3-7 一阶电路的三要素法

合集下载

一阶暂态电路三要素法和

一阶暂态电路三要素法和

一阶暂态电路三要素法和一阶暂态电路是指由电阻、电感和电容组成的电路,在初始状态下有一个初始电压或电流,当电路发生突变时,电压或电流会发生暂态响应。

为了研究电路的暂态响应,我们可以使用一阶暂态电路三要素法。

一阶暂态电路三要素法是一种用于分析一阶暂态电路响应的方法,它通过确定电路的三个要素:时间常数、初始条件和输入信号来推导电路的暂态响应。

时间常数是一阶暂态电路的一个重要参数,它描述了电路响应的速度。

对于由电阻R和电容C组成的一阶电路,时间常数τ可以通过以下公式计算:τ = RC。

时间常数越小,电路的响应速度越快。

初始条件是指在初始状态下电路的电压或电流值。

在分析一阶暂态电路时,我们需要知道电路在初始时间点的电压或电流值,这些值可以通过测量或已知条件来确定。

输入信号是指施加在电路上的信号。

输入信号可以是电压或电流的变化,它会引起电路的响应。

在分析一阶暂态电路时,我们需要知道输入信号的形式和参数,例如输入信号的幅值、频率和相位。

通过确定时间常数、初始条件和输入信号,我们可以使用一阶暂态电路三要素法来推导电路的暂态响应。

首先,我们可以根据时间常数来判断电路的响应速度。

如果时间常数很小,电路的响应会很快;如果时间常数很大,电路的响应会比较慢。

我们可以根据初始条件来确定电路的初始状态。

初始条件可以是电路的初始电压或电流值。

通过测量或已知条件,我们可以确定电路在初始时间点的初始条件。

我们可以根据输入信号的形式和参数来计算电路的暂态响应。

根据输入信号的幅值、频率和相位,我们可以计算出电路在不同时间点的电压或电流值。

总结一下,一阶暂态电路三要素法是一种用于分析一阶暂态电路响应的方法。

通过确定时间常数、初始条件和输入信号,我们可以推导出电路的暂态响应。

这种方法可以帮助我们更好地理解和分析一阶暂态电路的行为,对于工程实践中的电路设计和故障排除非常有用。

一阶动态电路的全响应及三要素法

一阶动态电路的全响应及三要素法

1 2
高阶动态电路的全响应研究
本文主要研究了一阶动态电路的全响应,未来可 以将研究扩展到高阶动态电路,探讨其全响应的 特点和求解方法。
复杂电路系统的分析方法研究
针对更复杂的电路系统,需要研究更为有效的分 析方法,以提高电路分析的准确性和效率。
3
非线性电路的动态响应研究
在实际应用中,非线性电路的动态响应也是一个 重要的问题,未来可以开展相关的研究工作。
结果讨论与误差分析
结果讨论
根据求解出的全响应表达式,分析电 路在不同时间点的响应情况,讨论电 路的工作特性。
误差来源
分析在求解过程中可能出现的误差来 源,如元件参数的测量误差、计算误 差等。
误差影响
讨论误差对求解结果的影响程度,以 及如何通过改进测量方法、提高计算 精度等方式来减小误差。
实际应用中的考虑
在实际应用中,还需要考虑其他因素 对电路响应的影响,如环境温度、电 磁干扰等。
05 实验验证与仿真模拟
实验方案设计
设计思路
基于一阶动态电路的基本原理,构建实验电路并确定测量参数。
电路搭建
选用合适的电阻、电容、电感等元件,搭建一阶动态电路。
测量方法
采用示波器、电压表、电流表等仪器,测量电路中的电压、电流 等参数。
03 三要素法原理及应用
三要素法基本概念
三要素法定义
一阶动态电路的全响应由初始值、 稳态值和时间常数三个要素决定,
通过求解这三个要素可快速得到 电路的全响应。
适用范围
适用于线性、时不变、一阶动态电 路的全响应分析。
优点
简化了电路分析过程,提高了求解 效率。
初始值、稳态值和时间常数求解方法
01
02

一阶电路三要素法

一阶电路三要素法

R0 6 / /3 2k
uC
R0C 2
18 (5
103 2106
4
1
8
)e
t 41 0
3
4
103
18 3
s 9mA
6e250
t
R 6k
3k
恒流源除源
1)求电容电压
uC 18 (
uC;
54
1
8
)e
t 41 0
3
54V
uC
2)求电流 iC、 i;2
18V
iC
C duC dt
①确定 uC (0 ) uC (0 ) 54 V
②确定 uC ()
由换路后稳态电路求稳态值 uC ()
uC
(
)
9
10
36 63 3来自10318 V
③由换路后电路求时间常数
9mA R
6k
t=0 S
uC
+ _
iC
2F
C
i2
3k
9mA
R 6k
+
uC
(
) _
3k
换路后,储能元件两端求等效电阻R0
t∞ 电路
对一阶电路的求解,只需求出初始值 f (、0稳) 态值 要素,代入通用表达式即可直接写出电压或电流的通解
f和(换)路后的时间常数三个
——三要素法
例1:电路如图,S闭合前电路已处于稳 态。t=0时合上开关S,试求
1)电容电压 u;C
2)电流 iC 、 i;2
3)画出 uC、 iC、 i变2 化曲线。
2 、三要素法求解暂态过程要点
(1)求初始值、稳态值、时间常数
1)初始值 f (0 )的计算

3-7 一阶电路的三要素法

3-7 一阶电路的三要素法
9.6 (9 9.6)e
t 4


t


t 4
9.6 0.6 e V , t 0+
X
求开关闭合后: 已知uC (0 ) 6V,开关闭合前电路处于稳态, 1)电容电压的全响应、稳态响应、暂态响应、 例题3 零输入响应、零状态响应,并画其波形图。
2) 24k 电阻上的电压uR (t )。
X
解(续) 求:2)电压表读数达到最大值的时间;
di2 (t ) u(t ) R1i1 (t ) L dt
1 t R1C R 2t L
i (t )
S (t 0)
R2
C
u (t )
V
s
U s (e e ), t 0 U du(t ) 当 0 时u(t ) 达到最大值,此时有 dt 1 1 R2 R t t t 2t R 1 L e R1C 2 e L e R1C R1 R2e L R1C L C
16 V

i 2
1
5i
1
5H
b
S ( t 0)
与电感相连的等效内阻为: Req 1 0.25 1.25 电路的时间常数为: L 5 = 4s Req 1.25
2
iab

i
1
5i
uab

X
解(续)
(5)写出uab (t ) 函数表达式。
uab (t ) uab () [uab (0 ) uab ()]e
暂态分量 稳态分量

t
X
例题1
已知RL电路中的电压源电压如图所示,且iL (0 ) 0, 求t 0时的i (t ) ,并绘出变化曲线。

一阶电路三要素法的公式

一阶电路三要素法的公式

一阶电路三要素法的公式
一阶电路三要素法是一种对一阶电路进行分析的方法,它可以将一阶电路分解为三个简单元件:电阻、电感和电容。

其中,电阻是一种能够吸收运动电流,产生热量和电势差的元件;电感是一种在电路中存在的磁场,并能够存储能量的元件;而电容则可以在电路中存储电荷,具有调节电路的功能。

一阶电路三要素法的公式主要分为以下几个部分:
第一,电阻R:R=V/I,其中V为电压,I为电流。

第二,电感L:L=U/I,其中U为电势差,I为电流。

第三,电容C:C=Q/V,Q为电荷,V为电压。

第四,电路总模型:V=RI+L(dI/dt)+Q/C,其中V为电压,R为电阻,I为电流,L为电感,Q为电荷,C为电容。

第五,电路增益:A=Vout/Vin,Vout为输出电压,Vin为输入电压。

第六,电路阻抗:Z=V/I,V为电压,I为电流。

第七,电路时间常数:τ=L/R,L为电感,R为电阻。

以上就是一阶电路三要素法的公式,它可以用来分析一阶电路的不同特性,如电阻、电感、电容、增益、阻抗以及时间常数等。

要使用一阶电路三要素法,首先应该确定电路中所有组成元件的电压、电流和电荷。

然后,根据上述公式,依次计算电阻、电感、电容、增益、阻抗和时间常数,最终形成一个完整的一阶电路模型。

通过一阶电路三要素法,我们可以更好地理解电路,并给出有效的解决方案,可以大大提高工作的效率。

《电路基础》第15讲 一阶电路的三要素公式 (1)

《电路基础》第15讲 一阶电路的三要素公式 (1)

∴ uc(t)=12(1-e-10t) t≥0
5
例2 k(t=0)
15V
i
1
1
2
iL 15V
作t=0+时的等效电路:
求 i(t) t≥0
解: 三要素法
3H ①
15 2
iL (0+ ) = iL (0 ) = 5
• = 6( A) 3
3
2
i(0+ ) = 5 + (6)* 3 = 1(A)
i(0+)
结束
作业:P192 3-28 预习: 阶跃函数和阶跃响应
21
初始值~最终值(稳态值)。
②同一个电路,u、 i的变化由同一个τ决定。
3、三要素求解:
①f(0+): 初始值,独立和非独立初始条件求解。 t=0-,C开路,L短路。零状态时,C短路,L开路。
②f(∞): 特解,稳态值,最终值。C开路,L短路
③τ: = RC = LG 3
例1
已知: t=0时合上开关
由图可见,从电容两端看去的等效电 阻为2Ω, 所以τ=RC=0.5s。
于是按三要素得t≥1.5s的电路响应为
uC (t)=5.32e2(t 1.5 ) (V)
t≥1.5s
u1(t)=0
t≥1.5s
t>1.5s时的电路
19
t>1.5s时的电路 0<t<1.5s时的电路
20
第15讲 一阶电路的三要素公式
(1) 如在t=0时,开关S由“1”闭合到“2”,求t≥0时电压uC 和u1的零输入响应、零状态响应以及全响应;
(2)如在t=0时,开关S由“1”闭合到“2”,经过1.5s后, 开关又由“2”闭合到“3”,求t≥0时的电压uC和u1 。

一阶动态电路的三要素法

一阶动态电路的三要素法

感谢您的观看
THANKS
应,并了解电路的性能。
03 三要素法可以帮助我们更好地理解和设计一阶动 态电路。
04 三要素法在一阶动态电路 中的应用
电容电压的计算
总结词
通过三要素法,可以计算出电容电压 的初始值、稳态值和时间常数。
详细描述
在三要素法中,电容电压的初始值可 以通过初始条件计算得出,稳态值则 根据换路定律确定,而时间常数是电 路中电容器充放电的时间。
研究不足与展望
虽然三要素法在分析一阶动态电路方面取得了显著成果,但仍存在一些局限性,例如对于高阶动态电 路的分析仍需进一步研究。
目前对于三要素法的理论研究相对成熟,但在实际应用方面仍需加强,特效率。
未来研究可以探索将三要素法与其他电路分析方法相结合,以拓展其应用范围和提高分析精度,同时也 可以研究如何将三要素法应用于其他领域,如控制系统、信号处理等。
实例二:简单RL电路的响应分析
总结词
RL电路的响应分析
详细描述
RL电路由一个电阻R和一个电感L组成,其 响应也可以通过三要素法进行计算。根据三 要素法,RL电路的响应由初始值、时间常数
和稳态值三个要素决定。初始值是电感在 t=0时的电流或电压值,时间常数是RL的乘 积,稳态值是当时间趋于无穷大时的电流或
背景
在电子工程和电路分析领域,一阶动态电路是常见的基本电路之一。了解一阶动态电路的响应特性对于电子设备 和系统的设计、分析和优化具有重要意义。三要素法作为一种有效的分析方法,广泛应用于一阶动态电路的分析 和设计中。
研究目的和意义
研究目的
通过研究一阶动态电路的三要素法,旨在深入理解一阶动态电路的响应特性,掌握三要 素法的应用技巧,提高分析和解决实际电路问题的能力。

一阶电路分析的三要素法

一阶电路分析的三要素法

一阶电路分析的三要素法采用“三要素法”分析一阶电路,可以省去建立和求解微分方程的复杂过程,使电路分析更为方便和高效。

适用于直流激励一阶电路的三要素法我们仍以简单一阶RC 电路为出发点。

图1 所示RC 电路的全响应结果如下:图1 一阶RC电路图( 1 )( 2 )由图1 容易知道,电容电压的初值为,电容电压的终值为;而电流的初值为,电流的终值为。

观察式( 1 ) 、式(2) 可见,一阶电路中任意电路变量的全响应具有如下的统一形式:( 3 )可见,为求解一阶电路中任一电路变量的全响应,我们仅须知道三个要素:电路变量的初值、电路变量的终值以及一阶电路的时间常数。

我们称式( 6-5-3 ) 为一阶电路分析的三要素法。

三要素法同样适用于一阶RL 电路,但是二阶以上动态电路不可采用此法。

推广的三要素法在前面分析一阶电路时,我们采用的独立源具有共同的特点,即所有独立源均为直流(直流电压源或直流电流源)。

对于直流激励电路,换路前电路变量为稳定的直流量,换路后经历一个动态过程,电路变量过渡到另外一个稳定的直流量。

我们容易根据电路的原始状态和电路结构确定电路变量的初值f(0+)、电路变量的终值f(∞)以及一阶电路的时间常数。

如果电路中激励源不是直流,而是符合一定变化规律的交流量(如正弦交流信号),则换路后电路经历一个动态过程再次进入稳态,此时的稳态响应不再是直流形式,而依赖于激励源的信号形式(如正弦交流信号)。

此时,我们无法确定电路变量的终值f(∞),故无法采用式( 3 ) “三要素法”确定一阶电路全响应。

对于这类一阶电路,我们可以采用推广的三要素法:〔4 )式中,为全响应的初值、为电路的稳态响应、τ为电路的时间常数,称为一阶线性电路全响应的三要素,为全响应稳态解的初始值。

“三要素”的计算与应用利用三要素法分析一阶电路的全响应时,必须首先计算出电路变量的初值、电路变量的终值以及一阶电路的时间常数。

假设激励源为直流电压源或电流源。

三元素法分析一阶电路的全响应

三元素法分析一阶电路的全响应

三元素法分析一阶电路的全响应电路论文学院:电子信息工程学院班级:电气091502班姓名:***学号:************三元素法分析一阶电路的全响应摘要:本文主要介绍用三元素法分析解决一阶电路问题。

用三元素法求一阶电路问题首先要求出三元素:初始值,稳态值,时间常数,用三元素法可以直接代入公式求解,求解过程简单。

关键词:一阶电路 三元素法一、 全响应定义当一个非零初始状态的一阶电路受到激励时,电路的响应称为一阶电路全响应。

全响应总是由初始值、特解和时间常数三个要素决定的。

二、 三元素法的基本原理一阶电路的数学模型是一阶线性微分方程: 其解答一般形式为:令 t = 0+ 全响应f (t )的三要素求解公式为f (t )=f (∞)+[f (0+)-f (∞)]e -t/τ其中,f (0+)为t=0+时刻的初始值,f (∞)为t →∞时的特解稳态值,τ为t ≥0时的时间常数。

f (0+)、f (∞)和τ称为三要素。

只要知道f (0+)、f (∞)和τ这三个要素,就可以根据上述公式直接写出直流激励下一阶电路的全响应,这种方法称为三要素法。

三、 三元素法的解题步骤⒈ 求初始值 ⑴ 初始值定义t=0+时电路中电压与电流的值称为初始值。

⑵ 初始值的求解① 由换路前电路(稳定状态)求u C (0-)和i L (0-); ② 由换路定律得 u C (0+) 和 i L (0+)。

③ 画0+等效电路。

c bf tfa=+d d τteA t f t f -+'=)()(a.换路后的电路b.电容(电感)用电压源(电流源)替代。

(取0+时刻值,方向与原假定的电容电压、电感电流方向相同)。

④由0+电路求所需各变量的0+值。

⒉求稳态值⑴稳态值的定义t=∞时电路中电压与电流的值称为稳态值。

⑵稳态值的求解稳态时,电容C视为开路,电感L视为短路,稳态值即求直流电阻性电路中的电压和电源。

⒊求时间常数τ⑴时间常数τ的定义当电阻的单位为Ω,电容的单位为F时,乘积RC的单位为s,称为RC电路的时间常数,用τ表示。

电路分析基础实验三:一阶电路三要素法实验报告

电路分析基础实验三:一阶电路三要素法实验报告

实验三:一阶电路三要素法
一.实验内容及要求
1.使用Multisim仿真电路的全响应过程。

2.利用Multisim的虚拟仪器分析电路的全响应过程。

二.实验要求
1.掌握一阶电路的三要素法。

2.掌握Multisim仿真电路的全响应过程的方法。

三.实验设备
PC 机、Multisim 软件
四.实验步骤
1.使用Multisim绘制电路原理图:从元器件库中选择所需元件,设置相应元件参数,从仪器仪表库中选择双通道示波器,用导线正确连接,绘制仿真电路原理图lo
图1仿真电路原理图
2.仿真测试电路原理图1:打开示波器设置相关参数,使用菜单栏中的Simulate
f Run命令进行仿真,使用菜单栏中的Simulate-Stop命令停止仿真,观察并记录示波器显示的波形。

波器显示的波形如下图:
3.改变仿真电路原理图1中电阻和电容的参数,使R1=1KQ,C1=1OMF,按照步骤2的方法,重新仿真测试电路,观察并记录示波器显示的波形。

仿真电路原理图2 波器显示的波形如下图:。

5.5 一阶电路的全响应和三要素法

5.5 一阶电路的全响应和三要素法

1)着眼于电路的两种工作状态
全响应 = 强制分量(稳态解)+自由分量(暂态解)
t
t
-
-
uC US Ae US (U0 - US )e t 0
强制分量 (稳态解)
自由分量 (暂态解)
第3 页
2)着眼于因果关系
全响应 = 零状态响应 + 零输入响应
t
t
-
-
uC US(1 - e ) U0e
0
-
- iL e
2
1 - e-5t
A
第 27 页
(3)叠加
iL
1H +
10V –
5
i
uR
S
uC
2 0.25F
uR = uC
i
t
iL
t
uR t
2
iL t uC t
2
2
1 - e-5t
5e-2t
A
第 28 页
例题 已知:电感无初始储能t = 0 时合S1 , t =0.2s时合S2 ,求 两次换路后的电感电流i(t)和电感电压u(t) 。
(t 0)
零状态响应
零输入响应
S(t=0) R
+
US
C

uC (0-)=U0
S(t=0) R
+
US
C
+

uC (0-)= 0
S(t=0) R C
uC (0-)=U0
第4 页
例题 t=0时开关S闭合,求t >0后的iC、uC及电流源两端的电压。 (uC (0- ) 1V,C 1F)
1
1
1
+

三要素法求一阶电路的响应

三要素法求一阶电路的响应

r(t) 三要素公式的 r(t)
r()
响应波形曲线
r(0+) r()<r(0+)
r()>r(0+)
r(0+)
r()
t
t
可见,直流激励下一阶电路中任一响应
总是从初始值 r(0+) 开始,按照指数规
律增长或衰减到稳态值r(),响应的快
慢取决于的时间常数 。
注意:(1) 直流激励; (2)一阶电 路任一支路的电压或电流的(全)响应 ; (3)适合于求零输入响应和零状 态响应。
输出电阻,它是三个电阻的并联
3 i(t)
1A
2
+
+
uC 6 9V
-
-
时间常数为
4,将初始值、终值及时间常数代 入三要素公式,得到响应表达式:
电路与模拟电子技术
-
解:1,计算初始值uC(0+)、i(0+) 零状态电路,由换路定则得:
画0+图如右,分流解得: a + u (0+) -
2A 4
4
i(0+)
则: uC(0+)=4V 2,计算稳态值u()、i() b
+ u ( ) -
t→,电路重新达 2A 4 4 到稳定,电容开路,
终值图如右,得:
i( )
u()=0 i() =2A
3,计算时间常数 电容相连接的等效电阻:R=8Ω
时间常数为
代入三要素公式得:
例2-10 求u(t)。已知:
t=0 + u +
1A 1 0.5F u- C
1H iL
+
2
u(t)

一阶电路的三要素分析法

一阶电路的三要素分析法

后如果使用智慧盒供电连线如图6-2-17所示,使用NEWLab底座供电连接如图6-2-18所示,将st-link仿
真器的20PIN的头与M3主控模块的J1脚相连。
图6-2- 16 ST-LINK仿真器
图6-2- 17 智慧盒供电
图6-2- 18 底座供电
步骤2 打开仿真器下载软件STM32 ST-LINK Utility如右图所示。 步骤3 打开软件后,点击界面中Program verify,如下图所示。
《电路分析与实践项目化教程》
简单低通滤波电路的设计
直流激励下的一阶动态电路分析
一阶电路的三要素分析法
《电路分析与实践项目化教程》
目录
CONTENTS
1 什么是一阶电路的三要素 2 一阶电路三要素法的解题步骤 3 一阶电路三要素法的实例
一、什么是一阶电路的三要素
电路变量由初始值向新的稳态值过渡,并且按照指数规律逐渐趋向 新的稳态值,而过渡的快慢取决于时间常数。因此我们把初始值、稳 态值、时间常数称为一阶动态电路的三要素。一阶电路的全响应为:
f (t) = f (∞) + [f (0+)-f (∞) ] e -t/τ 式中f (t) -----电路中任意处的电压或电流
f (∞) -----电压或电流的稳态值 f (0+) ----换路后一瞬间电压或电流的初始值
τ-------电路的时间常数
一 二、一过阶渡电过路程三要素法的解题步骤
三要素法解题步骤如下: (1)确定电压或电流初始值f (0+)
步骤6 点击下一步
步骤7 选择STM32F1_High-density_512K,点击下一步
步 骤 8 选择download to device选项,选择需要下载的固件地址,并选择Erase necessary

第14讲 一阶电路的三要素公式

第14讲 一阶电路的三要素公式
uL (∞)=0
i1(∞)= i2(∞)=0
(3)求
L1
R 2
(s)
t
(4)代入三要素公式求各响应 iL(t)= iL (∞)+[ iL(0+)- iL (∞) ]e i1(t)= i1 (∞)+[ i1(0+)- i1 (∞) ]e i2(t)= i2 (∞)+[ i2(0+)- i2 (∞) ]e
当t≥1.5s时,开关闭合于“3”,如图
uC (1.5-) =8-12e-1.5=5.32 u1 (1.5+) =0
uC (1.5+) = uC (1.5-) =5.32 V
显然,各电压稳态值均为零。
t=1.5+s等效电路
由图可见,从电容两端看去的等效电 阻为2Ω, 所以τ=RC=0.5s。
于是按三要素得t≥1.5s的电路响应为 uC (t)=5.32e2(t 1.5 ) (V) u1(t)=0 t≥1.5s t≥1.5s t>1.5s时的电路
t 0
t 0
t/ t/ = 8(1 e t ) = 8 4e t t0 t 0
(2) 在t=0时,开关S由“1”闭合到“2”,经过 1.5s后,开
关又由“2”闭合到“3”。 在0≤t<1.5s区间,开关位于“2”,仍有 uC(t)=8-12 e-t (V) u1(t)=8-6 e-t (V) 下面求t ≥1.5s时的响应: 0≤t<1.5 s 0≤t<1.5s t>1.5s时的电路 V
i (A) 5 2
i(0.2 ) 2 2e 50.2 1.26
i (0.2 ) 1.26 2 0.5 i ( ) 5 A
i (t ) 5 3.74e 2( t 0.2) A

一阶电路的三要素法公式

一阶电路的三要素法公式

一阶电路的三要素法公式
其中:
- f(t)为电路中所求的响应(电压或电流)。

- f(0_+)为响应的初始值,即换路后瞬间t = 0_+时的值。

- f(∞)为响应的稳态值,即t→∞时的值。

- τ为一阶电路的时间常数,对于RC电路τ = RC,对于RL电路τ=(L)/(R)(这里R为从储能元件(电容C或电感L)两端看进去的戴维南等效电阻)。

在使用三要素法求解一阶电路时,一般按照以下步骤:
1. 求初始值f(0_+):
- 首先根据换路前的电路(t = 0_-时的电路)求出储能元件(电容电压
u_C(0_-)或电感电流i_L(0_-))的初始值。

- 然后根据换路定律(u_C(0_+) = u_C(0_-),i_L(0_+)=i_L(0_-))确定换路后瞬间电容电压和电感电流的值。

- 再根据换路后瞬间的电路(t = 0_+时的电路),利用电路的基本定律(如欧姆定律、基尔霍夫定律等)求出所求响应的初始值f(0_+)。

2. 求稳态值f(∞):
- 画出换路后t→∞时的电路,此时电容相当于开路(i_C(∞)=0),电感相当于短路(u_L(∞)=0)。

- 利用电路的基本分析方法(如电阻的串并联化简、欧姆定律、基尔霍夫定律等)求出所求响应的稳态值f(∞)。

3. 求时间常数τ:
- 对于RC电路,τ = RC,其中R为从电容两端看进去的戴维南等效电阻。

- 对于RL电路,τ=(L)/(R),其中R为从电感两端看进去的戴维南等效电阻。

最后将f(0_+)、f(∞)和τ代入三要素法公式f(t)=f(∞)+[f(0_+) - f(∞)]e^-(t)/(τ)中,即可求出一阶电路的响应f(t)。

一阶电路的三要素法

一阶电路的三要素法

一阶电路的三要素法
上式可写成:
在直流激励下,电路的任意一个全响应可用f(t)表示,则:
一阶电路暂态分析的三要素法
式中f(t)分代表一阶电路中任一电压、电流函数。

结论
依据三要素,可直接写出一阶电路在直流激励下的全响应,这种方法称为三要素法。

适用范围:激励为直流和正弦沟通。

三要素法求解暂态过程要点:
(1)分别求初始值、稳态值、时间常数;
(2)将以上结果代入暂态过程通用表达式;
(3)画出暂态过程曲线(由初始值→稳态值)。

(电压、电流随时间变化的关系)
1.初始值的计算
步骤: (1)求换路前的
(2)依据换路定则得出:
(3)依据换路后的等效电路,求其它的或
2.稳态值的计算
步骤:(1)画出换路后的等效电路(留意:在直流激励的状况下,稳态时令C开路,L短路);
(2)依据电路的解题规律,求换路后所求未知数的稳态值。

注: 在沟通电源激励的状况下,要用相量法来求解。

求稳态值举例
3.时间常数的计算
原则:要由换路后的电路结构和参数计算。

(同一电路中各物理量的是一样的)
步骤:(1)对于只含一个R和C的简洁电路,对于较简单的一阶RC电路,将C以外的电路,视为有源二端网络,然后求其等效内阻R'。

则:
(2)对于只含一个L 的电路,将L 以外的电路,视为有源二端网络,然后求其等效内阻R'。

则:
RC 电路τ的计算举例
例9.
RL 电路τ 的计算举例
例10.
例11.
已知t = 0时合开关S,求换路后的uC(t)。

解:。

一阶电路三要素法公式

一阶电路三要素法公式

一阶电路三要素法公式
一阶电路三要素法公式是由美国物理学家威尔逊在1925年提出的,是用来计算一阶电路中电流、电压和功率的最基本的工程原理。

这个公式可以用来解决一般的一阶电路的基本问题,常用于生成各种信号的模拟电路。

一阶电路三要素法公式是:I=V/R,其中I代表电流,V代表电压,R代表电阻。

这个公式的意思是,在一个电路中,如果电压V和电阻R都是已知的,那么电流I就可以根据这个公式来计算出来。

而且,根据电路三要素法,电流I也可以用来计算电压V。

由于在电路中,当电流增加时,电阻会降低,这样电压V就会增加。

所以,根据三要素法,可以将电流I和电阻R代入公式,来计算出相应的电压V,即V=IR。

此外,还可以用三要素法来计算功率P。

在电路中,功率P是电流I和电压V之间的乘积,即P=IV。

所以,根据三要素法,将电流I和电压V代入公式,可以计算出相应的功率P,即P=IRV。

总之,电路三要素法公式是一种非常重要的工程原理,它可以用来计算一阶电路中的电流I、电压V和功率P。

它的公式是:I=V/R,V=IR,P=IRV,这些公式都是根据电路中电流、电压和功率之间的关系来推导出来的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S (t 0) 12k 12k


60 V 24k uR uC 0.5 F
12k 12k 60 V 24k uR (0 )
6V
2)方法一:直接应用三要素法 12 / /24 12 / /24 由叠加定理:uR (0 ) 60 6 26.4V 12 12 / /24 12 12 / /24
2)方法一:根据电路结构和元件的VCR
uR (t ) 12 103 iC (t ) uC (t ) duC (t ) 12 10 C uC (t ) dt 40 13.6e 100 t V, t 0
3
X
解(续) 2) 求24k 电阻上的电压uR (t )。
2. 求稳态值 y
画 等效电路,求出y ()。 注意:此时电容开路,电感短路。
X
一阶电路的三要素法解题步骤
3. 求时间常数
求 t 0时含源单口网络 N 1的戴维南等效电阻 或诺顿等效电阻 R0。
L R0C 或 R0 4. 写出所求变量的函数表达式
y (t ) [ y (0) y ()] e
uab ( ) 1
b
X
解(续)
(4)求等效内阻Req 和时间常数
a i 2
uab 1 (i 5i iab ) uab 2i uab 4uab iab Rab 0.25 iab
Req 1 0.25 1.25
16 V
1
5i
1
S (t 0)
0
0
),
1 e t0
2
i (t ) / A
2(1 e
t0
)e
( t t0 )
A t0
0
t0
t/s
(只有z.i.r )
X
例题2 已知t 0 时电路处于稳态,求t 0 时的uab (t ).
解: (1)画0 等效电路,求出i L (0 )
KCL:i L (0 ) i (0 ) 5i (0 ) 6i (0 )
1 1 1 ) Us ( ) Us 2 4 4
X

1 t ln 2 R1C
R1C ln 2 R1C R2 R1C ln 2 L
t R1C ln 2时电压表读数达到最大值。
3)u(t ) U s (e U s (e
1 t R1C
e

R2 t L
)
t R1C ln 2
U s (e
e

)
ln 2
e
2 ln 2
与电容连接的等效电阻为:
24 uC ( ) 60 40V 12 24
12 24 Req 12 20k 12 24


60 V 24k uR uC 0.5 F
Req C 20 103 0.5 106 0.01s
解:
电压表内阻无限大 电压表连接的两节点间相当于开路 R2 和L,R1 和C 支路与电压源都构成充电回路。
i (t )
1)当电路达到稳态时,有 i2 () U s / R2 uC () U s
S (t 0)
R2
u (t )
V
C
Us
L
i2 i 1
R1
X
解(续)
Us i2 ( t ) (1 e R2 uC (t ) U s (1 e
uab (0 )
1 i (0 ) 5i (0 ) i L (0 ) 9V

i (0 )
2 5i (0 ) 1 uab (0 ) 16 V 1 i L (0 ) b
X
解(续)
(3)画 等效电路,求出uab ()
a i 2
uab ( ) (1/ /1) 6i ( ) 3i ( )
2i ( ) uab ( ) 16
16 V
1
5i
1
S (t 0)
b
5H
5i ( ) 16 i ( ) 3.2A
uab ( ) 9.6V


i ( )
2
5i()
a
16 V 1
y (t ) y ( ) [ y (0 ) y ( )]e

t

t 0
三要素法不仅适用于状态变量,也适用于非状态变 量。
X
一阶电路的三要素法解题步骤
1. 求初值 y (0)
(1) 画0等效电路,求出uC (0 ) 或i L (0 )。 注意:此时电容开路,电感短路。 (2) 画0 等效电路,求出y (0 )。 此时电容用电压值为uC (0 ) uC (0 )的电压源置换, 电感用电流值为i L (0 ) i L (0 ) 的电流源置换。
暂态分量

t

y ( )
稳态分量
X
例题1
已知RL电路中的电压源电压如图所示,且i L (0 ) 0, 求t 0时的i (t ) ,并绘出变化曲线。
解: 激励只作用于(0, t0 ) 区间,所以需要分段求响应。
0 t t0:

i (0 ) i L (0 ) 0


L 2 i ( ) 2A 1s R 1 t i (t ) i ( )(1 e )
R 2t L
i (t )
)
S (t 0)
R2
u (t )
V
C
1 t R1C
)
1 t R1C
Us
L
i2 i 1
R1
duC (t ) U s i1 (t ) C e dt R1
Us i (t ) i1 (t ) i2 (t ) e R1

1 t R1C
Us (1 e R2
X
解(续)
uC (t ) uC ( ) [uC (0 ) uC ( )]e 40 ( )e 6 40 40 34e
100 t 100 t t


V, t 0 40

uC (t ) / V
V, t 0
100 t
稳态响应为: 40V, t 0 暂态响应为: 34e
§3-7 一阶电路的三要素法
北京邮电大学电子工程学院 2011.2
退出
开始
§3-7 一阶电路的三要素法
零输入、零状态法:
uC (t ) uCz .i .r (t ) uCz .s.r (t ) U 0e
1 t

U s (1 e
1 t

) t0

经典法:uC (t ) uCh (t ) uCp (t )
6

V, t 0
0
t/s
零输入响应为: 6e 100 t V, t 0
34
零状态响应为: 40(1 e 100 t )V, t 0
X
解(续) 2) 求24k 电阻上的电压uR (t )。
S (t 0) 12k 12k


60 V 24k uR uC 0.5 F
9.6 0.6 e V
t 4

t


t 4
X
例题3 1)电容电压的全响应、稳态响应、暂态响应、
零输入响应、零状态响应,并画其波形图。 2) 24k 电阻上的电压uR (t )。
已知uC (0 ) 6V,求开关闭合后:
解: 1)uC (0 ) uC (0 ) 6V


S (t 0) 12k 12k
R1 R2
L
i2 i 1
R1
e
2L C

1 t R1C
2e


R2 取对数 t L
R2 1 t ln 2 ( t ) L R1C
X
解(续)
求:2)电压表读数达到最大值的时间; 3)电压表的最大读数。
R1 R2 2L C
R2 R1C L ln 2 t LR1C

a
i 2
16 V
1
5i
1
S (t 0)

5H
b
KVL: 2i (0 ) 1 i L (0 ) 16


i (0 )
16 V
i L (0 ) 2 i L (0 ) 16 6 i L (0 ) 12 A

2
5i (0 )
1
i L (0 )
b
5H
与电感相连的等效内阻为:
i
2
1 i1
iab
5i

电路的时间常数为: 5 L = 4s Req 1.25
uab

X
解(续)
(5)写出uab (t ) 函数表达式。
uab (t ) uab ( ) [uab (0 ) uab ( )]e
9.6 (9 9.6)e
1 i (t ) us (t ) 1H
2(1 e )A t 0 (只有z.s.r )
t

2
0
us (t ) / V
t0 t / s
X
解(续)
t t0: us (t ) 0 i ( ) 0


t0
1 i (t ) us (t ) 1H
i (t ) i (t ) 2(1 e L 1s R t t0 i ( t ) i ( t 0 )e
相关文档
最新文档