两角和与差的正切

合集下载

两角和与差的正切公式。

两角和与差的正切公式。

两角和与差的正切公式。

两角和与差的正切公式如下:
1.两角和公式:
tan(A + B) = (tan A + tan B) / (1 - tan A * tan B)
2.两角差公式:
tan(A - B) = (tan A - tan B) / (1 + tan A * tan B)
这些公式可以用来计算两个角的和或差的正切值。

它们在三角函数的计算中很有用,尤其是在解决三角函数方程或证明三角函数恒等式时。

拓展:
这些公式可以通过三角恒等式的推导得到,可以帮助我们更好地理解三角函数之间的关系。

除了正切函数之外,正弦、余弦等三角函数也有类似的两角和与差的公式。

掌握这些公式可以帮助我们更好地理解三角函数的性质和用途。

两角和与差的正弦、余弦、正切(一)

两角和与差的正弦、余弦、正切(一)

一、知识概述(一)、两角和与差的余弦公式在直角坐标系内作出角α、β、-β,得到单位圆内的两条弦长相等,然后运用平面内两点间的距离公式,推导出两角和的余弦公式.cos(α+β)=cosαcosβ-sinαsinβ在上式中用-β代替β即得到差角的余弦公式.cos(α-β)=cosαcosβ+sinαsinβ(二)、两角和与差的正弦公式和诱导公式,可推出两角和的正弦公式:运用Cα+βsin(α+β)=sinαcosβ+cosαsinβ用-β代替β可得差角的正弦公式:sin(α-β)=sinαcosβ-cosαsinβ(三)、两角和与差的正切公式,Cα+β及商数关系可得到两角和的正切公式.运用Sα+β同理在上式中用-β代替β,可得.二、重难点知识归纳及讲解(一)、对于正、余弦、正切的和(差)角公式,不仅要会“正用”,而且还要会“逆用”、“变用”。

例1、cos82.5°cos52.5°+cos7.5°cos37.5°=________.分析:此题考查和(差)角的正、余弦公式的逆用,注意82.5°与7.5°,52.5°与37.5°是互余关系.解法一:解法二:例2、(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°) =________.分析:此题考查和角的正切公式的变形用法,注意到21°+24°=45°,22°+23°=45°.解:同理可得(1+tan22°) (1+tan23°)=2∴(1+tan21°) (1+tan22°) (1+tan23°) (1+tan24°)=4.(二)、和(差)角公式在求值、化简、证明中的应用.例3、已知,α,β均为锐角,求cosβ的值.分析:注意已知角与要求的角的关系β =(α+β)-α故cosβ=cos(α+β)cosα+sin(α+β)sinα.因此要求出sinα、cosα以及sin(α+β).解:∵tan α =4,α为锐角.又∵,α、β均为锐角.例4、化简.分析:注意观察角之间的联系。

两角和与差的正弦、余弦和正切公式

两角和与差的正弦、余弦和正切公式

第五节 两角和与差的正弦、余弦和正切公式1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin_αcos_β±cos_αsin_β; (2)cos(α±β)=cos_αcos_β∓sin_αsin_β; (3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)tan 2α=2tan α1-tan 2α.3.有关公式的变形和逆用 (1)公式T (α±β)的变形:①tan α+tan β=tan(α+β)(1-tan_αtan_β); ②tan α-tan β=tan(α-β)(1+tan_αtan_β). (2)公式C 2α的变形: ①sin 2α=12(1-cos 2α); ②cos 2α=12(1+cos 2α). (3)公式的逆用:①1±sin 2α=(sin α±cos α)2; ②sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 4.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a .1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tanαtan β),且对任意角α,β都成立.( )(4)公式a sin x +b cos x =a 2+b 2sin(x +φ)中φ的取值与a ,b 的值无关.( ) [答案] (1)√ (2)× (3)× (4)×2.(教材改编)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32 B.32 C .-12D.12D [sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.]3.若tan θ=-13,则cos 2θ=( ) A .-45 B .-15 C.15D.45D [∵cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ.又∵tan θ=-13,∴cos 2θ=1-191+19=45.]4.(2017·云南二次统一检测)函数 f (x )=3sin x +cos x 的最小值为________.-2 [函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6的最小值是-2.]5.若锐角α,β满足(1+3tan α)(1+3tan β)=4,则α+β=________.π3 [由(1+3tan α)(1+3tan β)=4, 可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又α+β∈(0,π),∴α+β=π3.](1)化简:sin 2α-2cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=________. 【导学号:51062114】 (2)化简:2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .(1)22cos α [原式=2sin αcos α-2cos 2α22(sin α-cos α)=22cos α.](2)原式=-2sin 2x cos 2x +122sin ⎝ ⎛⎭⎪⎫π4-x cos 2⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x=12(1-sin 22x )2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x =12cos 22x sin ⎝ ⎛⎭⎪⎫π2-2x =12cos 2x .[规律方法] 1.三角函数式的化简要遵循“三看”原则(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式.(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,最常见的是“切化弦”.(3)三看“结构特征”,分析结构特征,找到变形的方向.2.三角函数式化简的方法弦切互化,异名化同名,异角化同角,降幂或升幂.[变式训练1] (2017·浙江镇海中学测试卷一)已知tan ⎝ ⎛⎭⎪⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝ ⎛⎭⎪⎫α-π4=( ) A .-255 B .-3510 C .-31010D.255A [2sin 2α+sin 2αcos ⎝ ⎛⎭⎪⎫α-π4=2sin α(sin α+cos α)22(sin α+cos α)=22sin α,由tan ⎝ ⎛⎭⎪⎫α+π4=12,得tanα=tan ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π4-π4=tan ⎝ ⎛⎭⎪⎫α+π4-tan π41+tan ⎝ ⎛⎭⎪⎫α+π4tan π4=-13,即3sin α=-cos α, 又sin 2α+cos 2α=1,所以sin α=±1010, 而-π2<α<0,所以sin α=-1010, 故2sin 2α+sin 2αcos ⎝ ⎛⎭⎪⎫α-π4=-255.]☞角度1 给角求值(1)2cos 10°-sin 20°sin 70°=( )A.12 B.32 C. 3D. 2(2)sin 50°(1+3tan 10°)=________. (1)C(2)1[(1)原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3. (2)sin 50°(1+3tan 10°) =sin 50°⎝ ⎛⎭⎪⎫1+3·sin 10°cos 10° =sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×2⎝ ⎛⎭⎪⎫12cos 10°+32sin 10°cos 10°=2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.]☞角度2 给值求值(1)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α=( )A.725 B.15 C .-15D .-725(2)(2017·浙江金华十校联考)已知α为锐角,且7sin α=2cos 2α,则sin ⎝ ⎛⎭⎪⎫α+π3=( )A.1+358B.1+538C.1-358D.1-538(1)D (2)A [(1)∵cos ⎝ ⎛⎭⎪⎫π4-α=35, ∴sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α=cos 2⎝ ⎛⎭⎪⎫π4-α=2cos 2⎝ ⎛⎭⎪⎫π4-α-1=2×925-1=-725.(2)由7sin α=2cos 2α得7sin α=2(1-2sin 2α),即4sin 2α+7sin α-2=0,∴sin α=-2(舍去)或sin α=14.∵α为锐角,∴cos α=154,∴sin ⎝ ⎛⎭⎪⎫α+π3=14×12+154×32=1+358,故选A.] ☞角度3 给值求角已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( )A.5π12B.π3C.π4D.π6C [∵α,β均为锐角,∴-π2<α-β<π2. 又sin(α-β)=-1010,∴cos(α-β)=31010. 又sin α=55,∴cos α=255, ∴sin β=sin [α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =55×31010-255×⎝ ⎛⎭⎪⎫-1010=22. ∴β=π4.][规律方法] 1.“给角求值”中一般所给出的角都是非特殊角,应仔细观察非特殊角与特殊角之间的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数求解.2.“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.3.“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,最后确定角.已知函数f (x )=sin 2x -sin2⎝ ⎭⎪⎫x -6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值和最小值.[解] (1)由已知,有f (x )=1-cos 2x 2-1-cos ⎝ ⎛⎭⎪⎫2x -π32=12⎝ ⎛⎭⎪⎫12cos 2x +32sin 2x -12cos 2x=34sin 2x -14cos 2x =12sin ⎝ ⎛⎭⎪⎫2x -π6.所以f (x )的最小正周期T =2π2=π.6分 (2)因为f (x )在区间⎣⎢⎡⎦⎥⎤-π3,-π6上是减函数, 在区间⎣⎢⎡⎦⎥⎤-π6,π4上是增函数,且f ⎝ ⎛⎭⎪⎫-π3=-14,f ⎝ ⎛⎭⎪⎫-π6=-12,f ⎝ ⎛⎭⎪⎫π4=34, 所以f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值为34,最小值为-12.14分[规律方法] 1.进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.2.把形如y =a sin x +b cos x 化为y =a 2+b 2sin(x +φ),可进一步研究函数的周期、单调性、最值与对称性.[变式训练2] (1)(2016·山东高考)函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( )A.π2 B .π C.3π2D .2π(2)(2014·全国卷Ⅱ)函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________.【导学号:51062115】(1)B (2)1 [(1)法一:∵f (x )=(3sin x +cos x )(3cos x -sin x ) =4⎝ ⎛⎭⎪⎫32sin x +12cos x ⎝ ⎛⎭⎪⎫32cos x -12sin x=4sin ⎝ ⎛⎭⎪⎫x +π6cos ⎝ ⎛⎭⎪⎫x +π6=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴T =2π2=π.法二:∵f (x )=(3sin x +cos x )(3cos x -sin x ) =3sin x cos x +3cos 2x -3sin 2x -sin x cos x =sin 2x +3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π3,∴T =2π2=π.故选B.(2)f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ). ∴f (x )max =1.][思想与方法]三角恒等变换的三种变换角度(1)变角:设法沟通所求角与已知角之间的关系.常用的拆角、拼角方法是:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β.(2)变名:尽可能减少函数名称,其方法是“弦切互化”,“升幂与降幂”“1”的代换等.(3)变式:对式子变形要尽可能有理化、整式化、降低次数等. [易错与防范]1.三角函数是定义域到值域的多对一的映射,时刻关注角的范围是防止增解的有效措施.求角的某一三角函数值时,应选择在该范围内是单调函数,若已知正切函数值,则选正切函数;否则,若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.2.计算形如y =sin(ωx +φ),x ∈[a ,b ]形式的函数最值时,不要将ωx +φ的范围和x 的范围混淆.课时分层训练(十九)两角和与差的正弦、余弦和正切公式A 组 基础达标 (建议用时:30分钟)一、选择题1.已知sin 2α=23,则cos 2⎝ ⎛⎭⎪⎫α+π4等于( )A.16 B.13 C.12D.23A [因为cos 2⎝ ⎛⎭⎪⎫α+π4=1+cos 2⎝ ⎛⎭⎪⎫α+π42 =1+cos ⎝ ⎛⎭⎪⎫2α+π22=1-sin 2α2=1-232=16,故选A.] 2.cos 85°+sin 25°cos 30°cos 25°等于( )A .-32 B.22 C.12D .1C [原式=sin 5°+32sin 25°cos 25°=sin (30°-25°)+32sin 25°cos 25°=12cos 25°cos 25°=12.]3.(2017·杭州二次质检)函数f (x )=3sin x 2cos x 2+4cos 2x2(x ∈R )的最大值等于( )A .5 B.92 C.52D .2B [由题意知f (x )=32sin x +4×1+cos x 2=32sin x +2cos x +2≤94+4+2=92,故选B.] 4.(2017·浙江模拟训练卷(三))若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( ) 【导学号:51062116】A.35 B.45 C.74D.34D [由θ∈⎣⎢⎡⎦⎥⎤π4,π2,得sin θ≥cos θ>0,则sin θ+cos θ=1+sin 2θ=9+67+716=3+74,sin θ-cos θ=1-sin 2θ=9-67+716=3-74,两式相加得sin θ=34.]5.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc .若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于( )A.π12B.π6C.π4D.π3D [依题意有sin αcos β-cos αsin β=sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π2,故cos(α-β)=1-sin 2(α-β)=1314, 而cos α=17,∴sin α=437, 于是sin β=sin [α-(α-β)] =sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32.故β=π3.] 二、填空题6.sin 250°1+sin 10°________. 12 [sin 250°1+sin 10°=1-cos 100°2(1+sin 10°) =1-cos (90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12.]7.(2017·浙江模拟训练卷(四))已知函数f (x )=4cos 2x +(sin x +3cos x )2,则函数f (x )的最小正周期为________,当x ∈⎣⎢⎡⎦⎥⎤0,π4时,函数f (x )的值域为________.【导学号:51062117】π [4+3,4+23] [f (x )=7cos 2x +sin 2x +23sin x cos x =1+3(1+cos 2x )+3sin 2x =4+23sin ⎝ ⎛⎭⎪⎫2x +π3,故函数f (x )的最小正周期为π.∵x ∈⎣⎢⎡⎦⎥⎤0,π4,∴2x +π3∈⎣⎢⎡⎦⎥⎤π3,5π6,∴12≤sin ⎝ ⎛⎭⎪⎫2x +π3≤1,∴4+3≤f (x )≤4+23,故函数f (x )的值域为[4+3,4+23].] 8.化简2+2cos 8+21-sin 8=________. -2sin 4 [2+2cos 8+21-sin 8 =2(1+cos 8)+21-2sin 4cos 4 =2×2cos 24+2(sin 4-cos 4)2 =-2cos 4+2(cos 4-sin 4)=-2sin 4.] 三、解答题9.已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝ ⎛⎭⎪⎫π2,π,求cos β的值.[解] (1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32.6分(2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.10分 又sin(α-β)=-35,得cos(α-β)=45.cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝ ⎛⎭⎪⎫-35=-43+310.14分10.已知函数f (x )=1-2sin ⎝ ⎛⎭⎪⎫2x -π4cos x .(1)求函数f (x )的定义域;(2)设α是第四象限的角,且tan α=-43,求f (α)的值. 【导学号:51062118】 [解] (1)要使f (x )有意义,则需cos x ≠0,∴f (x )的定义域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z.6分(2)f (x )=1-2⎝ ⎛⎭⎪⎫22sin 2x -22cos 2x cos x=1+cos 2x -sin 2x cos x =2cos 2x -2sin x cos x cos x=2(cos x -sin x ).10分由tan α=-43,得sin α=-43cos α. 又sin 2α+cos 2α=1,且α是第四象限角, ∴cos 2α=925,则cos α=35,sin α=-45. 故f (α)=2(cos α-sin α)=2⎝ ⎛⎭⎪⎫35+45=145.14分B 组 能力提升 (建议用时:15分钟)1.若cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=-22,则cos α+sin α的值为( ) A .-72 B .-12 C.12D.72C [∵cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=cos 2α-sin 2α22(sin α-cos α)=-2(sin α+cos α)=-22,∴sin α+cos α=12.]2.(2017·浙江名校(柯桥中学)交流卷三)若cos ⎝ ⎛⎭⎪⎫α-π3=13,则sin ⎝ ⎛⎭⎪⎫π6+α的值是________;cos ⎝ ⎛⎭⎪⎫2α+π3的值是________. 13 79 [sin ⎝ ⎛⎭⎪⎫π6+α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6+α =cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫α-π3=13;cos ⎝ ⎛⎭⎪⎫2α+π3=-cos ⎝ ⎛⎭⎪⎫2α-2π3=1-2· cos 2⎝ ⎛⎭⎪⎫α-π3=79.]3.已知函数f (x )=2sin x sin ⎝ ⎛⎭⎪⎫x +π6.(1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的值域. 【导学号:51062119】 [解] (1)f (x )=2sin x ⎝ ⎛⎭⎪⎫32sin x +12cos x =3×1-cos 2x 2+12sin 2x =sin ⎝ ⎛⎭⎪⎫2x -π3+32.所以函数f (x )的最小正周期为T =π.3分 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z , 解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π12+k π,5π12+k π,k ∈Z .8分(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-32,1,12分 f (x )∈⎣⎢⎡⎦⎥⎤0,1+32.故f (x )的值域为⎣⎢⎡⎦⎥⎤0,1+32.15分。

两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式两角和的公式可以表示为:sin(A + B) = sinA * cosB + cosA * sinBcos(A + B) = cosA * cosB - sinA * sinBtan(A + B) = (tanA + tanB) / (1 - tanA * tanB)两角差的公式可以表示为:sin(A - B) = sinA * cosB - cosA * sinBcos(A - B) = cosA * cosB + sinA * sinBtan(A - B) = (tanA - tanB) / (1 + tanA * tanB)这些公式可以通过三角函数的定义及相关几何知识进行推导。

我们以sin(A + B)的公式为例进行推导。

设点P(x, y)在单位圆上,与x轴正半轴的夹角为A + B。

则点P的坐标为(x, y) = (cos(A + B), sin(A + B))。

根据三角函数的定义可知:x = cos(A + B)y = sin(A + B)在单位圆上再取点Q(x', y'),与x轴正半轴的夹角为A,点Q的坐标为(x', y') = (cosA, sinA)。

同理再取点R(x'', y''),与x轴正半轴的夹角为B,点R的坐标为(x'', y'') = (cosB, sinB)。

由于圆上任意两点间的距离为1,因此PQ与PR的长度均为1,可以分别表示为:PQ = sqrt((x - x')^2 + (y - y')^2)PR = sqrt((x - x'')^2 + (y - y'')^2)同时利用勾股定理可知:PQ^2 = (x - x')^2 + (y - y')^2 = (cos(A + B) - cosA)^2 + (sin(A + B) - sinA)^2PR^2 = (x - x'')^2 + (y - y'')^2 = (cos(A + B) - cosB)^2 + (sin(A + B) - sinB)^2将上述两个式子相加得:PQ^2 + PR^2 = (cos(A + B) - cosA)^2 + (sin(A + B) - sinA)^2 + (cos(A + B) - cosB)^2 + (sin(A + B) - sinB)^2展开计算可得:PQ^2 + PR^2 = 2 + 2 * (cos(A + B) * cosA + sin(A + B) * sinA - cos(A + B) * cosB - sin(A + B) * sinB)利用三角函数的和角公式可进一步化简:PQ^2 + PR^2 = 2 + 2 * (cosA * cos(A + B) + sinA * sin(A + B) - cosB * cos(A + B) - sinB * sin(A + B))= 2 + 2 * (cosA * cos(A + B) - sinA * sin(A + B) + cosB * cos(A + B) - sinB * sin(A + B))利用余弦函数的差角公式可进一步化简:PQ^2 + PR^2 = 2 + 2 * (cos(A + B - A) + cos(A + B + A) - cos(B - A) - cos(B + A))= 2 + 2 * (cosA + cos(B + A) - cos(B - A) - cosA)= 2 + 2 * (cosA + cosB * cosA - sinB * sinA - cosB * cosA + sinB * sinA)= 2 + 2 * cosA因此,PQ^2 + PR^2 = 2 + 2 * cosA。

两角和与差的正切

两角和与差的正切
学习目标
XUE XI MU BIAO
1.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式. 2.能利用两角和与差的正切公式进行化简、求值、证明. 3.熟悉两角和与差的正切公式的常见变形,并能灵活应用.

知识梳理

题型探究

随堂演练

课时对点练
1
PART ONE
知识梳理
知识点 两角和与差的正切公式
=1t-antaαn-αβ-+βttaannαα=1-12+12×31 31=1.
∵tan α=13>0,tan β=-17<0, ∴α∈0,π2,β∈π2,π,∴α-β∈(-π,0).
又∵tan(α-β)=12>0, ∴α-β∈-π,-π2,2α-β=α+(α-β)∈(-π,0). 而 tan(2α-β)=1,∴2α-β=-34π.
例3
(1)已知 tan α=2,证明:sin2α+sin αcos α=65-
1+tan 3-
1-tan
5π 12 5π. 12
证明 因为tan α=2,
所以左边=sins2iαn+2α+sincoαsc2oαs α=tanta2nα2+α+tan1 α=44+ +21=65.
右边=65-
1+tan 3-
tan(α-β)=1t+antaαn-αt·atannββ=1+13-13×--22=7.
(2)角α+β的值.
解 又
0<∵α<taπ2n,(απ2+<ββ<)=π,1t-antaαn+αt·atannββ=1-13+13×--22=-1,
∴π2<α+β<32π,
∴α+β=34π.
三、两角和与差的正切公式的综合应用

两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式首先,让我们从两角和的正弦公式开始推导。

假设有两个角A和B,那么它们的和角可以表示为A+B。

根据三角函数的定义,正弦函数的定义式为:sin(x) = 对边 / 斜边我们可以将角A和B的对边和斜边代入这个公式中,得到:sin(A + B) = (sin(A) * 斜边A + sin(B) * 斜边B) / 总斜边这个公式告诉我们,两个角的正弦之和等于各自正弦的乘积与对应斜边的和再除以总斜边。

另外,如果我们将斜边A和斜边B相等,那么这个公式可以进一步简化为:sin(A + B) = 2 * sin((A + B) / 2) * cos((A - B) / 2)接下来,让我们推导两角和的余弦公式。

余弦函数的定义式为:cos(x) = 临边 / 斜边同样地,根据这个定义式,我们可以得出两角和的余弦公式:cos(A + B) = (cos(A) * 斜边A + cos(B) * 斜边B) / 总斜边这个公式告诉我们,两个角的余弦之和等于各自余弦的乘积与对应斜边的和再除以总斜边。

同样地,如果我们将斜边A和斜边B相等,那么这个公式可以进一步简化为:cos(A + B) = 2 * cos((A + B) / 2) * cos((A - B) / 2)最后,让我们推导两角和的正切公式。

正切函数的定义式为:tan(x) = 对边 / 临边我们可以将角A和B的对边和临边代入这个公式中,得到:tan(A + B) = (tan(A) + tan(B)) / (1 - tan(A) * tan(B))这个公式告诉我们,两个角的正切之和等于各自正切的和再除以1减去各自正切的乘积。

总结一下,两角和与差的正弦、余弦、正切公式如下:sin(A + B) = sin(A) * cos(B) + cos(A) * sin(B)cos(A + B) = cos(A) * cos(B) - sin(A) * sin(B)tan(A + B) = (tan(A) + tan(B)) / (1 - tan(A) * tan(B))这些公式在解决三角函数运算、证明恒等式和简化复杂的三角函数表达式等方面都非常有用。

两角和与差的正弦、余弦和正切公式及二倍角公式

两角和与差的正弦、余弦和正切公式及二倍角公式

两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式 S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β. T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+k π,k ∈Z .两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β). (4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.考点一 三角函数公式的直接应用[典例] (1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( )A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用. (3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例] (1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°= 3. [答案] (1)-12 (2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β; cos αsin β+sin(α-β)=sin αcos β; 1±sin α=⎝⎛⎭⎫sin α2±cos α22; sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32, 3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435,∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45. 答案:453.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. 考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925,所以cos 2α=2cos 2α-1=-725. (2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247. 所以tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14. 2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210, ∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4 =sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( ) A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1. 4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A.3 B.2 C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( )A .-118B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值. 解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×⎝⎛⎭⎫-1010=91050. B 级1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14, ∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115, 从而tan 2θ=2tan θ1-tan 2θ=157. 答案:157 2.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________. 解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π, 所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35,所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.。

两角和与差的余弦、正弦、正切公式

两角和与差的余弦、正弦、正切公式
由β=α- ,得cosβ=cos =cosαcos +sinαsin
= × + × = = .∵0<β< ,所以β= .
变式3.(1)已知tanα=2,tanβ=3,且α,β都是锐角,求α+β;
(2)已知α,β均为锐角,sinα= ,cosβ= ,求α-β.
解析:(1)tan = = =-1.
∵α,β都是锐角,∴0<α+β<π,由上式知α+β= .
课堂练习:
练习1:cos(450+300)=
练习2:cos200cos700-sin200sin700=
练习3: 练习4:
1.下列式子中,正确的个数为()
①sin =sinα-sinβ;②cos =cosα-cosβ;
③sin =sinαcosβ-cosαsinβ;④cos =cosαcosβ+sinαsinβ.
解析:(1)原式=sin 14°cos 16°+cos 14°sin 16°=sin =sin 30°= .
(2)原式=sinxcos +cosxsin +2sinxcos -2cosxsin - cos cosx- sin sinx=3sinxcos -cosxsin - cos cosx- sin sinx= sinx- cosx
=- × + × =- ,故得-sin =- ,即sin = .
变式2.化简求值:
(1)sin 75°;(2)sin 15°;
(3)若α,β均为锐角,sinα= ,sin(α+β)= ,求cosβ.
解析:(1)原式=sin =sin 45°cos 30°+cos 45°sin 30°= × + × = .
课题
两角和与差的余弦、正弦、正切公式
1.注意到 ,由公式C(α+β).,可以推出:

两角和与差的正弦、余弦与正切公式

两角和与差的正弦、余弦与正切公式
b=
2
(sin
2
A.a>b>c
C.c>a>b
(2)已知
56°-cos 56°),c=
1-ta n 2 39°
,则 a,b,c 的大小关系是(
1+ta n 2 39°
B.b>a>c
D.a>c>b
π
cos(α-6 )+sin
4 3
α= 5 ,则
π
si(nα+6 )=
.
)
答案 (1)D
4
(2)
5
解析 (1)a=cos 50°cos 127°+cos 40°cos 37°
1
D.
2
.
答案 (1)B (2)D (3) 3
解析 (1)根据两角和的正弦公式展开得 sin
3
θ= sin
2
3
θ+ cos
2
θ=1,即
π
3sin(θ+ )=1,解得
6
π
θ+sin(θ+ )=sin
3
1
θ+ sin
2
π
3
sin(θ+ )= .故选
6
3
B.
(2)∵t=2sin 18°,
2cos2 27°-1
.
1+cos
5.积化和差公式
sin αcos
1
β=
2
sin( + ) + sin(-) ,
cos αsin
1
β=2
sin( + )-sin(-) ,
cos αcos
1
β=2

两角和与差的正切

两角和与差的正切

两角和与差的正切
正切是一个在数学中具有重要意义的函数。

它的定义是,当一条直线
与另一条直线的两个斜率相乘时得到的结果。

正切可以用来描述两角平分
线之间的关系,也可以用来计算两角和与两角差之间的正切。

两角和和差的正切分别为:
和:tan(α+β) = (tanα + tanβ)/ (1-tanα * tanβ)。

差:tan(α-β) = (tanα - tanβ)/ (1+tanα * tanβ)。

上述结果可以由三角恒等式和正反三角函数的定义来证明,首先是三
角恒等式,sin(α+β)=sinαcosβ+cosαsinβ,
cos(α+β)=cosαcosβ-sinαsinβ,
tan(α+β)=[sin(α+β)/cos(α+β)]=[sinαcosβ+cosαsinβ]/[cos
αcosβ-sinαsinβ],同样的,tan(α-β)=[sin(α-β)/cos(α-
β)]=[sinαcosβ-cosαsinβ]/[cosαcosβ+sinαsinβ],将第一两
项分开,可以得到tan(α+β)= (tanα + tanβ)/ (1-tanα * tanβ),tan(α-β) = (tanα - tanβ)/ (1+tanα * tanβ)。

因此,两角和与两角差的正切可以表示为:tan(α+β) = (tanα + tanβ)/ (1-tanα * tanβ),tan(α-β) = (tanα - tanβ)/
(1+tanα * tanβ)。

【中职数学】两角和与差的正切

【中职数学】两角和与差的正切
1 tan tan
2、已知tan、tan是方程的3x2 5x 1 0的两根,
求tan( )的值。
例5(1)求证 :1 tan15 3 1 tan15
方法1: 先求出 tan15o的值, 再代入计算则可
其中 tan15 o

tan(45 o
30o )
3
(9) (1 tan1)(1 tan 44) 1 tan 44 tan1 tan1 tan 44
1 tan 45(1 tan1 tan 44) tan1 tan 44
2
同理可得 (1 tan 22 )(1 tan 23) 2
原式 223

cos sin
cos sin
cos cos cos cos
tan tan 1 tan tan
(又有什么要求?)
k
2
k (k Z )
2
两角和的正切公式:
代号: T( )
tan( ) tan tan 1 tan tan
∴△ABC中没有直角,∴tanAtanB≠1.
tan A tan B
∵ tan(A+B)=

tanA+tanB=
1 tan A tan B
tan(A+B)–tanAtanBtan(A+B)
=tan(180°–C)–tanAtanBtan(180°–C)
= –tanC+tanAtanBtanC,
解:∵sinα=35,90°<α<180°,
∴cosα=- 1-sin2α=-45,tanα=csoinsαα=-34.
又 cosβ=1123,270°<β<360°,

两角和与差的正弦余弦正切公式及二倍角公式

两角和与差的正弦余弦正切公式及二倍角公式

两角和与差的正弦余弦正切公式及二倍角公式1.两角和的正弦公式:设角A和角B的正弦分别为sinA和sinB,则它们的和角C的正弦为sinC。

根据三角函数的定义,有sinA = a/c和sinB = b/c,其中a、b、c分别为三角形ABC的对边、邻边和斜边。

根据正弦公式,sinC = c/c =1、所以,两角和的正弦公式为sin(A + B) = sinC = 12.两角和的余弦公式:设角A和角B的余弦分别为cosA和cosB,则它们的和角C的余弦为cosC。

根据三角函数的定义,有cosA = b/c和cosB = a/c。

根据余弦公式,cosC = cos(A + B) = cos(AcosB - BsinA) = cosAcosB + sinAsinB = (b/c)(a/c) + (a/c)(b/c) = 2ab/c²。

3.两角和的正切公式:设角A和角B的正切分别为tanA和tanB,则它们的和角C的正切为tanC。

根据三角函数的定义,有tanA = a/b和tanB = b/a。

根据正切公式,tanC = tan(A + B) = (tanA + tanB) / (1 - tanAtanB) = (a/b + b/a) / (1 - (a/b)(b/a)) = (a² + b²) / (ab - ab) = a² + b² / ab。

4.两角差的正弦公式:设角A和角B的正弦分别为sinA和sinB,则它们的差角C的正弦为sinC。

根据三角函数的定义,有sinA = a/c和sinB = b/c。

根据差角公式,sinC = sin(A - B) = sin(AcosB + BsinA) = sinAcosB - cosAsinB = a/c(b/c) - (b/c)(a/c) = 2a b/c²。

5.两角差的余弦公式:设角A和角B的余弦分别为cosA和cosB,则它们的差角C的余弦为cosC。

两角和与差的公式

两角和与差的公式

两角和与差的正弦、余弦、正切公式1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (C (α-β)) cos(α+β)=cos_αcos_β-sin_αsin_β (C (α+β)) sin(α-β)=sin_αcos_β-cos_αsin_β (S (α-β)) sin(α+β)=sin_αcos_β+cos_αsin_β (S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β (T (α-β))tan(α+β)=tan α+tan β1-tan αtan β (T (α+β))2.二倍角公式 sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T (α±β)可变形为tan α±tan β=tan(α±β)(1∓tan_αtan_β), tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)设sin 2α=-sin α,α∈(π2,π),则tan 2α= 3.( √ )1.(2013·浙江)已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43 B.34 C .-34 D .-43 答案 C解析 ∵sin α+2cos α=102, ∴sin 2α+4sin αcos α+4cos 2α=52.化简得:4sin 2α=-3cos 2α, ∴tan 2α=sin 2αcos 2α=-34.故选C.2.若sin α+cos αsin α-cos α=12,则tan 2α等于( )A .-34 B.34 C .-43 D.43答案 B解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3,则tan 2α=2tan α1-tan 2α=34.3.(2013·课标全国Ⅱ)设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=________. 答案 -105解析 ∵tan ⎝⎛⎭⎫θ+π4=12,∴tan θ=-13, 即⎩⎪⎨⎪⎧3sin θ=-cos θ,sin 2θ+cos 2θ=1,且θ为第二象限角,解得sin θ=1010,cos θ=-31010. ∴sin θ+cos θ=-105.4.(2014·课标全国Ⅱ)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________. 答案 1解析 ∵f (x )=sin(x +2φ)-2sin φcos(x +φ) =sin [(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ+cos(x +φ)sin φ-2sin φcos(x +φ) =sin(x +φ)cos φ-cos(x +φ)sin φ =sin [(x +φ)-φ]=sin x , ∴f (x )的最大值为1.题型一 三角函数公式的基本应用例1 (1)设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为( ) A .-3 B .-1 C .1D .3(2)若0<α<π2,-π2<β<0,cos(π4+α)=13,cos(π4-β2)=33,则cos(α+β2)等于( )A.33B .-33 C.539D .-69答案 (1)A (2)C解析 (1)由根与系数的关系可知 tan α+tan β=3,tan αtan β=2. ∴tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.故选A. (2)cos(α+β2)=cos[(π4+α)-(π4-β2)]=cos(π4+α)cos(π4-β2)+sin(π4+α)sin(π4-β2).∵0<α<π2,则π4<π4+α<3π4, ∴sin(π4+α)=223.又-π2<β<0,则π4<π4-β2<π2, 则sin(π4-β2)=63.故cos(α+β2)=13×33+223×63=539.故选C.思维升华 三角函数公式对使公式有意义的任意角都成立.使用中要注意观察角之间的和、差、倍、互补、互余等关系.(1)若α∈(π2,π),tan(α+π4)=17,则sin α等于( )A.35 B.45 C .-35D .-45(2)计算:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°)=________.答案 (1)A (2)32解析 (1)∵tan(α+π4)=tan α+11-tan α=17,∴tan α=-34=sin αcos α,∴cos α=-43sin α.又∵sin 2α+cos 2α=1, ∴sin 2α=925.又∵α∈(π2,π),∴sin α=35.(2)原式=2cos 210°4sin 10°cos 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 20°sin 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2sin 30°cos 10°+2cos 30°sin 10°2sin 10°=32. 题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为( ) A. 2 B.22 C.12D.32(2)化简:2cos 4x -2cos 2x +122tan (π4-x )sin 2(π4+x )=________.(3)求值:cos 15°+sin 15°cos 15°-sin 15°=________.答案 (1)B (2)12cos 2x (3) 3解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos [90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin [(65°-x )+(x -20°)]=sin 45°=22.故选B. (2)原式=12(4cos 4x -4cos 2x +1)2×sin (π4-x )cos (π4-x )·cos 2(π4-x )=(2cos 2x -1)24sin (π4-x )cos (π4-x )=cos 22x 2sin (π2-2x )=cos 22x 2cos 2x =12cos 2x .(3)原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________.(2)在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________.答案 (1)cos α (2) 3解析 (1)原式=(2cos 2α2+2sin α2cos α2)·(cos α2-sin α2)4cos 2α2.因为α∈(0,π),所以cos α2>0,所以原式=(2cos 2α2+2sin α2cos α2)·(cos α2-sin α2)2cosα2=(cos α2+sin α2)·(cos α2-sin α2)=cos 2α2-sin 2α2=cos α.(2)因为三个内角A ,B ,C 成等差数列,且A +B +C =π,所以A +C =2π3,A +C 2=π3,tanA +C2=3, 所以tan A 2+tan C 2+3tan A 2tan C2=tan ⎝⎛⎭⎫A 2+C 2⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C 2 =3⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C2= 3. 题型三 三角函数公式运用中角的变换例3 (1)已知α,β均为锐角,且sin α=35,tan(α-β)=-13.则sin(α-β)=________,cos β=________.(2)(2013·课标全国Ⅱ)已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4等于( ) A.16 B.13 C.12 D.23 答案 (1)-1010 95010 (2)A 解析 (1)∵α,β∈(0,π2),从而-π2<α-β<π2.又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010,cos(α-β)=31010. ∵α为锐角,sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =45×31010+35×(-1010)=91050. (2)因为cos 2⎝⎛⎭⎫α+π4=1+cos2⎝⎛⎭⎫α+π42=1+cos ⎝⎛⎭⎫2α+π22=1-sin 2α2,所以cos 2⎝⎛⎭⎫α+π4=1-sin 2α2=1-232=16,选A.思维升华 1.解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等. (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255C.2525或255D.55或525(2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是________.答案 (1)A (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos [(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)∵cos(α-π6)+sin α=453,∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453,∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45.高考中的三角函数求值、化简问题典例:(1)若tan 2θ=-22,π<2θ<2π,则2cos 2θ2-sin θ-12sin (θ+π4)=________.(2)(2014·课标全国Ⅰ)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2(3)(2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于( ) A .-53 B .-59 C.59 D.53(4)(2012·重庆)sin 47°-sin 17°cos 30°cos 17°等于( )A .-32 B .-12 C.12 D.32思维点拨 (1)注意和差公式的逆用及变形.(2)“切化弦”,利用和差公式、诱导公式找α,β的关系. (3)可以利用sin 2α+cos 2α=1寻求sin α±cos α与sin αcos α的联系. (4)利用和角公式将已知式子中的角向特殊角转化. 解析 (1)原式=cos θ-sin θsin θ+cos θ=1-tan θ1+tan θ,又tan 2θ=2tan θ1-tan 2θ=-22,即2tan 2θ-tan θ-2=0, 解得tan θ=-12或tan θ= 2. ∵π<2θ<2π,∴π2<θ<π.∴tan θ=-12,故原式=1+121-12=3+2 2.(2)由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin(π2-α).∵α∈(0,π2),β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2),∴由sin(α-β)=sin(π2-α),得α-β=π2-α,∴2α-β=π2.(3)方法一 ∵sin α+cos α=33,∴(sin α+cos α)2=13, ∴2sin αcos α=-23,即sin 2α=-23.又∵α为第二象限角且sin α+cos α=33>0, ∴2k π+π2<α<2k π+34π(k ∈Z ),∴4k π+π<2α<4k π+32π(k ∈Z ),∴2α为第三象限角, ∴cos 2α=-1-sin 22α=-53. 方法二 由sin α+cos α=33两边平方得1+2sin αcos α=13, ∴2sin αcos α=-23.∵α为第二象限角,∴sin α>0,cos α<0, ∴sin α-cos α=(sin α-cos α)2=1-2sin αcos α=153.由⎩⎨⎧ sin α+cos α=33,sin α-cos α=153,得⎩⎪⎨⎪⎧ sin α=3+156,cos α=3-156.∴cos 2α=2cos 2α-1=-53. (4)原式=sin (30°+17°)-sin 17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17° =sin 30°cos 17°cos 17°=sin 30°=12. 答案 (1)3+22 (2)B (3)A (4)C温馨提醒 (1)三角函数的求值化简要结合式子特征,灵活运用或变形使用公式.(2)三角求值要注意角的变换,掌握常见的配角技巧.方法与技巧1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2, 配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2. 2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. 失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的.3.在三角求值时,往往要估计角的范围后再求值.A组专项基础训练(时间:30分钟)1.已知tan(α+β)=25,tan⎝⎛⎭⎫β-π4=14,那么tan⎝⎛⎭⎫α+π4等于() A.1318 B.1322 C.322 D.16答案 C解析因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝⎛⎭⎫β-π4,所以tan⎝⎛⎭⎫α+π4=tan⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4=tan(α+β)-tan⎝⎛⎭⎫β-π41+tan(α+β)tan⎝⎛⎭⎫β-π4=322.2.若θ∈[π4,π2],sin 2θ=378,则sin θ等于()A.35 B.45 C.74 D.34答案 D解析由sin 2θ=387和sin2θ+cos2θ=1得(sin θ+cos θ)2=378+1=(3+74)2,又θ∈[π4,π2],∴sin θ+cos θ=3+74.同理,sin θ-cos θ=3-74,∴sin θ=34.3.已知tan α=4,则1+cos 2α+8sin 2αsin 2α的值为( ) A .4 3B.654 C .4 D.233答案 B解析 1+cos 2α+8sin 2αsin 2α=2cos 2α+8sin 2α2sin αcos α, ∵tan α=4,∴cos α≠0,分子、分母都除以cos 2α得2+8tan 2α2tan α=654. 4.(2013·重庆)4cos 50°-tan 40°等于( )A. 2B.2+32 C. 3 D .22-1 答案 C解析 4cos 50°-tan 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (50°+30°)-sin 40°cos 40°=3sin 50°+cos 50°-sin 40°cos 40°=3sin 50°cos 40°= 3. 5.已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是( ) A .-233B .±233C .-1D .±1 答案 C解析 cos x +cos(x -π3)=cos x +12cos x +32sin x =32cos x +32sin x =3(32cos x +12sin x )=3cos(x -π6)=-1. 6. sin 250°1+sin 10°=________. 答案 12解析 sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos(90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12.7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=________. 答案 1解析根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.8.3tan 12°-3(4cos212°-2)sin 12°=________.答案-4 3解析原式=3sin 12°cos 12°-32(2cos212°-1)sin 12°=23⎝⎛⎭⎫12sin 12°-32cos 12°cos 12°2cos 24°sin 12°=23sin(-48°)2cos 24°sin 12°cos 12°=-23sin 48°sin 24°cos 24°=-23sin 48°12sin 48°=-4 3.9.已知1+sin α1-sin α-1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合.解因为1+sin α1-sin α-1-sin α1+sin α=(1+sin α)2cos2α-(1-sin α)2cos2α=|1+sin α||cos α|-|1-sin α||cos α|=1+sin α-1+sin α|cos α|=2sin α|cos α|, 所以2sin α|cos α|=-2tan α=-2sin αcos α. 所以sin α=0或|cos α|=-cos α>0.故α的取值集合为{α|α=k π或2k π+π2<α<2k π+π或2k π+π<α<2k π+3π2,k ∈Z }. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32. (2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310. B 组 专项能力提升(时间:25分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)等于( ) A .-255 B .-3510 C .-31010 D.255答案 A解析 由tan(α+π4)=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010.故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.12.若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于() A.22 B.33 C. 2 D. 3答案 D解析 ∵α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,∴sin 2α+cos 2α-sin 2α=14,∴cos 2α=14,∴cos α=12或-12(舍去),∴α=π3,∴tan α= 3.13.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)=________.答案 7210解析 因为sin 2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45,又由θ∈(0,π4),得2θ∈(0,π2),所以cos 2θ=1-sin 22θ=35,所以sin(2θ+π4)=sin 2θcos π4+cos 2θsin π4=45×22+35×22=7210.14.已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R .(1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0. (1)解 ∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+cos ⎝⎛⎭⎫x -π4-π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明 由已知得cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45, 两式相加得2cos βcos α=0,∵0<α<β≤π2,∴β=π2, ∴[f (β)]2-2=4sin 2π4-2=0. 15.已知f (x )=(1+1tan x )sin 2x -2sin(x +π4)·sin(x -π4). (1)若tan α=2,求f (α)的值;(2)若x ∈[π12,π2],求f (x )的取值范围. 解 (1)f (x )=(sin 2x +sin x cos x )+2sin ⎝⎛⎭⎫x +π4·cos ⎝⎛⎭⎫x +π4 =1-cos 2x 2+12sin 2x +sin ⎝⎛⎭⎫2x +π2 =12+12(sin 2x -cos 2x )+cos 2x =12(sin 2x +cos 2x )+12. 由tan α=2,得sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45. cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35. 所以,f (α)=12(sin 2α+cos 2α)+12=35.(2)由(1)得f (x )=12(sin 2x +cos 2x )+12=22sin ⎝⎛⎭⎫2x +π4+12. 由x ∈⎣⎡⎦⎤π12,π2,得5π12≤2x +π4≤5π4. 所以-22≤sin ⎝⎛⎭⎫2x +π4≤1,0≤f (x )≤2+12, 所以f (x )的取值范围是⎣⎢⎡⎦⎥⎤0,2+12.。

两角和差的正弦余弦正切公式

两角和差的正弦余弦正切公式

两角和差的正弦余弦正切公式两角和差的正弦、余弦、正切公式是解决三角函数的运算中的常用工具。

它们可以通过已知两个角的三角函数值来求解它们的和或差的三角函数值。

这些公式在数学、物理、工程等领域中都有广泛的应用。

下面将详细介绍这些公式,以及它们的推导和应用。

1.两角和差的正弦公式sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)其中A和B为任意两个角。

为了推导这个公式,我们可以使用三角函数的和差角公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)通过观察可以发现,两角和差的正弦公式可以通过将cos(A ± B)公式正负号变化得到。

2.两角和差的余弦公式cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)其中A和B为任意两个角。

可以看到,这个公式可以通过将sin(A ± B)的公式正负号变化得到。

3.两角和差的正切公式tan(A ± B) = (tan(A) ± tan(B))/(1 ∓ tan(A)tan(B))其中A和B为任意两个角。

这个公式可以通过两角和差的正弦公式和余弦公式相除得到。

使用公式sin(A)/cos(A) = tan(A)和cos(A)cos(B) -sin(A)sin(B)=cos(A+B)得到。

这些公式在解决三角函数运算中有着广泛的应用。

例如,我们可以将它们用于证明或求解三角恒等式。

以下是一些常见的应用示例:1.求两个特定角的正弦、余弦或正切值的和或差的问题。

例如,已知sin(A) = 0.6,cos(B) = 0.8,求sin(A+B)的值。

根据两角和差的正弦公式,我们可以有:sin(A+B) = sin(A)cos(B) + cos(A)sin(B)= 0.6*0.8 + cos(A)*sin(B)如果我们已经知道了cos(A)和sin(B)的值,就可以计算出sin(A+B)的值。

两角和与差的正切公式

两角和与差的正切公式

两角和与差的正切公式思考ο75tan =?1. 将正切转化为正余弦:︒︒=75cos 75sin 75tan ο2. 原式可化为:︒︒︒︒︒︒︒︒︒︒︒-+=++︒30cos 45sin 30cos 45cos 30sin 45cos 30cos 45sin )3045cos()3045sin( 是否太烦了?能否直接用角的正切来表示呢? 公式推导=+)tan(βαβαβαβαβαβαβαcos sin cos cos sin cos cos sin )cos()sin(-+=++当0cos cos ≠βα时,分子分母同时除以βαcos cos理解:1、 两角和的正切值可以用α和β的正切值表示。

2、 公式的右端是分数形式,它是两角正切的和比1减两角正切的积3、 公式成立的条件是:且2ππβα+≠+k 且2ππα+≠k 2ππβ+≠k如何求两角差的正切呢?=+)tan(βαβαβαtan tan 1tan tan -+在公式中用β-换β=-)tan(βαβαβαtan tan 1tan tan +-理解:1、 两角差的正切值可以用α和β的正切值表示。

2、 公式的右端是分数形式,它是两角正切的差比1加两角正切的积 跟踪练习1:1. 求下列各式的值:(1)ο75tan ;(2)ο15tan ;(3)ο105tan ; 答案(1)2+3(1)2-3(1)-2-3 公式应用例1已知的值。

的两根,求是方程)tan(065tan ,tan 2βαβα+=-+x x 分析:直接想法---先求出方程的根再代入公式。

分析:使用韦达定理求βαβαtan tan ,tan tan ⋅+值,而=+)tan(βαβαβαtan tan 1tan tan -+跟踪练习21已知的值。

的两根,求是方程)tan(0153tan ,tan 2βαβα+=-+x x 2已知)4tan(,2tan πθθ+=求的值; (-3)3已知)4tan(,3tan παα-=求的值; (21)4已知)tan(,5tan ,2tan βαβα+=-=求的值 (113)例2 求证:315tan 115tan 1=-+︒︒解法一:先求出︒15tan 的值再代入计算则可其中)3045tan(15tan ︒︒︒-=︒︒︒︒+-=30tan 45tan 130tan 45tan 解法二:利用145tan =︒将原式变为︒︒︒︒-+15tan 45tan 115tan 45tan解法三:由==︒60tan 3)1545tan(︒︒+︒︒︒︒-+=15tan 45tan 115tan 45tan 跟踪练习31、 求︒︒+-75tan 175tan 1的值 2、 求值(1)︒︒︒︒+-26tan 71tan 126tan 71tan (2)︒︒︒︒-+33tan 12tan 133tan 12tan (3)︒︒+-75tan 375tan 31(4)︒︒︒︒+-15sin 15cos 15sin 15cos例3已知βα,是锐角,21tan ,31tan ==βα求βα+的值。

两角和与差的正切公式

两角和与差的正切公式

问: 如何解决两角差的正切问题?
tan( ) tan[ ( )]
tan
tan( )
1 tan tan( )
两角差的正切公式:
tan( ) tan tan 1 tan tan
T( 取值要使正切值有意义;
(2)注意公式的变形运用.如公式: tan( ) tan tan , 1 tan tan
2
三角函数恒等变形实质是对角、函数名称 的变化,而转化的依据就是一系列三角公式
问题探讨
如何推导tan( )?
tan( ) sin( ) cos( )
(这里有什么要求?)
k (k Z )
sin cos cos sin
2
cos cos sin sin
sin cos cos sin
3
(4) tan 40 tan10 3 tan 40 tan10 3
3
3
例2
(1) A, B,C是三角形的三个内角 求证:tan A tan B tan C tan A tan B tan C
语言描述及作用
(2) A B k , k Z
4 求证:(1 tan A)(1 tan B) 2
两角和与差的正弦、余弦、正切公式的内在联系:
S( ) C ( )
相除
T( )
以 代 以 代
S( ) C ( )
相除
T( )
注 : (1)当 , 中 有 一 个 角 为 的 整 数 倍 时,以 利 用 诱 导
2 公 式 为 简 便. (2)在 公 式T( )和T( )中,
, , , 均不能等 于k (k Z ).
例3.已知sin( ) 2 ,sin( ) 2 , 求 tan 的值.

两角和与差的正弦、余弦、正切公式课件

两角和与差的正弦、余弦、正切公式课件

3.两角和与差的正切公式
名称
公式
两角和的正切
tan(α+β) =
tan α+tan β 1-tan αtan β
两角差的正切
tan(α-β) =
tan α-tan β 1+tan αtan β
简记符号
使用条件
T(α+β)
α,β,α+β≠kπ+π2 (k∈Z)
T(α-β)
α,β,α-β≠kπ+π2 (k∈Z)
∴cos(α+β)=cos α·cos β-sin αsin β
=2 5 5·3 1010-
55·1100=
2 2.
由 0<α<2π,0<β<2π得 0<α+β<π,
又 cos(α+β)>0,∴α+β 为锐角,∴α+β=4π.
规律方法 此类题是给值求角问题,步骤如下:①求所求角的 某一个三角函数值,②确定所求角的范围,此类题常犯的错误 是对角的范围不加讨论,或范围讨论的程度过大或过小,这样 就会使求出的角不合题意或者漏解,同时要根据角的范围确定 取该角的哪一种三角函数值.
规律方法 化简三角函数式是为了更清楚地显示式中所含量之 间的关系,以便于应用,对于三角函数式的化简要求应熟练掌 握:(1)能求出值的应求出值.(2)使三角函数种数尽量少.(3) 使三角函数式中的项数尽量少.(4)尽量使分母不含有三角函 数.(5)尽量使被开方数不含三角函数.
题型二 给角求值问题
【例 2】 求下列各式的值:
两角和与差的正弦、余弦、正切公式
自学导引
1.两角和与差的余弦公式
C(α+β):cos(α+β)= cos αcos β-sin αsin β

C(α-β):cos(α-β)= cos αcos β+sin αsin β.来自2.两角和与差的正弦公式

两角和与差的正弦余弦和正切公式

两角和与差的正弦余弦和正切公式

两角和与差的正弦余弦和正切公式1.两角和的正弦公式:对于任意两个角A和B,其正弦的和可表示为:sin(A + B) = sinAcosB + cosAsinB这个公式可以通过在单位圆上考虑角A和B的正弦值,利用三角函数的定义来推导得到。

2.两角差的正弦公式:对于任意两个角A和B,其正弦的差可表示为:sin(A - B) = sinAcosB - cosAsinB这个公式可以通过将角B改为-B,然后利用两角和的正弦公式得到。

3.两角和的余弦公式:对于任意两个角A和B,其余弦的和可表示为:cos(A + B) = cosAcosB - sinAsinB这个公式可以通过在单位圆上考虑角A和B的余弦值,利用三角函数的定义来推导得到。

4.两角差的余弦公式:对于任意两个角A和B,其余弦的差可表示为:cos(A - B) = cosAcosB + sinAsinB这个公式可以通过将角B改为-B,然后利用两角和的余弦公式得到。

5.两角和的正切公式:对于任意两个角A和B,其正切的和可表示为:tan(A + B) = (tanA + tanB) / (1 - tanAtanB)这个公式可以通过将正切用正弦和余弦表示,然后利用两角和的正弦和余弦公式进行推导。

根据两角和与差的正弦、余弦和正切公式,我们可以解决一些比较复杂的三角函数问题。

下面,我们通过一些例题来说明如何应用这些公式。

例题1:已知sinA = 1/2且cosB = 1/3,求sin(A + B)和cos(A - B)的值。

解:根据已知条件,我们可以得到sinA = 1/2和cosB = 1/3、根据两角和的正弦公式,我们可以求得sin(A + B)的值为:sin(A + B) = sinAcosB + cosAsinB= (1/2)(1/3) + cosA(1/3)= 1/6 + cosA/3进一步根据已知条件sinA = 1/2,可以得到cosA = √(1 - sin^2A) = √(1 - 1/4) = √3/2代入公式中,我们可以计算得到:sin(A + B) = 1/6 + (√3/2) / 3=1/6+√3/6=(√3+1)/6同样地,根据两角差的余弦公式,我们可以求得cos(A - B)的值为:cos(A - B) = cosAcosB + sinAsinB=(√3/2)(1/3)+(1/2)(√3/3)=√3/6+√3/6=√3/3所以,sin(A + B) = (√3 + 1) / 6,cos(A - B) = √3/3例题2:已知tanA = 3且tanB = 4,求tan(A + B)和tan(A - B)的值。

两角和与差的正弦、余弦和正切公式及二倍角公式

两角和与差的正弦、余弦和正切公式及二倍角公式

答案 D 由cos +sin α= , 可得 cos α+ sin α+sin α= , 即 sin α+ cos α= , ∴ sin = , 即sin = , ∴sin =-sin =- .
单击此处添加大标题内容
2-1 已知cos +sin α= ,则sin 的值是 ( ) A.- B. C. D.-
方法技巧 三角恒等变换的变“角”与变“名”问题的解题思路 角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角 与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α= (α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°, + = , =2× 等. 名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、 诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.
添加标题
1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2.
添加标题
cos2α=⑩ ,sin2α= ;
添加标题
1.sin 20°cos 10°-cos 160°sin 10°= ( ) A.- B. C.- D.
02
03
已知sin(α-kπ)= (k∈Z),则cos 2α的值为 ( ) A. B.- C. D.-
A
若tan = ,则tan α= .
.
考点突破
典例1 (1)已知sin =cos ,则tan α= ( ) A.-1 B.0 C. D.1 (2)(2017课标全国Ⅰ,15,5分)已知α∈ ,tan α=2,则cos = (3)设sin 2α=-sin α,α∈ ,则tan 2α的值是 .

两角和与差的正弦余弦和正切公式及二倍角公式

两角和与差的正弦余弦和正切公式及二倍角公式

两角和与差的正弦余弦和正切公式及二倍角公式1.两角和的正弦公式:sin(A + B) = sin A cos B + cos A sin B2.两角差的正弦公式:sin(A - B) = sin A cos B - cos A sin B3.两角和的余弦公式:cos(A + B) = cos A cos B - sin A sin B4.两角差的余弦公式:cos(A - B) = cos A cos B + sin A sin B5.两角和的正切公式:tan(A + B) = (tan A + tan B) / (1 - tan A tan B)6.两角差的正切公式:tan(A - B) = (tan A - tan B) / (1 + tan A tan B)二倍角公式:1.正弦的二倍角公式:sin(2A) = 2sin A cos A2.余弦的二倍角公式:cos(2A) = cos^2 A - sin^2 A = 2cos^2 A - 1 = 1 - 2sin^2 A 3.正切的二倍角公式:tan(2A) = (2tan A) / (1 - tan^2 A)这些公式在三角函数的学习中非常重要,可以用于简化计算,推导其他公式,解三角方程等。

以上是两角和与差的正弦、余弦和正切公式及二倍角公式的简要描述。

详细阐述这些公式需要更多的字数,下面将对每个公式进行更详细的解释。

1.两角和的正弦公式:sin(A + B) = sin A cos B + cos A sin B这个公式表示角A和角B的和的正弦等于角A的正弦乘以角B的余弦加上角A的余弦乘以角B的正弦。

2.两角差的正弦公式:sin(A - B) = sin A cos B - cos A sin B这个公式表示角A和角B的差的正弦等于角A的正弦乘以角B的余弦减去角A的余弦乘以角B的正弦。

3.两角和的余弦公式:cos(A + B) = cos A cos B - sin A sin B这个公式表示角A和角B的和的余弦等于角A的余弦乘以角B的余弦减去角A的正弦乘以角B的正弦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两角和与差的正切
1.能够根据两角和与差的正弦公式和余弦公式导出两角和与差的正切公式,了解各个公
式之间的内在联系.
2.能够利用和差角的三角函数公式进行简单的三角恒等变换.
同学们好,上节课我们学习了两角差的余弦公式,并知道将公式进行适当的变形或变换后,可得到两角和与差的正弦、余弦公式.这节课我们将继续学习这种技巧,并由此推导出两角和与差的正切公式,以及正切公式的变形和有关的角度变换.
问题1:在下列空白处填写适当的式子:
cos(α+β)=cos α·cos β-sin α·sin β,①
sin(α+β)=sin α·cos β+cos α·sin β.②
当时,得tan(α+β)==,
当时,分子分母同时除以,得:tan(α+β)= ;
在上式中,以代换得:tan(α-β)= .
问题2:在公式tan(α+β)=中,α、β、α+β均不等于;
在公式tan(α-β)=中,α、β、α-β均不等于.
问题3:你能写出两角和与差的三角函数的6个公式的逻辑联系框图吗?
问题4:由公式tan(α-β)=、tan(α+β)=可得下列变形公式:
(1)tan α+tan β=tan(α+β)·;
(2)tan α-tan β=tan(α-β) ·;
(3)tan(α+β)-(tan α+tan β)=;
(4)tan(α-β)-(tan α-tan β)=.
1.不查表,求的值为().
A.1
B.
C.
D.
2.tan θ=2,则tan(θ-)的值是().
A.B.8-5
C.5-8
D.
3.若tan(α+)=,则tan α=.
4.求tan 15°,tan 75°的值.
直接利用两角和与差的正切公式进行化简或求值
求tan(-θ)+tan(+θ)+tan(-θ)tan(+θ)的值.
已知角的某种三角函数值求角
已知tan(+α)=2,tan β=.
(1)求tan α的值;
(2)求的值.
两角和与差的正切公式的综合运用
方程x2+3ax+3a+1=0(a>2)的两根为tan A,tan B,且A,B∈(-,),则A+B=.
求值:(1+tan 1°)(1+tan 2°)(1+tan 3°)…(1+tan 45°).
已知0<α<<β<π,tan α=,cos(β-α)=.
(1)求sin α的值;
(2)求β的值.
已知角A是△ABC的一个内角,若sin A+cos A=,则tan(A+)等于().
A.-
B.
C.-
D.
1.已知sin x=,x∈(,),则tan(x-)的值为().
A.0B.C.-3D.-
2.若cos(α+β)=,cos(α-β)=,则tan αtan β=().
A.B.-C.D.-
3.已知tan(α+β)=,tan(β-)=,那么tan(α+)=.
4.求下列各式的值:
(1);
(2)tan 17°+tan 28°+tan 17°tan 28°.
(2010年·新课标全国Ⅰ卷)已知α为第三象限的角,cos 2α=-,则tan(+2α)=.
考题变式(我来改编):
第2课时两角和与差的正切
知识体系梳理
问题1: cos(α+β)≠0 cos αcos β≠0 cos αcos β-ββ
问题2: kπ+,k∈Z kπ+,k∈Z
问题3:
问题4: (1-tan αtan β) (1+tan αtan β)tan(α+β)tan αtan β-tan(α-β)tan αtan β
基础学习交流
1.A ==tan(60°-15°)=tan 45°=1.
2.C tan θ=2,∴tan(θ-)===5-8,故选C.
3.-tan(α+)==,∴5tan α+5=2-2tan α,∴7tan α=-3,∴tan α=-.
4.tan 15°=tan(45°-30°)====2-.
tan 75°=tan(45°+30°)====2+.
重点难点探究
探究一:【解析】原式=tan[(-θ)+(+θ)][1-tan(-θ)·tan(+θ)]+tan(-θ)tan(+θ)=.
【小结】在三角函数求值的问题中,要注意“三看”口诀,即(1)看角,把角尽量转化为特殊角或可计算的角,合理拆角,化异为同;(2)看名称,把算式尽量化成同一名称或相近的名称,例如把所有的切都转化为弦,或把所有的弦都转化为切;(3)看式子,看式子是否满足三角函数的公式.如果满足则直接使用,如果不满足则需转化一下角或转换一下名称.
探究二:【解析】(1)由tan(+α)=2,得=2,即1+tan α=2-2tan α,∴tan α=.
(2)
=
==
=-tan(α-β)=-
=-=.
【小结】对于给值求值问题,即由给出的某些角的三角函数的值,求另外一些角的三角函数值,关键在于“变角”,使“所求角”变为“已知角”,若角所在象限没有确定,则应分类讨论.注意公式的灵活运用,掌握其结构特征,学会拆角、拼角等技巧.
探究三:【解析】由题意知tan A+tan B=-3a,tan A·tan B=3a+1,
∴tan(A+B)===1,∵A,B∈(-,),∴A+B∈(-π,π),∴A+B=或-.
[问题]A+B=成立吗?
[结论]∵tan A+tan B=-3a<-6,tan A·tan B=3a+1>7,∴tan A<0,tan B<0,又∵A,B∈(-,),∴A,B∈(-,0),∴A+B∈(-π,0).
于是,正确解答如下:
由题意知tan A+tan B=-3a<-6,tan A·tan B=3a+1>7,∴tan A<0,tan B<0,∵A,B∈(-,),∴A,B∈(-,0),∴A+B∈(-π,0),tan(A+B)===1.
∵A+B∈(-π,0),∴A+B=-.
【答案】-
【小结】涉及三角函数值是二次方程的根,除了要考虑二次方程有根的条件,还要注意根据根的符号和三角函数的意义确定角的范围.
思维拓展应用
应用一:【解析】若α+β=45°,则1=tan 45°=tan(α+β)=,
∴tan α+tan β+tan α·tan β=1,
即(1+tan α)(1+tan β)=2,
∴(1+tan 1°)(1+tan 44°)=(1+tan 2°)(1+tan 43°)
=…
=(1+tan 22°)(1+tan 23°)=2,
∴原式=222(1+tan 45°)=222×2=223.
应用二:【解析】(1)∵0<α<,tan α=,∴sin α=.
(2)∵0<α<,sin α=,∴cos α=.又0<α<<β<π,∴0<β-α<π.
由cos(β-α)=,得sin(β-α)=.
∴sin β=sin[(β-α)+α]=sin(β-α)cos α+cos(β-α)sin α=×+×==.
由<β<π,得β=π(或求cos β=-或tan β=-1,得β=π).
应用三:【解析】由
得或(舍去),
∴tan A=-,∴tan(A+)===-,故选A.
【答案】A
基础智能检测
1.C ∵sin x=,x∈(,),∴cos x=-=-,∴tan x=-.∴tan(x-)===-3,故选C.
2.A 由已知,得cos αcos β-sin αsin β=,cos αcos β+sin αsin β=,则有cos αcos β=,sin αsin β=,所以=,即tan αtan β=.
tan(α+)=tan[(α+β)-(β-)]==.4.
(1)原式==tan(45°+75°)=tan 120°=-.
(2)∵tan(17°+28°)=,
∴tan 17°+tan 28°=tan(17°+28°)(1-tan 17°tan 28°)=1-tan 17°tan 28°,
∴原式=1-tan 17°tan 28°+tan 17°tan 28°=1.
全新视角拓展
-∵cos 2α=cos(α+α)=cos2α-sin2α=-,又cos2α+sin2α=1且α为第三象限的角,∴cos α=-,tan α=2,tan 2α=tan(α+α)==-,
∴tan(2α+)==-.
【答案】
思维导图构建。

相关文档
最新文档