
1 ,则∁
A.
2,1
16
|3
| |
1|
(B)
[答案解析]由|
历年(2019-2023)高考数学真题分类(集合、常用逻辑用语与不等式)练习
考点: 集合
一、选择题
2 , 1 ,0,1,2 ,
1. [2023 新高考卷Ⅰ,5 分]已知集合
6
A.
0 ,则 ∩
(C)
2 , 1 ,0,1
B. 0 ,1,2
2
C.
|
[答案解析]解法一因为
∩
|
6
0
1 ,3 ,
1 ,2,4 ,则
C. 1 ,2,4
D. 1 ,2,4,5
1 ,2,4 ,所以∁
3 ,5 ,又
1 ,3 ,
1 ,3,5 .故选A .
4. [2023 全国卷甲,5 分]设全集
∪
0 .当
(A)
A. 1 ,3,5
|
2
1 ,0,1 ,满足 ⊆ .所以
3. [2023 天津,5 分]已知集合
2 ,故选A .
2 ,4,6 ,则 ∪
B. 1 ,2
C. 2 ,4,6
[答案解析]由集合并集的定义,得 ∪
7. [2022 新高考卷Ⅰ,5 分]若集合
高中数学集合练习题含答案
高中数学集合练习题含答案高中数学集合练题含答案1.单选题21.已知集合 $A=\{-2,-1,0,2,3,4\}$,$B=\{x|x-3x-4<0\}$,则 $A\cap B=$()A。
$\{-1,0,2,3,4\}$ B。
$\{0,2,3,4\}$ C。
$\{0,2,3\}$ D。
$\{2,3\}$22.设集合 $A=\{x|x-3x>0\}$,则 $A=$()A。
$(0,3)$ B。
$(-\infty,0)\cup(3,+\infty)$ C。
$[0,3]$ D。
$(-\infty,0]$3.已知集合 $A=\{x|-1<x<5,x\in N^*\}$,$B=\{x|\leq x\leq 3\}$,则 $A\cap B=$()A。
$[0,3]$ B。
$[-1,5)$ C。
$\{1,2,3,4\}$4.设集合$A=\{x|-1<x<3\}$,集合 $B=\{x|-3\leq x\leq 2\}$,则 $A\cup B=$()A。
$\{0,1,2\}$ B。
$\{1,2\}$ C。
$[-3,3)$ D。
$(-1,2]$5.集合 $A=\{x|-1<x<3\}$,集合 $B=\{x|x^2<2\}$,则$A\cap B=$()A。
$(-2,2)$ B。
$(-1,3)$ C。
$(-2,3)$ D。
$(-1,2)$6.已知集合 $A=\{-1,0,1\}$,$B=\{x|x(x-2)\leq 0\}$,则$A\cap B=$()A。
$\{-1\}$ B。
$\{0,1\}$ C。
$\{0,1,2\}$ D。
$\{x\leq x\leq1\}$7.已知集合 $A=\{x|x<1\}$,$B=\{x|x(x-2)<0\}$,则$A\cup B=$()A。
$(0,1)$ B。
$(1,2)$ C。
$(-\infty,2)$ D。
$(0,+\infty)$8.若全集 $U=R$,集合 $A=\{0,1,2,3,4,5,6\}$,$B=\{x|x<3\}$,则图中阴影部分表示的集合为()图略)A。
高考数学《集合》专项练习
高考数学《集合》专项练习1.给定集合A={1,3,5,7},B={x|2≤x≤5},求A∩B。
解析:A与B的公共元素为3和5,因此A∩B={3,5},故选B。
2.给定集合A={1,2,3},B={x|x^2<9},求A∩B。
解析:由x^2<9得-3<x<3,因此B={x|-3<x<3}。
因为A={1,2,3},所以A∩B={1,2},故选D。
3.给定集合A={0,2,4,6,8,10},B={4,8},求A-B。
解析:根据补集的概念,得到A-B={0,2,6,10},故选C。
4.给定集合A={x|x-4x+30},求A∩B。
解析:对于集合A,解方程x-4x+30,得到x>3/2,因此B={x|x>3/2}。
因此A∩B={x|3/2<x<3},故选D。
5.已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是()。
解析:要使复数z对应的点在第四象限,应满足m+3<0且m-1<0,解得-3<m<1,故选A。
6.给定集合S={x(x-2)(x-3)≥0},T={x|x>0},求S∩T。
解析:S表示x在2和3之间或者小于等于0的实数,T表示x大于0的实数,因此S∩T=[2,3],故选A。
7.已知集合A={x|25},求AB。
解析:AB表示既属于A又属于B的元素,因此AB={x|2<x<3},故选C。
已知集合$A=\{x\mid |x|<2\}$,$B=\{-1,0,1,2,3\}$,则$A\cap B$的元素为$-1,0,1$,因此选项$\textbf{(C)}$正确。
解析:对于不等式$x-3<1$,两边加上$3$得$x<4$,因此不等式$x-3<1$的解集为$(\textbf{2},4)$。
因此选项$\textbf{(A)}$正确。
设集合$U=\{1,2,3,4,5,6\}$,$A=\{1,3,5\}$,$B=\{3,4,5\}$,则$AB=\{3,5\}$,因此$U-AB=\{1,2,4,6\}$,即选项$\textbf{(D)}$正确。
高中数学 高考复习 集合 专题练习(选择题+解答题)100题合集 含答案详解
高中数学 高考复习 集合 专题练习 (选择题+解答题)100题合集一、单选题 1.已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为( )A .9B .10C .12D .132.下列各式中关系符号运用正确的是( ) A .{}10,1,2⊆ B .{}0,1,2∅⊄ C .{}2,0,1∅⊆D .{}{}10,1,2∈3.已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( ) A .{4,1}- B .{1,5} C .{3,5}D .{1,3}4.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .55.设集合{}{}1,3,5,7,9,27M N x x ==>,则M N ⋂=( ) A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,96.已知集合A ={﹣1,0,1,2},B ={x |0<x <3},则A ∩B =( ) A .{﹣1,0,1}B .{0,1}C .{﹣1,1,2}D .{1,2}7.已知集合{}2|210,A x ax x a =++=∈R 只有一个元素,则a 的取值集合为( )A .{1}B .{0}C .{0,1,1}-D .{0,1} 8.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( )A .∅B .SC .TD .Z9.下列说法正确的是( )A .由1,2,3组成的集合可表示为{}1,2,3或{}3,2,1B .∅与{}0是同一个集合C .集合{}21x y x =-与集合{}21y y x =-是同一个集合D .集合{}2560x x x ++=与集合{}2560x x ++=是同一个集合10.已知非空集合A 、B 、C 满足:A B C ⊆,A C B ⋂⊆.则( ). A .B C = B .()A B C ⊆⋃C .()B C A ⋂⊆D .A B A C ⋂=⋂11.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B ⋂中元素的个数为( )A .2B .3C .4D .612.集合{1A x x =<-或3}x ≥,{}10B x ax =+≤若B A ⊆,则实数a 的取值范围是( )A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎡⎤-⎢⎥⎣⎦C .()[),10,-∞-⋃+∞D .()1,00,13⎡⎫-⋃⎪⎢⎣⎭13.已知集合11A x x ⎧⎫=>⎨⎬⎩⎭,则RA =( )A .{}1x x <B .{0x x ≤或}1x ≥C .{|0}{|1}x x x x <>D .{}1x x ≤14.若集合{}{}0,1,2,3,4,5,0,2,4U A ==,{}3,4B =,则()U A B =( ).A .{}3B .{}5C .{}3,4,5D .{}1,3,4,515.集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N ⋂=( ) A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}16.已知集合{}1,0,1A =-,{},B a b a A b A =+∈∈,则集合B =( ) A .{}1,1-B .{}1,0,1-C .{}2,1,1,2--D .{}2,1,0,1,2--17.集合{1,0,1,2,3}A =-,{0,2,4}B =,则图中阴影部分所表示的集合为( )A .{0,2}B .{1,1,3,4}-C .{1,0,2,4}-D .{1,0,1,2,3,4}-18.设集合{}22,2,1A a a a =-+-,若4A ∈,则a 的值为( ).A .1-,2B .3-C .1-,3-,2D .3-,219.集合{|14}A x N x =∈≤<的真子集的个数是( ) A .16B .8C .7D .420.设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UA B =( )A .{3}B .{1,6}C .{5,6}D .{1,3}21.若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形22.已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=( ) A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,323.设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( ) A .{}2B .{}2,3C .{}3,4D .{}2,3,424.设集合A 、B 均为U 的子集,如图,()U A B ∩表示区域( )A .△B .IIC .IIID .IV25.若集合{}21,A m =,集合{}2,4B =,若{}1,2,4A B ⋃=,则实数m 的取值集合为( )A .{B .{C .{}2,2-D .{2,2,-26.集合{0,1,2}A =的非空真子集的个数为( ) A .5B .6C .7D .827.设集合{}{}|2,|13A x x B x x =≥=-<<,则A B =( ) A .{}|2x x ≥B .{}|2x x <C .{}|2x x ≤<3D .{}|12x x -≤<28.设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N ⋂=( )A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤29.下列元素与集合的关系中,正确的是( )A .1-∈NB .*0∉NC QD .25∉R30.已知{}1,,A x y =,{}21,,2B x y =,若A B =,则x y -=( )A .2B .1C .14D .2331.设集合{}{}{}1,0,11,3,5,0,2,4A B C =-==,,则()A B C ⋂⋃=( ) A .{}0B .{0,1,3,5}C .{0,1,2,4}D .{0,2,3,4}32.集合{}{}240,1,,2,.A a B a =-=-若{}2,1,0,4,16A B ⋃=--,则=a ( )A .1±B .2±C .3±D .4±33.设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B =( ) A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}34.已知集合满足{1,2}{1,2,3}A ⊆⊆,则集合A 可以是( ) A .{3}B .{1,3}C .{2,3}D .{1,2}35.已知集合{}12M x a x a =-<<,(1,4)N =,且M N ⊆,则实数a 的取值范围是( ) A .(,2]-∞B .(,0]-∞C .1(,]3-∞D .1,23⎡⎤⎢⎥⎣⎦36.已知集合{}21,P x x k k N *==-∈和集合{|}M x x a b a P b P ==⊕∈∈,,,若M P ⊆,则M 中的运算“△”是( ) A .加法B .除法C .乘法D .减法37.集合{1A x x =<-或}1x ≥,{}20B x ax =+≤,若B A ⊆,则实数a 的取值范围是( ) A .[]22-,B .[)2,2-C .()[),22,-∞-+∞D .[)()2,00,2-38.已知集合A ={x |-1<x <1},B ={x |0≤x ≤2},则A △B =( ) A .{x |0≤x <1} B .{x |-1<x ≤2} C .{x |1<x ≤2}D .{x |0<x <1}39.已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则UA =( )A .(2,1]-B .(3,2)[1,3)--C .[2,1)-D .(3,2](1,3)--40.设集合{1,2},{2,4,6}A B ==,则A B ⋃=( ) A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}41.已知集合{}21,M x x k k Z ==+∈,集合{}43,N y y k k Z ==+∈,则M N ⋃=( ) A .{}62,x x k k Z =+∈ B .{}42,x x k k Z =+∈ C .{}21,x x k k Z =+∈ D .∅42.已知集合{1,0,1,2,3,4},{1,3,5},M N P M N =-==,则P 的真子集共有( )A .2个B .3个C .4个D .8个43.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4B .–2C .2D .444.已知集合5==,Z 6M x x m m ⎧⎫-∈⎨⎬⎩⎭,1==,Z 23n N x x n ⎧⎫-∈⎨⎬⎩⎭,1==+,Z 26p P x x p ⎧⎫∈⎨⎬⎩⎭,则集合M ,N ,P 的关系为( ) A .M N P == B .=M N P ⊆C .M NP ⊆D .M N ⊆,=N P ⋂∅45.已知集合{|S x N x =∈≤,{}22|T x R x a =∈=,且{}1S T ⋂=,则S T ⋃=( )A .{1,2}B .{0,1,2}C .{-1,0,1,2}D .{-1,0,1,2,3}46.定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==-∈∈,若{}1,0A =-,{}1,2B =,则A B ⊗中的元素个数为( )A .1B .2C .3D .447.已知集合{}=1A x x ≤,{}=Z 04B x x ∈≤≤,则A B =( ) A .{}0<<1x xB .{}01x x ≤≤C .{}0<4x x ≤D .{}0,1 48.已知U =R ,{}2M x x =≤,{}11N x x =-≤≤,则UM N =( )A .{1x x <-或}12x <≤B .{}12x x <≤C .{1x x ≤-或}12x ≤≤D .{}12x x ≤≤49.已知集合{}0,1,2A =,{},B ab a A b A =∈∈,则集合B 中元素个数为( ) A .2B .3C .4D .550.设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()UA B =( ) A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---二、解答题51.设全集为R ,{|37}A x x =≤≤,{}2|14400B x x x =-+<.(△)求()R A B ⋃及()R A B ⋂;(△)若集合{|214}C x m x m =+≤≤+,且A C A ⋃=,求实数m 的取值范围. 52.已知集合{}37A x x =≤<,{}210B x x =<<,求:A B ⋂,()RA B ⋃,53.已知集合{}24A x x =<<,{}3B x a x a =<<. (1)若{}34A B x x ⋂=<<,求实数a 的值; (2)若A B ⋂=∅,求实数a 的取值范围.54.设集合{|}R A x x x ∈+=240=,R R {|()}B x x a x a a ∈=∈222110=+++-, . (1)若0a =,试求A B ⋃;(2)若B A ⊆,求实数a 的取值范围. 55.用列举法表示下列集合 (1)11以内非负偶数的集合;(2)方程()()2140x x +-=的所有实数根组成的集合;(3)一次函数2y x =与1y x =+的图象的交点组成的集合. 56.用描述法表示下列集合: (1)所有被3整除的整数组成的集合; (2)不等式235x ->的解集;(3)方程210x x ++=的所有实数解组成的集合; (4)抛物线236y x x =-+-上所有点组成的集合; (5)集合{}1,3,5,7,9.57.已知集合A 为非空数集,定义:{},,S x x a b a b A ==+∈,{},,T x x a b a b A ==-∈ (1)若集合{}1,3A =,直接写出集合S ,T .(2)若集合{}1234,,A x x x x =,1234x x x x <<<,且T A =,求证:1423x x x x +=+ (3)若集合{}02020,A x x x N ⊆≤≤∈,S ,S T ⋂=∅,记A 为集合A 中元素的个数,求A 的最大值.58.已知集合{}23A x x =-<<,{}3B x x a =≤. (1)求集合RA ;(2)当1a =时,求A B ⋂;(3)若()R B A ⋃=R ,求a 的取值范围. 59.已知集合A ={a ﹣2,2a 2+5a },且﹣3△A . (1)求a ;(2)写出集合A 的所有真子集.60.已知集合{|25},{|121}A x x B x m x m =-<<=+≤≤- (1)当3m =时,求()R A B ;(2)若A B A ⋃=,求实数m 的取值范围.61.已知集合{}2210,A x ax x a R =++=∈,若A 中至少有一个元素,求实数a 的取值集合.62.已知集合{3A x x =≤-或}1x ≥-,{}21|B x m x m =<<-,且A B A ⋃=,求m 的取值范围.63.已知集合A ={y |y =x 2-2x },B ={y |y =-x 2+2x +6}. (1)求A ∩B .(2)若集合A ,B 中的元素都为整数,求A ∩B .(3)若集合A 变为A ={x |y =x 2-2x },其他条件不变,求A ∩B .(4)若集合A ,B 分别变为A ={(x ,y )|y =x 2-2x },B ={(x ,y )|y =-x 2+2x +6},求A ∩B .64.已知集合{}20,R,R A x x ax b a b =-+=∈∈.(1)若{}1A =,求a ,b 的值;(2)若{}Z 30B x x =∈-<<,且A B =,求a ,b 的值. 65.设{},56,{|6U R A x x B x x ==-<≤=≤-或2}x >,求: (1)A B ⋂; (2)()()U UA B66.已知集合2{|121},{|3100}A x a x a B x x x =+≤≤-=--≤. (1)当3a =时,求()R A B ;(2)若A B B ⋃=,求实数a 的取值范围.67.已知﹣3是由x ﹣2,2x 2+5x ,12三个元素构成的集合中的元素,求x 的值. 68.已知集合A ={x |2a <x <a +1},B ={|1x -<x <5},求满足A ⊆B 的实数a 的取值范围.69.已知集合{}45A x x =<<,{}121B x m x m =+≤≤+,{0C x x =≤或}2x ≥. (1)若A B B ⋃=,求实数m 的取值范围; (2)若B C B =,求实数m 的取值范围.70.已知集合{}2210,A x ax x a R =++=∈.(1)若A 中只有一个元素,求a 的值; (2)若A 中至少有一个元素,求a 的取值范围; (3)若A 中至多有一个元素,求a 的取值范围.71.已知{}321A x x =-≤-≤,{}12B x a x a =-≤≤+,R a ∈. (1)当a =1时,求A ∩B ;(2)若A △B =A ,求实数a 的取值范围.72.已知集合{}2|80,,{|10,}A x x x m m R B x ax a R =-+=∈=-=∈,且A B A ⋃=.(1)若{}3A B =,求m ,a 的值. (2)若12m =,求实数a 组成的集合.73.已知集合11{|}A x a x a =-≤≤+,5|03x B x x -⎧⎫=≤⎨⎬+⎩⎭. (1)若3a =-,求A B ⋃;(2)在△A B ⋂=∅,△()R B A R ⋃=,△A B B ⋃=,这三个条件中任选一个作为已知条件,求实数a 的取值范围.74.已知集合 {|05}A x x a =<-,{|6}2aB x x =-<. (1)若 A B ⊆,求 a 的取值范围; (2)若 B A ⊆,求 a 的取值范围;(3)集合 A 与 B 能够相等?若能,求出 a 的值,若不能,请说明理由. 75.定义:若任意,m n A ∈(m ,n 可以相等),都有10mn +≠,则集合,,1m n B x x m n A mn ⎧⎫+==∈⎨⎬+⎩⎭称为集合A 的生成集;(1)求集合{3,4}A =的生成集B ;(2)若集合{,2}A a =,A 的生成集为B ,B 的子集个数为4个,求实数a 的值; (3)若集合(1,1)A =-,A 的生成集为B ,求证A B =.76.已知集合{|25}A x x =-,{|121}B x m x m =+-,U =R .(1)若UAB U =,求实数m 的取值范围;(2)若A B ≠∅,求实数m 的取值范围.77.设A 是实数集的非空子集,称集合{|,B uv u v A =∈且}u v ≠为集合A 的生成集. (1)当{}2,3,5A =时,写出集合A 的生成集B ;(2)若A 是由5个正实数构成的集合,求其生成集B 中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =,并说明理由.78.设数集A 由实数构成,且满足:若x A ∈(1x ≠且0x ≠),则11A x∈-. (1)若2A ∈,试证明A 中还有另外两个元素; (2)集合A 是否为双元素集合,并说明理由; (3)若A 中元素个数不超过8个,所有元素的和为143,且A 中有一个元素的平方等于所有元素的积,求集合A .79.设集合{}{}{}22,2,,,A x x a P y y x x A Q y y x x A =-≤≤==+∈==∈.(1)对a 分类讨论求集合Q ; (2)若QP Q =,求实数a 的取值范围.80.已知集合{}32A x x =-≤≤,{}213B x m x m =-≤≤+. (1)当0m =时,求()RA B ⋂;(2)若A B A ⋃=,求实数m 的取值范围.81.已知集合{}02A x x =≤≤,{}B 32x a x a =≤≤-. (1)若()R A B ⋃=R ,求实数a 的取值范围; (2)若A B B ≠,求实数a 的取值范围.82.已知集合2{|280}A x x x =--=,集合22120{|}B x x ax a -+==+.若B A A ≠,求实数a 的取值范围.83.已知集合{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,U =R . (1)当3a =时,求A B ⋂,()U A B ⋃; (2)若A B ⋂=∅,求实数a 的取值范围.84.已知集合{}|23A a a x a =≤≤+,{1B x x =<-或}5x >,若()R A B B =,求实数a的取值范围.85.集合1|22A x x ⎧⎫=<<⎨⎬⎩⎭,{}22B x a x a =-<<+.(1)若{}23,4,23C a a =+-,0B C ∈⋂,求实数a 的值;(2)从△A B A =,△A B =∅R,△B A R ⋃=R 这三个条件中选择一个作为已知条件,求实数a 的取值范围.86.在“△A B ⋂=∅,△A B ⋂≠∅”这两个条件中任选一个,补充在下列横线中,求解下列问题:已知集合{|231}A x a x a =-<<+,{|01}B x x =<≤. (△)若0a =,求A B ⋃;(△)若________(在△,△这两个条件中任选一个),求实数a 的取值范围. 注:如果选择多个条件分别解答,按第一个解答记分.87.已知集合{}37A x x =≤<,{}210B x x =<<,{}C x x a =<. (1)求A B ⋃,()A B R ;(2)若A C ⋂≠∅,求a 的取值范围.88.设全集{}1,2,3,4,5,6U =,集合{}1,3,4A =,{}1,4,5,6B =. (1)求A B ⋂及A B ⋃; (2)求()U A B .89.试分别用描述法和列举法表示下列集合: (1)方程220x -=的所有实数根组成的集合A ; (2)由大于10且小于20的所有整数组成的集合B .90.已知集合{|32}A x x =-≤≤,集合{|131}B x m x m =-≤≤-. (1)当3m =时,求A B ⋂; (2)若A B ⊆,求实数m 的取值范围91.已知集合{|,A x x m ==其中,}m n Q ∈.(1)试分别判断1x =2x =A 的关系; (2)若1x ,2x A ∈,则12x x 是否一定为集合A 的元素?请说明你的理由.92.已知集合{}22190A x x ax a =-+-=,集合{}2560B x x x =-+=,集合{}2280C x x x =+-=.(1)若{}2A B ⋂=,求实数a 的值;(2)若A B ⋂≠∅,A C ⋂=∅,求实数a 的值.93.已知集合{}2230A x x x =-->,{}20B x x px q =++≤.(1)若A B ⋃=R ,且[)2,1A B ⋂=--,求实数p 及q 的值;(2)在(1)的条件下,若关于x 的不等式组200x px q x a ⎧++≤⎨->⎩没有实数解,求实数a 的取值范围;(3)若[]3,1B =--,且关于x 的不等式;21012kx kx pq ++≤的解集为∅,求实数k 的取值范围.94.已知集合A 中的元素全为实数,且满足:若a A ∈,则11aA a+∈-. (1)若3a =-,求出A 中其他所有元素.(2)0是不是集合A 中的元素?请你取一个实数()3a A a ∈≠-,再求出A 中的元素. (3)根据(1)(2),你能得出什么结论?95.已知{}(){}22240,2110A xx x B x x a x a =+==+++-=∣∣. (1)若A 是B 的子集,求实数a 的值; (2)若B 是A 的子集,求实数a 的取值范围.96.已知全集U ={x |x ≤4},集合A ={x |-2<x <3},B ={x |-3≤x ≤2},求A ∩B ,()U A B ⋃,()U A B ⋂.97.已知集合2{|210}A x R mx x =∈-+=,在下列条件下分别求实数m 的取值范围: (1)A =∅; (2)A 恰有一个元素.98.已知集合{}220A x x x a =+-=.(1)若∅是A 的真子集,求a 的范围;(2)若{}20B x x x =+=,且A 是B 的子集,求实数a 的取值范围.99.已知由实数组成的集合A ,1A ∉,又满足:若x A ∈,则11A x∈-. (1)设A 中含有3个元素,且2,A ∈求A ;(2)A 能否是仅含一个元素的单元素集,试说明理由;(3) A 中含元素个数一定是*3()n n N ∈个吗?若是,给出证明,若不是,说明理由. 100.设A ={x |x 2+ax +12=0},B ={x |x 2+3x +2b =0},A ∩B ={2},C ={2,-3}.(1)求a,b的值及A,B;(2)求(A△B)∩C.参考答案:1.D【分析】利用列举法列举出集合A 中所有的元素,即可得解.【详解】由题意可知,集合A 中的元素有:()2,0-、()1,1--、()1,0-、()1,1-、()0,2-、()0,1-、()0,0、()0,1、()0,2、1,1、()1,0、()1,1、()2,0,共13个.故选:D. 2.C【分析】根据元素和集合的关系,集合与集合的关系,空集的性质判断即可. 【详解】根据元素和集合的关系是属于和不属于,所以选项A 错误; 根据集合与集合的关系是包含或不包含,所以选项D 错误; 根据空集是任何集合的子集,所以选项B 错误,故选项C 正确. 故选:C. 3.D【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ⋂,得到结果.【详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =, 故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目. 4.B【分析】采用列举法列举出A B ⋂中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B ⋂中元素的个数为3. 故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 5.B【分析】求出集合N 后可求M N ⋂.【详解】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=,故选:B. 6.D【分析】根据交集的定义写出A ∩B 即可.【详解】集合A ={﹣1,0,1,2},B ={x |0<x <3}, 则A ∩B ={1,2}, 故选:D 7.D【分析】对参数分类讨论,结合判别式法得到结果. 【详解】解:△当0a =时,1{}2A =-,此时满足条件;△当0a ≠时,A 中只有一个元素的话,440a =-=,解得1a =, 综上,a 的取值集合为{0,1}. 故选:D . 8.C【分析】分析可得T S ⊆,由此可得出结论.【详解】任取t T ∈,则()41221t n n =+=⋅+,其中Z n ∈,所以,t S ∈,故T S ⊆, 因此,S T T =. 故选:C. 9.A【分析】根据集合的定义和性质逐项判断可得答案 【详解】集合中的元素具有无序性,故A 正确;∅是不含任何元素的集合,{}0是含有一个元素0的集合,故B 错误;集合{}21x y x R =-=,集合{}{}211y y x y y =-=≥-,故C 错误;集合{}()(){}2025630++==+=+x x x x x x 中有两个元素2,3--,集合{}2560x x ++=中只有一个元素,为方程2560x x ++=,故D 错误. 故选:A. 10.C【分析】作出符合题意的三个集合之间关系的venn 图即可判断.【详解】解:因为非空集合A 、B 、C 满足:A B C ⊆,A C B ⋂⊆, 作出符合题意的三个集合之间关系的venn 图,如图所示,所以A B A C ⋂=⋂. 故选:D . 11.C【分析】采用列举法列举出A B ⋂中元素的即可.【详解】由题意,A B ⋂中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故A B ⋂中元素的个数为4. 故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 12.A【分析】根据B A ⊆,分B =∅和B ≠∅两种情况讨论,建立不等关系即可求实数a 的取值范围.【详解】解:B A ⊆,∴△当B =∅时,即10ax +无解,此时0a =,满足题意.△当B ≠∅时,即10ax +有解,当0a >时,可得1x a-, 要使B A ⊆,则需要011a a>⎧⎪⎨-<-⎪⎩,解得01a <<.当a<0时,可得1x a-,要使B A ⊆,则需要013a a<⎧⎪⎨-⎪⎩,解得103a -<,综上,实数a 的取值范围是1,13⎡⎫-⎪⎢⎣⎭.故选:A .【点睛】易错点点睛:研究集合间的关系,不要忽略讨论集合是否为∅. 13.B【分析】先解不等式,求出集合A ,再求出集合A 的补集 【详解】由11x>,得10x x ->,(1)0x x ->,解得01x <<,所以{}01A x x =<<, 所以RA ={0x x ≤或}1x ≥故选:B 14.A【分析】根据补集的定义和运算求出UA ,结合交集的概念和运算即可得出结果.【详解】由题意知,{1,3,5}UA =,又{3,4}B =,所以(){3}U A B =. 故选:A 15.A【分析】根据集合的交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N =.故选:A. 16.D【分析】根据{}1,0,1A =-求解{},B a b a A b A =+∈∈即可【详解】由题,当a A b A ∈∈,时a b +最小为()()112-+-=-,最大为112+=,且可得()101,000,011-+=-+=+=,故集合B ={}2,1,0,1,2--故选:D 17.B【分析】求()()A B A B 得解.【详解】解:图中阴影部分所表示的集合为()(){1,1,3,4}A B AB =-.故选:B 18.D【分析】由集合中元素确定性得到:1a =-,2a =或3a =-,通过检验,排除掉1a =-. 【详解】由集合中元素的确定性知224a a -+=或14a -=. 当224a a -+=时,1a =-或2a =;当14a -=时,3a =-.当1a =-时,{}2,4,2A =不满足集合中元素的互异性,故1a =-舍去; 当2a =时,{}2,4,1A =-满足集合中元素的互异性,故2a =满足要求; 当3a =-时,{}2,14,4A =满足集合中元素的互异性,故3a =-满足要求. 综上,2a =或3a =-. 故选:D . 19.C【解析】先用列举法写出集合A ,再写出其真子集即可. 【详解】解:△141,2,3{|}{}A x N x =∈≤<=,{|1}4A x N x ∴=∈≤<的真子集为:{}{}{},,,,{}1231,21,{},,3{}2,3∅共7个.故选:C . 20.B【分析】根据交集、补集的定义可求()U A B ⋂. 【详解】由题设可得{}U1,5,6B =,故(){}U 1,6A B ⋂=,故选:B. 21.D【分析】根据集合元素的互异性即可判断.【详解】由题可知,集合{},,M a b c =中的元素是ABC 的三边长, 则a b c ≠≠,所以ABC 一定不是等腰三角形. 故选:D . 22.B【分析】首先化简集合A ,再根据补集的运算得到RA ,再根据交集的运算即可得出答案.【详解】因为20(2,4)4x A xx ⎧⎫+=<=-⎨⎬-⎩⎭, 所以{R|2A x x =≤-或}4x ≥.所以(){}R 4,5A B = 故选:B. 23.B【分析】利用交集的定义可求A B ⋂. 【详解】由题设有{}2,3A B ⋂=, 故选:B . 24.B【分析】根据交集与补集的定义可得结果. 【详解】由题意可知,()U A B ∩表示区域II. 故选:B. 25.D【分析】由题中条件可得22m =或24m =,解方程即可.【详解】因为{}21,A m =,{}2,4B =,{}1,2,4A B ⋃=,所以22m =或24m =,解得m =2m =±,所以实数m 的取值集合为{2,2,-. 故选:D. 26.B【分析】根据真子集的定义即可求解.【详解】由题意可知,集合A 的非空真子集为{0},{1},{2},{0,1},{0,2},{1,2},共6个. 故选:B. 27.C【分析】根据交集的定义求解即可【详解】由题,{}|23A B x x =≤< 故选:C 28.B【分析】根据交集定义运算即可【详解】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解. 29.B【分析】由*,,,N N Q R 分别表示的数集,对选项逐一判断即可. 【详解】1-不属于自然数,故A 错误;0不属于正整数,故B 正确;C 错误;25属于实数,故D 错误. 故选:B. 30.C【分析】由两集合相等,其元素完全一样,则可求出=0,=0x y 或1,0x y ==或1124x y ==,,再利用集合中元素的互异性可知1124x y ==,,则可求出答案.【详解】若A B =,则22x x y y ⎧=⎨=⎩或22x y y x =⎧⎨=⎩,解得00x y =⎧⎨=⎩或10x y =⎧⎨=⎩或1214x y ⎧=⎪⎪⎨⎪=⎪⎩, 由集合中元素的互异性,得1214x y ⎧=⎪⎪⎨⎪=⎪⎩,则111244x y -=-=, 故选:C . 31.C【分析】根据交集并集的定义即可求出.【详解】{}{}{}1,0,11,3,5,0,2,4A B C =-==,,{}1A B ∴⋂=,{}()0,1,2,4A B C ⋂⋃=∴. 故选:C. 32.B【分析】根据并集运算,结合集合的元素种类数,求得a 的值. 【详解】由{}2,1,0,4,16A B ⋃=--知,24416a a ⎧=⎨=⎩,解得2a =± 故选:B 33.A【分析】根据集合的交集运算即可解出.【详解】因为{}2,1,0,1,2A =--,502B xx ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B =. 故选:A. 34.D【分析】由题可得集合A 可以是{}1,2,{}1,2,3. 【详解】{1,2}{1,2,3}A ⊆⊆, ∴集合A 可以是{}1,2,{}1,2,3.故选:D. 35.C【分析】按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解. 【详解】因M N ⊆,而N φ⊆,所以M φ=时,即21a a ≤-,则13a ≤,此时M φ≠时,M N ⊆,则1123110242a a a a a a a ⎧>⎪-<⎧⎪⎪-≥⇒≤⎨⎨⎪⎪≤≤⎩⎪⎩,无解,综上得13a ≤,即实数a 的取值范围是1(,]3-∞.36.C【分析】用特殊值,根据四则运算检验.【详解】若3,1a b ==,则4a b +=P ∉,2a b P -=∉,13b P a =∉,因此排除ABD . 故选:C .37.B【分析】分B =∅与B ≠∅两种情况讨论,分别求出参数的取值范围,最后取并集即可;【详解】解:△B A ⊆,△△当B =∅时,即20ax +≤无解,此时0a =,满足题意.△当B ≠∅时,即20ax +≤有解,当0a >时,可得2x a ≤-, 要使B A ⊆,则需要021a a>⎧⎪⎨-<-⎪⎩,解得02a <<. 当a<0时,可得2x a ≥-,要使B A ⊆,则需要021a a<⎧⎪⎨-≥⎪⎩,解得20a -≤<, 综上,实数a 的取值范围是[)2,2-.故选:B .38.B【分析】由集合并集的定义可得选项.【详解】解:由集合并集的定义可得A △B ={x |-1<x ≤2},故选:B.39.D【分析】利用补集的定义可得正确的选项.【详解】由补集定义可知:{|32U A x x =-<≤-或13}x <<,即(3,2](1,3)U A =--,故选:D .40.D【分析】利用并集的定义可得正确的选项.【详解】{}1,2,4,6A B =,41.C【分析】通过对集合N 的化简即可判定出集合关系,得到结果. 【详解】因为集合{}21,M x x k k ==+∈Z , 集合{}(){}43,2211,N y y k k y y k k ==+∈==++∈Z Z ,因为x ∈N 时,x M ∈成立, 所以{}21,M N x x k k ⋃==+∈Z .故选:C.42.B【分析】根据交集运算得集合P ,再根据集合P 中的元素个数,确定其真子集个数即可.【详解】解:{1,0,1,2,3,4},{1,3,5}M N =-= {}13P ∴=,,P 的真子集是{}1,{3},∅共3个.故选:B.43.B【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-. 故选:B. 【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.44.B【分析】对集合,,M N P 中的元素通项进行通分,注意32n -与31p +都是表示同一类数,65m -表示的数的集合是前者表示的数的集合的子集,即可得到结果.【详解】对于集合5==,Z 6M x x m m -∈⎧⎫⎨⎬⎩⎭,()611565666m m x m -+-=-==, 对于集合1==,Z 23n N x x n -∈⎧⎫⎨⎬⎩⎭,()3111322366n n n x -+-=-==, 对于集合1==+,Z 26p P x x p ∈⎧⎫⎨⎬⎩⎭,131266p p x +=+=, 由于集合,,M N P 中元素的分母一样,只需要比较其分子即可,且,,m n p ∈Z ,注意到()311n -+与31p +表示的数都是3的倍数加1,()611m -+表示的数是6的倍数加1, 所以()611m -+表示的数的集合是前者表示的数的集合的子集,所以M N P ⊆=.故选:B.45.C【分析】先 根据题意求出集合T ,然后根据并集的概念即可求出结果.【详解】{{}|0,1,2S x N x =∈≤=,而{}1S T ⋂=,所以1T ∈,则21a =,所以{}{}22|1,1T x R x a =∈==-,则{}1,0,1,2S T ⋃=- 故选:C.46.C【分析】根据集合的新定义确定集合中的元素.【详解】因为2{|,,}A B x x a b a A b B ⊗==-∈∈,{}1,0A =-,{}1,2B =,所以{0,1,2}A B ⊗=--,故集合A B ⊗中的元素个数为3,故选:C.47.D【分析】根据集合的交运算即可求解. 【详解】由{}=Z 04B x x ∈≤≤得{}0,1,=2,3,4B ,所以{}0,1A B =,故选:D48.A【分析】先求U N ,再求U M N 的值. 【详解】因为{1U N x x =<-或1}x >,所以{1U M C N x x ⋂=<-或12}x <≤.故选:A.49.C 【分析】由列举法列出集合B 的所有元素,即可判断;【详解】解:因为{}0,1,2A =,a A b A ∈∈,,所以0ab =或1ab =或2ab =或4ab =, 故{}{},0,1,2,4B ab a A b A =∈∈=,即集合B 中含有4个元素;故选:C50.C【分析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果.【详解】由题意结合补集的定义可知:{}U 2,1,1B =--,则(){}U 1,1AB =-.故选:C.【点睛】本题主要考查补集运算,交集运算,属于基础题.51.(1)(){}|710R A B x x ⋂=<<;{()3R A B x x ⋃=<或}10x ≥;(2){}|1m m ≥;【分析】(1)求解一元二次不等式,得集合B ,然后根据集合的交并补集的定义计算即可;(2)由A C A ⋃=,可得C A ⊆,然后分别讨论集合C φ=与C φ≠两种情况.【详解】(1)求解得集合{}{}2|14400|410B x x x x x =-+<=<<,所以{3R A x x =<或}7x >, 所以(){}|710R A B x x ⋂=<<,{()3R A B x x ⋃=<或}10x ≥;(2)因为A C A ⋃=,所以C A ⊆.当集合C =∅时,214m m +>+,得3m >;当集合C ≠∅时,21421347m m m m +≤+⎧⎪+≥⎨⎪+≤⎩,得13m ≤≤, 综上,m 的取值范围为{}|1m m ≥.52.{}37x x ≤<;{2x x ≤或10}x ≥.【分析】由结合的交并补运算求解即可.【详解】因为集合{}37A x x =≤<,{}210B x x =<<,所以A B ⋂{}37x x =≤<.因为A B ⋃={}210x x <<,所以(){2R A B x x ⋃=≤或10}x ≥.53.(1)3 (2){23a a ≤或}4a ≥【分析】(1)根据交集结果直接判断即可.(2)按B =∅,B ≠∅讨论,简单计算即可得到结果.(1) 因为{}34A B x x ⋂=<<,所以3a =.(2)因为A B ⋂=∅,所以可分两种情况讨论:B =∅,B ≠∅.当B =∅时,有3a a ≥,解得0a ≤;当B ≠∅时,有0432a a a >⎧⎨≥≤⎩或,解得4a ≥或203a <≤. 综上,实数a 的取值范围是{23a a ≤或}4a ≥.54.(1){0411---,, (2)}{a a a ≤-=11或.【分析】(1)利用一元二次方程的公式及集合的并集的定义即可求解.(2)利用子集的定义及一二次方程的根的情况即可求解.(1)由240x x +=,解得0x =或4x =-, }{,A =-40 .当0a =时,得x x -+2210=,解得1x =-x =1-{11B =--;△{0411A B =---,,. (2)由(1)知,}{,A =-40,B A ⊆,于是可分为以下几种情况.当A B =时,}{,B =-40,此时方程()x a x a =222110+++-有两根为0,4-,则()()()a a a a ⎧∆=+⎪=⎨⎪-+=-⎩-->2224141010214-,解得1a =. 当B A ≠时,又可分为两种情况.当B ≠∅时,即{}0B =或{}B -4=, 当{}0B =时,此时方程()x a x a =222110+++-有且只有一个根为0,则22241410(0)()1a a a --⎧∆=+⎨-==⎩,解得1a =-, 当{}B -4=时,此时方程()x a x a =222110+++-有且只有一个根为4-,则 ()2222414104()()()8110a a a a ⎧∆=+⎪⎨-=--=-⎪⎩++-,此时方程组无解, 当B =∅时,此时方程()x a x a =222110+++-无实数根,则2241410()()a a --∆+<=,解得1a <-.综上所述,实数a 的取值为}{a a a ≤-=11或. 55.(1){}0,246810,,,,; (2){}212--,, (3)(){}12,【分析】(1)根据偶数的定义即可列举所有的偶数,(2)求出方程的根,即可写出集合,(3)联立方程求交点,进而可求集合.(1)11以内的非负偶数有0,2,4,6,8,10 ,所以构成的集合为{}0,2,4,6,8,10 ,(2)()()2140x x +-=的根为1231,2,2x x x =-==- ,所以所有实数根组成的集合为{}2,1,2-- ,(3)联立1y x =+和2y x =,解得12x y =⎧⎨=⎩ ,所以两个函数图象的交点为(1,2) ,构成的集合为(){}1,2 56.(1){|3,Z}x x k k =∈ (2){}4,R x x x ∈(3)2{|10,R}x x x x ++=∈(4)()2{,|36}x y y x x =-+-(5){|21,15x x n n =-≤≤且*N }n ∈【分析】根据题设中的集合和集合的表示方法,逐项表示,即可求解.(1)解:所有被3整除的整数组成的集合,用描述法可表示为:{|3,Z}x x k k =∈(2)解:不等式235x ->的解集,用描述法可表示为:{}4,R x x x ∈.(3)解:方程210x x ++=的所有实数解组成的集合,用描述法可表示为:2{|10,R}x x x x ++=∈.(4)解:抛物线236y x x =-+-上所有点组成的集合,用描述法可表示为:()2{,|36}x y y x x =-+-.(5)解:集合{}1,3,5,7,9,用描述法可表示为:{|21,15x x n n =-≤≤且*N }n ∈.57.(1){}2,4,6S =,{}0,2T =;(2)证明见解析;(3)1347.【解析】(1)根据题目定义,直接计算集合S 及T ;(2)根据两集合相等即可找到1x ,2x ,3x ,4x 的关系;(3)通过假设A 集合{m ,1m +,2m +,⋯,2020},2020m ,m N ∈,求出相应的S 及T ,通过S T ⋂=∅建立不等关系求出相应的值.【详解】(1)根据题意,由{}1,3A =,则{}2,4,6S =,{}0,2T =;(2)由于集合{}1234,,,A x x x x =,1234x x x x <<<,且T A =,所以T 中也只包含四个元素,即{}2131410,,,T x x x x x x =---,剩下的324321x x x x x x -=-=-,所以1423x x x x +=+;(3)设{}12,,k A a a a =⋅⋅⋅满足题意,其中12k a a a <<⋅⋅⋅<,则11213223122k k k k k k a a a a a a a a a a a a a a -<+<+<⋅⋅⋅<+<+<+<⋅⋅⋅<+<,21S k ∴≥-,1121311k a a a a a a a a -<-<-<⋅⋅⋅<-,T k ∴≥,S T ⋂=∅,31S T S T k ⋃=+≥-,S T 中最小的元素为0,最大的元素为2k a ,21k S T a ∴⋃≤+,()*31214041k k a k N ∴-≤+≤∈,1347k ≤,实际上当{}674,675,676,,2020A =⋅⋅⋅时满足题意,证明如下:设{},1,2,,2020A m m m =++⋅⋅⋅,m N ∈,则{}2,21,22,,4040S m m m =++⋅⋅⋅,{}0,1,2,,2020T m =⋅⋅⋅-,依题意有20202m m -<,即16733m >, 故m 的最小值为674,于是当674m =时,A 中元素最多,即{}674,675,676,,2020A =⋅⋅⋅时满足题意,综上所述,集合A 中元素的个数的最大值是1347.【点睛】新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.58.(1){|3R A x x =≥或2}x (2)123A B x x ⎧⎫⋂=-<≤⎨⎬⎩⎭ (3)9a ≥【分析】(1)根据题干条件以及补集的定义可得解;(2)根据题干条件以及交集的定义可得解;(3)根据(1)可得{|3R A x x =≥或2}x ,结合()R B A ⋃=R ,分析即得解 (1) 由题意,{}23A x x =-<<故{|3R A x x =≥或2}x(2)当1a =时,{}131{|}3B x x x x =≤=≤ 故123A B x x ⎧⎫⋂=-<≤⎨⎬⎩⎭ (3)由(1){|3R A x x =≥或2}x{}3{|}3a B x x a x x =≤=≤ 若()R B A ⋃=R ,则33a ≥ 解得9a ≥59.(1)a 32=- ; (2)△,72⎧⎫-⎨⎬⎩⎭,{﹣3} .【分析】(1)由题意知a ﹣2=﹣3或2a 2+5a =﹣3,分类讨论并检验即可求得a 32=-;(2)由真子集的定义直接写出即可.(1)△A ={a ﹣2,2a 2+5a },且﹣3△A ,△a ﹣2=﹣3或2a 2+5a =﹣3,△若a ﹣2=﹣3,a =﹣1,2a 2+5a =﹣3,故不成立,△若2a 2+5a =﹣3,a =﹣1或a 32=-, 由△知a =﹣1不成立,若a 32=-,a ﹣272=-,2a 2+5a =﹣3,成立, 故a 32=-; (2) △732A ⎧⎫=--⎨⎬⎩⎭,, △A 的真子集有∅,72⎧⎫-⎨⎬⎩⎭,{﹣3}. 60.(1)(){}5R A B =;(2)3m <.【分析】(1)根据集合的运算法则计算;(2)由A B A ⋃=得B A ⊆,然后分类B =∅和B ≠∅求解.【详解】(1)当3m =时,B 中不等式为45x ≤≤,即{}|45B x x =≤≤,△{|2R A x x =≤-或5}x ,则(){}5R A B =(2)△A B A ⋃=,△B A ⊆,△当B =∅时,121m m +>-,即2m <,此时B A ⊆;△当B ≠∅时,12112215m m m m +≤+⎧⎪+>-⎨⎪-<⎩,即23m ≤<,此时B A ⊆.综上m 的取值范围为3m <.61.}{1a a ≤.【分析】分类讨论集合中恰有一个元素和恰有两个元素的情况,即可得解.【详解】集合A 中至少有一个元素,即A 中只有一个元素,或A 中有两个元素. 当A 中有一个元素时,0a =,或0,440,a a ≠⎧⎨∆=-=⎩即1a =; 当A 中有两个元素时,由0,440,a a ≠⎧⎨∆=->⎩解得1a <,且0a ≠. 综上,得1a ≤.即实数a 的取值集合为}{1a a ≤.62.2m ≤-或1m ≥-【分析】因为A B A ⋃=,所以B A ⊆,分别讨论B φ=和B φ≠两种情况然后求并集.【详解】解:因为A B A ⋃=,所以B A ⊆,当B φ=时,21m m ≥-,解得:1m ≥-; 当B φ≠时,2113m m m <-⎧⎨-≤-⎩或2121m m m <-⎧⎨≥-⎩解得:2m ≤-或m φ∈ 所以2m ≤-或1m ≥-.63.(1)A ∩B ={y |-1≤y ≤7};(2)A ∩B ={y |-1≤y ≤7};(3)A ∩B ={y |y ≤7};(4)A ∩B ={(3,3),(-1,3)}.【分析】首先根据集合A 与B 的定义,确定集合里面的元素,再根据题目要求去求解.【详解】(1)因为y =x 2-2x =(x -1)2-1≥-1,所以A ={y |y ≥-1},因为y =-x 2+2x +6=-(x -1)2+7≤7,所以B ={y |y ≤7},所以A ∩B ={y |-1≤y ≤7}.(2)由已知得A ={y △Z |y ≥-1},B ={y △Z |y ≤7},所以A ∩B ={-1,0,1,2,3,4,5,6,7}.(3)由已知得A ={x |y =x 2-2x }=R ,B ={y |y ≤7},所以A ∩B ={y |y ≤7}.(4)由22-2-26y x x y x x ⎧=⎨=++⎩,,得x 2-2x -3=0, 解得x =3,或x =-1,所以33x y =⎧⎨=⎩,,或-13x y =⎧⎨=⎩,, 所以A ∩B ={(3,3),(-1,3)}.【点睛】本题主要考查集合的交并补运算,在求解过程中注意是数集还是点集.64.(1)21a b =⎧⎨=⎩(2)32a b =-⎧⎨=⎩【分析】(1)根据题意可得10Δ0a b -+=⎧⎨=⎩,解方程组即可得出答案; (2)易得{}2,1B =--,再根据A B =,列出方程组,解之即可得解.(1)解:若{}1A =,则有210Δ40a b a b -+=⎧⎨=-=⎩,解得21a b =⎧⎨=⎩; (2) 解:{}{}Z 302,1B x x =∈-<<=--,因为A B =,所以42010a b a b ++=⎧⎨++=⎩,解得32a b =-⎧⎨=⎩. 65.(1){}26x x <≤; (2){|2x x ≤或6}x >.【分析】(1)根据集合交集的概念及运算,即可求解;(2)根据补集的运算,求得,U U A B ,再结合集合并集的运算,即可求解.【详解】(1)由题意,集合{}56,{|6A x x B x x =-<≤=≤-或2}x >,根据集合交集的概念及运算,可得{}26A B x x ⋂=<≤.(2)由{},56,{|6U R A x x B x x ==-<≤=≤-或2}x >,可得{|5U A x =≤或6}x >,{|62}U B x x =-<≤,所以()()U U A B {|2x x =≤或6}x >.66.(1)4{|}2x x -≤<;(2)(,3]-∞.【分析】(1)分别求解集合,A B ,再求解()R A B 的值;(2)由条件可知A B ⊆,利用子集关系,分A =∅和A ≠∅列式求解实数a 的取值范围.【详解】解:(1)当3a =时,2{|45},{|3100}{|25}A x x B x x x x x =≤≤=--≤=-≤≤ {|4R A x x ∴=<或5}x >(){|24}R A B x x ∴=-≤<(2)A B B =,A B ∴⊆,△当A =∅时,121,2a a a +>-<即,此时满足A B ⊆;△当A ≠∅时,要使A B ⊆成立,则需满足12112215a a a a +≤-⎧⎪+≥-⎨⎪-≤⎩,23a ∴≤≤综上,实数a 的取值范围是(,3]-∞67.x 的值为32-. 【分析】由已知可得x ﹣2=﹣3或2x 2+5x =﹣3,分别求出x 的值,验证可得结论.【详解】解:当x ﹣2=﹣3时,x =﹣1,此时这三个元素构成的集合为{﹣3,﹣3,12},不满足集合元素的互异性;当2x 2+5x =﹣3时.x 32=-或x =﹣1(舍),此时这三个元素构成的集合为{72-,﹣3,12},满足集合元素的互异性,综上,x 的值为32-. 68.1,2⎡⎫-+∞⎪⎢⎣⎭【分析】根据集合之间的关系,列出相应的不等式组,解不等式组即可求解.【详解】由题意,集合{|21}{|15}A x a x a B x x =<<+=-<<,,因为A B ⊆,若=A ∅,则21a a ≥+,解得1a ≥,符合题意;若A ≠∅,则212115a a a a <+⎧⎪≥-⎨⎪+≤⎩,解得112a -≤<, 所求实数a 的取值范围为1,2⎡⎫-+∞⎪⎢⎣⎭. 69.(1)[]2,3(2)()[),01,-∞⋃+∞【分析】将集合的运算结果转化为集合间的关系,根据集合间的关系画出数轴,然后根据数轴列出关于参数的不等式(组)并求解,特别要注意端点值能否取到求解即可.(1)△A B B ⋃=,△A B ⊆.在数轴上标出集合A ,B ,如图1所示,则由图1可知21514m m +≥⎧⎨+≤⎩,解得23m ≤≤. △实数m 的取值范围为[]2,3.(2)△B C B =,△B C ⊆.当B =∅,即121m m +>+,即0m <时,满足B C ⊆.当B ≠∅,即0m ≥时,在数轴上标出集合B ,C ,若B C ⊆,则有两种情况,如图2、图3所示.由图2可知210m +≤,解得12m ≤-,又0m ≥, △无解;由图3可知12m +≥,解得m 1≥.综上,实数m 的取值范围是()[),01,-∞⋃+∞.70.(1)0a =或1a =;(2)1a ≤;(3)0a =或1a ≥.【分析】根据集合中元素的个数以及方程的解即可确定a 的取值范围.【详解】解:(1)若A 中只有一个元素,则当0a =时,原方程变为210x +=,此时12x =-符合题意, 当0a ≠时,方程2210ax x ++=为一元二次方程,440a ∆=-=,即1a =,故当0a =或1a =时,原方程只有一个解;(2)A 中至少有一个元素,即A 中有一个或两个元素,由0∆>得1a <综合(1)当1a ≤时A 中至少有一个元素;(3)A 中至多有一个元素,即A 中有一个或没有元素当44a 0∆=-<,即1a >时原方程无实数解,结合(1)知当0a =或1a ≥时A 中至多有一个元素.【点睛】关键点点睛:本题解题的关键是理解集合中的元素与方程的根之间的关系. 71.(1){}03A B x x ⋂=≤≤ (2){}01a a ≤≤【分析】(1)解不等式,求出,A B ,进而求出交集;(2)根据条件得到B A ⊆,比较端点,列出不等式组,求出实数a 的取值范围.【详解】(1)321x -≤-≤,解得13x -≤≤,故{}13A x x =-≤≤,当1a =时,{}03B x x =≤≤,所以{}03A B x x ⋂=≤≤;(2)因为A B A ⋃=,所以B A ⊆,因为12a a -<+,所以B ≠∅,所以1123a a -≥-⎧⎨+≤⎩, 解得:01a ≤≤,所以实数a 的取值范围为{}01a a ≤≤72.(1)15m =,15a =;)(2)110,,26⎧⎫⎨⎬⎩⎭【分析】(1)依题意可得3A ∈,3B ∉,即可求出m ,从而求出集合A ,则5∈B ,即可求出a ;(2)首先求出集合A ,依题意可得B A ⊆,对集合B 分类讨论,即可求出参数的取值;【详解】解:(1)因为{}2|80,,{|10,}A x x x m m R B x ax a R =-+=∈=-=∈,且A B A ⋃=.{}3A B =,所以3A ∈,3B ∉,所以23830m -⨯+=解得15m =,所以{}3,5A =,所以5∈B ,所以510a ,解得15a = (2)若12m =,所以{}2,6A =,因为A B A ⋃=,所以B A ⊆当B =∅,则0a =;当{}2B =,则12a =; 当{}6B =,则16a =; 综上可得110,,26a ⎧⎫∈⎨⎬⎩⎭73.(1){|45}A B x x ⋃=-≤≤(2)答案见解析【分析】(1)分别求出集合A 和集合B ,求并集即可;(2)选△,根据集合A 和集合B 的位置在数轴上确定端点的关系,列出不等式组即可求解, 选△,先求出R A ,再根据条件在数轴确定端点位置关系列出不等式组即可求解, 选△,得到A B ⊆,根据数轴端点位置关系列出不等式组即可求解.。
高考数学专题《集合》习题含答案解析
分析:由题意首先求得 CR B ,然后进行交集运算即可求得最终结果.
详解:由题意可得: CR B x | x 1 ,
结合交集的定义可得: A CR B 0 x 1 .
本题选择 B 选项.
8.(2017·全国高考真题(理))已知集合 A={x|x<1},B={x| 3x 1 },则(
故选:C
8.(2019·北京临川学校高二期末(文))已知集合 = { ―1,3}, = {2,2},若 ∪ = { ―1,3,2,9},则实数
)
的值为(
A. ± 1
B. ± 3
C. ― 1
D.3
【答案】B
【解析】
∵ 集合 = { ―1,3}, = {2,2},且 ∪ = { ―1,3,2,9}, ∴ 2 = 9,因此, =± 3,
对③: {0,1, 2} 是集合, {1, 2, 0} 也是集合,由于一个集合的本身也是该集合的子集,故③正确.
对④: 0 是元素, 是不含任何元素的空集,所以 0 ,故④错误.
对⑤: 0 是元素, 是不含任何元素的空集,所以两者不能进行取交集运算,故⑤错误.
故选:C.
3.(2021·浙江高一期末)已知集合 M 0,1, 2,3, 4 , N 2, 4, 6 , P M N ,则满足条件的 P 的非
则集合 A B 的所有元素之和为(
A.16
B.18
)
C.14
D.8
【答案】A
【解析】
由题设,列举法写出集合 A B ,根据所得集合,加总所有元素即可.
【详解】
由题设知: A B {1, 2,3, 4, 6} ,
∴所有元素之和 1 2 3 4 6 16 .
2022年数学高考集合专题知识点专项练习含答案
专题1 集合(原卷)一、单选题(本大题共12小题,共60.0分)B)=1.若A、B是全集I的真子集,则下列四个命题:①A∩B=A; ②A∪B=A; ③A∩(∁I ⌀; ④A∩B=I⑤x∈B是x∈A的必要不充分条件.其中与命题A⊆B等价的有( )A. 1个B. 2个C. 3个D. 4个2.已知非空集合A,B满足以下两个条件:(1)A∪B={1,2,3,4}3,A∩B=⌀;(2)A的元素个数不是A中的元素,B的元素个数不是B中的元素.则有序集合对(A,B)的个数为()A. 1B. 2C. 3D. 43.已知集合M,P满足M∪P=M,则下列关系中:①M=P;②M⫌P;③M∩P=P;④P⊆M.一定正确的是()A. ①②B. ③④C. ③D. ④4.有下列命题:①mx2+2x−1=0是一元二次方程;②二次函数y=ax2+2x−1与x轴至少有一个交点;③互相包含的两个集合相等;④空集是任何集合的真子集.真命题有()A. 1个B. 2个C. 3个D. 4个5.对于任意两个数x,y(x,y∈N∗),定义某种运算“◎”如下:①当或,时,x◎y=x+y;②当,时,x◎y=xy则集合A= {(x,y)|x◎y=10}的子集个数是()A. 214个B. 213个C. 211个D. 27个6.已知集合A={x|−2<x<3},B={x|m<x<m+9}.若A∩B≠⌀,则实数m的取值范围为()A. {m|m<3}B. {m|m⩾−11}C. {m|−11⩽m⩽3}D. {m|−11<m<3}7.已知集合A={x|−2⩽x⩽5},B={x|m+1⩽x⩽2m−1}.若B⊆A,则实数m的取值范围为()A. m⩾3B. 2⩽m⩽3C. m⩾2D. m⩽38.设集合S,T中至少有两个元素,且S,T满足:①对任意x,y∈S,若x≠y,则x+y∈T②对任意x,y∈T,若x≠y,则x−y∈S,下列说法正确的是()A. 若S有2个元素,则S∪T有4个元素B. 若S有2个元素,则S∪T有3个元素C. 存在3个元素的集合S,满足S∪T有5个元素D. 存在3个元素的集合S,满足S∪T有4个元素9.已知集合A={x∈R|12x+1≤1},B={x∈R|(x−2a)(x−a2−1)<0},若(∁R A)∩B=⌀,则实数a 的取值范围是()A. [1,+∞)B. [0,+∞)C. (0,+∞)D. (1,+∞)10.设集合M={x|x2−x>0}.N={x|1x<1},则()A. M⊊NB. N⊊MC. M=ND. M∪N=R11.若集合A={x|x−3x+1≥0},B={x|ax+1≤0},若B⊆A,则实数a的取值范围是()A. [−13,1) B. (−13,1]C. (−∞,−1)⋃[0,+∞)D. [−13,0)⋃(0,1)12.设集合S={−20,21,5,−11,−15,30,a},我们用f(S)表示集合S的所有元素之和,用g(S)表示集合S的所有元素之积,例如:若A={2},则f(A)=g(A)=2;若B={2,3},则f(B)=2+3,g(B)= 2×3.那么下列说法正确的是()A. 若a=0,对S的所有非空子集A i,f(A i)的和为320B. 若a=0,对S的所有非空子集B i,f(B i)的和为−640C. 若a=−1,对S的所有非空子集C i,g(C i)的和为−1D. 若a=−1,对S的所有非空子集D i,g(D i)的和为0二、单空题(本大题共4小题,共20.0分)13.已知集合A={x|x2−6x+8=0},B={x|mx−4=0},且B∩A=B,则实数m所取到的值构成的集合C=,则A∪C=.14.设集合A={0,3},B={m+2,m2+2},若A∩B={3},则集合A∪B的子集的个数为.15.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合是“好集合”,给出下列4个集合:①M={(x,y)|y=1x};②M={(x,y)|y=e x−2};③M={(x,y)|y=cosx};④M={(x,y)|y=lnx}.其中为“好集合”的序号是______.16.已知集合{a,b,c}={0,1,2},有下列三个关系①a≠2;②b=2;③c≠0,若三个关系中有且只有一个正确的,则a+2b+3c=____________.专题1 集合一、单选题(本大题共12小题,共60.0分)17. 若A 、B 是全集I 的真子集,则下列四个命题:①A ∩B =A ; ②A ∪B =A; ③A ∩(∁I B)=⌀; ④A ∩B =I⑤x ∈B 是x ∈A 的必要不充分条件.其中与命题A ⊆B 等价的有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】解:由A ⊆B 得Venn 图,①A ∩B =A ⇔A ⊆B;②A ∪B =A ⇔B ⊆A;③A ∩(∁I B )=⌀⇔A ⊆B;④{A ∩B =IA ⊆IB ⊆I ⇔A =B =I ⇒A ⊆B,但A ⊆B 不一定能得出A =B =I ,故A ∩B =I 与A ⊆B 不等价;⑤x ∈B 是x ∈A 的必要不充分条件,则A ⊆B ,但A ⊆B 不一定能得x ∈B 是x ∈A 的必要不充分条件,所以不等价.故和命题A ⊆B 等价的有①③,故选B .18. 已知非空集合A ,B 满足以下两个条件:(1)A ∪B ={1,2,3,4}3,A ∩B =⌀;(2)A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素.则有序集合对(A,B )的个数为() A. 1 B. 2 C. 3 D. 4【答案】B【解析】若集合A 中只有1个元素,则集合B 中有3个元素,则1∉A ,3∉B ,即3∈A ,1∈B ,此时有1对;同理,若集合B只有1个元素,则集合A中有3个元素,有1对;若集合A中有2个元素,则集合B中有2个元素,2∉A,2∉B,不满足条件.所以满足条件的有序集合对(A,B)的个数为1+1=2,故选B.19.已知集合M,P满足M∪P=M,则下列关系中:①M=P;②M⫌P;③M∩P=P;④P⊆M.一定正确的是()A. ①②B. ③④C. ③D. ④【答案】B已知集合M,P满足M∪P=M,则P⊆M,故④正确,①错误,②错误;由P⊆M可得M∩P=P,故③正确,故选B20.有下列命题:①mx2+2x−1=0是一元二次方程;②二次函数y=ax2+2x−1与x轴至少有一个交点;③互相包含的两个集合相等;④空集是任何集合的真子集.真命题有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】①当m=0时,方程是一元一次方程,错误;②方程ax2+2x−1=0(a≠0)的判别式Δ=4+ 4a,其值不一定大于或等于0,所以与x轴至少有一个交点不能确定,错误;③正确;④空集不是空集的真子集,错误.故选A.21.对于任意两个数x,y(x,y∈N∗),定义某种运算“◎”如下:①当或,时,x◎y=x+y;②当,时,x◎y=xy则集合A= {(x,y)|x◎y=10}的子集个数是()A. 214个B. 213个C. 211个D. 27个【答案】C【解析】按照题意,将集合A中元素逐一列举出来如下:A={(10,1),(2,5),(1,9),(9,1),(2,8),(8,2),(3,7),(7,3),(4,6),(6,4),(5,5)},故集合A中共有11个元素,所以集合A的子集个数为211.故选C.22.已知集合A={x|−2<x<3},B={x|m<x<m+9}.若A∩B≠⌀,则实数m的取值范围为()A. {m|m<3}B. {m|m⩾−11}C. {m|−11⩽m⩽3}D. {m|−11<m<3}【答案】D【解析】若A∩B=⌀,利用下图的数轴可得m+9⩽−2或m⩾3,∴m⩽−11或m⩾3.∴满足A∩B≠⌀的实数m的取值范围为{m|−11<m<3}.故选D.23.已知集合A={x|−2⩽x⩽5},B={x|m+1⩽x⩽2m−1}.若B⊆A,则实数m的取值范围为()A. m⩾3B. 2⩽m⩽3C. m⩾2D. m⩽3【答案】D【解析】A={x|−2⩽x⩽5},B={x|m+1⩽x⩽2m−1},而B⊆A,(1)当B=⌀时,满足B⊆A,此时m+1>2m−1,解得m<2;(2)当B≠⌀时,B⊆A,则计算得出2≤m≤3.综上,m≤3.故选D.24.设集合S,T中至少有两个元素,且S,T满足:①对任意x,y∈S,若x≠y,则x+y∈T②对任意x,y∈T,若x≠y,则x−y∈S,下列说法正确的是()A. 若S有2个元素,则S∪T有4个元素B. 若S有2个元素,则S∪T有3个元素C. 存在3个元素的集合S,满足S∪T有5个元素D. 存在3个元素的集合S,满足S∪T有4个元素【答案】B【解析】若S有2个元素,不妨设S={a,b},由 ②知集合S中的两个元素必为相反数,故可设S={a,−a};由 ①得0∈T,由于集合T中至少有两个元素,故至少还有另外一个元素m∈T,当集合T有2个元素时,由 ②得:−m∈S,则m=±a,T={0,−a}或T={0,a},当集合T有多于2个元素时,不妨设T={0,m,n},由 ②得:m,n,−m,−n,m−n,n−m∈S,由于m,n≠0,所以m≠m−n,n≠n−m,又m≠n,故集合S中至少有3个元素,矛盾,综上,S∪T={0,a,−a},故B正确;若S有3个元素,不妨设S={a,b,c},其中a<b<c,则{a+b,b+c,c+a}⊆T,所以c−a,c−b,b−a,a−c,b−c,a−b∈S,集合S中至少两个不同正数,两个不同负数,即集合S中至少有4个元素,矛盾,排除C,D.故选B.25.已知集合A={x∈R|12x+1≤1},B={x∈R|(x−2a)(x−a2−1)<0},若(∁R A)∩B=⌀,则实数a 的取值范围是()A. [1,+∞)B. [0,+∞)C. (0,+∞)D. (1,+∞)【答案】B【解析】∵集合A={x∈R|12x+1≤1}={x|−2x2x+1≤0}={x|x<−12或x≥0},B={x∈R|(x−2a)(x−a2−1)<0},∵2a≤a2+1,∴当2a=a2+1时,a=1,B=⌀,满足题意;当2a<a2+1时,a≠1,B={x|2a<x<a2+1},∁R A={x|−12≤x<0},∴a2+1≤−12或2a≥0,a≠1,解得a≥0,且a≠1,综上,a≥0,即实数a的取值范围是[0,+∞).故选:B.26.设集合M={x|x2−x>0}.N={x|1x<1},则()A. M⊊NB. N⊊MC. M=ND. M∪N=R 【答案】C【解析】解:解x2−x>0得,x<0或x>1;解1x<1得,x>1,或x<0;∴M=N.故选:C.27.若集合A={x|x−3x+1≥0},B={x|ax+1≤0},若B⊆A,则实数a的取值范围是()A. [−13,1) B. (−13,1]C. (−∞,−1)⋃[0,+∞)D. [−13,0)⋃(0,1)【答案】A【解析】因为x−3x+1≥0,所以{x+1≠0(x−3)(x+1)≥0,所以x<−1或x≥3,所以A={x|x<−1或x≥3},当a=0时,1≤0不成立,所以B=⌀,所以B⊆A满足,当a>0时,因为ax+1≤0,所以x≤−1a,又因为B⊆A,所以−1a<−1,所以0<a<1,当a<0时,因为ax+1≤0,所以x≥−1a,又因为B⊆A,所以−1a ≥3,所以−13≤a<0综上可知:a∈[−13,1).故选:A28.设集合S={−20,21,5,−11,−15,30,a},我们用f(S)表示集合S的所有元素之和,用g(S)表示集合S的所有元素之积,例如:若A={2},则f(A)=g(A)=2;若B={2,3},则f(B)=2+3,g(B)= 2×3.那么下列说法正确的是()A. 若a=0,对S的所有非空子集A i,f(A i)的和为320B. 若a=0,对S的所有非空子集B i,f(B i)的和为−640C. 若a=−1,对S的所有非空子集C i,g(C i)的和为−1D. 若a=−1,对S的所有非空子集D i,g(D i)的和为0【答案】C【解析】由于S={−20,21,5,−11,−15,30,a}中的所有元素的和为a,则在S的所有非空子集中,对任意x∈S,含有x的非空子集的个数为26,从而∑fA⊂S (A)=26⋅∑xA⊂S=a⋅26.从而当a=0时,∑fA⊂S(A)=0,故选项A,B均错误.当a=−1时,S={−20,21,5,−11,−15,30,−1},对于S中的任意子集A,若−1∈A,则将元素−1从集合A中删除得集合B=A={−1},则g(A)=−g(B);若−1∉A,则将元素−1添加到集合A中得集合B=A∪{−1},则g(A)=−g(B).由此∑gA⊂S(A)=g({−1))=−1,因此C选项正确.故选C.二、单空题(本大题共4小题,共20.0分)29.已知集合A={x|x2−6x+8=0},B={x|mx−4=0},且B∩A=B,则实数m所取到的值构成的集合C=,则A∪C=.【答案】{0,1,2};{0,1,2,4}.【解析】A={x|x2−6x+8=0}={2,4},∵B∩A=B,∴B⊆A,当m=0时,B=⌀,满足条件,B⊆A,当m≠0时,B={4m},若满足条件,B⊆A,则4m =2或4m=4,即m=2或m=1,综上实数m的值构成的集合C={0,1,2};∵A={2,4},C={0,1,2},则A∪C={0,1,2,4}.故答案为:{0,1,2};{0,1,2,4}.30.设集合A={0,3},B={m+2,m2+2},若A∩B={3},则集合A∪B的子集的个数为.【答案】8【解析】因为集合A={0,3},B={m+2,m2+2},且A∩B={3},所以3∈B,所以m+2=3或m2+2=3,解得m=1或m=−1,当m=1时,此时B={3,3},不满足集合中元素的互异性,故舍之,当m=−1时,B={1,3},满足题意,此时A∪B={0,1,3},所以集合A∪B的子集的个数为23=8.故答案为8.31.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合是“好集合”,给出下列4个集合:};②M={(x,y)|y=e x−2};③M={(x,y)|y=cosx};④M={(x,y)|y=lnx}.①M={(x,y)|y=1x其中为“好集合”的序号是______.【答案】②③=0无实数解,因此①不是“好集合”;【解析】对于①,注意到x1x2+1x1x2对于②,如下左图,注意到过原点任意作一条直线与曲线y=e x−2相交,过原点与该直线垂直的直线必与曲线y=e x−2相交,因此②是“好集合”;对于③,如下中图,注意到过原点任意作一条直线与曲线y=cosx相交,过原点与该直线垂直的直线必与曲线y=cosx相交,因此③是“好集合”;对于④,如下右图,注意到对于点(1,0),不存在(x2,y2)∈M,使得1×x2+0×lnx2=0,因为x2=0与真数的限制条件x2>0矛盾,因此④不是“好集合”.故答案为:②③32.已知集合{a,b,c}={0,1,2},有下列三个关系①a≠2;②b=2;③c≠0,若三个关系中有且只有一个正确的,则a+2b+3c=____________.【答案】5【解析】由已知,若a≠2正确,则a=0或a=1,即a=0,b=1,c=2或a=0,b=2,c=1或a=1,b=0,c=2或a=1,b=2,c=0,均与“三个关系有且只有一个正确”矛盾;若b=2正确,则a≠2正确,不符合题意;所以,只有c≠0正确,a=2,b=0,c=1,故a+2b+3c=5.故答案为:5.。
高中数学集合测试题(含答案和解析)
高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}{}22,1,0,2,3,4,|340A B x x x =--=--<,则A B =( )A .{}1,0,2,3,4-B .{}0,2,3,4C .{}0,2,3D .{}2,32.已知集合{}0,1,2,3,4A =,集合{}R 326xB x =∈<,则A B =( )A .{}0,1,2B .{}0,1,2,3C .{}0,1,2,3,4D .{}1,2,33.设集合{}1A x x =>,{}2B x x =≤,则A B =( ) A .∅B .{}12x x <≤C .{}12x x x ≤>或D .R4.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,25.设集合{}0,1S =,{}0,3T =,则S T ⋃=( ) A .{}0 B .{}1,3 C .{}0,1,3D .{}0,1,0,36.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤7.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}8.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞9.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤10.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( ) A .(]0,1B .[)1,2C .()0,1D .()0,211.已知集合50{|}A x x =<<-,{}41B x x =-≤≤,则A B ⋃=( ) A .AB .BC .(5,1]-D .[4,0)-12.已知集合{}13A x x =≤≤,集合{}24B x x =≤≤,则A B =( ) A .{}23x x ≤≤B .{}34x x <≤C .{}12x x <≤D .{|1x x <或}2x ≥13.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,314.设集合{}123A =,,,{}2|0B x R x x =∈-=,则A B ⋃=( ) A .{}1B .{}01,C .{}123,,D .{}0123,,,15.已知集合1|2,[,4]2xA xB a a ⎧⎫=>=+⎨⎬⎩⎭,若(]1,2A B =-,则=a ( )A .2B .1-C .2-D .5-二、填空题16.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________.17.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________. 18.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______. 19.已知集合{}2,1,2A =-,{}1,B a a =+,且B A ⊆,则实数a 的值是___________.20.设全集{}0,1,2U =,集合{}0,1A =,在UA______21.方程组13x y x y -=⎧⎨+=⎩的解集..为_____. 22.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)23.已知集合(){}2,2A x y y xx ==-,()(){},21B x y y x ==+,则AB =___________.24.(1)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为______.(2)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为______.25.当x A ∈时,若有1x A -∉且1x A +∉,则称x 是集合A 的一个“孤元”,由A 的所有孤元组成的集合称为A 的“孤星集”,若集合{}1,2,3M =的孤星集是M ',集合{}1,3,4P =的孤星集是P ',则M P ''⋂=______.三、解答题26.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1. (1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.27.已知全集U R =,集合{|A x =213x -<,123}3x x -≤-,{|13}B x x =-≤≤.(1)求A ,A B ⋃,UB(2)如图①,阴影部分表示集合M ,求M . (3)如图②,阴影部分表示集合N ,求N .28.已知函数()()4log 526f x x x =--()g x x α=(α为常数),且()g x 的图象经过点(8,22P .(1)求()f x 的定义域和()g x 的解析式;(2)记()f x 的定义域为集合A ,()g x 的值域为集合B ,求()A B ⋂R .29.集合{}{}3621A x x B x m x m =<≤=≤≤+,. (1)若2m =,求,A B A B ;(2)若x B ∈是x A ∈的必要条件,求实数m 的取值范围.30.设集合{}4U x x =≤,{}12A x x =-≤≤,{}13B x x =≤≤.求:(1)A B ; (2)()U A B ; (3)()()U U A B ⋂.【参考答案】一、单选题 1.C 【解析】 【分析】先求出集合B ,再求两集合的交集即可 【详解】由2340x x --<,得(1)(4)0x x +-<,解得14x -<<, 所以{}14B x x =-<<, 因为{}2,1,0,2,3,4A =--, 所以A B ={}0,2,3, 故选:C 2.A 【解析】 【分析】根据指数函数的单调性,结合集合交集的定义进行求解即可. 【详解】由333262log 26log 273xx <⇒<<<=,因此A B ={}0,1,2, 故选:A 3.B 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1A x x =>,{}2B x x =≤,所以{}12A B x x ⋂=<≤; 故选:B 4.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B 5.C 【解析】 【分析】 由并集的概念运算 【详解】 S T ⋃={}0,1,3故选:C 6.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1RB x x =≤,所以{}4R A B x x ⋃=≤;故选:D 7.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=.8.D 【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D9.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 10.A 【解析】 【分析】根据集合的交集概念即可计算. 【详解】∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1. 故选:A ﹒ 11.C 【解析】 【分析】根据集合并集的概念及运算,正确运算,即可求解. 【详解】由题意,集合50{|}A x x =<<-,{}41B x x =-≤≤,根据集合并集的概念及运算,可得{|51}(5,1]A B x x =-<≤=-. 故选:C. 12.A 【解析】 【分析】由交集运算直接求出两集合的交集即可.由集合{}13A x x =≤≤,集合{}24B x x =≤≤ 则{}|23A B x x =≤≤ 故选:A 13.A 【解析】 【分析】依据交集定义去求A B 即可. 【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=, 故选:A . 14.D 【解析】 【分析】先求出集合B ,再由并集运算得出答案. 【详解】由{}2|0B x R x x =∈-=可得{}0,1B =则{}0,1,2,3A B ⋃= 故选:D 15.C 【解析】 【分析】求出集合A 的解集,由(]1,2A B =-,列出满足题意的关系式求解即可得答案. 【详解】解:因为{}{}11|2|22|1(1,)2x x A x x x x -⎧⎫=>=>=>-=-+∞⎨⎬⎩⎭,[,4]B a a =+,又(1,2]A B ⋂=-,所以421a a +=⎧⎨≤-⎩,即2a =-,故选:C.二、填空题16.710##0.7 【解析】 【分析】利用韦恩图,根据题中的信息得出样本中使用共享单车和移动支付的学生人数,将人数除以100可得出所求结果. 【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=. 故答案为:710. 17.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.18.22±【解析】 【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案. 【详解】解:因为A ={2|x x -ax +2=0}的子集有两个, 所以集合A 中仅有一个元素, 所以方程220x ax -+=只有一个解, 所以280a ∆=-=,解得22a =± 故答案为:22± 19.1 【解析】 【分析】由子集定义分类讨论即可. 【详解】因为B A ⊆,所以a A ∈1a A ∈, 当2a =-1a 无意义,不满足题意;当1a =12=,满足题意; 当2a =11=,不满足题意. 综上,实数a 的值1. 故答案为:120.{2}【解析】 【分析】利用集合的补运算求UA 即可.【详解】由{}0,1,2U =,{}0,1A =,则{2}UA =.故答案为:{2}.21.{(2,1)}【解析】 【分析】利用加减消元法求得方程组的解集. 【详解】依题意13x y x y -=⎧⎨+=⎩,两式相加得24,21x x y ==⇒=, 所以方程组的解集为{(2,1)}. 故答案为:{(2,1)}22.()A BAB ⋃【解析】 【分析】由集合的交并补运算求解即可. 【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A BAB ⋃故答案为:()A BAB ⋃23.()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭【解析】 【分析】解方程组直接求解即可 【详解】由()2221y x x y x ⎧=-⎪⎨=+⎪⎩得121x y ⎧=-⎪⎨⎪=⎩或26x y =⎧⎨=⎩,∴()1,1,2,62A B ⎧⎫⎛⎫⋂=-⎨⎬ ⎪⎝⎭⎩⎭.故答案为:()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭24. 2a =-或23a =或0 30k -<≤ 【解析】 【分析】(1)分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=,解出即可;(2)分情况讨论,当0k =时,满足题意;当0k ≠时,只需要满足23Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解不等式组即可. 【详解】已知集合{}{}22301,3A x x x =--==-,{}20B x ax =-=当0,a B ==∅,满足B A ⊆; 当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a= 解得2a =-或23a =; 不等式23208kx kx +-<对一切实数x 都成立,当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解得30k -<< 综上结果为:30k -<≤. 故答案为:2a =-或23a =或0;30k -<≤ 25.∅【解析】 【分析】根据集合的新定义求解出集合M '和P ',再求解交集可得出答案. 【详解】根据“孤星集”的定义,1,112,2A A ∈+=∈ 所以1不是集合M '的元素同理2,3也都不是集合M '的元素M ∴'=∅,同理可得 {}1P '=所以M P '⋂'=∅.故答案为:∅.三、解答题26.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4};(2){a |1<a ≤2},【解析】【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得;(2)分a >1,0<a <1讨论,利用条件列出不等式即得.(1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2},∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4};(2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2, 因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B ,综上,a 的取值范围为{a |1<a ≤2}.27.(1)3{|2}2A x x =≤<,{|13}AB x x ⋃=-≤≤,U B {|1x x =<-或3}x >; (2)3{|12M x x =-≤<或23}x ≤≤; (3){|1M x x =<-或3}x >.【解析】【分析】(1)求解不等式组解得集合A ,再根据集合的并运算和补运算即可求得结果; (2)根据阴影部分可知M =()B A B ⋂,根据已知集合求解即可; (3)根据阴影部分可知M =()U A B ,根据已知集合求解即可. (1){|A x =213x -<,1323}{|2}32x x x x -≤-=≤<, {|13}A B x x ⋃=-≤≤,U B {|1x x =<-或3}x >.(2)因为3{|2}2A B x x ⋂=≤< 根据题意可得M =()B A B ⋂3{|12x x =-≤<或23}x ≤≤. (3) 因为{|13}A B x x ⋃=-≤≤,根据题意可得M =()U A B {|1x x =<-或3}x >. 28.(1)()3,5;()12g x x =;(2)][)0,35,∞⎡⋃+⎣.【解析】【分析】(1)根据f (x )解析式即可求其定义域,根据()g x x α=过P 求出α即可求出g (x )解析式; (2)根据幂函数的性质求g (x )值域即B ,根据集合的补集和交集的运算方法求解即可.(1)5052603x x x x ⎧-><⎧⇒⎨⎨->>⎩⎩, ∴f (x )定义域为()3,5;∵()g x x α=过(P ,则()3132218222g x x ααα==⇒=⇒=; (2)()3,5A =,[)0,B ∞=+,][(),35,A ∞∞=-⋃+R ,()][)0,35,A B ∞⎡⋂=⋃+⎣R .29.(1){}35A B x x ⋂=<≤,{|26}x x AB ≤≤=; (2)5,32⎡⎤⎢⎥⎣⎦【解析】【分析】(1)将m 的值代入集合B ,然后根据交集与并集的定义即可求解;(2)由题意,可得A B ⊆,根据集合的包含关系列不等式组求解即可得答案.(1)解:当2m =时,{|25}B x x =≤≤,又{}36A x x =<≤, 所以{}35A B x x ⋂=<≤,{|26}x x AB ≤≤=;(2)解:因为x B ∈是x A ∈的必要条件,所以A B ⊆,即(3,6][,21]m m ⊆+,所以有3216m m ≤⎧⎨+≥⎩,解得532≤≤m , 所以实数m 的取值范围为5,32⎡⎤⎢⎥⎣⎦. 30.(1){|12}A B x x =≤≤;(2)(){|1U B x A x ⋃=<-或14}x ≤≤;(3)()(){|1U U x B x A ⋂=<-或34}x <≤.【解析】【分析】(1)由集合的交集运算可求得答案; (2)先算出U A ,再求()U A B ⋃; (3)先求U B ,再求()()U U A B ⋂. (1)解:∵{|12}A x x =-≤≤,{|13}B x x =≤≤, ∴{|12}A B x x =≤≤;(2)解:{|4}U x x =≤,{}12A x x =-≤≤,所以{|1U A x x =<-或24}x <≤. 又∵{|13}B x x =≤≤,∴(){|1U B x A x ⋃=<-或14}x ≤≤.(3)∵{|4}U x x =≤,{|13}B x x =≤≤,∴{|1U B x x =<或34}x <≤, ∴()(){|1U U x B x A ⋂=<-或34}x <≤.。
高中数学集合测试题(含答案和解析)
集合测试题请认真审题,仔细作答,发挥出自己的真实水平!一、单项选择题 :1.设集合,则( ) A .{75}x x -<<-∣ B .{35}xx <<∣ C .{53}xx -<<∣ D .{|75}x x -<< 【答案】C【解析】考点:其他不等式的解法;交集及其运算.分析:由绝对值的意义解出集合S ,再解出集合T ,求交集即可.解答:由{|55}S x x =-<<,{|73}T x x =-<<故{|53}ST x x =-<<, 故选C2.已知集合,则集合等于( )A .{-1,1}B .{-1,0,1}C .{0,1}D .{-1,0}【答案】 A3.若集合,且,则实数m 的可取值组成的集合是( )A .B .C .D . {}()(){}5,730S x x T x x x =<=+-<S T ⋂={}}{Z n n x x N x x M ∈+==<-=,12,042N M ⋂{}{}260,10P x x x T x mx =+-==+=T P ⊆11,32⎧⎫-⎨⎬⎩⎭13⎧⎫⎨⎬⎩⎭11,,032⎧⎫-⎨⎬⎩⎭12⎧⎫-⎨⎬⎩⎭C4.若{1,2}A {1,2,3,4,5}则满足条件的集合A 的个数是( )A .6B .7C .8D .9【答案】C5.设P={x|x ≤8},,则下列关系式中正确的是( ).A .a PB .a PC .{a}PD .{a}P【答案】D6.已知集合{}(){}1,2,3,4,5,,,,A B x y x A y A x y A ==∈∈-∈,则B 中所含元素的个数为( )A .3B .6C . 8D .10 【答案】 D【解析】考点:元素与集合关系的判断.专题:计算题.分析:由题意,根据集合B 中的元素属性对x ,y 进行赋值得出B 中所有元素,即可得出B 中所含有的元素个数,得出正确选项解答:解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,⊆⊆⊆∉∈⊂综上知,B中的元素个数为10个故选D点评:本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数7.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.A B B.B A C.A=B D.A∩B=【答案】B【解析】考点:集合的包含关系判断及应用.专题:计算题.分析:先求出集合A,然后根据集合之间的关系可判断解答:解:由题意可得,A={x|-1<x<2} ∵B={x|-1<x<1}在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=3/2∴B A故选B点评:本题主要考查了集合之间关系的判断,属于基础试题8.不等式﹣x2﹣5x+6≤0的解集为()【答案】D【解析】考点:一元二次不等式的解法。
高考数学集合专题卷(附答案)
高考数学集合专题卷(附答案) 高考数学集合专题卷(附答案)一、单选题(共10题;共20分)1.已知集合A={x|x=2k+1,k∈N},B={x|x=3k,k∈N},则集合的子集个数为()A。
3.B。
4.C。
7.D。
8改写:集合A由所有奇数组成,集合B由所有3的倍数组成,则集合的子集个数为()答案:D2.已知集合A={x|x=2k,k∈N},B={x|x=3k,k∈N},则B中元素个数为()A。
2.B。
3.C。
4.D。
7改写:集合A由所有偶数组成,集合B由所有3的倍数组成,则B中元素个数为()答案:B3.已知集合A={x|x=2k,k∈N},B={x|x=3k,k∈N},C={x|x=5k,k∈N},则A∩B∩C的元素的个数为()改写:集合A由所有偶数组成,集合B由所有3的倍数组成,集合C由所有5的倍数组成,则A、B、C的交集中元素的个数为()答案:04.已知集合A={x|x=2k,k∈N},B={x|x=3k,k∈N},C={x|x=5k,k∈N},求A∪B∪C的元素的个数。
A。
4.B。
5.C。
6.D。
7改写:集合A由所有偶数组成,集合B由所有3的倍数组成,集合C由所有5的倍数组成,则A、B、C的并集中元素的个数为()答案:75.已知集合A={x|x1},C={x|x=2},求A-B-C的元素的个数。
A。
0.B。
1.C。
2.D。
3改写:集合A由所有小于3的数组成,集合B由所有大于1的数组成,集合C只包含2,则A-B-C中元素的个数为()答案:16.已知集合A={x|x2},C={x|x=1或x=3},求A∩B∩C。
A。
∅。
B。
{1}。
C。
{3}。
D。
{1,3}改写:集合A由所有小于1的数组成,集合B由所有大于2的数组成,集合C只包含1和3,则A、B、C的交集为()答案:∅7.已知集合A={x|x4},C={x|x=2或x=4},求A∪B∪C。
A。
(-∞,2)∪(4,+∞)。
B。
(-∞,2)∪(2,4)∪(4,+∞)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《集合》专项练习参考答案1.(2016全国Ⅰ卷,文1,5分)设集合,,则A ∩B =( ) (A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7}【解析】集合A 与集合B 的公共元素有3,5,故}5,3{=B A ,故选B .2.(2016全国Ⅱ卷,文1,5分)已知集合,则A ∩B =( ) (A ) (B ) (C ) (D ) 【解析】由29x <得33x -<<,所以{|33}B x x =-<<,因为{1,2,3}A =,所以{1,2}A B =,故选D .3.(2016全国Ⅲ卷,文1,5分)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =( )(A ){48}, (B ){026},, (C ){02610},,, (D ){0246810},,,,, 【解析】由补集的概念,得{0,2,6,10}AB =,故选C .4.(2016全国Ⅰ卷,理1,5分)设集合,, 则A ∩B =( ) (A ) (B ) (C ) (D )【解析】对于集合A :解方程x 2-4x +3=0得,x 1=1,x 2=3,所以A ={x |1<x <3}(大于取两边,小于取中间).对于集合B :2x -3>0,解得x >23.3{|3}2A B x x ∴=<<.选D .5.2016全国Ⅱ卷,理1,5分)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, 【解析】要使复数z 对应的点在第四象限,应满足3010m m +>⎧⎨-<⎩,解得31m -<<,故选A .6.(2016全国Ⅲ卷,理1,5分)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=>,则S ∩T =( )(A) [2,3] (B)(-∞ ,2] [3,+∞)(C) [3,+∞) (D)(0,2] [3,+∞)7.(2016北京,文1,5分)已知集合{|24},{|3>5}A x x B x x x =<<=<或,则A B =( ) (A ){|2<<5}x x (B ){|<45}x x x >或 (C ){|2<<3}x x (D ){|<25}x x x >或【解析】画数轴得,,所以,故选C .8.(2016北京,理1,5分)已知集合,,则( ) (A )(B )(C )(D )【解析一】对于集合A :(解绝对值不等的常用方法是两边同时平方)|x |<2,两边同时平方{1,3,5,7}A ={|25}B x x =≤≤{123}A =,,,2{|9}B x x =<{210123}--,,,,,{21012}--,,,,{123},,{12},2{|430}A x x x =-+<{|230}B x x =->3(3,)2--3(3,)2-3(1,)23(,3)2(2,3)AB ={|||2}A x x =<{1,0,1,2,3}B =-A B ={0,1}{0,1,2}{1,0,1}-{1,0,1,2}-得x 2<4,解方程x 2=4得,x 1=-2,x 2=2,所以A ={x |-2<x <2}(大于取两边,小于取中间).所以A ∩B ={-1,0,1}.故选C .【解析二】对于集合A :(绝对值不等式解法二:|x |<2⇔-2<x <2).A ={x |-2<x <2}.所以A ∩B ={-1,0,1}.故选C . 9.(2016上海,文理1,5分)设x ∈R ,则不等式31x -<的解集为_______. 【答案】(24),【解析】试题分析:421311|3|<<⇔<-<-⇔<-x x x ,故不等式1|3|<-x 的解集为)4,2(.【解析一】对不等式31x -<:(解绝对值不等的常用方法是两边同时平方)|x -3|<1,两边同时平方得(x -3)2<1,解方程(x -3)2=1得,x 1=2,x 2=4,所以A ={x |2<x <4}. 【解析二】对于集合A :(绝对值不等式解法二:|x -3|<1⇔-1<x -3<1,解得2<x <4).A ={x |2<x <4}. 10.(2016山东,文1,5分)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B =(A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6} 【答案】A11.(2016山东,理2,5分)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A ∪B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞ 【答案】C【解析】对于集合A :∵y =2x >0,∴A ={y |y >0}.对于集合B :∵x 2-1=0,解得x =±1,∴B ={x |-1<x <1}(大于取两边,小于取中间).∴A ∪B =(1,)-+∞12.(2016四川,文2,5分)设集合A ={x |1≤x ≤5},Z 为整数集,则集合A∩Z 中元素的个数是(A)6 (B)5 (C)4 (D)3 【答案】B【解析】{1,2,3,4,5}A =Z ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故A Z 中元素的个数为5,选B .13.(2016四川,理1,5分)设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3(B )4(C )5(D )6 【答案】C【解析】由题意,知{2,1,0,1,2}A =--Z ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故AZ 中元素的个数为5,选C .14.(2016天津,文1,5分)已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则AB =(A )}3,1{ (B )}2,1{ (C )}3,2{ (D )}3,2,1{【答案】A【解析】∵},12|{A x x y y B ∈-==,∴当x =1时,y =2×1-1=1;当x =2时,y =2×2-1=3;当x =3时,y =2×3-1=5.∴{1,3,5},{1,3}B A B ==.选A .15.(2016天津,理1,5分)已知集合}{4,3,2,1=A ,}{A x x y y B ∈-==,23,则=B A (A )}{1 (B )}{4 (C )}{3,1 (D )}{4,1 【答案】D【解析】∵}{A x x y y B ∈-==,23,∴当x =1时,y =3×1-2=1;当x =2时,y =3×2-2=4;当x =3时,y =3×3-2=7;当x =4时,y =4×3-2=10.∴{14710}{14}B =A B =,,,,,.选D .16.(2016浙江,文1,5分)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()=( ) A .{1} B .{3,5} C .{1,2,4,6} D .{1,2,3,4,5} 【答案】C17.(2016浙江,理1,5分)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(C R Q )=( )A .[2,3]B .(-2,3]C .[1,2)D .(−∞,−2]∪[1,+∞)【答案】B【解析】对于集合Q :∵x 2=4,解得x =±2,∴B ={x |x ≤-2或x ≥2}(大于取两边,小于取中间). 18.(2016江苏,文理1,5分)已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B _______. 【答案】{}1,2- 【解析】{}{}{}1,2,3,6231,2AB x x =--<<=-.故答案应填:{}1,2-19.(2015全国Ⅰ卷,文1,5分)已知集合A ={x |x =3n +2,n ∈N},B ={6,8,10,12,14},则集合A∩B 中元素的个数为( ) A .5 B .4 C .3 D .2 【答案】D【解析】由已知得A ={2,5,8,11,14,17,…},又B ={6,8,10,12,14},所以A∩B ={8,14}. 20.(2015全国Ⅱ卷,文1,5分)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∪B =( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3) 【答案】A【解析】因为A =(-1,2),B =(0,3),所以A ∪B =(-1,3),故选A . 21.(2014全国Ⅰ卷,文1,5分)已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 【答案】B【解析】M∩N ={x |-1<x <3}∩{x |-2<x <1}={x |-1<x <1}. 22.(2014全国Ⅱ卷,文1,5分)已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A∩B =( )A .∅B .{2}C .{0}D .{-2}【答案】B【解析】∵集合A ={-2,0,2},B ={x |x 2-x -2=0}={2,-1},∴A∩B ={2},故选B . 23.(2013全国Ⅰ卷,文1,5分)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A},则A∩B=( )A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【解析】∵B ={x |x =n 2,n ∈A}={1,4,9,16},∴A∩B ={1,4},故选A . 24.(2013全国Ⅱ卷,文1,5分)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M∩N =( )A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1} 【答案】C【解析】由题意得M∩N ={-2,-1,0}.选C . 25.(2012全国卷,文1,5分)已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A =B (D )A∩B =∅【答案】B【解析】A ={x |-1<x <2},B ={x |-1<x <1},则B ⊂≠A ,故选B . 26.(2011全国卷,文1,5分)已知集合M ={0,1,2,3,4},N ={1,3,5},P =M∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个 【答案】B【解析】由题意得P =M∩N ={1,3},∴P 的子集为⌀,{1},{3},{1,3},共4个. 27.(2010全国卷,文1,5分)已知集合,则 (A )(0,2)(B )[0,2](C )|0,2|(D )|0,1,2| 【解析】,,选D28.(2009全国卷,文2,5分)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集,则集合中的元素共有( )(A)3个 (B )4个 (C )5个 (D )6个【解析】,.故选A .29.(2008全国卷,文1,5分)已知集合M ={x |(x +2)(x -1)<0},N ={x |x +1<0},则M∩N =( )A.(-1,1)B.(-2,1)C.(-2,-1)D.(1,2) 【答案】C【解析】易求得{}{}|21,|1=-<<=<-M x x N x x ∴{}|21=-<<-MN x x30.(2007全国卷,文1,5分)设{|210}S x x =+>,{|350}T x x =-<,则S T ⋂=A .∅B .1{|}2x x <C .5{|}3x x >D .15{|}23x x -<<【答案】D .2,,4,|A x x x R B x x Z =≤∈=∈A B ={}|22,{0,1,2}A x x B =-≤≤={}0,1,2A B =U AB =()UA B {3,4,5,7,8,9}A B ={4,7,9}(){3,5,8}UA B A B =∴=。