九年级数学位似

合集下载

位似(5个考点)(题型专练+易错精练)(教师版) 2024-2025学年九年级数学下册(人教版)

位似(5个考点)(题型专练+易错精练)(教师版) 2024-2025学年九年级数学下册(人教版)

专题27.3 位似(5个考点)【考点1 位似图形的识别】【考点2 位似图形性质】【考点3 位似图形的点坐标】【考点4 判定位似中心】【考点5 画已知图形放大或缩小n倍后的位似图形】【考点1 位似图形的识别】1.已知:△ABC∽△A′B′C′,下列图形中,△ABC与△A′B′C′不存在位似关系的是()A.B.C.D.【答案】D【分析】此题主要考查了位似变换,正确把握位似图形的定义是解题关键.根据位似图形的定义,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,进而判断得出答案.【详解】解:A、△ABC与△A′B′C′是位似关系,故此选项不合题意;B、△ABC与△A′B′C′是位似关系,故此选项不合题意;C、△ABC与△A′B′C′是位似关系,故此选项不合题意;D、△ABC与△A′B′C′对应边BC和B′C′不平行,故不存在位似关系,故此选项符合题意;故选:D.2.如图,在正方形网格中,△ABC的位似图形可以是()A.△BDE B.△FDE C.△DGF D.△BGF3.如图,线段AB∥CD∥EF,AD、BC相交于点O,点E、F分别在线段OC、OD上,则图中与△AOB位似的三角形是().A.△AOB B.△COD C.△EOF D.△EOF与△COD【答案】D【分析】本题考查位似图形.如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,(对应边互相平行(或共线)),那么这样的两个图形叫做位似图形.根据位似图形的定义,判定即可.【详解】解:∵AB∥CD∴△AOB∽△DOC,∵AB∥EF∴△AOB∽△FOE,∵AD、BC相交于点O,点E、F分别在线段OC、OD上,∴与△AOB位似的三角形有△DOC和△FOE.故选:D.4.如图,在菱形ABCD中,对角线AC,BD相交于点O,M,N分别是边AB,AD的中点,连接OM,ON,MN,则下列叙述不正确的是()A.△AMO与△ABC位似B.△AMN与△BCO位似C.△ABO与△CDO位似D.△AMN与△ABD位似【答案】B【分析】本题主要考查了位似三角形,菱形的性质,三角形中位线定理根据位似三角形的概念:如果两个相似三角形的每组对应点所在的直线相交于一点,那么这两个三角形叫做位似三角形,结合菱形的性质逐项判断即可.【详解】解:∵四边形ABCD是菱形,对角线AC,BD相交于点O,∴点O是线段AC、BD的中点,AB∥CD,∴△AOB∽△COD,∴△ABO与△CDO位似,故C不符合题意;∵M是边AB的中点,∴OM是△ABC的中位线,∴OM∥BC,同理可得MN∥BD,ON∥AB,∴△AMO∽△ABC,△AMN∽△ABD,∴△AMO与△ABC位似,△AMN与△ABD位似,故A、D不符合题意;∵△AMN与△BCO每组对应点所在的直线没有相交于一点,∴△AMN与△BCO不位似,故B符合题意.故选B.5.下列各组图形中的两个三角形均满足△ABC∽△DEF,这两个三角形不是位似图形的是()A.B.C.D.【答案】B【分析】根据位似图形的概念和性质,对应顶点的连线相交于一点的两个相似多边形叫位似图形.性质:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行,对各选项逐一分析,即可得出答案.【详解】解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.根据位似图形的概念,A、C、D三个图形中的两个图形都是位似图形;B中的两个图形不符合位似图形的概念,对应边不平行,故不是位似图形.故选:B.【点睛】本题主要考查了位似变换,注意位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.6.如图是与△ABC位似的三角形的几种画法,其中正确的有()A.1个B.2个C.3个D.4个【答案】D【分析】根据位似图形的性质判断即可.【详解】解:由位似图形的画法可得:4个图形都是△ABC的位似图形.故选:D.【点睛】本题主要考查了位似变换,正确把握位似图形的定义是解题关键.7.下列语句中,不正确的是()A.位似的图形都是相似的图形B.相似的图形都是位似的图形C.位似图形的位似比等于相似比D.位似中心可以在两个图形外部,也可以在两个图形内部【答案】B【分析】利用位似图形的性质分别判断得出即可.【详解】A、位似的图形都是相似的图形,正确,不合题意;B、相似的图形不一定是位似的图形,错误,符合题意;C、位似图形的位似比等于相似比,正确,不合题意;D、位似中心可以在两个图形外部,也可以在两个图形内部,正确,不合题意.故选:B.【点睛】此题主要考查了位似图形的性质,正确掌握位似图形的相关性质是解题关键.8.下列每组的两个图形,是位似图形的是()A.B.C.D.【答案】D【分析】根据位似图形的概念对各选项逐一判断,即可得出答案.【详解】对应顶点的连线相交于一点的两个相似多边形叫位似图形.据此可得A. B.C. 三个图形中的两个图形都不是位似图形;而D.的对应顶点的连线能相交于一点,故是位似图形故选D.【点睛】本题考查了位似变换,熟练掌握位似图形的概念是解题的关键.【考点2 位似图形性质】9.如图,△ABC与△DEF位似,点O为位似中心,若OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2B.1:4C.4:1D.2:1【答案】B【分析】根据位似图形的概念求出△ABC 与△DEF 的相似比,根据相似三角形的性质计算即可.本题考查的是位似图形的概念、相似三角形的性质,掌握位似的两个三角形是相似三角形、相似三角形的面积比等于相似比的平方是解题的关键.【详解】解:∵△ABC 与△DEF 是位似图形,OA:OD =1:2,∴△ABC 与△DEF 的位似比是1:2.∴△ABC 与△DEF 的相似比为1:2,∴△ABC 与△DEF 的面积比为1:4,故选:B .10.如图,四边形ABCD 与四边形EFGH 位似,位似中心点是O ,OE EA =32,则S 四边形EFGH S 四边形ABCD 等于( )A .94B .925C .32D .3511.如图,△ABC与△DEF是以点O为位似中心的位似图形,若△ABC与△DEF的面积比为4:9,则OA:OD 为()A.4:9B.2:3C.2:1D.3:112.如图,已知△ABC与△DEF位似,位似中心为点O,若OD:OA=2:3,则△DEF与△ABC的周长之比为().A.2:3B.4:9C.9:4D.3:2【答案】A【分析】本题考查的是位似图形的概念,掌握位似图形的对应边平行、相似三角形的性质是解题的关13.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若O B′:B′B=3:2,则△A′B′C′的面积与△ABC的面积之比为( )A.3:5B.4:9C.4:25D.9:2514.如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA=AD,则△ABC与△DEF的面积比是A.1:1B.1:2C.1:4D.1:915.如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,若OA:A A′=1:2,则△ABC与△A′B′C′的面积之比为()A.1:2B.1:4C.1:9D.4:9【答案】C【分析】本题考查了位似的性质和相似三角形的性质,得到△ABC和△A′B′C′的相似比是解题的关键.根据位似的性质得到△ABC∽△A′B′C′,相似比为OA:O A′=1:3,再根据相似三角形的性质得△ABC和△A′B′C′的面积之比即为相似比的平方.【详解】解:∵△ABC和△A′B′C′是以点O为位似中心的位似图形,OA:A A′=1:2,∴OA:O A′=1:3,∴S△ABC :S△A′B′C′=12:32=1:9,故选:C.16.如图,点O为四边形ABCD内的一点,连结OA,OB,OC,OD,若OA′OA =OB′OB=OC′OC=OD′OD=14,则四边形A′B′C′D′的面积与四边形ABCD的面积比为()A.1:2B.1:4C.1:8D.1:1617.如图,△ABC和△DEF是位似图形,位似中心是O,若OA:OD=1:2,S△ABC =3,那么S△DEF=()A.6B.9C.12D.18【答案】C18.如图,△ABC与△DEF是以点O为位似中心的位似图形,AC:DF=2:3,若OC=8,则CF的长为()A.12B.8C.6D.419.如图,点O是两个位似图形的位似中心,若O A′=A′A,则△ABC与△A′B′C′的周长之比等于.20.如图,△ABC与△DEF位似,点O为位似中心,已知OA:AD=3:2,则△ABC与△DEF的面积比为.【答案】9:25【分析】本题考查位似图形的概念,相似三角形的性质,难度较易,掌握相关知识是解题关键.先根据位似图形的概念求出△ABC与△DEF的相似比,再根据相似的性质,面积比等于相似比的平方解题即可.【详解】解:∵OA:AD=3:2,∴OA:OD=3:5,∵△ABC与△DEF位似,∴△ABC与△DEF的位似比为3:5,∴△ABC与△DEF的相似比为3:5,∴△ABC与△DEF的面积比为9:25,故答案为:9:25.【考点3 位似图形的点坐标】21.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(1,2),B(2,1),C(3,3),现以原点O为位似中心,在第一象限内作与△ABC的位似比为2:1的位似图形△A′B′C′,则顶点C′的坐标是()A.(2,4)B.(6,8)C.(4,2)D.(6,6)【答案】D【分析】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键.直接根据位似图形的性质即可得.【详解】解:∵△ABC的位似比为2:1的位似图形是△A′B′C′,且C(3,3),∴C′(2×3,2×3),即C′(6,6),故选:D.22.如图,在平面直角坐标系中,△ABC和△A′B′C′是以原点O为位似中心的位似图形,点A在线段O A′上,A A′=2OA.若点B的坐标为(2,1),则点B′的坐标为()A.(4,2)B.(6,3)C.(8,4)D.(1,0.5)【答案】B【分析】本题考查的是位似变换.根据位似图形的概念得到△ABC∽△A′B′C′,且相似比为1:3,再根据位似变换的性质计算即可.【详解】解:∵△ABC和△A′B′C′是以原点为位似中心的位似图形,A A′=2OA,∴△ABC∽△A′B′C′,且相似比为1:3,∵点B的坐标为(2,1),∴点B′的横坐标为2×3=6,点B′的纵坐标为1×3=3,∴点B′的坐标为(6,3),故选:B.23.如图,△AOB与△A1O B1是以点O为位似中心的位似图形,且相似比为12,若点B的坐标为(−1,3),则点B1的坐标为( )A.(2,−6)B.(1,−6)C.(−1,6)D.(−6,2)24.如图,△AOB与△CDB位似,点B为位似中心,△AOB与△CDB的周长之比为1:2,若点B坐标为(1,1),则点D的坐标是()A.(3,3)B.(4,4)C.(5,5)D.(6,6)25.如图,在直角坐标系中,先以原点为位似中心,将△ABC在第一象限内放大2倍得到△AB1C1,再将1△AB1C1绕着原点逆时针旋转90°,得到的△A2B2C2,若点C、C1、C2是对应点,则C2的坐标是()1A .(−5,2)B .(−6,3)C .(6,−4)D .(−6,4)【答案】D 【分析】本题考查位似,旋转变换等知识,解题的关键是熟练掌握基本知识,正确作出图形是解决问题的关键.根据位似,旋转变换的性质画出图象即可解决问题;【详解】解:如图,△A 2B 2C 2即为所求.观察图象可知:C 2(−6,4)故选D .26.已知关于原点位似的两个图形中,一组对应点的坐标为(2,4)和(−1,x ),则x 的值为( )A .-2B .2C .12D .−12【答案】A【分析】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k .27.如图,在直角坐标系中,△OAB的顶点分别为O(0,0),A(3,0),B(6,2).以点O为位似中心,在第三象限内作位似图形△OCD,与△OAB的位似比为1:3,则点D的坐标为()A.(−1,−2)B.−2,−2C.(−2,−1)D.−2,−328.如图,在平面直角坐标系中,A,B两点的坐标分别为(−3,−1),(−1,−2).以原点O为位似中心,把线段AB放大,得到线段A′B′,点A的对应点A′的坐标是(6,2),则点B′的坐标是.【答案】(2,4)【分析】本题考查了位似图形的性质,由以原点O为位似中心,相似比为−2,根据位似图形的性质即29.如图,在平面直角坐标系内,某图象上的点A、B为整数点,以点O为位似中心将该图像扩大为原的2倍,则点A的坐标为.【答案】(−2,2)或(2,−2)/(2,−2)或(−2,2)【分析】本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.根据位似变换的性质计算即可.【详解】解:由题意得:A的坐标为(−1×2,1×2)或(−1×(−2),1×(−2)),∴A的坐标为(−2,2)或(2,−2),故答案为:(−2,2)或(2,−2).30.如图,△ABO与△A′B′O是以原点O为位似中心的位似图形,且相似比为2:1,点A′的坐标为(5,−2),则点A的坐标为.【答案】(−10,4)【分析】本题考查位似变换:先确定点的坐标,及相似比,再分别把横纵坐标与相似比相乘即可.【详解】解:由题意得:△ABO与△A′B′O是以原点O为位似中心的位似图形,且相似比为2:1,又∵A′(5,−2),且原图形与位似图形是异侧,∴点A的坐标是(5×(−2),−2×(−2)),即点A的坐标是(−10,4).故答案为:(−10,4).31.如图,在平面直角坐标系中,阴影所示的两个正方形是位似图形,若位似中心在两个正方形之间,则位似中心的坐标为.【答案】(2,1)【分析】连接各组对应点,它们在两个正方形之间相交于点P,则P点为位似中心,然后写出P点坐标即可.【详解】解:如图,点P为位似中心,P(2,1).故答案为:(2,1).【点睛】本题考查位似变换:位似的两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行(或共线),掌握位似变换的性质是解题的关键.【考点4 判定位似中心】32.如图,在平面直角坐标系中的两个矩形OEFG和矩形ABCD是位似图形,对应点C和F的坐标分别为(−4,4),(2,1),则位似中心的坐标是()A.(0,2)B.(0,2.5)C.(0,3)D.(0,4)∵∴GF//CD,CD=4,GF=∴∠PCD=∠PFG,∠DPC=∴△PFG∽△PCD,∴CD=PD,33.把△ABC放大为原图形的2倍得到△A′B′C′,则位似中心可以是()A.D点B.E点C.F点D.G点【答案】C【分析】本题考查了位似中心,解决本题的关键是熟练掌握位似中心的定义.如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行,这个点叫做位似中心,据此解答即可.【详解】解:如图,连接A A′、BB′、CC′,交于点F,由位似中心的定义可知,此位似中心可以是点F,故选:C34.如图,正方形网格图中的△ABC与△A′B′C′是位似关系图,则位似中心是()A.点O B.点P C.点Q D.点R【答案】A【分析】连接A A′,C C′交于点O,即可.【详解】解:如图,连接A A′,C C′交于点O,∴位似中心是点O.故选:A.【点睛】本题主要考查了位似图形的性质,熟练掌握位似图形的性质是解题的关键.35.已知△ABC与△DEF是一对位似三角形,则位似中心最有可能的是()A.O1B.O2C.O3D.O4【答案】A【分析】根据位似中心的定义判断即可.【详解】∵△ABC与△DEF是一对位似三角形,∴对应顶点的连线相交于一点,如图,位似中心是O1.故选:A.【点睛】本题考查位似图形的概念,掌握位似中心是对应点连线的交点是解题关键.36.下列图形中位似中心在图形上的是( )A.B.C.D.【答案】B【分析】直接利用位似图形的性质分别得出位似中心位置即可.【详解】A、,位似中点在图形内部,不合题意;B、,位似中点在图形上,符合题意;C、,位似中点在图形外部,不合题意;D、,位似中点在图形外部,不合题意;故选:B.【点睛】本题考查了位似变换,正确掌握位似图形的性质是解题关键.37.如图,在方格图中,△ABC的顶点与线段A′C′的端点都在小正方形的顶点上,且△A′B′C′与△ABC是关于点O为位似中心的位似图形,点A,C的对应点分别为点A′,C′.按下列要求完成画图,并保留画图痕迹.(1)请在方格图中画出位似中心O;(2)请在方格图中将△A′B′C′补画完整.【答案】(1)见解析(2)见解析【分析】本题考查了位似图形的性质,找位似中心.(1)连接对应点并延长,交点即为位似中心;(2)由(1)可知,OC:O C′=1:2,则连接OB并延长,使O B′=2OB,再连接A B′、B′C即可.【详解】(1)解:如图所示:点O即为位似中心;(2)解:补全△A′B′C′如图所示:38.如图,△DEF是△ABC经过位似变换得到的(点A、B、C的对应点分别为点D、E、F),位似中心是点O.(1)请在图中画出点O的位置;(2)若AB=2DE=36,BC=20,求EF的长.【答案】(1)作图见解析(2)10【分析】本题主要考查位似变换,熟知位似图形性质是解题的关键.(1)根据位似图形的对应顶点的连线过位似中心,即可确定点O的位置;(2)根据位似性质即可求得答案.【详解】(1)解:根据点O的位置如图所示.经过位似变换得到的,【考点6 画已知图形放大或缩小n 倍后的位似图形】39.如图,△ABC 在平面直角坐标系内,顶点坐标分别为A (−1,2),B (−3,3),C (−3,1).(1)画出△ABC 绕O 点逆时针旋转90°的△A 1B 1C 1;(2)以A 为位似中心,在网格中画出△ADE ,使△ADE 与△ABC 位似且面积比为4:1.【答案】(1)见解析(2)见解析【分析】本题主要考查了中心对称作图和位似作图,解题的关键是作出对应点.(1)根据旋转的性质作出点A 、B 、C 的对称点A 1、B 1、C 1,然后顺次连接即可;(2)以A 为位似中心,作出点A 、B 、C 的位似点,然后顺次连接即可.【详解】(1)解:如图,△A 1B 1C 1即为所求作的三角形.;(2)解:如图,△A DE1与△A D2E2即为所求作的三角形.140.如图,在正方形网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:3.(2)证明△A′B′C′和△ABC相似.【答案】(1)作图见解析(2)证明见解析【分析】本题考查作图−位似变换、相似三角形的判定,勾股定理等知识点,理解题意、灵活运用所学知识是解答本题的关键.(1)根据△A′B′C′和△ABC位似,且位似比为1:3作出图形即可;(2)利用相似三角形的判定定理证明即可.【详解】(1)解:如图所示:△A′B′C′即为所求,;41.如图,△ABC 在平面直角坐标系内三个顶点的坐标分别为A (−1,2),B (−3,3),C (−3,1).(1)以点B 为位似中心,在点B 的下方画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 位似且相似比为3:1;(2)点A 1的坐标为______,点C 1的坐标为______.【答案】(1)见解析(2)(3,0),(−3,−3)【分析】本题考查了位似作图,图形与坐标,掌握位似的性质是解题的关键.(1)在网格中作出A 1、C 1,连接A 1C 1、BC 1、BA 1即可得到△A 1B 1C 1;(2)根据点的位置写出A 1、A 1、C 1的坐标即可.【详解】(1)△A 1B 1C 1即为所作;(2)点A 1的坐标为(3,0),点C 1的坐标为(−3,−3),故答案为:(3,0),(−3,−3).42.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A(2,2),B(4,0),C(4,−4).(1)请画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请画出△A 2B 2C 2【答案】(1)见解析(2)见解析【分析】(1)根据平移的性质作图即可.(2)根据位似的性质作图即可.【详解】(1)解:如图,△A 1B 1C 1即为所求.B2C2即为所求.2【点睛】本题考查作图−平移变换、位似变换,熟练掌握平移和位似的性质是解答本题的关键.。

九年级数学《图形的位似1》课件

九年级数学《图形的位似1》课件
思考:是否相似图形都是位似图形?
2 判断下面的正方形是不是位似图形?
A
D
E
F
(1)
B
C
G
显然,位似图形是相似图形的特殊情
形位.似相图似形图与形相不似一图定形有是什位么似关图系形?,可位 似图形一定是相似图形
思考:位似图形有何性质?
不是位似图形
3 如果∆OAB和 ∆OCD是位似图形,那么
AB∥CD吗?为什么?
A
O.
C
B
C’
B’
思考:还有没其他作法?
C’
B’
A
. O
B
C
A'
如果位似中心位于△ABC内部呢? (课后我们还可以试一试。尽量取不 不同的位似中心。)在三角形一边的 一点上或在三角形一个顶点上呢。
位似图形的画法 A
以0为位似中心把△ABC
在同侧缩小为原来的一半。
B
步骤:
A’
1、画出的位置关系去探究。
对应边平行
概念与性质
1.位似图形的概念
如果两个图形不仅相似,而且每组对应点 所在的直线都经过同一点,对应边互相平 行,那么这样的两个图形叫做位似图形,这 个点叫做位似中心。
概念与性质
2. 位似图形的性质
OA 从第 (1),(2)图中,我们可以看到,△OAB∽△O A′B′,则OA′ =
• 若△ABC与△A’B’C’的相似比为:1:2, 则OA:OA’=( 1:2 ) OA:OA’ =OB:OB’ =OC:OC’(=1:2)
A’
AB
B’
O C C’
例1.如图,已知△ABC和点O.以O为位似中心,求作 △ABC的位似图形,并把△ABC的边长扩大到原来的两倍.

九年级下册位似的知识点

九年级下册位似的知识点

九年级下册位似的知识点位似是九年级下册数学学习的一个重要知识点。

位似是指两个多边形的形状相似,但是大小不同。

在本文中,将探讨位似的定义、性质以及其在实际生活和其他学科中的应用。

一、位似的定义位似,即位置似相似。

在数学中,当两个多边形的对应角相等,并且对应边的比例相等时,我们可以说这两个多边形是位似的。

位似的概念是相似三角形的推广,它不仅适用于三角形,也适用于其他形状的多边形。

二、位似的性质1.对应角相等:两个位似的多边形的对应角是相等的,即对应角的度数相等。

2.对应边比例相等:两个位似的多边形的对应边的长度比例相等,即对应边的比值相等。

3.面积比例相等:两个位似的多边形面积的比例等于对应边的长度比例的平方。

三、位似的应用1.建筑设计:在建筑设计中,位似的概念可以用来设计不同比例的建筑物。

例如,在设计一个模型房屋时,需要按照实际房屋的尺寸比例缩小或放大建模,以便更好地展示设计效果。

2.地图制作:地图是我们生活中常用的工具之一。

在制作地图时,为了让地图更加美观和实用,会使用位似的概念将真实地貌比例缩小到地图上。

3.计算测量:在实际测量中,我们可以利用位似的性质估算无法直接测量的距离或高度。

通过已知的尺寸比例,我们可以推算出未知物体的尺寸。

4.数学推理:位似的概念也在数学推理中得到应用。

利用位似的性质,我们可以推导出多边形的各种性质和公式,从而解决实际问题。

总结:位似作为数学中的一个重要概念,可以帮助我们了解和解决各种实际问题。

通过对位似的定义和性质的掌握,我们可以在实际生活和其他学科中更好地应用数学知识,提高问题解决能力。

同时,位似也是几何学中的一个重要内容,对于九年级学生来说,掌握位似的概念和性质是非常重要的,将会为他们以后的学习打下坚实的基础。

因此,我们应该通过实际问题的解决和推理,将数学知识与实际应用相结合,以帮助我们更好地理解和应用位似的概念。

通过不断的学习和实践,我们可以在数学学习的道路上取得更好的成绩。

位似课件PPT九年级数学

位似课件PPT九年级数学

A´

B
D´
识 点
B´
C
O
C´
C"
x
B"

D"
A"
三、研读课文
A´
如图,ABC 三个
顶点坐标分别为
A2,3 ,B2,1

,C 3,1 ,在网
B´ C ´

格图中作以点O为

位似中心,相似

比为2的位似
ABC .位似变
换后的对应点坐
标为:A´( 4,6 ) ,B´ 4,2
( 6,2) ,
四、归纳小结
确定位似比,根据位似比的取值,可以判 断是将一个图形放大还是缩小;
符合要求的图形不惟一,因为所作图形与 所确定的位似中心的位置有关,并且同一个位似 中心的两侧各有一个符合要求的图形,最好做两 个.
二、学习目标
1
巩固位似图形及其有关概念;
会用图形的坐标的变化来表示 图形的位似变换,掌握把一个图形 2 按一定大小比例放大或缩小后,点 的坐标变化的规律;
3、学习反思:______________________ __
__________________________________________
________________________
______ .
五、强化训练
1、画出所给图中的位似中心.
(红点表示位似中心)



五、强化训练
2、画出以O为位似中心,将五边形ABCDE缩小 到原来的0.5倍的五边形A`B`C`D`E`。
A"
A"B"、B" C"、A" C" .

九年级数学专题05 位似(知识点串讲)(解析版)

九年级数学专题05 位似(知识点串讲)(解析版)

九年级数学专题05 位似知识网络重难突破知识点一位似位似图形定义:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:位似图形是相似图形的一种特殊形式。

位似中心的位置:形内、形外、形上。

画位似图形的步骤:1.确定位似中心.2.确定原图形的关键点.3.确定位似比.4.根据对应点所在直线经过位似中心且到位似中心的距离之比等于位似比,作出关键点的对应点,再按照原图的顺序连接各点 ( 对应点都在位似中心同侧,或两侧 ) .典例1(2018·路北区期末)△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别是OA,OB,OC的中点,若△DEF的面积是2,则△ABC的面积是( )A.2 B.4 C.6 D.8【答案】D【详解】∵点D,E分别是OA,OB的中点,∴DE=12 AB,∵△DEF和△ABC是位似图形,点O是位似中心,∴△DEF∽△ABC,∴DEFABCSS∆∆=14,∴△ABC的面积=2×4=8故选:D.典例2(2019·昆明市期末)如图,△ABC外任取一点O,连接AO、BO、CO,并取它们的中点D、E、F,得△DEF.下列说法正确的个数是()①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF周长之比为2:1;④△ABC与△DEF的面积之比为9:1.A.1个B.2个C.3个D.4个【答案】C【详解】根据位似的定义可得:△ABC与△DEF是位似图形,也是相似图形,位似比是2:1,则周长的比是2:1,因而面积的比是4:1,故①②③正确,④错误.故选:C.典例3(2018·西安市期末)如图,以点O为位似中心,将△ABC放大后得到△DEF,已知△ABC与△DEF 的面积比为1:9,则AB:DE的值为()A.1:3 B.1:2 C.13D.1:9【答案】A【详解】:∵△ABC 与△DEF 位似, ∴2()ABC DEF S ABS DE =V V =19, ∴13AB DE =, 故选:A .典例4(2019·三门峡市期中)如图,已知△ABC ,任取一点O ,连AO ,BO ,CO ,分别取点D ,E ,F ,使OD =13AO ,OE =13BO ,OF =13CO ,得△DEF ,有下列说法: ①△ABC 与△DEF 是位似图形;②△ABC 与△DEF 是相似图形;③△DEF 与△ABC 的周长比为1:3;④△DEF 与△ABC 的面积比为1:6.则正确的个数是( )A .1B .2C .3D .4【答案】C【详解】 解:∵任取一点O ,连AO ,BO ,CO ,分别取点D ,E ,F ,OD =13AO ,OE =13BO ,OF =13CO , ∴△DEF 与△ABC 的相似比为:1:3,∴①△ABC 与△DEF 是位似图形,正确;②△ABC 与△DEF 是相似图形,正确;③△DEF 与△ABC 的周长比为1:3,正确;④△DEF 与△ABC 的面积比为1:9,故此选项错误.故选:C . 典例5(2019·泉州市期中)如图,网格中的两个三角形是位似图形,它们的位似中心是( )A.点A B.点B C.点C D.点D【答案】D【详解】如图,位似中心为点D.故选D.典例6(2019·洛阳市期中)1. 下列说法不正确的是()A.位似图形一定是相似图形B.相似图形不一定是位似图形C.位似图形上任意一对对应点到位似中心的距离之比等于位似比D.位似图形中每组对应点所在的直线必相互平行【答案】D【解析】解:根据位似图形的定义可知,B,C正确,似图形中每组对应点所在的直线相交于一点,D错误.故选D.典例7(2019·鞍山市期中)如图,已知△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的49,则AO:AD的值为()A.2:3 B.2:5 C.4:9 D.4:13 【答案】B【详解】∵△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的49,∴ACDF=23,AC∥DF,∴AODO=ACDF=23,∴AOAD=25.故选:B.典例8(2018·南通市期中)如图,四边形ABCD和A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=2:3,则四边形ABCD与A'B'C'D'的面积比是()A.4:9 B.2:5 C.2:3 D23【答案】A【详解】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:224 39⎛⎫=⎪⎝⎭,故选:A.典例9(2018·武汉市期末)将投影片的图案投影到屏幕上,这种图形的变换是()A.平移变换B.旋转变换C.轴对称变换D.相似变换【答案】D【详解】解:将投影片的图案投影到屏幕上,这种图形变换是相似变换,故选:D.典例10(2019普宁市期中)下列各选项的两个图形中,不是位似图形的是()A.B.C.D.【答案】C【详解】因为两个位似图形的对应点的连线所在的直线经过同一点,所以A,B,D中的两个图形是位似图形,C中的两个图形不是位似图形.故选C.在直角坐标系中的位似图形坐标关系:在平面直角坐标系中,如果以原点为位似中心,画一个与原图形的位似图形,使它与原图形的相似比为k,若原图形上点的坐标为(x,y),则位似图形上与它对应的点的坐标为(kx,ky)或(-kx,-ky).典例1(2019·晋江市期中)如图,△ABC和△AʹBʹCʹ位似,位似中心为点O,点A(-1,2)、点Aʹ(2,-4),若△ABC的面积为4,则△AʹBʹCʹ的面积是()A.2 B.4 C.8 D.16【答案】D【详解】解:∵△ABC和△AʹBʹCʹ位似,位似中心为点O,点A(-1,2)、点A′(2,-4),∴△ABC∽△A′B′C′,∵OA=2212+=5,OA′=2224+=25,'12OAOA=,∴'''2'14ABCA B CS OAS OA⎛⎫==⎪⎝⎭VV,∵△ABC的面积为4,∴△AʹBʹCʹ的面积=16,故选:D.典例2(2019·晋城市期末)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,则CD的长度是()A.1 B.2 C.25D.5【答案】B【详解】∵点A(2,4),过点A作AB⊥x轴于点B,将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,∴C(1,2),则CD的长度是:2故选:B典例3(2018·南阳市期末)已知,直角坐标系中,点E(-4,2),F(-1,-1),以O为位似中心,按比例尺2:1把△EFO缩小,则点E的对应点E′的坐标为()A.(2,-1)或(-2,1)B.(8,-4)或(-8,4)C.(2,-1)D.(8,-4)【答案】A【详解】根据题意可知,点E的对应点E′的坐标是E(﹣4,2)的坐标同时乘以2或-2,所以点E′的坐标为(8,-4)或(-8,4).故选B.典例4(2019·池州市期末)如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)【答案】A【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴ADBG=13,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴OAOB=13,∴2OAOA=13,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.典例5(2018·来宾市期末)如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为13,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1) 【答案】A【详解】由题意得,△ODC∽△OBA,相似比是13,∴OD DC OB AB,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选A.典例6(2019·宝安区期中)如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)【答案】B【解析】试题分析:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选B.典例7(2019·临汾市期末)如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2 B.3 C.4 D.5 【答案】B【详解】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴1'2 CD BCCE B C==,∴CE=4,则OE=CE−OC=3,∴点B'的横坐标是3,故选:B.典例8(2019·汉中市期中)如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A的坐标为(1,0),则E点的坐标为( )A.(2,0) B.(1,1)C.(,) D.(2,2)【答案】D【详解】∵A(1,0),∴AO=1.∵正方形OABC与正方形ODEF是位似图形,相似比为1:2,∴∵OA=1,∴OD=2.∵四边形ODEF是正方形,∴OD=DE,DE⊥OD.∵OD=DE,OD=2,DE⊥OD,∴点E的坐标为(2,2).故选:D.典例9(2018·焦作市期中)在平面直角坐标系中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(0,3),以O为位似中心,△OA′B′与△OAB位似,若B点的对应点B′的坐标为(0,﹣6),则A点的对应点A′坐标为( )A.(﹣2,﹣4) B.(﹣4,﹣2)C.(﹣1,﹣4) D.(1,﹣4)【答案】A【详解】解:∵△OA′B′与△OAB关于O(0,0)成位似图形,且若B (0,3)的对应点B′的坐标为(0,-6),∴OB:OB'=1:2=OA:OA'∵A(1,2),∴A'(-2,-4)故选A.典例10(2018·灌南县新知双语学校初三期末)在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为2:1,把△EFO缩小,则点E的对应点E′的坐标是()A.(-2,1)B.(-2,1)或(2,-1)C.(-8,4)D.(-8,4)或(8,-4)【答案】B【解析】∵点E的坐标为(-4,2),点E′是以原点O为位似中心,相似比为2:1,把△EFO缩小得到的点E的对应点,∴点E′的坐标为(-2,1)或(2,-1).故选B.平移、轴对称、旋转、位似的区别:1.平移:和原图形一模一样(和原图形全等且能与原图形重合)2.轴对称:面积和原图形一样也是全等,和平移的不同点就是轴对称之后的图形不能与原图形重合,虽然它们全等)3.旋转:面积和原图形一样,也是全等,和轴对称的不同点是轴对称只有一个和原图形轴对称的图形,而旋转可以旋转出无数个。

九年级数学位似图形知识点

九年级数学位似图形知识点

九年级数学位似图形知识点九年级数学的学习内容十分广泛,其中位似图形是一个重要的知识点。

位似图形是指形状、大小不同,但是对应部分之间有相似关系的图形。

它在日常生活中的应用非常广泛,如建筑设计、地图制作等领域。

下面我们将详细了解九年级数学里的位似图形知识点。

一、位似图形的定义和性质位似图形的定义是指两个图形的对应部分之间的边长比相等。

而位似图形的性质主要包括以下几个方面:1. 位似图形的对应角相等:对于两个位似图形,其对应的角一定相等。

这是因为位似图形是通过放缩或旋转得到的,边长比相等就意味着对应的角度不变。

2. 位似图形的各边之间的比例相等:对于位似图形来说,任意两边之间的比例都是相等的。

这是因为位似图形的边长比相等。

3. 位似图形的面积比等于边长比的平方:位似图形的面积比等于边长比的平方。

这是因为放缩一个图形,面积会按照边长比的平方进行缩放。

二、位似图形的判定方法判定两个图形是否位似的方法主要有以下几种:1. 判断边长比例是否相等:如果两个图形的对应边长之间的比例相等,则这两个图形位似。

2. 判断对应角是否相等:如果两个图形的对应角之间的大小相等,则这两个图形位似。

3. 利用面积比相等判定位似:如果两个图形的面积比等于边长比的平方,则这两个图形位似。

三、位似三角形的证明方法位似三角形是位似图形中最常见的一种。

位似三角形的证明方法主要有以下几种:1. AA判定法:如果两个三角形的对应角相等,则这两个三角形位似。

2. SSS判定法:如果两个三角形的三边对应相等,则这两个三角形位似。

3. SAS判定法:如果两个三角形的两边夹角相等,并且它们的夹角边对应相等,则这两个三角形位似。

四、位似图形的应用位似图形在现实生活中有广泛的应用。

在建筑设计中,我们经常会使用位似图形来将设计图缩小或放大;在地图制作中,位似图形可以帮助我们将实际距离转化为纸上的距离;在工程测量中,位似图形可以帮助我们计算难以测量的距离和面积。

数学九年级上图形位似

数学九年级上图形位似

点坐标分别为A(2,3
),B(2,1),C( 6,2),以点O为位 似中心,相似比为2, 将△ABC放大,观察 对应顶点坐标的变化 ,你有什么发现?
位似变换后A,B,C的对应点为 C" A" B"
A' A B B'
2 4
C' C
6 8 9 101112
-2 O -2 -4 -6 -8
A '( 4 ,6 ),B ' ( 4 , 2 ),C ' ( 12 ,4 );
A
B
C O
C’
B’
A’
复习回顾
(概念性,而且对应顶点的连线相交于一点, 像这样的两个图形叫做位似图形, 这个点叫做位似中心, 这时 的相似比又称为位似比.
2.位似图形的性质
位似图形上的任意一对对应点到位似中心的距离之比 等于位似比
3.利用位似可以把一个图形放大或缩小
A′(4,8),
O(0,0),
B′(12,0).
·
B'
A'
·
A'
· ·
B'
一个三角形 的顶点坐标分别扩大2倍后的三角形与原三角形是以 原点为位似中心的位似图形.
把一个三角形 扩大成原三角形的2倍实际上是把原三角形的顶点 坐标分别分别乘以相似比2.
初试牛刀
如图,△ABC三个顶
8 6 4 2 -12 -10-9 -8 -6 -4
位似变换后A,B的对应点为A ' ( 2 , 1 ),B'( 2 , 0 );A" (- 2 ,- 1 ),B" ( - 2 , 0 ).
-8 -6 -4 8 6 4
A A'

九年级数学位似图形

九年级数学位似图形

如图,D,E分别AB,AC上的点. (1)如果DE∥BC,那么∆ADE和 ∆ABC是位似图形吗?为什么?
A D B E C
(2)如果∆ADE和 ∆ABC是位似图形,那么 DE∥BC吗?为什么? 解:(2) DE∥BC.理由是: ∆ADE和 ∆ABC是位似图形, ∠ADE=∠B ∆ADE∽ ∆ABC DE∥.
1.如果两个相似图形的每组对应点所在的 直线都交于一点,那么这样的两个图形叫 做位似图形, 这个交点叫做位似中心, 这 时两个相似图形的相似比又叫做它们的位 似比. 2.位似图形的对应点和位似中心在同一条直 线上,它们到位似中心的距离之比等于相似比 . 3.位似图形中不经过位似中心的对应线段 平行.
下列图形中,每个图中的 四边形ABCD和四边形A′B′C′D′都是相似图形.分 别观察这五个图,你发现每个图中的两个四边形 各对应点的连线有什么特征?
☞ 观察与思考
如果两个相似图形的每组对应点 所在的直线都交于一点,那么这样 的两个图形叫做位似图形, 这个 交点叫做位似中心, 这时两个相 似图形的相似比又叫做它们的位 似比.
在下列每个图形中,位似图形的对 应线段AB与A′B′是否平行?BC与 B′C′,CD与C′D′,AD与A′D′是否 平行?为什么?
不经过位似中 心的对应线段 平行.
A
如图,已知△ABC∽△DEF, 它们对应顶点的连线 AD,BE,CF相交于点O,这 D 两个三角形是不是位似三 角形?
B E
0 F C
观察下图中的五个图,回答下列问题: (1)在各图中,位似图形的位似中心与这两个图形有 什么位置关系? 位置不一样,位似中心就不一样. (2)在各图中,任取一对对应点,度量这两个点到位 似中心的距离.它们的比与位似比有什么关系?再换一对 相等. 对应点试一试.

九年级数学上册知识点---- 平面直角坐标系中的位似变换

九年级数学上册知识点---- 平面直角坐标系中的位似变换

归纳:
1. 在平面直角坐标系中,以原点为位似中心作一个 图形的位似图形可以作两个.
2. 当位似图形在原点同侧时,其对应顶点的坐标的 比为 k;当位似图形在原点两侧时,其对应顶点的 坐标的比为-k.
3. 当 k>1 时,图形扩大为原来的 k 倍;当 0<k<1 时,图形缩小为原来的 k 倍.
练一练
可以确定其他顶点的 坐标.
自己试一试.
解:利用位似中对应点的坐标的变化规律,分别取 点 A′ (-3,6),B′ (-3,0),O (0,0). 顺次连接 点 A′ ,B′ ,O,所得的 △A′ B′ O 就是要画的一个 图形.
练一练 在平面直角坐标系中,四边形 OABC 的顶点坐标
分别为 O (0,0),A (6,0),B (3,6),C (-3,3). 以 原点 O 为位似中心,画出四边形 OABC 的位似图形, 使它与四边形 OABC 的相似是 2 : 3.
标都乘 2 ;在平面 3
4 C
2
直角坐标系中描点
A″
A
O (0,0),A″ (-4, -4 0),B″ (-2,-4), C″ (2,-2),用线 段顺次连接O,A″,
O -2
B″ -4
6x 4 C″
B″,C″.
平面直角坐标系中的图形变换
至此,我们已经学 习了四种变换:平移、 轴对称、旋转和位似, 你能说出它们之间的异 同吗?在右图所示的图 案中,你能找到这些变 换吗?
B" (-2 ,0 ).

2. △ABC 三个顶点坐标分别为 A (2,3),B (2,1),
C (5,2),以点 O 为位似中心,相似比为 2,将
△ABC 放大,观察对应顶点坐标的变化.
y 6

初三数学位似知识点

初三数学位似知识点

初三数学位似知识点
1、位似图形:
如果两个图形不仅是相似的图形,而且每组对应点的连接线在一个点相交,则这两个图形称为位置图形。

连接类位置图中相应点的直线的交点就是类位置中心。

此时,相似性比率也称为类位置比率。

2、位似图形的性质:
段落的任何一对对应点与段落中心在同一条线上,它们与段落中心的距离之比等于相似比。

1.位似图形对应线段的比等于相似比。

2.位置图形的相应角度相等。

3.位似图形对应点连线的交点是位似中心。

4.拟图形的面积比等于相似比的平方。

5.位似图形高、周长的比都等于相似比。

6.位置图形的相应边相互平行或在同一条直线上。

3、利用位似,可以将一个图形放大或缩小,作图时要注意:①首先确定位似中心,位似中心的位置可随意选择;②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;③确定位似比,根据位
似比的取值,可以判断是将一个图形放大还是缩小;④符合要求的图形不惟一,因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形.
4、位似变换:
把一个几何图形转换变成与之位似的图形,叫作位似变换。

物理中的透镜成像就是一种位似变换,位似中心为光心。

位似变换应用领域极为广为,特别就是可以证明三点共线等问题。

初中数学 人教版九年级下册27.3 位似 课件

初中数学 人教版九年级下册27.3 位似  课件
原来的 , 1 1. 在四边形外任2选一点O(如图), 2. 分别在线段OA、OB、OC、OD上取点A'、B'、C'、D',使得OA' OB' OC' OD' 1
OA OB OC OD 2
3. 顺次连接点A'、B'、C'、D',所得四边形A'B'C'D'就是所要求的图形.
A
B
D
A'
B'
D' C
y A
C. (3,2)
D. (3,1)
C
B
D x
随堂演练
2. 如图,线段CD的两个端点的坐标分别为C(1,2),D(2,0),
以原点为位似中心,将线段CD放大得到线段AB,若点B的坐
标为(5,0),则点A的坐标为( B )
A.(2,5)
B.(2.5,5)
C.(3,5)
D.(3,6)
随堂演练
3. 如图,某学习小组在讨论 “变化的鱼”时,知道大 鱼与小鱼是位似图形,则小鱼上的点 (a,b) 对应大 鱼上的点 (-2a,-2b) .
y 6
B
4 C
2
A″ O
-2
B″ -4
A 6x 4
C″
课堂总结
1.图形变换的种类: (1)全等变换:全等变换不改变图形的大小与形状,全等变换
包括平移、旋转、轴对称. (2)相似变换:相似变换改变图形的大小,不改变图形的形状,
位似是相似的特殊情况. 2. (1)当位似图形在原点同侧时,其对应顶点的坐标的比为 k(k>0),对应点为 (kx,ky);当位似图形在原点两侧时, 其对应顶点的坐标的比为-k,对应点为(﹣kx,﹣ky).

九年级数学位似

九年级数学位似

; / 红包群 ;
么了?”每次有热闹看都是他值班,因为他是纯老外去了会添乱,命苦.而那群年轻人回来买单时说了一些,看他们一副不够尽兴の遗憾劲,说话多半有失偏颇,信不过.“好像说陆陆在外边抹黑她?”陆易望向柏少君.“嗯,她就是这么说の,”柏少君相当气愤,“自从在我们店订菜,陆陆几乎连 门都没出过,她向谁抹黑何玲?现在の人都不长脑子?问都不问就上门骂人打人实在太过分!”说得义愤填膺,柏少君瞪着陆易,“你们警察管不管の?管の话我报警.”一定要报,不然还有下次呢?按何玲の吨位与手劲,陆陆绝对挨不了一拳.陆易忙劝阻,“别别别,华夏是个人情社会,你这样 做让陆陆以后在老村长面前很难做人,想解决问题得找到源头.”“怎么找?”“可以问今晚到餐厅吃饭の人,”德力一边清洗杯碟一边留心听着,“坐窗边の那个小莲最先看见何玲去找陆陆,如果是寻常の来访,她干嘛那么兴奋?里边肯定有原因.”柏少君愣了愣,“你の意思是...有人从中 挑拔离间?!”卧槽,现实版の心计大戏?!而且主谋就在今晚那群人当中?“不对呀!陆陆跟他们不熟几乎没说过话,为什么欺负她?”德力望着单纯の男孩笑嘿嘿,“嘿嘿,欺负人の乐趣你难道不懂?还需要其他理由吗?”这话很真实,真实得让人难受.柏少君嘴巴动了动,说不出话 来.“好了,当事人不急,你们急什么?”一直旁听の柏少华终于开口,“少君,陪我走走.”说罢拿过拐杖起身.“哦.”尽管他心中忿忿不平,仍然跟随柏少华一同出了门.目送两人离开,陆易也来到铁板烧旁边清洗碗碟.“有人の地方就有江湖,”德力在另一边擦干杯子の水渍,啧啧叹道,“昌 叔那老家伙果然睿智.”不得不佩服,连个小山村都这么热闹.陆易笑了笑,专注洗碗不再谈论此事.人活一辈子哪能无是非?造谣张张嘴,辟谣跑断腿,一有风吹草动就顾着四处洗脱洗白,那么人生当中很多重要の事这辈子都只能搁置,来生再议了.下次再发生这种事便交给执法部门去查去处理, 他们普通小市民则继续生活,不能因为小人作祟耽误自己の计划与前程.君子坦荡荡,小人长戚戚,命运会优待认真生活の人.至于小人,他们饿不死也吃不饱,只能躲在黑暗中继续搞小动作,继续怨天尤人,一辈子就这么过了.下场如何,生活最终会明确地告诉大家,如果还记得他の话...夜幕下, 梅林村の路两旁依旧梅花盛开,花香浮动,街道上の小情侣或者三朋五友一起走着,格外の有情趣.身边の嬉笑声不断,热闹非常,余薇走在他们中间,抬头仰望,一轮不够圆满の明月高高挂在天上,像极了今晚那张望向自己の冷淡面孔,顿时一股难以描绘の孤独涌上心头.“哈哈哈,小薇,我一想 起今晚何玲那张脸就...哈哈哈...”身边の朋友们乐不可支,连一句正经话都说不全.余薇跟着笑了笑,内心の失落与苦涩旁人一无所知.不知道怎么回事,在这一刻,她突然好寂寞.第90部分今晚の一切如她所愿,可她一点都不开心.当他冲出来张开双臂の那一刻,往日青涩の面孔、不耐烦の性 情一扫而空,一贯轻松の神情瞬间变得冷酷异常,很有成熟男人の魅力,活像西方传说中威风凛凛の一尊战神降临在身旁,只为牢牢守护身后の小女人.那一刻,她の心像被扔进了绞肉机,一点一点地被绞碎成泥.“小薇,你去哪儿?不回家吗?”小伙伴们正聊得开心,却见余薇往另一个方向走, 纷纷扬声问.“我去姐姐那儿.”余薇头也不回.不管身后如何叫嚷,她开始一路小跑.家里早没人了,母亲常在厂里住,继父长住省城盯着公司の运营状况,他最关心の人是弟弟,因为儿子才是他の亲生骨肉.尽管平时表现得对两个继女一视同仁,但小孩子是非常敏感の,她们知道谁是真心待自己 好.家里只有爷奶在住,两个老东西动不动就说她俩这不好那不好,警告她们别把国外の坏习惯带回家败坏梅家声誉.梅家有个屁声誉!没有母亲,他们屁都不是.尽管如此,母亲依旧叮嘱姐妹俩要敬重长辈.可是这种长辈有什么好敬重の?这个家是母亲一个人撑起来の,她才是一家之主,搞不懂 凭啥要看他们の脸色.姐姐每次回来都住在小农场,说喜欢那里の清静.自己听不惯虫鸣声喜欢住在别墅里,心境不快才去小农场住几天.来到农场路口,余薇刷卡打开大门铁闸.“小薇?怎么这么晚?”门卫の大叔正在听收音机,闻声出来看个究竟,门卫室里咿咿呀呀の不知道在唱什么,年代很 老旧の歌.今天心境不好,余薇对门卫の话不加理睬,径自跑向姐姐居住の那一栋雅致木屋.农场里住着三户人家,只有姐姐家是她和未婚夫汤力搭建の.院里の一草一木一秋千,屋里一针一线一家具,全部是自己の手工.院里の花架、和篱笆边缘种满了玫瑰花直达屋门口,汤力种の,代表他对姐 姐那颗永远火热跳动の心.听着很肉麻,对当事人来说却很幸福.余岚对院里の花草一向精心培育,哪怕回校读书也要拜托别人花同样の心思照顾它们,千叮万嘱,惟恐出现一点纰漏.姐姐跟汤力在十八岁那年开始确定关系,至今四年了,两人感情一直很好.算算日期,这几天他也该来了.等他来了 以后姐姐将不再属于她,这小农场也不再是自己可以任性撒娇の地方.她一直羡慕姐姐,能遇到一位全心全意の男人.她希望自己有一天也能像姐姐那样拥有一份至真至纯の爱情,对方眼里只有她の存在,完全不受外界诱惑.可惜,她遇人不淑,碰上の男人要么整天想着法子哄她上.床, 要么整天想着花光她の钱,要么打赌撩拔看她春心荡漾,要么纯粹恶作剧想看她出尽洋相.东、西方の男人都一副贱样,唯一可以分高低の是衣着品味.余薇来到木屋の矮栏栅前,姐姐の屋里透出明亮の灯光,她睡眠浅,稍微有些心事就彻夜难眠.轻轻拉动门拴,吱丫地推开走了进去.院里很安静, 屋里の人听到声音,在余薇走进石子路时,紧闭の木门打开了,一道无比亲切又熟悉の身影出现在眼前.刚和男友通完电筒の余岚刚洗完澡,裸露在衫外の肌肤被水气蒸腾得异常白皙,宛若出水芙蓉般剔透美丽.她站在门口,对妹妹の到来感到意外:“小薇?怎么这么晚过来?来也不打个电筒万 一路上出...”话未说完,余薇往前一扑,双手搂住她の脖子然后开始浑身颤抖.“怎么了?出了什么事?是不是爷爷奶奶又说你了?”余岚轻拍她の后背,温声安慰,“实在受不了就回这儿住,别勉强自己.”“姐,”伏在肩膀上の余薇终于放开心扉,泣不成声,“我讨厌他,我很讨厌讨厌他,怎 么办啊姐...”余岚听罢,立马意识到妹妹这番没头没脑の话是什么意思,不禁闭了闭眼,轻拍项背给予安慰.很讨厌の背面就是很喜欢,是呀,怎么办呢?姐姐无言の安慰,让余薇哭得愈发伤心.“姐,我难过,真の好难过.我明明是为他好,他却那样看我,像从来不认识我,为什么要这样对我?为 什么要在我面前待她那么好?为什么...”一连串の为什么导致眼前一片模糊,止不住の眼泪像决堤の水挡也挡不住.为什么是他?一个高校没毕业の洋diao丝,也就一张脸能看得顺眼;为什么他保护の人是她?那个矫揉造作の女人,除了脸蛋身段妖娆之外一无是处.为什么自己总是眼瞎看上 不该爱の人?为什么她喜欢の人都眼瞎看上那种女人?甘心为她们挺身而出,肝脑涂地,哪怕最后受伤の总是他.那女人一巴掌将何玲打趴下,根本用不着他来充英雄平白无辜挨顿打.这是为什么?...夜半时分,余家姐妹坐在庭院の秋千里说着悄悄话,像小时候那样,围在四周の轻纱幔帐给她 们围出一方小世界.跟前有一张小圆桌,木头雕の,上面摆着装满果酒の酒壶和两个质地一样の小酒杯,整套の,余岚自己找瓷窑帮忙烧制而成,质朴雅致,与她本人一样.“何玲找陆陆麻烦?”余岚疑惑地看着妹妹,“为什么?”“我哪儿知道.”酣畅淋漓地哭了一场,余薇の心境稍有好转,但对 今晚发生の一切矢口否认,“反正她俩都不是好东西,狗咬狗是早晚の事.”妹妹の话让余岚の心境起伏很大,随着年龄の增长,小薇の思想跟以前大不相同.不再像小时候那样天真单纯,事事以姐姐马首是瞻,她真の很害怕妹妹为了情感失去理智.为了一个男人赔上自己一生,不值得.“小薇,你 老实说,”余岚紧盯着余薇追问,“这件事真の跟你无关?”“当然无关!”余薇惊讶地回瞪姐姐,“姐,你不信?你就这么看你妹妹?”“相处二十年我还不知道你?”妹妹故作无知,余岚疾言厉色,“小薇,你在国外那些小打小闹就算了,回到国内给我收起你の小脾气.这里是咱们の家,妈辛 辛苦苦扎稳の根,出了什么差池损失最大の是我们.”第91部分老调重弹了,余薇有些不耐烦.“能出什么差池?就凭一个小小の外来户?她谁呀?老爸是李刚吗?”余薇一贯の伶牙利齿给予反驳,“姐,你连个外来户都怕怎么帮妈打天下?我看你不如跟汤力回国好了,免得自寻烦恼.”她烦, 自己也烦.小小の外来户?余岚不敢相信地看着妹妹一脸の轻蔑,眼里含着一丝隐痛.“小薇,你忘了?我们也是外来户.”在这个村子,在这个家里,她姐妹俩一直是外来户.不管妈有多么努力始终无法改变这个事实,改变不了她俩与村民们格格不入处处受欺の尴尬处境.只好努力赚钱送她俩出 国读书,希望女儿们能在国外成家立室过上自在安稳の日子.要不是母亲遭受各方质疑与刁难,她不会回来.回来是为了帮妈保住心血,替弟弟保住家业,不是为了跟外来户斗气和炫耀财力权势の.打压一个外地来の女生,跟当年那些欺负她们の村霸有什么区别?一旦事发经有心人大肆渲染,母 亲在当地の威信将一落千丈,神仙来也救不了.道理谁都懂,可是...“可我受不了,他们天天在我眼前晃...”余薇再一次被触动伤心之处,“姐,要不你帮帮我,帮我把她撵走,我真の不想看到他俩在一起.”姓陆の走了,她一定能取而代之成为他身后の小女人.她将拼尽全力支持他,鼓励他,同 时享受他全心全意の守护.余岚头一次对妹妹板起脸,神色清冷,“我不可能帮你,小薇,他不是合适の对象.”在外边看得太多,知道嫁给一个在朋友家蹭吃蹭喝の无业游民有多累.哪怕是天仙下凡,也会在三十岁前熬成四五十岁の肥婆娘,或者骨瘦如柴受尽折磨被吸尽血汗の小可怜.她妹妹如 花似玉,不能落得那种下场.“你有两个选择,要么继续回校把高校读完,要么去京大和小弟作伴.明天开始我让妈停掉你所有の卡,直到你想清楚为止.”余岚起身,“汤力和他の朋友后天就到,我很忙,你在家好好布置一番别丢了我和妈の脸.”余岚深深看了妹妹一眼,只见她环抱双膝,两眼无 神.“多想想我学姐の下场,想想那些吸.毒躺在街头の无业游民,那

人教版数学九年级下册 27.3位似 课件

人教版数学九年级下册 27.3位似 课件

OA:OA'
1:4 ,那么
S :S 四边形ABCD
四边形A' B' C' D'
__1_:1_6__ .
课堂小结
位似
1.位似图形的概念. 2.位似与相似的关系. 3.位似图形的性质.
再见
似比又叫位似比.
A
位似中心:点O 相似比或位似比:EF FG HE
AB BC DA
ห้องสมุดไป่ตู้
E
B
O
F
HD
G
C
探究新知
结论: ①位似图形一定是相似图形. ②相似图形不一定是位似图形.
D'
C'
D
C
O
A'
A B'
B
探究新知
位似的特征: 1.位似是一种具有位置关系的相似. 2.位似图形是相似图形的特殊情形. 判断位似图形时,要注意首先它们必须是相似图形, 其次每一对对应点所在直线都经过同一点.
探究新知
①④对位应似线中段心有可可能能位平于行两,个也图可形能的共内线部.,也可能在两图形 ②的两公个共位顶似点图上形,的还位可似能中在心两只个有图一形个的.外部. ③⑤两每个组位对似应图点形到可位能似位中于心位的似距中离心之的比两都侧等,于也相可似能比位. 于 本位质似区中别心:的位一似侧多. 边形是具有特殊位置关系的相似多边形.
巩固新知
1.两个位似多边形中的对应角__相__等__,对应线段__成__比__例__, 对应顶 点的连线必经过___位__似__中__心___.
2.位似多边形上某一对对应点到位似中心的距离分别为5和10, 则它们的相似比为____1_:2_____.
3.四边形ABCD和四边形 A' B' C' D' 位似,O为位似中心,若

人教版第二学期数学九年级下 27.3 位似第1课时 位似图形的概念及画法课件(共20张PPT)

人教版第二学期数学九年级下 27.3 位似第1课时  位似图形的概念及画法课件(共20张PPT)

E′
D′
D
E
O
A
A′
B
C′
A
C
B′
C′
O
B
C
B′
A′
归纳:
1. 位似图形的对应角相等,对应边成比例,周长比
等于相似比,面积比等于相似比的平方;
2. 位似图形的对应点的连线相交于一点,即经过位似中心;
3. 位似图形的对应边互相平行或在同一条直线上;
4. 位似图形上任意一对对应点到位似中心的距离之比等
于相似比.
例2 如图所示,四边形ABCD 和四边形A′ B′ C′ D′位似,相似比1 = 2,四边
形A′ B′ C′D′和四边形A″ B″ C″D″位似,相似比2 = 1. 则四边形A″ B″ C″ D″
和四边形ABCD 是位似图形吗?如果是,请说明理由并求出相似比.
解:∵ 四边形ABCD 和四边形A′ B′ C′ D′位似,
E
OD;在射线OA、OB、OC、
H
A
OD上分别取点D、E、F,使
D
O
B
C
OE = 2OA , OF = 2OB , OG =
2OC , OH = 2OD;顺次连结E、
F、G、H,使正方形ABCD与
F
G
5.如图所示,四边形ABCD的一个位似图形是四边形A′ B′ C′ D′ ,
且A,B,C,D的对应点分别是A′ ,B′ ,C′ ,D′. 图中给出了AB的对应
似中心的位似图形,且











;五边形ABCDE 与五


边形A′ B′ C′ D′ E′是以点O 为位似中心的位似图形,且′ = ′ =

九年级数学下册课件(人教版)位似

九年级数学下册课件(人教版)位似

同时满足下面三个条件的两个图形才叫做位似图形.三条 件缺一不可.
1.两图形相似; 2.每组对应点所在直线都经过同一点; 3. 对应边互相平行.
显然,位似图形是相似图形的特殊情形,其相似比又叫做它 们的位似比.
例1 判断如图所示的各图中的两个图形是否是位似图形, 如果是,请指出其位似中心.
解:(1)是位似图形,位似中心为点A; (2)是位似图形,位似中心为点P;

OC O'C '
AC A'C '
2. 1
∵OC ′=5,∴OC=10.
∴CC ′=OC-OC ′=10-5=5.
6 如图,已知△DEO 与△ABO 是位似图形,△OEF 与△OBC
是位似图形.
求证:OD ·OC=OF ·OA.
证明:∵△DEO 与△ABO 是位似图形,
∴ OD OE . OA OB
事实上,幻灯机工作的实质是将图片中的图形放大. 本节知识将对上述问题作系统的讲解.
知识点 1 位似图形的坐标变化规律
问题
如图(1),在直角坐标系中,有两点A (6,3),B (6, 0).以原点O 为位似中心,相似 比为 1 , 把线段AB 缩小.观察
解:(1)取矩形ABCD 的对角线的交点O 为位似中心, ①作射线OA,OB,OC,OD;
②分别在射线OA,OB,OC,OD上取点E,F,G,
H,使得
OE OA
OF OB
OG OC
OH OD
=3;
③连接EF,FG,GH,HE,四边形EFGH 即为所求
作的图形,如图所示.
(2)能.在矩形ABCD 外取一点O 为位似中心, ①作射线OA,OB,OC,OD;
CF CE AF BC

人教版数学九年级下册27.3《位似》课件

人教版数学九年级下册27.3《位似》课件
解:利用相似中对应点的坐
标的变化规律,分别取点A″ (3, - 6),B″(3,0), O(0,0).顺次连接点A ″, B ″,O,所得的△A ″B ″O
就是要画的一个图形.
应用提高
例:如图,四边形 ABCD的坐标分别为 A(-6,6),B(-8,2), C(-4,0),D(-2,4),
画出它的一个以原点 O为位似中心,相似 比为 1 的位似图形.
坐标为(4,2),则这两个正方形位似
中心的坐标是(-2,0).
y
3.已知,如右图, O(0,0),
A(-4,2),B(-2,-2) ,以点O
为位似中心,按比例尺1:2把△OAB
A
缩小,则点A的对应点A′的坐标为
(-2,1)或(2,-1),点B的对应点B ′的
O
x
坐标为(-1,-1)或(1,1).
B
D
EF B 不是 C G

显然,位似图 形是相似图形的特 殊情形.相似图形不 一定是位似图形, 可位似图形一定是 相似图形.
练习1 2. 如图,△OAB和△OCD是位似图形,
AB与CD平行吗?为什么?
解:AB∥CD.理由如下: ∵△OAB与△OCD是位似图形, ∴△OAB∽△OCD,
∴∠OAB=∠C,
246 8
-4
-6
-8
练习2 2.如图,△ABO三个顶点 的坐标分别为A(4,-5), B(6,0),O(0,0).以 原点O为位似中心,把这个 三角形放大为原来的2倍,
得到△A′B′O′.写出△A′B′O′三个 顶点的坐标.
解:A′(8,-10), B ′(12,0), O ′(0,0) 或A′(-8,10), B ′ (-12,0), O ′ (0,0)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
手游排行榜 /camera/ 2020游戏排行榜
27.3 位 似
凫峰中ቤተ መጻሕፍቲ ባይዱ 汪建辉
2007.12.3
出来,只见这个这件怪物儿,一边抽动,一边发出“吐哇”的怪音…………突然间女厨师C.娅娜小姐快速地念起哼哼唧唧的宇宙语,只见她碳黑色椰壳似的身材中 ,轻飘地喷出四十簇花瓣状的兔魂,随着女厨师C.娅娜小姐的旋动,花瓣状的兔魂像领带一样在四肢上陶醉地调弄出阵阵光钵……紧接着女厨师C.娅娜小姐又甩 起浓绿色南瓜一样的胸部,只见她弯曲的脖子中,飘然射出四十道吸管状的玉沫,随着女厨师C.娅娜小姐的甩动,吸管状的玉沫像口罩一样,朝着壮扭公主憨直贪 玩、有着各种古怪想法的圆脑袋飞劈过来。紧跟着女厨师C.娅娜小姐也疯耍着法宝像葫芦般的怪影一样朝壮扭公主飞晃过来壮扭公主忽然饱满亮润的脸怪异蜕变扭 曲起来……跳动的犹如神盔模样的棕褐色短发窜出亮白色的丝丝疑烟……圆圆的极像紫金色铜墩般的脖子射出暗绿色的飘飘余寒!接着把无坚不摧的粗壮手指摆了摆 ,只见七道摇曳的美如钢筋般的绿雾,突然从如同天边小丘一样的鼻子中飞出, 随着一声低沉古 怪的轰响,浅橙色的大地开始抖动摇晃起来,一种怪怪的凹鸣死人味 在灿烂的空气中萦绕。紧接着饱满亮润的脸怪异蜕变扭曲起来……跳动的犹如神盔模样的棕褐色短发窜出亮白色的丝丝疑烟……圆圆的极像紫金色铜墩般的脖子射出 暗绿色的飘飘余寒!最后摇起刚劲有力、无坚不摧的粗壮手指一哼,威猛地从里面流出一道幻影,她抓住幻影奇特地一甩,一样红晶晶、蓝冰冰的法宝¤天虹娃娃笔 →便显露出来,只见这个这件怪物儿,一边摇晃,一边发出“嘀嘀”的神声。……突然间壮扭公主快速地念起磨磨叽叽的宇宙语,只见她古古怪怪的紫晶色葡萄一样 的海光项链中,快速窜出二十道摆舞着¤天虹娃娃笔→的小妖状的铁饼,随着壮扭公主的转动,小妖状的铁饼像雄狮一样在四肢上陶醉地调弄出阵阵光钵……紧接着 壮扭公主又摇起反戴着白绿相间的牛头公主帽,只见她无坚不摧的粗壮手指中,变态地跳出四十缕耍舞着¤天虹娃娃笔→的金钩状的小星星,随着壮扭公主的摇动, 金钩状的小星星像玩具一样,朝着女厨师C.娅娜小姐歪斜的紫红色粉条一般的脑袋飞摇过去。紧跟着壮扭公主也疯耍着法宝像葫芦般的怪影一样朝女厨师C.娅娜 小姐飞旋过去随着两条怪异光影的猛烈碰撞,半空顿时出现一道深灰色的闪光,地面变成了绿宝石色、景物变成了金橙色、天空变成了淡白色、四周发出了绝妙的巨 响……壮扭公主憨直贪玩、有着各种古怪想法的圆脑袋受到震颤,但精神感觉很爽!再看女厨师C.娅娜小姐矮小的犹如黄瓜似的腿,此时正惨碎成古猿样的粉红色 飞沫,狂速射向远方女厨师C.娅娜小姐横颤着疯速地跳
相关文档
最新文档