《锐角三角函数》学案

合集下载

锐角三角函数第1课时学案(正弦)

锐角三角函数第1课时学案(正弦)

C B锐角三角函数----正弦姓名: 九年级下学期第一周第1课时【学习目标】1、理解锐角正弦的定义,并能运用sinA 表示直角三角形中两边的比。

(重点)2、能灵活运用正弦的定义进行简单的计算。

(难点)【学习过程】一、知识回顾1.在直角三角形中有哪些元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这些元素中,你还记得它们之间有哪些性质吗?①三边之间的等量关系:__________________________________.②两锐角之间的关系:__________________________________.③边与角之间的关系:__________________________________.3. 直角三角形ABC 中,究竟边与角之间有什么特殊的关系呢?我们将在这一章的知识中不断探究学习.二、探究导学 1、正弦的定义:(课本第75页)如图,在Rt △ABC 中,∠C =90°,我们把锐角∠A 的对边a 与斜边c 的比叫做∠A的______,记作________,即:sinA =_____________________=________.2、概念诊断:(1)sinA 表示sin 与A 的乘积 ( )(2)sinA 表示∠A 的邻边与斜边的比值 ( )(3)在Rt △ABC 中,∠C =90°,则sinB=AB AC ( ) (4) 在△ABC 中,则sinA= ACBC ( ) 4、自学课本第76页例1,并尝试在课本上完成第第77页练习5、根据如图中条件,分别求出下列直角三角形中锐角的正弦值。

三、能力提升1、如图,在Rt △ABC 中,∠C =90°,(1)若AC =6,BC =8,求 sinB 的值(2)若sinB=53,求sinA 的值 解题提示:(1)已知AC 和BC ,要求sinB 的值,需先求得什么?如何再求sinB 的值? 解:(2)根据sinB=53,设AC=3k ,如何表示其他两边的长度?求sinA 的值又如何呢?解:2、如图,在Rt △ABC 中,∠C =90°,sinA=54, AB =15,求△ABC 的周长四、课堂小结(1)、sinA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形)。

锐角三角函数教案设计

锐角三角函数教案设计

锐角三角函数教案设计锐角三角函数教案设计锐角三角函数教案设计篇1知识目的:1.理解锐角的正弦函数、余弦函数、正切函数、余切函数的意义。

2.会由直角三角形的边长求锐角的正、余弦,正、余切函数值。

才能、情感目的:1.经历由情境引出问题,探究掌握数学知识,再运用于理论过程,培养学生学数学、用数学的意识与才能。

2.体会数形结合的数学思想方法。

3.培养学生自主探究的精神,进步合作交流才能。

重点、难点:1.直角三角形锐角三角函数的意义。

2.由直角三角形的边长求锐角三角函数值。

教学过程:一、创设情境前面我们利用相似和勾股定理解决一些实际问题中求一些线段的长度问题。

但有些问题单靠相似与勾股定理是无法解决的。

同学们放过风筝吗?你能测出风筝离地面的高度吗?学生讨论、答复各种方法。

老师加以评论。

总结:前面我们学习了勾股定理,对于以上的问题中,我们求的是BC的长,而的AB的长是可知的,只要知道AC的长就可要求BC了,但实际上要测量AC是很难的。

因此,我们换个角度,假如可测量出风筝的线与地面的夹角,能不能解决这个问题呢?学了今天这节课的内容,我们就可以很好地解决这个问题了。

〔由一个学生比拟熟悉的事例入手,引起学生的学习兴趣,调动起学生的学习热情。

由此导入新课〕二、新课讲述在Rt△ABC中与Rt△A1B1C1中∠C=90°,C1=90°∠A=∠A1,∠A的对边、斜边分别是BC、AB,∠A1的对边、斜边分别是B1C1、A1B2 〔学生探究,引导学生积极考虑,利用相似发现比值相等〕〔〕假设在Rt△A2B2C2中,∠A2=∠A,那么问题1:从以上的探究问题的过程,你发现了什么?〔学生讨论〕结论:这说明在直角三角形中,只要一个锐角的大小不变,那么无论这个直角三角形的大小如何,该锐角的对边与斜边的比值是一个固定值。

在一个直角三角形中,只要角的大小一定,它的对边与斜边的比值也就确定了,与这个角所在的三角形的大小无关,我们把这个比值叫做这个角的正弦,即∠A的正弦= ,记作sin A,也就是:sin A=几个注意点:①sin A是整体符号,不能所把看成sinA;②在一个直角三角形中,∠A正弦值是固定的,与∠A的两边长短无关,当∠A发生变化时,正弦值也发生变化;③sin A 表示用一个大写字母表示的一个角的正弦,对于用三个大写字母表示的角的正弦时,不能省略角的符号“∠”;例如表示“∠ABC”的正弦时,应该写成“sin∠ABC”;④ Sin A= 可看成一个等式。

锐角三角函数教案

锐角三角函数教案

第一章 直角三角形的边角关系1.1 锐角三角函数(2)一、知识点1. 认识锐角三角函数——正弦、余弦2. 用sinA,cosA 表示直角三角形中直角边与斜边的比, 用正弦、余弦进行简单的计算. 二、教学目标 知识与技能1. 能利用相似的直角三角形,探索并认识锐角三角函数——正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系.2. 能够用sinA,cosA 表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算. 过程与方法1. 经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点. 2、体会解决问题的策略的多样性,发展实践能力和创新精神. 情感态度与价值观1. 积极参与数学活动,对数学产生好奇心和求知欲,学有用的数学. 2、形成实事求是的态度以及交流分享的习惯. 三、重点与难点重点:理解正弦、余弦的数学定义,感受数学与生活的联系. 难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题. 四、复习引入设计意图:以练代讲,让学生在练习中回顾正切的含义,避免死记硬背带来的负面作用(大脑负担重,而不会实际运用),测量旗杆高度的问题引发学生的疑问,激起学生的探究欲望. 五、探究新知探究活动1(出示幻灯片4):如图,请思考: (1)Rt △AB 1C 1和Rt △AB 2C 2的关系是 ; (2)的关系是和222111AB C B AB C B ; (3)如果改变B 2在斜边上的位置,则的关系是和222111AB C B AB C B ; 思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________.B 1B 2AC 1C 2它的邻边与斜边的比值呢?设计意图:1、在相似三角形的情景中,让学生探究发现:当直角三角形的一个锐角大小确定时,它的对边与斜边的比值也随之确定了.类比学习,可以知道,当直角三角形的一个锐角大小确定时,它的邻边与斜边的比值也是不变的.2、在探究活动中发现的规律,学生能记忆得更加深刻,这比老师帮助总结,学生被动接受和记忆要有用得多.归纳概念1、正弦的定义:如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边BC与斜边AB的比叫做∠A的正弦,记作sinA,即sinA=________.2、余弦的定义:如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边AC与斜边AB的比叫做∠A的余弦,记作cosA,即cosA=_ _____.3、锐角A的正弦,余弦,正切和余切都叫做∠A的三角函数.温馨提示(1)sinA,cosA是在直角三角形中定义的,∠A是一个锐角;(2)sinA,cosA中常省去角的符号“∠”.但∠BAC的正弦和余弦表示为: sin∠BAC,cos∠BAC.∠1的正弦和余弦表示为: sin∠1,cos∠1;(3)sinA,cosA没有单位,它表示一个比值;(4)sinA,cosA是一个完整的符号,不表示“sin”,“cos”乘以“A”;(5)sinA,cosA的大小只与∠A的大小有关,而与直角三角形的边长没有必然的关系.设计意图:1、类比正切的定义,让学生理解正弦和余弦的含义;2、让学生了解:求一个角的三角函数,是指求这个角的正切、正弦和余弦,不是单指某一个值;3、正弦和余弦容易出现一些不规范的表示方法,在这里先进行明确,可以减少日后不必要的错误.探究活动2:我们知道,梯子的倾斜程度与tanA有关系,tanA越大,梯子越陡,那么梯子的倾斜程度与sinA和cosA有关系吗?是怎样的关系?设计意图:在探究中进一步让学生理解正弦和余弦的含义,体会正弦和余弦的生活意义,避免数学知识的枯燥无味,通过利用正弦和余弦来描述梯子的倾斜程度拓展了学生思维,感受到从不同角度去解释一件事物的合理性,感受数学与生活的联系.探索发现:梯子的倾斜程度与sinA,cosA的关系:sinA越大,梯子;cosA 越,梯子越陡.探究活动3:如图,在Rt△ABC中,∠C=90°,AB=20,,求BC和cosB.BA C通过上面的计算,你发现sinA与cosB有什么关系呢? sinB与cosA呢?在其它直角三角形中是不是也一样呢?请举例说明.小结规律:在直角三角形中,一个锐角的正弦等于另一个锐角的 .设计意图:在探究中进一巩固正弦和余弦的定义,同时发现直角三角形中两个锐角的三角函数值之间存在一定的关系,拓展学生的知识储备.六、归类提升类型一:已知直角三角形两边长,求锐角三角函数值例1、在Rt△ABC中,∠C=90°, BC=3,AB=5,求A的三个三角函数值.类型二:利用三角函数值求线段的长度例2、如图,在Rt△ABC中,∠B=90°,AC=200,sinA= ,求BC的长七、总结延伸1、锐角三角函数定义:sinA= ,cosA= ,tanA= ;2、温馨提示:(1)sinA,cosA,tanA,是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形);(2)sinA,cosA,tanA是一个完整的符号,表示∠A的正切,习惯省去“∠”号;(3)sinA,cosA,tanA都是一个比值,注意区别,且sinA,cosA,tanA均大于0,无单位;(4)sinA,cosA,tanA的大小只与∠A的大小有关,而与直角三角形的边长没有必然关系;(5)角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.3、在用三角函数解决一般三角形或四边形的实际问题中,应注意构造直角三角形.设计意图:课堂小结,检查学生掌握情况,同时能对知识进行及时梳理,有利于学生归纳和消化,特别对于重要的方法提示和要注意的细节,能再次呈现,使学生印象深刻..八、 随堂小测1、下图中∠ACB=90° ,CD ⊥AB 指出∠A2、1题中如果CD=5,AC=10,则sin ∠ACD= sin ∠DCB=3、如图:在等腰△ABC 中,AB=AC=5,BC=6.求: sinB,cosB,tanB设计意图:设计各种题型,可以检验学生的方法掌握情况,同时巩固学生的知识,提高学生的运用能力,若时间不允许该部分也可作为课后作业完成.BCABCsin a A c=cos b A c =sin b B c=cos a B c=bABCa┌csinA=cosB ,cosA=sinB (∠A+∠B=90。

浙教版数学九年级下册1.1《锐角三角函数》教案

浙教版数学九年级下册1.1《锐角三角函数》教案

浙教版数学九年级下册1.1《锐角三角函数》教案一. 教材分析浙教版数学九年级下册1.1《锐角三角函数》是本册教材的第一课时,主要介绍锐角三角函数的定义及概念。

本节课内容是学生对初中数学中三角函数知识的初步接触,对于培养学生的数学思维能力、逻辑推理能力以及解决实际问题的能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的数学基础,对函数的概念有一定的了解。

但是,对于锐角三角函数的定义和应用,学生可能还存在一定的困惑。

因此,在教学过程中,教师需要关注学生的认知水平,通过实例讲解,让学生更好地理解和掌握锐角三角函数的知识。

三. 教学目标1.了解锐角三角函数的定义和概念;2.能够运用锐角三角函数解决实际问题;3.培养学生的数学思维能力、逻辑推理能力以及解决实际问题的能力。

四. 教学重难点1.教学重点:锐角三角函数的定义和概念;2.教学难点:如何运用锐角三角函数解决实际问题。

五. 教学方法采用问题驱动法、实例讲解法、小组合作法等教学方法,引导学生主动探究、积极思考,提高学生的数学素养。

六. 教学准备1.准备相关的生活实例和图片;2.准备多媒体教学设备。

七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,如测量身高、角度等,引导学生思考如何利用数学知识解决这些问题。

从而引出锐角三角函数的概念。

2.呈现(10分钟)讲解锐角三角函数的定义和概念,让学生了解锐角三角函数的基本性质。

通过示例,让学生掌握如何运用锐角三角函数解决实际问题。

3.操练(10分钟)让学生分组讨论,选取一个生活实例,运用锐角三角函数进行解决。

教师巡回指导,为学生提供帮助。

4.巩固(5分钟)选取一些练习题,让学生独立完成,巩固所学知识。

教师及时批改,给予反馈。

5.拓展(5分钟)引导学生思考:除了生活中的实例,还有哪些领域会用到锐角三角函数?让学生了解锐角三角函数在实际应用中的广泛性。

6.小结(5分钟)对本节课的主要内容进行总结,让学生明确所学知识的重难点。

浙教版数学九年级下册1.1《锐角三角函数》教学设计

浙教版数学九年级下册1.1《锐角三角函数》教学设计

浙教版数学九年级下册1.1《锐角三角函数》教学设计一. 教材分析《锐角三角函数》是浙教版数学九年级下册第一章第一节的内容。

本节课主要介绍了锐角三角函数的定义及性质,包括正弦、余弦、正切函数。

通过本节课的学习,学生能够理解锐角三角函数的概念,掌握各函数的定义及性质,并能运用其解决实际问题。

二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念和性质有一定的了解。

但锐角三角函数的概念和性质较为抽象,学生可能难以理解和接受。

因此,在教学过程中,教师需要注重引导学生通过实例来理解抽象的锐角三角函数概念,并通过大量的练习来巩固所学知识。

三. 教学目标1.知识与技能:理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及性质。

2.过程与方法:通过实例分析,引导学生运用锐角三角函数解决实际问题。

3.情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.重点:锐角三角函数的概念及其性质。

2.难点:正弦、余弦、正切函数的定义及性质。

五. 教学方法1.情境教学法:通过生活实例引入锐角三角函数的概念,引导学生理解其应用。

2.讲授法:讲解锐角三角函数的定义及性质,引导学生进行思考。

3.实践操作法:让学生通过实际操作,巩固所学知识。

4.小组讨论法:分组讨论,培养学生的合作意识。

六. 教学准备1.教学课件:制作课件,展示锐角三角函数的定义及性质。

2.实例材料:准备相关的生活实例,用于引入锐角三角函数的概念。

3.练习题:准备适量的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如建筑工人测量高度、航海员测定方向等,引导学生思考如何利用三角函数解决问题。

通过实例引入锐角三角函数的概念。

2.呈现(15分钟)讲解锐角三角函数的定义及性质,包括正弦、余弦、正切函数。

利用课件展示各函数的图像,帮助学生理解其性质。

3.操练(15分钟)让学生分组进行实践操作,运用锐角三角函数解决实际问题。

锐角三角函数(第三课时)导学案

锐角三角函数(第三课时)导学案

年级:九年级 班级: 学生姓名: 制作人: 不知名 编号:2023-1228.1锐角三角函数(第三课时)【学习目标】1.经历探索30°、45°、60°角的三角函数值的过程,进一步体会三角函数的意义;(重点)2.能够进行30°、45°、60°角的三角函数值的计算;(重点)3.能够结合30°、45°、60°的三角函数值解决简单实际问题.(难点)【预学案】1.一个直角三角形中,一个锐角的正弦是怎么定义的? ;一个锐角的余弦是怎么定义的? ;一个锐角的正切是怎么定义的? .2.互余的两角之间的三角函数关系:若∠A +∠B =90°,则sin A cos B ,cos A sin B ,tan A ·tan B = .【探究案】1.两块三角尺中有几个不同的锐角?各是多少度?这几个锐角的正弦值、余弦值和正切值各是多少?30°、45°、60°角的正弦值、余弦值和正切值如下表:2.求下列各式的值.(1)cos 260°+sin 260°. (2)-tan45°.3.如图,在Rt △ABC 中,∠C = 90°,AB =,BC =,求 ∠A 的度数; cos 45sin 45︒︒634.如图,AO 是圆锥的高,OB 是底面半径,AO =OB ,求的度数.【检测案】1. ,锐角的度数应是( )A.40°B.30°C.20°D. 10° 2. 已知∠A 为锐角,,则下列正确的是( ) 3. 在 △ABC 中,若,则∠C = . 4. 求下列各式的值:5. 如图,在△ABC 中,∠A =30°, ,求 AB 的长度.6. 已知,△ABC 中的∠A 和∠B 满足| tan B |+(2 sin A )2=0,求∠A ,∠B 的度数。

第二十八章锐角三角函数学案

第二十八章锐角三角函数学案

3.在△ ABC 中,∠ C= 90°,且 tanA= 1 ,则 cosB 的值是 _________. 3
五、 拓展延伸:
1、 .如图,△ ABC 中,∠ ABC = 60°, AB ∶ BC= 2∶ 5, S△ABC = 10 3 ,求 tanC 的值 .
第 1 题图
第 2 题图
2.如图,在 Rt△ ABC 中,∠ CAB =90°, AD 是∠ CAB 的平分线, tanB= 1 ,则 CD ∶ DB 2
1.如图长 5 米的梯子以倾斜角∠ CAB 为 30°靠在墙上,则 A 、 B 间的距离为多少?
2.若长 5 米的梯子以倾斜角 40°架在墙上,则 A 、B 间距离为多少? 3.若长 5 米的梯子靠在墙上,使 A 、B 间距为 2.5 米,则倾斜角∠ CAB 为多少度? 4.点 P( 2, 4)与 x 轴的夹角为 α,则 sin α =______. 5.在 Rt△ ABC 中,∠ A、∠ B、∠ C 的对边分别是 a、b、c,∠ C 是直角, 求证: sin2A+sin 2B=1.
第 6 题图 3 倍,那么锐角 A 的正弦值 ________.
5.在 Rt△ ABC 中,∠ C= 90°, BC=2 , sinA= 2 ,则求 AC 的长 . 3
6.如图, P 是⊙ O 外一点, PA 切⊙ O 于点 A ,且 OP= 5, PA= 4,则 sin∠ APO=_______. 四、巩固训练:
1
4.在 Rt△ ABC 中,∠ C= 90°, c= 2, sinB= ,则 a= _____, b=______ , S△ABC =_______.
2
四、 巩固训练:
1、如图,在 Rt △ ABC 中,∠C= 90°,AC =8,tanA= 3 ,求 sinA 和 cosB 的值 . 4

1锐角三角函数的定义 学案

1锐角三角函数的定义 学案
4.计算:2cos45°﹣tan60°+sin30°﹣|﹣ |.
1.△ABC中,∠C=90°,tanA= ,则sinA+cosA=.
2.如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正确的结论有.
3.计算:sin30°﹣ cos45°+ tan260°.
4.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.
1.如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为( )
A. B. C. D.
2.计算:(sin30°)﹣1×(sin60°﹣cos45°)﹣ .
A. B.± C. D.0
2.已知锐角α满足cosα= ,则锐角α的度数是度.
3.如图,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,如果AB:AD=2:3,那么 值是.
4.如图,AB为⊙O的直径,弦CD⊥AB于点H,过点B作⊙O的切线与AD的延长线交于F.
(1)求证:
(2)若sinC= ,DF=6,求⊙O的半径.
特殊角的三角函数值主要是指30 这三个角的三角函数值,如下表:
知识拓展:(1)结合图形:如图及其中的数据和三角函数的定义来计算特殊角的三角函数值,从而记住结果.
(2)对于其他相关角的三角函数值,往往用定义求解,如15 .
(3)等边三角形,等腰直角三角形,及与30 角相联系的其他三角形问题,常常要用特殊角的三角函数值解答.
A. B.3C. D.2
类型三锐角三角函数的定义
如图,在Rt△ABC中,∠C=90°,AB=13,BC=12,则下列三角函数表示正确的是( )

第28章 锐角三角函数 复习学案

第28章  锐角三角函数 复习学案

第28章锐角三角函数复习学案一、课程学习目标1、了解锐角三角函数的概念,能够正确应用sinA 、cos A、tanA表示直角三角形中两边的比;记忆0°、30°、45°、60°、90°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值说出这个角;2、能够正确地使用计算器,由已知锐角求出它的三角函数值,由已知三角函数值求出相应的锐角;3、理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题;4、通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角的学习,体会数学在解决实际问题中的作用,并结合实际问题对微积分的思想有所感受。

二、本章知识结构框图三、知识点与方法(一)正弦、余弦、正切的意义【第1课时】(1)在Rt△ABC中,∠C=90度,则锐角A的与的比叫做∠A的正弦,记作;则锐角A的与的比叫做∠A的余弦,记作;则锐角A的与的比叫做∠A的正切,记作。

(2)锐角A的正弦、余弦、正切都叫做∠A的。

【练习】1、把Rt△ABC各边的长度都扩大3倍得Rt△A′B′C′,那么锐角A,A′的余弦值的关系为()A.cosA=cosA′ B.cosA=3cosA′ C.3cosA=cosA′ D.不能确定2、如图1,已知P是射线OB上的任意一点,PM⊥OA于M,且PM:OM=3:4,则cos α的值等于( )A .34B .43C .45D .35图1 图2 图3 3、在△ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,则下列各项中正确的是( )A .a=c ·sinB B .a=c ·cosBC .a=c ·tanBD .以上均不正确 4、在Rt △ABC 中,∠C=90°,32cos =A ,则tanB 等于( )A .35B .C .25.5、、如图2,在△ABC 中,∠C=90°,BC :AC=1:2,则sinA=_______,cosA=______,tanB=______.6、如图3,在Rt △ABC 中,∠C=90°,b=20,c=220,则∠B 的度数为_______.7、已知:α是锐角,247tan =α,则sin α=_____,cos=_______. 8、如图,角α的顶点在直角坐标系的原点,一边在x 轴上,•另一边经过点P ()32,2,求角α的三个三角函数值.9、(2013•自贡)如图,边长为1的小正方形网格中,⊙O 的圆心在格点上,则∠AED 的余弦值是 。

九年级数学上册《锐角三角函数》教案、教学设计

九年级数学上册《锐角三角函数》教案、教学设计
3.小组合作题需充分发挥团队协作精神,共同完成任务;
4.作业完成后,请学生认真检查,确保答案的正确性。
4.利用信息技术手段,如动态课件、网络资源等,丰富教学手段,提高学生的学习兴趣和积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习热情,提高学生的自主学习能力。
2.通过解决实际问题,使学生认识到数学知识在实际生活中的重要作用,增强学生的应用意识。
3.培养学生勇于探索、克服困难的精神,提高学生的自信心和自尊心。
九年级数学上册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.使学生掌握锐角三角函数的定义,理解正弦、余弦、正切函数的概念,并能够运用这些概念进行简单的计算。
2.培养学生运用三角函数解决实际问题的能力,如测量物体的高度、计算角度等。
3.使学生掌握特殊角的三角函数值,并能熟练运用到实际问题中。
(2)运用三角函数解决实际问题,尤其是将实际问题抽象为数学模型,并运用三角函数进行求解;
(3)掌握特殊角的三角函数值,并能灵活运用到实际问题中。
(二)教学设想
1.教学策略:
(1)采用情境教学法,创设实际问题情境,引导学生主动探究锐角三角函数的定义和性质;
(2)运用任务驱动法,设计具有挑战性的任务,让学生在实践中掌握三角函数的计算方法和应用;
(3)了解三角函数在其他学科领域的应用,如物理、工程等。
4.小组合作题:
(1)分组讨论:如何利用三角函数解决实际问题?举例说明;
(2)小组合作完成一份关于锐角三角函数在实际问题中应用的报告。
作业要求:
1.学生需独立完成基础题,提高题和拓展题可根据个人能力选择完成;
2.作业过程中,要求学生注重解题思路和方法的总结,养成良好的学习习惯;

学案----1.1锐角三角函数(1)

学案----1.1锐角三角函数(1)

A
学案----1.1锐角三角函数(1)
班级 姓名
【我们要掌握的】
思考问题:小红在上山过程中,下列哪些量是变量和常量(坡角,上升高度,所走路程)? 小红在斜坡上任意位置时,上升的高度和所走路程的比值有变化吗?
1、已知∠A=30°,在角的边上任意取一点B ,作BC ⊥AC 与点C,请计算
BC
AB
的值.
2、已知一个50o 的∠A,在一边上任意取一点B ,作BC ⊥AC 于点C.用刻度尺先量出AB,AC,BC,的长度(精确到1毫米),再计算,,BC AC BC
AB AB AC
的值(结果保留2个有效数字),当点B 位置发生改变的时候
,,BC AC BC
AB AB AC
会不会发生改变?
经过以上几题,你发现了什么?
【我们要完成的】
3、请写出sin A = sin B =
cos A = cos B =
tan A = tan B =
4、在Rt ⊿ABC 中,∠C=Rt ∠,AB=5,BC=3, 求锐角∠A 的正弦、余弦、正切.
5、在Rt ⊿ABC 中,∠C=Rt ∠,AC :BC=1:2,求锐角∠B 的各三角函数的值.
6、在Rt ⊿ABC 中,∠C=Rt ∠,3
sinA =
5
,求锐角∠A 的余弦 .
7、根据右边的直角三角形,把左边的表格填写起来
并观察表中的计算结果,你发现了什么?请说明理由.
8、在Rt ABC ∆中,当0
30,45,60A ∠=时,把右边的表格填写起来
8
、如图:在等腰△ABC 中,AB=AC=5,BC=6.则下列结论正确的是( )
56
.sin ,.sin ,.65
A B B B C ==以上结论都不正确。

24.3 锐角三角函数 华师大版数学九年级上册教案

24.3 锐角三角函数 华师大版数学九年级上册教案

24.3 锐角三角函数1.锐角三角函数第1课时锐角三角函数的定义※教学目标※【知识与技能】￿了解锐角三角函数的概念,能够正确应用sinA、cosA、tanA表示直角三角形中两边的比.【过程与方法】￿通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,体会数学在解决实际问题中的作用.￿【情感态度】￿1.通过学习培养学生的合作意识.￿2.通过探究提高学生学习数学的兴趣.￿【教学重点】￿锐角三角函数的概念.￿【教学难点】￿锐角三角函数的概念的理解.￿※教学过程※￿一、情境导入￿如图(1),图(2)都可以用来测量物体的高度.这两个问题的解决,将涉及直角三角形中的边角关系.直角三角形中,它的边与角有什么关系?通过本节的学习,你就会明白其中的道理,并能应用所学知识解决相关的问题.￿二、探索新知￿1.某个角的对边、邻边的概念.在Rt△ABC中,直角∠C所对的边AB称为斜边,用c表示,另两边直角边为∠A的对边与邻边,分别用a、b表示(如图).￿￿2.做一做.￿(1)画一个Rt△ABC,使∠C=90°,∠A=30°,那么∠A的对边与斜边的比值是多少?量一量、算一算.(2)你画的三角形与你同伴画的三角形全等吗?不全等时,比值有什么关系?和你的同伴交流一下.￿(3)若∠A=45°、60°时,则∠A对边与斜边之比是多少?￿结论:在Rt△ABC中,只要一个锐角的大小不变(如∠A=30°),那么不管这个直角三角形大小如何,该锐角的对边与邻边的比值是一个固定的值.￿经过验证,在Rt△ABC中,当锐角A取其他固定值时,∠A的对边与邻边的比值还是一个固定值,与Rt△ABC的大小无关.￿说明:观察图中的Rt△AB 1C1、Rt△AB2C2和Rt△AB3C3,易知Rt△AB1C1Rt△AB2C2￿∽Rt△AB3C3.∴==可见,在Rt△ABC中,对于锐角A的每一个确定的值,其对边与邻边的比值是唯一确定的.同样,其对边与斜边,邻边与斜边的比值也是唯一确定的.3.锐角三角形函数的定义￿￿∠A的正弦:sinA=￿∠A的余弦:cosA=￿￿∠A的正切:tanA=￿∠A的正弦、余弦、正切统称为锐角∠A的三角函数.￿￿4.知识拓展￿(1)正弦与余弦三角函数值的取值范围.￿∵直角三角形中,斜边大于直角边.∴0<sinA<1,0<cosA<1.￿(2)同角三角函数关系￿sin2α+cos2α=1;tanα=.￿(3)互余两角的三角函数值￿若α、β都是锐角,且α+β=90°,￿那么:sinα=cosβ,cosα=sinβ.￿三、巩固练习￿【例1】如图,在Rt△ABC中,∠C=90°,AC=15,BC=8.试求出∠A的三个三角函数值.￿解:AB==17,sinA=,cosA=,￿tanA=.￿￿【练习】￿1.如图,在Rt△MNP中,∠N=90°,则:￿∠P的对边是,∠P的邻边是;￿∠M的对边是,∠M的邻边是.￿￿第1题图第2题图2.如图,在Rt△DEC中,∠E=90°,CD=10,DE=6.试求出∠D的三个三角函数值.￿3.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.根据下列所给条件,分别求出∠B的三个三角函数值:(1)a=3,b=4;(2)a=5,c=13.￿￿答案:1.￿MN PN PN MN￿￿2.由勾股定理,得CE=8,所以sinD=,cosD=,tanD=.￿3.(1)sinB=,cosB=,tanB=.￿(2)sinB=,cosB=,tanB=.￿四、应用拓展￿【例2】已知:Rt△ABC中,∠C=90°,sinA=,BC=3,求AB、AC的值.￿解:∵￿sinA=,∴AB=,￿∴AC=.【例3】如图,已知α为锐角,sinα=,求cosα、tanα的值.￿解:方法一:用定义法求解∵sinα=,∴设BC=3x,则AB=5x.由勾股定理,得AC=4x.￿∴cosα=,tanα=.￿方法二:用公式求解￿∵α为锐角,∴cosα==,tanα=.￿五、归纳小结1.正弦、余弦、正切的定义是在直角三角形中相对其锐角而定义的,其本质是两条线段长度之比,理解好这三个概念是学好本章的关键;￿2.正弦、余弦、正切实际上都是比值,没有单位,它们只与锐角α的大小有关,与三角形的边长无关;￿3.对于每一个锐角α的确定的值,它的正弦、余弦和正切都有唯一确定的值与之对应;反之,对于每一个确定的正弦、余弦和正切值,都有唯一的锐角与之对应.￿※课后作业※1.教材第111页习题24.3第1、2题.￿2.如图,在Rt△ABC中,∠CAB=90°,AD是∠CAB的平分线,￿tanB=,求的值.第2课时特殊角的三角函数值※教学目标※【知识与技能】￿1.熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应的锐角度数.￿2.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.￿【过程与方法】￿培养学生观察、比较、分析、概括的思维能力.￿【情感态度】￿经历观察、操作、归纳等学习数学过程,感受数学思考过程的合理性,感受数学说理的必要性,说理过程的严谨性,养成科学的、严谨的学习态度.￿【教学重点】￿特殊角的三角函数值.￿【教学难点】￿与特殊角的三角函数值有关的计算.￿※教学过程※一、复习引入￿在Rt△ABC中,∠C=90°,AC=1,AB=2,求∠A、∠B的三个三角函数值.￿￿回顾锐角三角函数的定义;直角三角形的性质.￿二、探索新知￿在Rt△ABC中,∠A=30°,∠C=90°,如图,试求两个锐角的三个三角函数值.￿￿解:在直角三角形中,30°角所对的直角边是斜边的一半.所以,若设30°角所对的直角边为1,即￿BC=1,则AB=2,由勾股定理得:AC=.由三角函数定义,得sin30°=.cos30°=.tan30°=.￿￿同理可得sin60°=,cos60°=,tan60°=.2.在Rt△ABC中,∠C=90°,∠A=∠B=45°,如图,试求45°角的三角函数值.若设AC=BC=1.则AB=.易得￿sin45°=,cos45°=,tan45°=1.￿【例1】求值:sin30°·tan30°+cos60°·tan60°.￿解:原式=.￿【例2】在Rt△ABC中,若sinA=,则cos的值是多少?￿解:由sinA=知A=60°.￿∴cos=cos30°=.￿三、巩固练习￿1.在△ABC中,若cosA=,tanB=,则此三角形一定是()￿A.锐角三角形B.直角三角形￿C.钝角三角形D.等腰三角形￿2.用特殊角的三角函数填空:￿= = ;￿= = ;￿1= ;= .￿3.化简= .￿4.点M(-sin60°,cos60°)关于x轴对称的点的坐标是.￿5.求下列各式的值:￿(1)sin260°+cos260°;￿(2)2cos60°+2sin30°+4tan45°;￿(3).￿6.如图,在Rt△ABC中,∠C=90°,AB=,BC=.求∠A的大小.￿￿答案:1.A 2.sin60° cos30° sin45° cos45°￿tan45° tan60° 3. 4.￿5.(1)1 (2)6 (3)6.∠A=45°四、应用拓展￿1.你能求出tan15°的值吗?如图,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至D,使BD=AB,则∠D=15°.设AC=k,则AB=2k,BC=k,所以CD=BC+BD=BC+AB=(2+)k,￿所以tan15°===2-.￿2.仿上面的解题方法,易求tan22.5°=-1.￿※课后作业※1.教材第111页习题24.3的第3题.￿2.若∠A、∠B是△ABC的两个内角且满足关系式=0,求∠C的度数.￿￿3.若α为锐角,且tan2α-(1+)tanα+1=0.求α的度数.￿￿2.用计算器求锐角三角函数值￿※教学目标※【知识与技能】￿1.会使用计算器求锐角三角函数的值.￿2.会使用计算器根据锐角三角函数的值求对应的锐角.￿【过程与方法】￿在做题、计算的过程中,逐步熟练计算器的使用.￿【情感态度】￿经历计算器的使用过程,熟悉其按键顺序.￿【教学重点】￿利用计算器求锐角三角函数的值.￿【教学难点】￿计算器的按键顺序. ￿※教学过程※一、复习引入￿填表:￿由上表我们可以直接写出30°,45°,60°角的三角函数值及由特殊值写出相应的锐角.对一些非特殊的角,怎样求它的三个三角函数值呢?￿二、探索新知￿1.求锐角三角函数值￿【例1】求sin63°52′41″的值(精确到0.0001).￿解:如下方法将角度单位状态设定为“度”:￿再按下列顺序依次按键:￿￿显示结果为0.897859012.￿∴sin63°52′41″≈0.8979.￿【例2】求tan19°15′的值(精确到0.0001).￿解:在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:￿￿显示结果为0.3492156334.￿∴tan19°15′≈0.3492.￿2.由锐角三角函数值求锐角.￿【例3】若tanx=0.7410,求锐角x.(精确到1′)￿解:在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:￿￿显示结果为36.53844577.￿再按键,显示结果为36°32′18.4″.￿所以x≈36°32′.￿三、巩固练习￿1.利用计算器求下列三角函数值:(精确到￿0.0001)￿￿(1)sin24°;(2)cos51°42′20″;(3)tan70°21′.￿2.已知下列锐角α的各三角函数值,利用计算器求锐角α:(精确到1′)￿￿(1)sinα=0.2476;(2)cosα=0.4174;￿(3)tanα=0.1890.￿答案:1.(1)0.4067 (2)0.6197 (3)2.8006 2.(1)14°20′(2)65°20′(3)10°42′※课后作业※1.教材第111页习题24.3的第4、5题.￿2.比较大小.cos25° cos32°,tan29° tan39°.￿3.在Rt△ABC中,∠C=90°,AB=29,AC=25,求∠A的度数.￿。

北师大版数学九年级下册1.1锐角三角函数优秀教学案例

北师大版数学九年级下册1.1锐角三角函数优秀教学案例
2.要求学生对自己的学习过程进行反思,总结收获和不足,提高自我认知。
3.教师对学生的作业进行批改,关注学生的个体差异,给予不同层次的学生充分的关爱和支持。
五、案例亮点
1.生活情境的引入:本节课通过展示实际生活中的图片和视频,如建筑设计、航海导航等,引导学生关注锐角三角函数在实际中的应用,使学生感受到数学与实际的联系,增强了学生学习的兴趣和积极性。
3.创设有利于学生自主探索的情境,如提供实验器材,让学生通过实际操作,观察和记录实验数据,从而引导学生发现锐角三角函数的性质。
(二)讲授新知
1.教师通过讲解,介绍锐角三角函数的概念,让学生理解正弦、余弦、正切函数的定义及它们之间的关系。
2.结合生活实例,讲解锐角三角函数在实际中的应用,让学生感受数学与实际的联系。
2.评价学生运用锐角三角函数解决实际问题的能力。
3.评价学生在课堂活动中的参与度、合作意识及创新精神。
4.关注学生的情感态度,评价学生在学习过程中的积极性和进步。
三、教学策略
(一)情景创设
1.生活情境:通过展示实际生活中的图片或视频,如建筑设计、航海导航等,让学生了解锐角三角函数在实际中的应用,激发学生的学习兴趣。
2.采用实验、观察、讨论、交流等教学方法,提高学生的参与度。
3.利用生活实例,让学生感受数学与实际的联系,提高学生的应用能力。
4.关注学生的个体差异,给予不同层次的学生充分的关爱和支持。
五、教学过程
1.创设情境,引入新课:通过生活实例,引导学生关注锐角三角函数在实际生活中的应用。
2.自主探究,合作交流:让学生通过观察、实验、猜测、验证、推理等数学活动,自主探索锐角三角函数的性质。
3.培养学生关爱他人、乐于助人的品质,弘扬团结协作的精神。

《锐角三角函数》复习学案(含答案)

《锐角三角函数》复习学案(含答案)

《锐角三角函数》复习学案◆考点聚焦1.了解锐角三角函数的定义,并能通过画图找出直角三角形中边、角关系.• 2.准确记忆30°、45°、60°的三角函数值. 3.已知三角函数值会求出相应锐角.4.掌握三角函数与直角三角形的相关应用,这是本节的热点.◆基础知识1.锐角三角函数的定义:如图,在Rt △ABC 中,∠C=90°,斜边为c ,a ,b 分别是∠A 的对边和邻边,请填出∠A 的三个三角函数:练习:1.在Rt △ABC 中中,如果各边长度都扩大4倍,则锐角A 的正弦值和余弦值()(A )都没有变化 (B )都扩大4倍 (C )都缩小4倍 (D )不能确定 2.已知:∠A 为锐角,并且tanA=512 ,则cosA 的值为 .3.正方形网格中,∠AOB 如图放置,则tan ∠AOB 的值为( )A.55 B.255 C.12 D.24.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=325.某资料中曾记载了一种计算地球与月球之间的距离的方法:如图,假设赤道上一点D 在AB 上,∠ACB 为直角,可以测量∠A 的度数,则AB 等于( ) A.AC cosA B. cosA AC C. AC sinA D. sinAAC2、三角函数值⑴特殊角的三角函数值:⑵锐角三角函数值的性质: ①锐角三角函数值都是正数。

名称 字母表示 比角度三角函数30° 45° 60° sinA cosA tanAABO②当角度在0°<A<90°间变化时:正弦、正切值随着角度的增大而;余弦随着角度的增大而练习:1.计算2sin30°-2cos60°+tan45°=________.2.求下列各式的值:⑴sin245°+cos260°;⑵cos45ºsin60º-1+4 sin45°·cos30°3.点(-sin60°,cos60°)关于y轴对称的点的坐标是()A.312) B.(312) C.(3-12) D.(-12,-32)4.若 3 tan(α+10°)=1,则锐角α的度数是.5.已知在△ABC中,∠A、∠B都是锐角,231sin cos02A B⎛+-=⎝⎭,则∠C的度数是()A.30°B.45°C.60°D.90°3.解直角三角形1.在Rt△ABC中,∠C=90°,边与角有下列关系:⑴三边的关系:;⑵两锐角的关系:∠A+∠B= 。

华师大版数学九年级上册《锐角三角函数》教学设计3

华师大版数学九年级上册《锐角三角函数》教学设计3

华师大版数学九年级上册《锐角三角函数》教学设计3一. 教材分析华师大版数学九年级上册《锐角三角函数》是学生在初中阶段最后一册数学教材中学习的内容。

在此之前,学生已经学习了平面几何、立体几何、概率统计等知识。

本节课的内容主要包括正弦、余弦和正切函数的定义及性质,以及它们在实际问题中的应用。

这部分内容是学生进一步学习高中数学的基础,也是培养学生解决实际问题能力的重要环节。

二. 学情分析九年级的学生已经具备了一定的数学基础,对平面几何、立体几何、概率统计等知识有一定的了解。

但是,对于三角函数的概念和性质,学生可能还比较陌生。

因此,在教学过程中,需要引导学生从实际问题出发,逐步理解三角函数的定义和性质。

三. 教学目标1.理解正弦、余弦和正切函数的定义及性质;2.能够运用三角函数解决实际问题;3.培养学生的数学思维能力和解决实际问题的能力。

四. 教学重难点1.三角函数的定义及性质;2.三角函数在实际问题中的应用。

五. 教学方法1.情境教学法:通过实际问题引入三角函数的概念,让学生在解决问题的过程中理解三角函数的定义和性质;2.引导发现法:教师引导学生发现三角函数的性质,培养学生的数学思维能力;3.实例讲解法:通过具体例子,讲解三角函数在实际问题中的应用,提高学生的解决问题的能力。

六. 教学准备1.准备相关的实际问题,用于引入三角函数的概念;2.准备三角函数的性质的讲解例子;3.准备一些应用题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入三角函数的概念。

例如,用量角器测量一个角的度数,引导学生思考如何用数学表达式来表示这个角的度数。

2.呈现(10分钟)讲解三角函数的定义及性质。

首先,讲解正弦函数、余弦函数和正切函数的定义;然后,讲解它们的性质,如周期性、奇偶性等。

3.操练(10分钟)让学生做一些有关三角函数的练习题,巩固所学知识。

例如,计算一些特殊角的三角函数值,判断一些函数的奇偶性等。

第28章 锐角三角函数复习学案

第28章 锐角三角函数复习学案

锐角三角函数(复习)【学习目标】1.了解并掌握三个锐角三角函数:正弦(sinA)、余弦(cosA)和正切(tanA).2.熟知30°,45°,60°角的三角函数值.3.能利用锐角三角函数解决简单的解直角三角形问题.基础部分活动1 复习回顾1.如右图,在Rt△ABC中,∠C为直角,则∠A的三角函数值为:2.30°、45°、60°特殊角的三角函数值:30°45°60°sinAcosAtanA观察表格,谈谈你记忆以上三个特殊角三角函数值的诀窍:要点部分活动2 例题巩固考点一锐角三角函数的定义1.已知在Rt△ABC中,∠C=90°,a=1,b=2,则tanA=_____,sinA=_____.2.如图所示的网格是正方形网格,点A,B,C都在格点上,则tan∠BAC的值为()A.2 B.C.D.▲练习:如图,ABC的顶点都是正方形网格的格点,求BAC∠的正弦值为_____.考点二、特殊角的三角函数值的考查1. 已知sinA 3A为锐角,则∠A的度数为2.(1)sin260°+cos260°-cos45°;(2)2sin30°+3cos60°-4tan45°3. 锐角A满足tan(A-15)o3A的度数。

4. 在△ABC中,若223cos sin022A B⎛-+-=⎝⎭(),A B∠∠均为锐角,求C∠的度数。

考点三、利用锐角三角函数解直角三角形1. 在Rt△ABC中,∠C=90°,a=2,sinA =13,求cosA和tanA的值.▲练习:如图,在Rt ABC 中,590,sin 13B A ∠=︒=,点D 在AB 边上,且45,5BDC BC ∠=︒=.(1)求AD 长;(2)求ACD ∠的正弦值.拓展部分★在学习《解直角三角形》一章时,小明同学对一个角的倍角的三角函数值是否具有关系产生了浓厚的兴趣,进行了一些研究.(1)初步尝试:我们知道:tan60︒=______,tan30︒=______,发现结论:tan A ______12tan 2A ;(选填“=”或“≠”)(2)实践探究:如图1,在Rt ABC 中,90C ∠=︒,2,1AC BC ==,求1tan2A 的值; 小明想构造包含12A ∠的直角三角形:延长CA 至点D ,使得DA AB =,连接BD ,所以得到12D A ∠=∠,即转化为求D ∠的正切值.请按小明的思路进行余下的求解; (3)拓展延伸:如图2,在Rt ABC 中,,1903,tan 3C AC A ∠===︒.求tan2A 的值.中午练习1.如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 在边OB 上,P M =PN ,若MN =2,则OM = ( ) A .3; B .4; C .5; D .62.在△ABC 中,AB =122,AC =13,cosB =22,则BC 边长为( ) A .7 B .8 C .8或17 D .7或173.如图,在△ABC 中,∠A =30°,∠B =45°,AC =23,则AB 的长为__________.4.求下列各式的值;(1)3tan30sin452sin60︒+︒-︒; (2)2sin 60tan30cos30tan 45︒-︒⋅︒+︒.5.已知:如图,在△ABC 中,AB =AC =9,BC =6. (1)求sinC ;(2)求AC 边上的高BD.。

28.1《锐角三角函数》教案

28.1《锐角三角函数》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“锐角三角函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
4.及时关注学生的学习反馈,针对他们的疑难点进行针对性的讲解和辅导。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对锐角三角函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
实践活动和小组讨论是今天课程的亮点。学生们在分组讨论中积极互动,通过实验操作加深了对三角函数的理解。在讨论环节,我尽量以引导者的身份出现,鼓励学生们提出自己的观点,这有助于培养他们的批判性思维和创新能力。不过,我也观察到,有些小组在分享成果时表达不够清晰,这可能是因为他们在整理思路和语言组织方面还需要进一步的指导。
在案例分析环节,我尝试通过解决实际问题的例子来展示锐角三角函数的应用,学生们对此表现出较大的兴趣。他们能够跟随我的思路,理解如何将三角函数知识应用于测量等实际问题中。然而,我也注意到,当学生们自己尝试解决问题时,他们在建立数学模型和选择合适的三角函数方面遇到了挑战。这表明,在未来的教学中,我需要更多关注学生的问题解决能力和数学建模能力的培养。
5.在小组合作与交流中,培养学生沟通协作、批判性思维和问题解决的核心素养。

人教版九年级数学下册:28锐角三角函数《锐角三角函数优秀教学案例》教案

人教版九年级数学下册:28锐角三角函数《锐角三角函数优秀教学案例》教案
1.了解锐角三角函数的概念、定义及性质,掌握锐角三角函数的计算方法。
2.能够运用锐角三角函数解决实际问题,提高学生的应用能力。
3.学会使用三角板和直尺等工具进行角度测量,培养学生的动手操作能力。
4.能够运用信息技术辅助学习,提高学生的信息素养。
(二)过程与方法
1.通过观察、实验、探究等方法,引导学生主动发现锐角三角函数的规律。
四、教学内容与过程
(一)导入新课
1.生活实例引入:教师通过展示一些实际生活中的图片,如建筑物的设计图、物理实验场景等,让学生观察并思考其中涉及到的角度问题。
2.提问引导:教师向学生提出问题,如“这些图片中的角度是如何计算的?”“你能想到一些与角度相关的实际问题吗?”等,激发学生的思考兴趣。
3.学生回答:鼓励学生积极回答问题,分享自己的观点和思考。
三、教学策略
(一)情景创设
1.生活情境:通过设置一些与生活密切相关的实例,如建筑设计、物理实验等,让学生了解锐角三角函数在实际生活中的应用,激发学生的学习兴趣。
2.问题情境:设计一些具有挑战性的问题,让学生在解决问题的过程中自然地引入锐角三角函数的知识,引导学生主动探究。
3.互动情境:创设轻松、愉快的课堂氛围,鼓励学生积极参与课堂讨论,培养学生主动表达自己观点的能力。
2.作业反馈:教师及时批改学生的作业,给予反馈和评价,指出学生的错误和不足,帮助学生提高。
3.学生自我检查:学生对自己的作业进行自我检查,总结自己在作业中的优点和不足,不断提高自己的学习效果。
五、案例亮点
1.生活情境的引入:通过展示与学生生活密切相关的实例,如建筑设计、物理实验等,让学生了解锐角三角函数在实际生活中的应用,使学生感受到数学的实用性,激发学生的学习兴趣。这种生活情境的引入,不仅能够引起学生的兴趣,还能够增强学生对知识的理解和记忆。

人教版九年级下册数学《锐角三角函数》教案(附解答)

人教版九年级下册数学《锐角三角函数》教案(附解答)

南京市中考化学二模试题及答案一、选择题1.已知某固体粉末是由 NaCl、CaCl2、NaOH、K2CO3、Na2CO3中的一种或几种组成,取这种粉末24g 加足量的水,振荡后呈浑浊,过滤、洗涤、烘干后得到10g沉淀和滤液。

向滤液中滴加酚酞,变红;取少量滤液于试管中滴加硝酸银溶液有白色沉淀生成,再加入稀硝酸沉淀不消失且试管中有气泡产生。

下列说法正确的是A.原固体中一定含CaCl2、NaOH和Na2CO3B.原固体中一定含Na2CO3,可能含K2CO3和NaClC.滤液中一定含NaCl和K2CO3,可能含NaOHD.上述实验无法证明原固体中是否含NaCl、CaCl2、NaOH2.在AlCl3溶液中逐滴加入NaOH溶液至过量,发生如下反应:3NaOH+AlCl3=Al(OH)3↓+3NaCl, Al(OH)3+NaOH=NaAlO2+2H2O。

已知NaAlO2易溶于水,则下列图像不正确的是( )A.B.C.D.3.用数形结合的方法表示某些化学知识直观、简明、易记.下列用数轴表示正确的是()A .不同物质的着火点:B .硫及其化合物与化合价的关系:C .50g19.6%的稀硫酸与足量的金属反应产生氢气的质量:D .物质形成溶液的pH :4.甲、乙、丙、丁均为初中化学常见的物质,它们之间的部分转化关系如图所示(部分反应物、生成物和反应条件已略去。

“——”表示物质之间能发生化学反应。

“―→”表示物质之间的转化关系)。

下列推论不正确...的是( )A .若甲是碳酸钙,则乙转化成丙的反应可以是放热反应B .若乙是最常用的溶剂,则丁可以是单质碳C .若甲是碳酸钠,乙是硫酸钠,则丁可以是氯化钡D .若丙是二氧化碳,丁是熟石灰,则丁可以通过复分解反应转化为乙5.金属钠非常活泼,常温下在空气中易被氧化,也易与水反应。

现将5.4g 部分氧化的金属钠样品放入150g 16%的硫酸铜溶液中,充分反应后过滤,得到9.8g 蓝色滤渣。

《锐角三角函数》 导学案

《锐角三角函数》 导学案

《锐角三角函数》导学案一、学习目标1、理解锐角三角函数的定义,能够准确说出正弦、余弦、正切的概念。

2、掌握锐角三角函数的求值方法,会利用已知条件求出锐角的三角函数值。

3、能够运用锐角三角函数解决与直角三角形相关的实际问题。

二、学习重难点1、重点(1)锐角三角函数的概念,包括正弦、余弦、正切的定义。

(2)特殊锐角(30°、45°、60°)的三角函数值及其应用。

2、难点(1)理解锐角三角函数的本质,以及如何在直角三角形中准确地表示出三角函数值。

(2)运用锐角三角函数解决实际问题时,如何将实际问题转化为数学模型。

三、知识回顾1、直角三角形的性质(1)直角三角形的两个锐角互余。

(2)直角三角形斜边的平方等于两直角边的平方和(勾股定理)。

2、相似三角形的性质(1)对应角相等,对应边成比例。

(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。

四、新课导入在生活中,我们常常会遇到需要测量高度、距离等问题,比如测量大树的高度、河流的宽度等。

而这些问题往往可以通过直角三角形的知识来解决。

今天,我们就来学习一种新的数学工具——锐角三角函数,它将帮助我们更方便、更准确地解决这类问题。

五、知识讲解1、锐角三角函数的定义在直角三角形中,如果一个锐角的对边与斜边的比值是一个固定值,那么这个比值就叫做这个锐角的正弦,记作 sinA。

即 sinA =对边/斜边。

同理,如果一个锐角的邻边与斜边的比值是一个固定值,那么这个比值就叫做这个锐角的余弦,记作 cosA。

即 cosA =邻边/斜边。

如果一个锐角的对边与邻边的比值是一个固定值,那么这个比值就叫做这个锐角的正切,记作 tanA。

即 tanA =对边/邻边。

例如,在直角三角形 ABC 中,∠C = 90°,∠A 为锐角,BC 为∠A 的对边,AC 为∠A 的邻边,AB 为斜边。

则 sinA = BC / AB,cosA = AC / AB,tanA = BC / AC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1锐角三角函数(1)学案
学习目标:
1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.
2.能够用tanA 表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算.
学习重点:
1.从现实情境中探索直角三角形的边角关系.
2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.
学习难点:
理解正切的意义,并用它来表示两边的比.
学习方法:
引导—探索法.
学习过程:
一、生活中的数学问题:
1.千年古寺青檀寺中有一座报国塔,小明很想知道
古塔的高度,但小明没有足够长的尺子,怎么办呢?于
是聪明的小明想了这样的办法:小明在塔前的A 处仰望
塔顶,测得仰角∠1的大小,再往塔的方向前进50米到
B 处又测得仰角的大小,根据这些他就求出了塔的高
度.你知道他是怎么做的吗? 通过本章的学习,我们就会揭开小明这样做的谜
底.从今天这节课开始,我们就来学习九年级(下)第一章的内容:直角三角形的边角关系.
2.你能比较两个梯子哪个更陡吗?你有哪些办法?
3⑴如图:梯子AB 和EF 哪个更陡?你是怎样判断的?
⑵以下三组中,梯子AB 和EF 哪个更陡?你是怎样判断的?
A B
1 2
二、呈现问题,探索新知
⑴Rt △AB 1C 1和Rt△AB 2C 2有什么关系? ⑵222111B AC C B AC C 和有什么关系? ⑶如果改变B 2在梯子上的位置(如B 3C 3)呢?
⑷由此你得出什么结论?
(5)概念的生成
由于直角三角形中的锐角A 确定以后,它的对边与邻边之比也随
之确定,因此我们有如下定义:
如图,在Rt△ABC 中,如果锐角A 确定,那么∠A 的对边与邻边之
比便随之确定,这个比叫做∠A 的 (tangent),记作tanA ,即
tanA = .
三、巩固提高,应用新知
例1 如图是甲、乙两个自动扶梯,哪一个自动扶梯比较陡?
坡度
如图,正切也经常用来描述山坡的坡度.例如,有一山坡在水平方向
上每前进100m 就升高60m ,那么山坡的坡度i (即tan α)就是:
603tan 1005
i α===.
结论:坡面与水平面的夹角(α)称为 ,坡面的铅直高度与水平宽度的比称为坡度i (或坡比),即坡度等于坡角的 .
四、拓展训练, 能力提升
请大家独立完成下面的问题.
1.在右图中:求tanA的值
2.如图,在Rt△ABC中,锐角A的对边和邻边同时扩大100倍,tanA
的值()
A.扩大100倍
B.缩小100倍
C.不变
D.不能确定
3.小明从黄山百步云梯脚下的点A约走了1000m后,到达山顶的点
B.已知山顶B到山脚下的垂直距离约是600m,求山坡的坡度.
五、系统小结,反思提升
【谈谈本节课你的学习有哪些收获.
(1)正切的定义: .
(2)梯子的倾斜程度与tanA的关系.
六、达标测试,反馈矫正
1、在Rt△ABC中,∠C=90°,AB=3,BC=1,则tanA= _______.
2、在△ABC中,AB=10,AC=8,BC=6,则tanA=_______.
3.如右图,若某人沿坡度i=3:4的斜坡前进10米,则他所在的
位置比原来的位置升高________米. A
B
C。

相关文档
最新文档