第一章 集合与常用逻辑用语 章节测试
人教A版(2019)高中数学 必修第一册 第一章 集合与常用逻辑用语 单元测试题
人教A版(2019)高中数学必修第一册第一章集合与常用逻辑用语单元测试题一、单选题(共8题;共40分)1.(5分)下列元素与集合的关系表示不正确的是()A.0∈N B.0∈Z C.32∈Q D.π∈Q2.(5分)设集合A={x|5<x<16},B={3,4,6,7,9,12,13,16},则A∩B中元素的个数为()A.3B.4C.5D.63.(5分)已知集合A={0,2},B={a,0,3},且A∪B有16个子集,则实数a可以是()A.-1B.0C.2D.34.(5分)已知全集U=R,集合A={y|y=x2+2},集合B={x|9−x2>0},则阴影部分表示的集合为()A.[−3, 2]B.(−3, 2)C.(−3, 2]D.[−3, 2)5.(5分)已知集合A,B满足A∪B={x|1<x≤3},A∩B={x|a≤x≤a+1},则实数a的取值范围为()A.[1,2]B.(1,2)C.(1,2]D.∅6.(5分)已知集合M={0,1,2},N={x∈Z|0<x<4},则M∩N=()A.{0,1,2}B.{0,2}C.{1,2}D.{1}7.(5分)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则C u(MUN)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}8.(5分)记不等式x2+x−2>0、x2−ax+1≤0(a>0)解集分别为A、B,A∩B中有且只有两个正整数解,则a的取值范围为()A.(103,174)B.[103,174)C.(52,174)D.[52,174)二、多选题(共4题;共20分)9.(5分)图中阴影部分用集合符号可以表示为()A.A∩(B∪C)B.A∪(B∩C)C.A∩∁U(B∩C)D.(A∩B)∪(A∩C)10.(5分)已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B⊊A时,则−6<a≤−3或a≥611.(5分)已知非空集合A、B满足:全集U=A∪B=(−1,5],A∩(∁U B)=[4,5],下列说法不一定正确的有()A.A∩B=∅B.A∩B≠∅C.B=(−1,4)D.B∩(∁U A)=(−1,4)12.(5分)设集合M={x|a<x<3+a},N={x|x<2或x>4},则下列结论中正确的是()A.若a<−1,则M⊆N B.若a>4,则M⊆NC.若M∪N=R,则1<a<2D.若M∩N≠∅,则1<a<2三、填空题(共4题;共20分)13.(5分)已知集合A={x∈Z∣32−x∈Z},用列举法表示集合A,则A=.14.(5分)已知集合A={−1,2m−1},B={m2},若B⊆A,则实数m=.15.(5分)已知1∈{−x,x2},则实数x的值是.16.(5分)已知集合A={4,2a+1,a},B={a−3,4−a,3}且A∩B={3},则a的取值为.四、解答题(共6题;共70分)17.(10分)已知集合A={x|a−3≤x≤2a+1},B={x|−5≤x≤3},全集U=R.(1)(4分)当a=1时,求(∁U A)∩B;(2)(6分)若A⊆B,求实数a的取值范围.18.(12分)已知集合A={x|1<x<3},集合B={x|m<x<1−m}.(1)(6分)当m=−1时,求A∪B;(2)(6分)若A∩B=A,求实数m的取值范围.19.(12分)A={x|−3≤x<6},B={x|a−7<x≤2a}(1)(6分)A∪B=B,求a的取值范围;(2)(6分)(∁U A)∩B=∅,求a的取值范围.20.(12分)已知集合A={x||x+2|≥5},B={x|x2−6x+5<0},求:(1)(6分)集合A,B;(2)(6分)A∪B.21.(12分)设数集A由实数构成,且满足:若x∈A(x≠1且x≠0),则11−x∈A.(1)(4分)若2∈A,则A中至少还有几个元素?(2)(4分)集合A是否为双元素集合?请说明理由.(3)(4分)若A中元素个数不超过8,所有元素的和为143,且A中有一个元素的平方等于所有元素的积,求集合A.22.(12分)设全集U=R,集合A={x|(x+1)(x−3)≥0},B={x|2x−4≥x−2}(1)(4分)求A∩B,A∪B;(2)(4分)若集合C={x|2x+a≥0},且B⊆C,求实数a的取值范围;(3)(4分)若集合D={x|a<x<a+5},且A∪D=R,求实数a的取值范围.答案解析部分1.【答案】D【知识点】元素与集合关系的判断【解析】【解答】根据元素与集合的关系可得0∈N,0∈Z,32∈Q,π∉Q,D不正确,符合题意.故答案为:D.【分析】根据元素与集合的关系,结合数集的表示方法,判断选项中的命题真假性即可。
高中数学必修一第一章集合与常用逻辑用语专项训练题(带答案)
高中数学必修一第一章集合与常用逻辑用语专项训练题单选题1、设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A .–4B .–2C .2D .4答案:B分析:由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 求解二次不等式x 2−4≤0可得:A ={x|−2≤x ≤2},求解一次不等式2x +a ≤0可得:B ={x|x ≤−a 2}. 由于A ∩B ={x|−2≤x ≤1},故:−a 2=1,解得:a =−2. 故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.2、已知集合M ={x |1−a <x <2a },N =(1,4),且M ⊆N ,则实数a 的取值范围是( )A .(−∞,2]B .(−∞,0]C .(−∞,13]D .[13,2] 答案:C分析:按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解.因M ⊆N ,而ϕ⊆N ,所以M =ϕ时,即2a ≤1−a ,则a ≤13,此时 M ≠ϕ时,M ⊆N ,则{1−a <2a 1−a ≥12a ≤4 ⇒{a >13a ≤0a ≤2,无解,综上得a ≤13,即实数a 的取值范围是(−∞,13].故选:C3、设全集U ={−3,−2,−1,0,1,2,3},集合A ={−1,0,1,2}, B ={−3,0,2,3},则A ∩(∁U B )=( )A .{−3,3}B .{0,2}C .{−1,1}D .{−3,−2,−1,1,3}答案:C分析:首先进行补集运算,然后进行交集运算即可求得集合的运算结果.由题意结合补集的定义可知:∁U B={−2,−1,1},则A∩(∁U B)={−1,1}.故选:C.小提示:本题主要考查补集运算,交集运算,属于基础题.4、下面四个命题:①∀x∈R,x2-3x+2>0恒成立;②∃x∈Q,x2=2;③∃x∈R,x2+1=0;④∀x∈R,4x2>2x-1+3x2.其中真命题的个数为()A.3B.2C.1D.0答案:D分析:对于①,计算判别式或配方进行判断;对于②,当x2=2时,只能得到x为±√2,由此可判断;对于③,方程x2+1=0无实数解;对于④,作差可判断.解:x2-3x+2>0,Δ=(-3)2-4×2>0,∴当x>2或x<1时,x2-3x+2>0才成立,∴①为假命题.当且仅当x=±√2时,x2=2,∴不存在x∈Q,使得x2=2,∴②为假命题.对∀x∈R,x2+1≠0,∴③为假命题.4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,即当x=1时,4x2=2x-1+3x2成立,∴④为假命题.∴①②③④均为假命题.故选:D小提示:此题考查特称命题和全称命题真假的判断,特称命题要为真,只要有1个成立即可,全称命题要为假,只要有1个不成立即可,属于基础题.5、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C分析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.6、若集合U={0,1,2,3,4,5},A={0,2,4},B={3,4},则(∁U A)∩B=().A.{3}B.{5}C.{3,4,5}D.{1,3,4,5}答案:A分析:根据补集的定义和运算求出∁U A,结合交集的概念和运算即可得出结果.由题意知,∁U A={1,3,5},又B={3,4},所以(∁U A)∩B={3}.故选:A7、集合A={x|x<−1或x≥3},B={x|ax+1≤0}若B⊆A,则实数a的取值范围是()A.[−13,1)B.[−13,1]C.(−∞,−1)∪[0,+∞)D.[−13,0)∪(0,1)答案:A分析:根据B⊆A,分B=∅和B≠∅两种情况讨论,建立不等关系即可求实数a的取值范围.解:∵B⊆A,∴①当B=∅时,即ax+1⩽0无解,此时a=0,满足题意.②当B≠∅时,即ax+1⩽0有解,当a>0时,可得x⩽−1a,要使B⊆A,则需要{a>0−1a<−1,解得0<a<1.当a<0时,可得x⩾−1a,要使B⊆A,则需要{a<0−1a⩾3,解得−13⩽a<0,综上,实数a的取值范围是[−13,1).故选:A.小提示:易错点点睛:研究集合间的关系,不要忽略讨论集合是否为∅.8、已知集合满足{1,2}⊆A⊆{1,2,3},则集合A可以是()A.{3}B.{1,3}C.{2,3}D.{1,2}答案:D分析:由题可得集合A可以是{1,2},{1,2,3}.∵{1,2}⊆A⊆{1,2,3},∴集合A可以是{1,2},{1,2,3}.故选:D.多选题9、下列存在量词命题中真命题是()A.∃x∈R,x≤0B.至少有一个整数,它既不是合数,也不是素数C.∃x∈{x|x是无理数},x2是无理数D.∃x0∈Z,1<5x0<3答案:ABC分析:结合例子,逐项判断即可得解.对于A,∃x=0∈R,使得x≤0,故A为真命题.对于B,整数1既不是合数,也不是素数,故B为真命题;对于C,若x=π,则x∈{x|x是无理数},x2是无理数,故C为真命题.对于D,∵1<5x0<3,∴15<x0<35,∴∃x0∈Z,1<5x0<3为假命题.故选:ABC.10、对任意实数a、b、c,给出下列命题,其中真命题是()A.“a=b”是“ac=bc”的充要条件B.“a>b”是“a2>b2”的充分条件C.“a<5”是“a<3”的必要条件D.“a+5是无理数”是“a是无理数”的充要条件答案:CD分析:利用特殊值法以及充分条件、必要条件的定义可判断A、B选项的正误;利用必要条件的定义可判断C 选项的正误;利用充要条件的定义可判断D选项的正误.对于A,因为“a=b”时ac=bc成立,ac=bc且c=0时,a=b不一定成立,所以“a=b”是“ac=bc”的充分不必要条件,故A错;对于B,a=−1,b=−2,a>b时,a2<b2;a=−2,b=1,a2>b2时,a<b.所以“a>b”是“a2>b2”的既不充分也不必要条件,故B错;对于C,因为“a<3”时一定有“a<5”成立,所以“a<3”是“a<5”的必要条件,C正确;对于D“a+5是无理数”是“a是无理数”的充要条件,D正确.故选:CD.小提示:本题考查充分条件、必要条件的判断,考查了充分条件和必要条件定义的应用,考查推理能力,属于基础题.11、非空集合A具有下列性质:①若x,y∈A,则xy∈A;②若x,y∈A,则x+y∈A.下列选项正确的是()A.−1∉A B.20202021∉AC.若x,y∈A,则xy∈A D.若x,y∈A,则x−y∉A答案:AC分析:若−1∈A,利用条件可得当x=−1∈A,y=0∈A时,不满足xy∈A,可判断A,利用条件可得若x≠0且x∈A,进而得2020∈A,2021∈A,可判断B,利用题设可得若x,y∈A,则xy∈A,x−y=1∈A可判断CD.对于A,若−1∈A,则−1−1=1∈A,此时−1+1=0∈A,而当x=−1∈A,y=0∈A时,−1显然无意义,不满足xy∈A,所以−1∉A,故A正确;对于B,若x≠0且x∈A,则1=xx∈A,所以2=1+1∈A,3=2+1∈A,以此类推,得对任意的n∈N∗,有n∈A,所以2020∈A,2021∈A,所以20202021∈A,故B错误;对于C,若x,y∈A,则x≠0且y≠0,又1∈A,所以1y ∈A,所以xy=x1y=∈A,故C正确;对于D,取x=2,y=1,则x−y=1∈A,故D错误.故选:AC.填空题12、设集合A={1,2,a},B={2,3}.若B⊆A,则a=_______.答案:3分析:由题意可知集合B是集合A的子集,进而求出答案.由B⊆A知集合B是集合A的子集,所以3∈A⇒a=3,所以答案是:3.13、在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k= 0,1,2,3,4;给出下列四个结论:①2015∈[0];②−3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a−b∈[0]”.其中,正确结论的个数..是_______.答案:3分析:根据2015被5除的余数为0,可判断①;将−3=−5+2,可判断②;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断③;令a=5n1+m1,b=5n2+m2,根据“类”的定理可证明④的真假.①由2015÷5=403,所以2015∈[0],故①正确;②由−3=5×(−1)+2,所以−3∉[3],故②错误;③整数集就是由被5除所得余数为0,1,2,3,4的整数构成,故③正确;④假设a=5n1+m1,b=5n2+m2,a−b=5(n1−n2)+m1−m2,a,b要是同类.则m1=m2,即m1−m2=0,所以a−b∈[0],反之若a−b∈[0],即m1−m2=0,所以m1=m2,则a,b是同类,④正确;所以答案是:3小提示:本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理,属中档题.14、设P为非空实数集满足:对任意给定的x、y∈P(x、y可以相同),都有x+y∈P,x−y∈P,xy∈P,则称P为幸运集.①集合P={−2,−1,0,1,2}为幸运集;②集合P={x|x=2n,n∈Z}为幸运集;③若集合P1、P2为幸运集,则P1∪P2为幸运集;④若集合P为幸运集,则一定有0∈P;其中正确结论的序号是________答案:②④解析:①取x=y=2判断;②设x=2k1∈P,y=2k2∈P判断;③举例P1={x|x=2k,k∈Z},P2={x|x=3k,k∈Z}判断;④由x、y可以相同判断;①当x=y=2,x+y=4∉P,所以集合P不是幸运集,故错误;②设x=2k1∈P,y=2k2∈P,则x+y=2(k1+k2)∈A,x−y=2(k1−k2)∈A,xy=2k1⋅k2∈A,所以集合P是幸运集,故正确;③如集合P1={x|x=2k,k∈Z},P2={x|x=3k,k∈Z}为幸运集,但P1∪P2不为幸运集,如x=2,y=3时,x+y=5∉P1∪P2,故错误;④因为集合P为幸运集,则x−y∈P,当x=y时,x−y=0,一定有0∈P,故正确;所以答案是:②④小提示:关键点点睛:读懂新定义的含义,结合“给定的x、y∈P(x、y可以相同),都有x+y∈P,x−y∈P,xy∈P”,灵活运用举例法.解答题15、已知集合A={x|x=m+√6n,其中m,n∈Q}.(1)试分别判断x1=−√6,x2=√2−√3+√2+√3与集合A的关系;(2)若x1,x2∈A,则x1x2是否一定为集合A的元素?请说明你的理由.答案:(1)x1∈A,x2∈A(2)x1x2∈A,理由见解析分析:(1)将x1,x2化简,并判断是否可以化为m+√6n,m,n∈Q的形式即可判断关系.(2)由题设,令x1=m1+√6n1,x2=m2+√6n2,进而判断是否有x1x2=m+√6n,m,n∈Q的形式即可判断.(1)x1=−√6=0+√6×(−1)∈A,即m=0,n=−1符合;x2=√(√3−1)22+√(√3+1)22=√6=0+√6×1∈A,即m=0,n=1符合.(2)x1x2∈A.理由如下:由x1,x2∈A知:存在m1,m2,n1,n2∈Q,使得x1=m1+√6n1,x2=m2+√6n2,∴x1x2=(m1+√6n1)(m2+√6n2)=(m1m2+6n1n2)+√6(m1n2+m2n1),其中m1m2+6n1n2,m1n2+ m2n1∈Q,∴x1x2∈A.。
第一章集合与常用逻辑用语+单元检测-2022-2023学年高一上学期数学人教A版必修第一册
2022年第一章集合与常用逻辑用语单元测试评卷人得分一、单选题1.已知集合,则()A.{2,4} B.{2,4,6} C.{2,4,6,8} D.{1,2,3,4,6,8}2.已知集合,,全集,则集合中的元素个数为()A.1 B.2 C.3 D.43.集合,则()A.B.C.D.4.设集合,B={y|y=x2},则A∩B=()A.[-2,2] B.[0,2]C.[0,+∞)D.{(-1,1),(1,1)}5.已知集合,,则()A.B.C.D.6.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.“且”是“”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件8.设集合,,且,则()A.1 B.C.2 D.评卷人得分二、多选题9.(2022·全国·高一课时练习)下列四个命题中正确的是()A.B.由实数x,-x,,,所组成的集合最多含2个元素C.集合中只有一个元素D.集合是有限集10.已知集合,若B⊆A,则实数a的值可能是()A.0 B.1 C.2 D.311.(2022·湖南·株洲二中高一开学考试)下列命题中,真命题是()A.若且,则至少有一个大于1B.C.的充要条件是D.命题“”的否定形式是“”12.(2022·陕西·千阳县中学高一开学考试)若“,都有”是真命题,则实数可能的值是()A.1 B.C.3 D.评卷人得分三、填空题13.(2021·上海市洋泾中学高一阶段练习)己知集合,若,则实数a的值为____________.14.(2021·上海市洋泾中学高一阶段练习)已知全集且,,,且,则的值为_____________.15.(2021·上海市青浦区第一中学高一阶段练习)已知命题或,命题或,若是的充分条件,则实数的取值范围是___________.16.(2021·上海市洋泾中学高一阶段练习)若集合,则,则实数a的值为_________.评卷人得分四、解答题17.(2022·全国·高一课时练习)已知全集,集合,,.(1)求;(2)求.18.(2022·湖北·华中师大一附中高一开学考试)已知集合.(1)若,求实数的取值范围;(2)若,求实数的取值范围:(3)若,求实数的取值范围.19.(2021·上海市青浦区第一中学高一阶段练习)已知.(1)若,求;(2)若,求实数的取值范围.20.(2022·全国·高一课时练习)已知为实数,,.(1)当时,求的取值集合;(2)当 时,求的取值集合.21.不等式的解集为集合,不等式的解集为集合.(1)求集合;(2)设条件,条件,若是成立的充分不必要条件,求实数的取值范围.22.在①;②““是“”的充分不必要条件;③,这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合,.(1)当时,求;(2)若,求实数的取值范围.参考答案1.D 2.C 3.B 4.B 5.B6.A【详解】依题意,可得,即,显然是的充分不必要条件.故选:A7.B【详解】解:由且,则且,所以,即充分性成立;由推不出且,如,,满足,但是不成立,故必要性不成立;故“且”是“”的充分不必要条件;故选:B8.C【详解】解,即,当即时,,此时,不合题意;故,即,则,由于,,所以,解得,故选:C 9.BCD 10.AB11.AD【详解】对于A中,若实数都小于等于1,那么可以推出,所以A正确;对于B中,当时,,所以B错误;对于C中,当时,满足,但不成立,所以C错误;对于D中,由含有一个量词的否定的概念,可得命题“”的否定形式是“”,所以D是正确的.故选:AD.12.AB【详解】解:二次函数的对称轴为,①若即,如图,由图像可知当时随的增大而增大,且时,即满足题意;②若时,如图,由图像可知的最小值在对称轴处取得,则时,,解得,此时,,综上,,故选:AB.13.【详解】由集合中元素的互异性得,故,则,又,所以,解得.故答案为:14.66【详解】解:因为全集,,所以3,9,12,15中有两个属于,因为中的方程中,两根之积,所以,所以,又,所以,因为中的方程中,两根之和,所以,则,所以.故答案为:.15.【详解】由题意,所以.故答案为:16.【详解】由题意,集合,因为,可得方程组无解,即直线与平行,可得,解得.故答案为:.17.【解析】(1),解得或,所以,,解得,所以.所以.(2)由(1)知.将化为,即,所以,解得,所以,所以.18.【解析】(1)由题意知,,因为,所以, ,即实数的取值范围为;(2)由(1)知,,,即实数的取值范围是;(3)由题意知或,,或,或,即实数的取值范围是.19.【解析】(1)若所以.(2)由,所以,故,所以实数的取值范围是.20.【解析】(1)因为,所以当时,,当时,.又,所以,此时,满足.所以当时,的取值集合为.(2)当时,, 不成立;当时,,, 成立;当且时,,,由 ,得,所以.综上,的取值集合为.21.【解析】(1)不等式可化为,即,∴.(2)由题意得,∵是成立的充分不必要条件,∴是的真子集,∴,∴实数的取值范围是.22.【解析】(1)当时,集合,,所以;(2)若选择①,则,则,因为,所以,又,所以,解得,所以实数的取值范围是;若选择②,““是“”的充分不必要条件,则 ,因为,所以,又,所以,解得,所以实数的取值范围是.若选择③,,因为,,所以或,解得或,所以实数的取值范围是.。
高中数学第一章集合与常用逻辑用语考点专题训练(带答案)
高中数学第一章集合与常用逻辑用语考点专题训练单选题1、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.2、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n−2与3p+1都是表示同一类数,6m−5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m−56,m∈Z},x=m−56=6m−56=6(m−1)+16,对于集合N={x|x=n2−13,n∈Z},x=n2−13=3n−26=3(n−1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n−1)+1与3p+1表示的数都是3的倍数加1,6(m−1)+1表示的数是6的倍数加1,所以6(m−1)+1表示的数的集合是前者表示的数的集合的子集,所以M⊆N=P.故选:B.3、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.4、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|〉3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D5、设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M答案:A分析:先写出集合M,然后逐项验证即可由题知M={2,4,5},对比选项知,A正确,BCD错误故选:A6、已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6答案:C分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B中的元素满足{y≥xx+y=8,且x,y∈N∗,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.8、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、已知集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},且x1、x2∈A,x3∈B,则下列判断正确的是()A.x1x2∈A B.x2x3∈BC.x1+x2∈B D.x1+x2+x3∈A答案:ABC分析:本题首先可根据题意得出A表示奇数集,B表示偶数集,x1、x2是奇数,x3是偶数,然后依次对x1x2、x2x3、x1+x2、x1+x2+x3进行判断,即可得出结果.因为集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},所以集合A表示奇数集,集合B表示偶数集,x1、x2是奇数,x3是偶数,A项:因为两个奇数的积为奇数,所以x1x2∈A,A正确;B项:因为一个奇数与一个偶数的积为偶数,所以x2x3∈B,B正确;C项:因为两个奇数的和为偶数,所以x1+x2∈B,C正确;D项:因为两个奇数与一个偶数的和为偶数,所以x1+x2+x3∈B,D错误,故选:ABC.11、已知命题p:∃x∈R,ax2−4x−4=0,若p为真命题,则a的值可以为()A.-2B.-1C.0D.3答案:BCD分析:根据给定条件求出p为真命题的a的取值范围即可判断作答,当a=0时,x=−1,p为真命题,则a=0,当a≠0时,若p为真命题,则Δ=16+16a≥0,解得a≥−1且a≠0,综上,p为真命题时,a的取值范围为a≥−1.故选:BCD12、已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B A时,则−6<a≤−3或a≥6答案:ABC分析:求出集合A,根据集合包含关系,集合相等的定义和集合的概念求解判断.A={x∈R|−3<x<6},若A=B,则a=−3,且a2−27=−18,故A正确.a=−3时,A=B,故D不正确.若A⊆B,则(−3)2+a⋅(−3)+a2−27≤0且62+6a+a2−27≤0,解得a=−3,故B正确.当B=∅时,a2−4(a2−27)≤0,解得a≤−6或a≥6,故C正确.故选:ABC.13、已知集合P={1,2},Q={x|ax+2=0},若P∪Q=P,则实数a的值可以是()A.−2B.−1C.1D.0答案:ABD分析:由题得Q⊆P,再对a分两种情况讨论,结合集合的关系得解.因为P∪Q=P,所以Q⊆P.由ax+2=0得ax=−2,当a=0时,方程无实数解,所以Q=∅,满足已知;当a≠0时,x=−2a ,令−2a=1或2,所以a=−2或−1.综合得a=0或a=−2或a=−1.故选:ABD小提示:易错点睛:本题容易漏掉a=0. 根据集合的关系和运算求参数的值时,一定要注意考虑空集的情况,以免漏解.填空题14、已知集合A={x|3≤x<7},C={x|x>a},若A⊆C,求实数a的取值范围_______.答案:(−∞,3)分析:根据集合的包含关系画出数轴即可计算.∵A⊆C,∴A和C如图:∴a<3.所以答案是:(−∞,3).15、若A={x|x2+(m+2)x+1=0,x∈R},且A∩R+=∅,则m的取值范围是__.答案:m>﹣4.解析:根据题意可得A是空集或A中的元素都是小于等于零的,然后再利用判别式以及韦达定理求解即可.解:A∩R+=∅知,A有两种情况,一种是A是空集,一种是A中的元素都是小于等于零的,若A=∅,则Δ=(m +2)2﹣4<0,解得﹣4<m<0 ,①若A≠∅,则Δ=(m +2)2﹣4≥0,解得m≤﹣4或m≥0,又A中的元素都小于等于零∵两根之积为1,∴A中的元素都小于0,∴两根之和﹣(m+2)<0,解得m>﹣2∴m≥0,②由①②知,m>﹣4,所以答案是:m>﹣4.小提示:易错点点睛:本题考查利用交集的结果求参数,本题在求解中容易忽略A=∅的讨论,导致错解,同时本题也可以采取反面考虑结合补集思想求解.16、设集合A={−4,2m−1,m2},B={9,m−5,1−m},又A∩B={9},求实数m=_____.答案:−3分析:根据A∩B={9}得出2m−1=9或m2=9,再分类讨论得出实数m的值.因为A∩B={9},所以9∈A且9∈B,若2m−1=9,即m=5代入得A={−4,9,25},B={9,0,−4},∴A∩B={−4,9}不合题意;若m2=9,即m=±3.当m=3时,A={−4,5,9},B={9,−2,−2}与集合元素的互异性矛盾;当m=−3时,A={−4,−7,9},B={9,−8,4},有A∩B={9}符合题意;综上所述,m=−3.所以答案是:−3解答题17、已知集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0},集合C={x|x2+2x−8=0}.(1)若A∩B={2},求实数a的值;(2)若A∩B≠∅,A∩C=∅,求实数a的值.答案:(1)−3(2)−2分析:(1)求出集合B={2,3},由A∩B={2},得到2∈A,由此能求出a的值,再注意3∉A检验即可;(2)求出集合C={−4,2},由A∩B≠∅,A∩C=∅,得3∈A,由此能求出a,最后同样要注意检验.(1)因为集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0}={2,3},且A∩B={2},所以2∈A ,所以4−2a +a 2−19=0,即a 2−2a −15=0,解得a =−3或a =5.当a =−3时,A ={x |x 2+3x −10=0}={−5,2},A ∩B ={2},符合题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},A ∩B ={2,3},不符合题意.综上,实数a 的值为−3.(2)因为A ={x |x 2−ax +a 2−19=0},B ={2,3},C ={x |x 2+2x −8=0}={−4,2},且A ∩B ≠∅,A ∩C =∅,所以3∈A ,所以9−3a +a 2−19=0,即a 2−3a −10=0,解得a =−2或a =5.当a =−2时,A ={x |x 2+2x −15=0}={−5,3},满足题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},不满足题意.综上,实数a 的值为−2.18、设α:m −1≤x ≤2m ,β:2≤x ≤4,m ∈R ,α是β的必要条件,但α不是β的充分条件,求实数m 的取值范围.答案:[2,3]分析:由题意可知α是β的必要不充分条件,可得出集合的包含关系,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.由题意可知,α是β的必要不充分条件,所以,{x |m −1≤x ≤2m }{x |2≤x ≤4},所以{m −1≤22m ≥4,解之得2≤m ≤3. 因此,实数m 的取值范围是[2,3].。
第一章 集合与常用逻辑用语 单元测试卷(Word版含答案)
《第一章集合与常用逻辑用语》单元测试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U={1,2,3,4,5,6},A={1,3,4},B={1,3,5},则(∁U A)∪B=()A.{5}B.{1,3}C.{1,2,3,5,6}D.⌀2.命题“∀x∈Q,3x2+2x+1∈Q”的否定为()A.∀x∉Q,3x2+2x+1∉QB.∀x∈Q,3x2+2x+1∉QC.∃x∉Q,3x2+2x+1∉QD.∃x∈Q,3x2+2x+1∉Q3.已知集合A={0,1,2},B={1,m}.若B⊆A,则m=()A.0B.0或1C.0或2D.1或24.设全集U=R,M={x|x<-3或x>3},N={x|2≤x≤4},如图,阴影部分所表示的集合为()A.{x|-3≤x<2}B.{x|-3≤x≤4}C.{x|x≤2或x>3}D.{x|-3≤x≤3}5. “|x|≠|y|”是“x≠y”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设集合A={x|2a<x<a+2},B={x|x<-3或x>5},若A∩B=⌀,则实数a的取值范围为()A.{a|a≥-32} B.{a|a>-32}C.{a|a≤-32} D.{a|a<-32}7.若p:x2+x-6=0是q:ax-1=0(a≠0)的必要不充分条件,则实数a的值为()A.-12B.-12或13C.-13D.12或-138.已知集合A中有10个元素,B中有6个元素,全集U有18个元素,A∩B≠⌀.设集合(∁U A)∩(∁U B)中有x个元素,则x的取值范围是()A.{x|3≤x≤8,且x∈N}B.{x|2≤x≤8,且x∈N}C.{x|8≤x≤12,且x∈N}D.{x|10≤x≤15,且x∈N}二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知命题p:∃x∈R,x2+2x+2-a=0为真命题,则实数a的值可以是()A.1B.0C.3D.-310.图中阴影部分表示的集合是()A.N∩(∁U M)B.M∩(∁U N)C.[∁U(M∩N)]∩ND.(∁U M)∩(∁U N)11.设全集为U,下列选项中,是“B⊆A”的充要条件的是()A.A∪B=AB.A∩B=AC.(∁U A)⊆(∁U B)D.A∪(∁U B)=U12.整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},其中k∈{0,1,2,3,4}.以下判断正确的是()A.2 022∈[2]B.-2∈[2]C.Z=[0]∪[1]∪[2]∪[3]∪[4]D.若a-b∈[0],则整数a,b属于同一“类”三、填空题:本题共4小题,每小题5分,共20分.13.设集合M={2,3,a2+1},N={a2+a,a+2,-1},且M∩N={2},则实数a的值为.14.写出一个使得命题“∀x∈R,ax2-2x+3>0恒成立”是假命题的实数a的值:.15.若p:m-1≤x≤2m+1,q:2≤x≤3,q是p的充分不必要条件,则实数m的取值范围是.16.已知有限集合A={a1,a2,a3,…,a n},定义集合B={a i+a j|1≤i<j≤n,i,j∈N*}中的元素的个数为集合A的“容量”,记为L(A).若集合A={x∈N*|1≤x≤3},则L(A)=;若集合A={x∈N*|1≤x≤n},且L(A)=4 041,则正整数n的值是.(本题第一空2分,第二空3分.)四、解答题:本题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤.≤x≤2}.17.(10分)已知集合A={x|2-b≤ax≤2b-2}(a>0),B={x|-12(1)当a=1,b=3时,求A∪B和∁R B.(2)是否存在实数a,b,使得A=B?若存在,求出a,b的值;若不存在,请说明理由.18.(10分)在①A∪B=B,②“x∈A”是“x∈B”的充分条件,③“x∈∁R A”是“x∈∁R B”的必要条件这三个条件中任选一个,补充到本题第(2)问的横线处,并求解下列问题.问题:已知集合A={x|a≤x≤a+2},B={x|-1<x<3}.(1)当a=2时,求A∩B;(2)若,求实数a的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.参考答案一、单项选择题1.C2.D3.C4.A5.A6.A7.D8.A二、多项选择题9.AC 10.AC 11.ACD 12.ACD三、填空题13.-2或014.-1(答案不唯一)15.{m|1≤m≤3}16.3 2 022四、解答题17. 解:(1)当a =1,b =3时,A ={x |-1≤x ≤4}.又B ={x |-12≤x ≤2},所以 A ∪B ={x |-1≤x ≤4},(2分) ∁R B ={x |x <-12或x >2}.(4分)(2)假设存在实数a ,b 满足条件.因为a >0,所以由2-b ≤ax ≤2b -2,得2−b a ≤x ≤2b−2a .(6分) 由A =B ,得{2−b a =−12,2b−2a =2, 解得{a =2,b =3.(9分) 故存在a =2,b =3,使得A =B.(10分)18. 解:(1)当a =2时,A ={x |2≤x ≤4}, 所以A ∩B ={x |2≤x <3}.(4分)(2)方案一 选条件①.因为A ∪B =B ,所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分) 方案二 选条件②.因为“x ∈A ”是“x ∈B ”的充分条件, 所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分) 方案三 选条件③.因为“x ∈∁R A ”是“x ∈∁R B ”的必要条件,所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分)。
第一章 集合与常用逻辑用语综合测试(解析版)
第一章 集合与常用逻辑用语综合测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2022·新疆昌吉·高一期末)“0a b >>”是“1a b >”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【答案】B【解析】【分析】根据充分条件、必要条件的定义判断即可;【详解】解:由0a b >>,得1a b >,反之不成立,如2a =-,1b =-,满足1a b >,但是不满足0a b >>, 故“0a b >>”是“1a b>”的充分不必要条件. 故选:B2.(2022·全国·高一期末)已知{}13U x R x =∈-≤≤,{}13A x U x =∈-<<,{}2230B x R x x =∈--=,{}13C x x =-≤<,则有( )A .U AB = B .U BC = C .U A C ⊇D .A C ⊇【答案】A【解析】【分析】化简集合B ,再由集合的运算即可得解.【详解】 因为{}13U x R x =∈-≤≤,{}13A x U x =∈-<<,{}13C x x =-≤<,所以{}1,3U A =-, 又{}{}22301,3B x R x x =∈--==-,所以U A B =,故A 正确,所以U B A C =≠,故B 错误;所以集合C 与集合U A ,集合A 均没有互相包含关系,故CD 错误.故选:A.3.(2022·福建·莆田一中高一期末)已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( ) A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4 【答案】A【分析】首先进行并集运算,然后进行补集运算即可.【详解】由题意可得:{}1,2,3,4MN =,则(){}5U M N =. 故选:A.4.(2022·江苏·高一)已知集合(){}223A x y x y x Z y Z =+≤∈∈,,,,则A 中元素的个数为( ) A .9B .8C .5D .4【答案】A【解析】【分析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤23,x ∴≤ x Z ∈1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【点睛】本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.5.(2022·宁夏·银川唐徕回民中学高一期中)已知全集U =R ,{|0}A x x =≤,{|1}B x x =≥,则集合()U C A B =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<【答案】D【解析】【详解】试题分析:因为A ∪B={x|x≤0或x≥1},所以(){|01}U C A B x x ⋃=<<,故选D.考点:集合的运算.6.(2022·江苏·高一期末)已知命题p :∀x ∈R ,ax 2+2x +3>0.若命题p 为假命题,则实数a 的取值范围是A .13a a ⎧⎫<⎨⎬⎩⎭∣ B .103a a ⎧⎫<≤⎨⎬⎩⎭∣ C .13a a ⎧⎫≤⎨⎬⎩⎭∣ D .13a a ⎧⎫≥⎨⎬⎩⎭∣ 【答案】C【解析】【分析】求得命题p 为真命题时a 的取值范围,由此求得命题p 为假命题时a 的取值范围.【详解】先求当命题p :x R ∀∈,2230ax x ++>为真命题时的a 的取值范围(1)若0a =,则不等式等价为230x +>,对于x R ∀∈不成立,(2)若a 不为0,则04120a a >⎧⎨∆=-<⎩,解得13a >, ∴命题p 为真命题的a 的取值范围为13a a ⎧⎫>⎨⎬⎩⎭∣, ∴命题p 为假命题的a 的取值范围是13a a ⎧⎫≤⎨⎬⎩⎭∣. 故选:C【点睛】本小题主要考查根据全称量词命题真假性求参数的取值范围.7.(2022·广东广雅中学高一期末)设集合U ={1,2,3,4,5},A ={1,3,5},B ={2,3,5},则图中阴影部分表示的集合的真子集有( )个A .3B .4C .7D .8【答案】C【解析】【分析】 先求出A∩B={3,5},再求出图中阴影部分表示的集合为:CU (A∩B )={1,2,4},由此能求出图中阴影部分表示的集合的真子集的个数.【详解】∵集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},∴A∩B={3,5},图中阴影部分表示的集合为:C U (A∩B )={1,2,4},∴图中阴影部分表示的集合的真子集有:23–1=8–1=7.故选C .【点睛】本题考查集合的真子集的个数的求法,考查交集定义、补集、维恩图等基础知识,考查运算求解能力,是基础题.8.(2022·江苏·高一单元测试)在整数集Z 中,被4除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}4k n k n Z =+∈,0k =,1,2,3.给出如下四个结论:①[]20151∈;②[]22-∈;③[][][][]0123Z =⋃⋃⋃;④“整数a ,b 属于同一‘类’”的充要条件是“[]0a b -∈”其中正确的结论有( )A .①②B .③④C .②③D .②③④ 【答案】D【解析】【分析】根据“类”的定义计算后可判断①②④的正误,根据集合的包含关系可判断③的正误,从而可得正确的选项.【详解】因为201550343=⨯+,故[]20153∈,故①错误;而242-=+,故[]22-∈,故②正确;由“类”的定义可得[][][][]012Z 3⊆,任意Z c ∈,设c 除以4的余数为}{()0,1,2,3r r ∈,则[]c r ∈,故[][][][]0123c ∈⋃⋃⋃,所以[][][][]0123Z ⊆, 故[][][][]0123Z =,故③正确若整数a ,b 属于同一“类”,设此类为[]}{()0,1,2,3r r ∈,则4,4a m r b n r =+=+,故()4a b m n -=-即[]0a b -∈,若[]0a b -∈,故-a b 为4的倍数,故a ,b 除以4 的余数相同,故a ,b 属于同一“类”,故整数a ,b 属于同一“类”的充要条件为[]0a b -∈,故④正确;故选:二、多选题9.(2022·江苏·高一单元测试)已知p :1x >或3x <-,q :x a >,则a 取下面那些范围,可以使q 是p 的充分不必要条件( )A .3a ≥B .5a ≥C .3a ≤-D .1a <【答案】AB【解析】【详解】p :1x >或3x <-,q :x a >,q 是p 的充分不必要条件,故1a ≥,范围对应集合是集合{}1a a ≥的子集即可,对比选项知AB 满足条件.故选:AB.10.(2022·江苏·南京师大附中高一期末)设r 是p 的必要条件,r 是q 的充分条件,s 是r 的充分必要条件,s 是p 的充分条件,则下列说法正确的有( ) A .r 是q 的必要条件B .s 是q 的充分条件C .s 是p 的充分必要条件D .p 是q 的既不充分也不必要条件【答案】BC【解析】【分析】 根据条件得到p r s q ⇔⇔⇒可判断每一个选项.【详解】由题意,,,,p r r q r s s p ⇒⇒⇔⇒,则p r s q ⇔⇔⇒.故选:BC.11.(2022·广东汕尾·高一期末)设{}29140A x x x =-+=,{}10B x ax =-=,若A B B =,则实数a 的值可以为( )A .2B .12C .17D .0【答案】BCD【解析】【分析】先求出集合A ,再由A B B =可知B A ⊆,由此讨论集合B 中元素的可能性,即可判断出答案.【详解】集合2{|9140}{2A x x x =-+==,7},{|10}B x ax =-=,又A B B =,所以B A ⊆,当0a =时,B =∅,符合题意,当0a ≠时,则1{}B a =,所以12a=或17a =, 解得12a =或17a =, 综上所述,0a =或12或17, 故选:BCD 12.(2022·重庆·高一期末)已知全集为U ,A ,B 是U 的非空子集且U A B ⊆,则下列关系一定正确的是( )A .x U ∃∈,x A ∉且xB ∈B .x A ∀∈,x B ∉C .x U ∀∈,x A ∈或x B ∈D .x U ∃∈,x A ∈且x B ∈ 【答案】AB【解析】【分析】根据给定条件画出韦恩图,再借助韦恩图逐一分析各选项判断作答.【详解】全集为U ,A ,B 是U 的非空子集且U A B ⊆,则A ,B ,U 的关系用韦恩图表示如图,观察图形知,x U ∃∈,x A ∉且x B ∈,A 正确;因A B =∅,必有x A ∀∈,x B ∉,B 正确;若A U B ,则()()U U A B ⋂≠∅,此时x U ∃∈,[()()]U U x A B ∈⋂,即x A ∉且x B ∉,C 不正确; 因A B =∅,则不存在x U ∈满足x A ∈且x B ∈,D 不正确.故选:AB三、填空题13.(2022·安徽·高一期中)设集合12|3A x N y N x ⎧⎫=∈=∈⎨⎬+⎩⎭,则集合A 的子集个数为________ 【答案】16【解析】【分析】先化简集合A ,再利用子集的定义求解.【详解】解:{}0,1,3,9=A ,故A 的子集个数为4216=,故答案为:1614.(2022·浙江浙江·高一期中)0x ∃>,12x x +>的否定是___________. 【答案】0x ∀>,12x x+≤ 【解析】【分析】利用含有一个量词的命题的否定的定义求解.【详解】解:因为0x ∃>,12x x +>是存在量词命题, 所以其否定是全称量词命题,即0x ∀>,12x x+≤, 故答案为:0x ∀>,12x x +≤. 15.(2022·江苏·高一)某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.【答案】5【解析】【分析】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,根据容斥原理可求出结果.【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =,所以同时参加数学和化学小组有5人.故答案为:5.16.(2022·江苏·高一)已知集合{|1A x x =<-,或{}2}|23x B x a x a >=≤≤+,,若“x A ∈”是“x B ∈”的必要条件,则实数a 的取值范围是___________.【答案】4a或13a【解析】∵“x A ∈”是x B ∈”的必要条件,∴B A ⊆,当B =∅时,23a a >+,则3a >;当B ≠∅时,根据题意作出如图所示的数轴,由图可知3231a a a +>⎧⎨+<-⎩或3222a a a +>⎧⎨>⎩,解得4a 或13a ,综上可得,实数a 的取值范围为4a或13a .四、解答题 17.(2022·江苏·高一)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R .(1)求A ∪B ,()U A B ;(2)若A ∩C ≠∅,求a 的取值范围.【答案】(1)A ∪B ={x |1<x ≤8},()U A B ={x |1<x <2} (2){a |a <8}【解析】【分析】(1)根据集合的交并补的定义,即可求解;(2)利用运算结果,结合数轴,即可求解.(1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}.∵U A ={x |x <2或x >8},∴()U A ∩B ={x |1<x <2}.(2)∵A ∩C ≠∅,作图易知,只要a 在8的左边即可,∴a <8.∴a 的取值范围为{a |a <8}.18.(2022·江苏·高一)设全集为Z ,2{|2150}A x x x =+-=,{|10}B x ax =-=.(1)若15a =,求()Z A B ⋂; (2)若B A ⊆,求实数a 的取值组成的集合C .【答案】(1){}5,3- (2)11,,053⎧⎫-⎨⎬⎩⎭【解析】【分析】(1)若15a =,求出集合A ,B ,即可求()Z A B ⋂; (2)若B A ⊆,讨论集合B ,即可得到结论.(1)解: {}2{|2150}5,3A x x x =+-==-, 当15a =,则{}{|10}5B x ax =-==, 则{}()5,3Z A B ⋂=-;(2)解:当B =∅时,0a =,此时满足B A ⊆,当B ≠∅时,1{}B a=,此时若满足B A ⊆, 则15a =-或13a=,解得15a =-或13, 综上11,,053C ⎧⎫=-⎨⎬⎩⎭. 19.(2022·河南驻马店·高一期末)已知集合{}213A x t x t =-≤≤-,{}215B x x =-<+<.(1)若A B =∅,求实数t 的取值范围;(2)若“x B ∈”是“x A ∈”的必要不充分条件,求实数t 的取值范围.【解析】(1)解:由215x -<+<得解34x -<<,所以{}{}21534B x x x x =-<+<=-<<,又{}213A x t x t =-≤≤- 若A B =∅,分类讨论:当A =∅,即213t t ->-解得43t >,满足题意; 当A ≠∅,即213t t -≤-,解得43t ≤时,若满足A B =∅,则必有21443t t -≥⎧⎪⎨≤⎪⎩或3343t t -≤-⎧⎪⎨≤⎪⎩; 解得t ∈∅.综上,若A B =∅,则实数t 的取值范围为43t >. (2)解:由“x B ∈”是“x A ∈”的必要不充分条件,则集合A B ,若A =∅,即213t t ->-,解得43t >, 若A ≠∅,即213t t -≤-,即43t ≤,则必有4321334t t t ⎧≤⎪⎪->-⎨⎪-<⎪⎩,解得413t -<≤, 综上可得,1t >-,综上所述,当“x B ∈”是“x A ∈”的必要不充分条件时,1t >-即为所求. 20.(2022·江苏·高一)已知命题:R P x ∃∈,使240x x m -+=为假命题.(1)求实数m 的取值集合B ;(2)设{}34A x a x a =<<+为非空集合,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值围.【解析】(1)解:由题意,得关于x 的方程240x x m -+=无实数根,所以1640∆=-<m ,解得4m >,即}|{4m m B =>;(2)解:因为{}34A x a x a =<<+为非空集合,所以34a a <+,即2a <,因为x A ∈是x B ∈的充分不必要条件,则34a ≥,即43a ≥, 所以423a ≤<, 21.(2022·江苏·高一)已知集合{}|14A x x =-≤≤,{2B x x =<-或}5x >.(1)求B R ,()A ⋂R B ;(2)若集合{}21|C x m x m =<<+,且∃x C x A ∈∈,为假命题.求m 的取值范围.【答案】(1){}25B x x =-≤≤R ,()()(),25,R A B ⋂=-∞-⋃+∞(2)2m ≤-或1m ≥【解析】(1){}25B x x =-≤≤R ,{R 1A x x =<-或}4x >,(){R 2A B x x ⋂=<-或}5x >;(2)∵∃x C x A ∈∈,为假命题,∴x C x A ∀∈∉,为真命题,即A C ⋂=∅,又{}21|C x m x m =<<+,{}|14A x x =-≤≤,当C =∅时,21m m ≥+,即1m ≥,A C ⋂=∅;当C ≠∅时,由A C ⋂=∅可得,2111m m m <+⎧⎨+≤-⎩,或2124m m m <+⎧⎨≥⎩, 解得2m ≤-,综上,m 的取值范围为2m ≤-或1m ≥.22.(2022·北京西城·高一期末)设A 是实数集的非空子集,称集合{|,B uv u v A =∈且}u v ≠为集合A 的生成集.(1)当{}2,3,5A =时,写出集合A 的生成集B ;(2)若A 是由5个正实数构成的集合,求其生成集B 中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =,并说明理由.【答案】(1){}6,10,15B =(2)7(3)不存在,理由见解析【解析】【分析】(1)利用集合的生成集定义直接求解.(2)设{}12345,,,,A a a a a a =,且123450a a a a a <<<<<,利用生成集的定义即可求解;(3)不存在,理由反证法说明. (1){}2,3,5A =,{}6,10,15B ∴=(2)设{}12345,,,,A a a a a a =,不妨设123450a a a a a <<<<<,因为41213141525355a a a a a a a a a a a a a a <<<<<<,所以B 中元素个数大于等于7个,又{}254132,2,2,2,2A =,{}34689572,2,2,2,2,2,2B =,此时B 中元素个数大于等于7个, 所以生成集B 中元素个数的最小值为7.(3)不存在,理由如下:假设存在4个正实数构成的集合{},,,A a b c d =,使其生成集{}2,3,5,6,10,16B =,不妨设0a b c d <<<<,则集合A 的生成集{},,,,,B ab ac ad bc bd cd =则必有2,16ab cd ==,其4个正实数的乘积32abcd =;也有3,10ac bd ==,其4个正实数的乘积30abcd =,矛盾;所以假设不成立,故不存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =【点睛】关键点点睛:本题考查集合的新定义,解题的关键是理解集合A 的生成集的定义,考查学生的分析解题能力,属于较难题.。
人教版高中数学必修第一册第1章 集合与常用逻辑用语综合检测基础卷(含解析)
人教版高中数学必修第一册第1章集合与常用逻辑用语综合检测基础卷(原卷版)本卷满分150分,考试时间120分钟。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列各组集合表示同一集合的是A .{4,5}M =,{5,4}N =B .{}(,)1M x y x y =+=,{}1N y x y =+=C .{(3,2)}M =,{(2,3)}N =D .{1,2}M =,{(1,2)}N =2.已知集合51,M x x N x *⎧⎫=>∈⎨⎬⎩⎭,则M 的非空子集的个数是A .7B .8C .15D .163.“(2,3)a ∈”是“(2,4)a ∈”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.设集合{1,2,4,6}A =,集合{1,5}B =,则A B 等于A .{1,3,5}B .{5}C .{1,2,4,5,6}D .{1}5.已知p 是r 的充分不必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,下列命题正确的是A .r 是q 的必要不充分条件B .r 是s 的充要条件C .r 是q 的充分不必要条件D .p 是q 的充要条件6.以下四个命题中既是存在量词命题又是真命题的是A .三角形的内角和均为180°B .至少有一个实数x ,使20x ≤C .两个无理数的和一定是无理数D .存在一个负数x ,使12x>7.已知命题p :0x ∃>,使2210x x ++=成立,则p 的否定是A .0x ∃≤,使2210x x ++=不成立B .0x ∀≤,使2210x x ++=不成立C .0x ∀>,使2210x x ++=不成立D .0x ∃>,使2210x x ++=不成立8.已知{}12A x x =-<<,命题“x A ∀∈,20x a -<”是真命题的一个必要不充分条件是A .4a ≥B .1a ≥C .5a ≥D .4a >二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知,,a b c ∈R ,则下面命题不正确的是A .“a b >”是“22a b >”的充分条件B .“a b >”是“22a b >”的必要条件C .“a b >”是“22ac bc >”的充分条件D .“a b >”是“22ac bc >”的必要条件10.下列表述中正确的是A .若AB ⊆,则AB A =B .若A B B ⋃=,则A B ⊆C .()()A B A A B ⋂苘D .()()()⋂=⋃U U U A B A B 痧11.下列各组中的两个集合相等的是A .**{|21,},{|21,}P x x n n N Q x x n n N ==-∈==+∈B .{|41,},{|43,}P x x n n Z Q x x n n Z ==+∈==-∈C .12{|,},{|,}3663k k P x x k Z Q x x k Z ==+∈==+∈D .()211{|0},{|,}2n P x x x Q x x n Z +-=-===∈12.已知关于x 的方程()230x m x m +-+=,下列结论正确的是A .方程()230x m x m +-+=有实数根的充要条件是{1m mm ∈<∣或}9m >B .方程()230x m x m +-+=有两正实数根的充要条件是{}01m mm ∈<≤∣C .方程()230x m x m +-+=无实数根的必要条件是{}1m mm ∈>∣D .当3m =时,方程的两实数根之和为0三、填空题:本题共4小题,每小题5分,共20分.13.下列对象能组成集合的是___________.①桃浦中学一部分学生②倒数等于自身的实数③超过100页的书④世界知名艺术家⑤方程210x +=的全体解14.已知集合(),A m =-∞,[]1,3B =-,若A B B =,则实数m 的取值范围为___________.15.若“()3,x ∀∈+∞,x a >”的否定是假命题,则实数a 的取值范围是___________.16.集合{}{}1,||2A x x B x x =>=<,则“x A ∈或x B ∈”是“()x A B ∈⋂”的___________条件.(填充分不必要、必要不充分、充要、既不充分也不必要).四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)集合(){}2,1A x y y ax==+,(){},23B x y y x ==+,若A B 中仅有一个元素,求实数a 的值.18.(12分)已知集合{}22,3,42=++A m m ,{}20,7,42,2=+--B m m m ,证明:{}3,7A B ⋂=的充要条件为1m =.19.(12分)已知集合{}|13P x x =-<,{}3252,Q x m x m m =-≤≤+∈R .若P 的充分非必要条件为Q ,求实数m 的取值范围.20.(12分)已知集合{}2340A x ax x =∈--=R (1)若集合A 中有两个元素,求实数a 的取值范围;(2)若集合A 最多有两个子集,求实数a 的取值范围.21.(12分)已知集合{}223,{12}A x a a x b B x x =-<≤-+=-<≤.(1)若2a =,1b =-,求()RA B ð;(2)若A B =,求出a ,b 的值.22.(12分)已知命题22:,20p x R x x a ∃∈-+=,命题p 为真命题时实数a 的取值集合为A .(1)求集合A ;(2)设集合{231}B a m a m =-<<+,若x B ∈是x A ∈的必要不充分条件,求实数m 的取值范围.人教版高中数学必修第一册第1章集合与常用逻辑用语综合检测基础卷(解析版)本卷满分150分,考试时间120分钟。
第一章 集合与常用逻辑用语 单元测验(含答案)
第一章 集合与常用逻辑用语 单元测验时间:100分钟 分值:100分一、选择题(本大题共10小题,每题3分,共30分)1、已知全集R U =,集合}{Z x x x A ∈≤=,1,{}022=-=x x x B ,则图中的阴影部分表示的集合为( )A. {}1-B. {}2C.{}2,1 D. {}2,02、设集合{}2430A x x x =-+<,{}230x x ->,则A B = ( )A.33,2⎛⎫--⎪⎝⎭ B.33,2⎛⎫- ⎪⎝⎭ C.31,2⎛⎫ ⎪⎝⎭D.3,32⎛⎫⎪⎝⎭3、下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x x D .},01|{2R x x x x ∈=+-4、已知集合{}Z s t s t A ∈+=,22,且x ∈A ,y ∈A ,则下列结论正确的是( ) A .A y x ∈+ B .A y x ∈- C .A xy ∈ D .A yx∈ 5、设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则( )A .N M =B .MN C .N M D .M N =∅6、用()C A 表示非空集合A 中的元素的个数,定义()()A B C A C B *=-,若{}1,1A =-,()(){}22320B x ax x x ax =+++=,若1A B *=,设实数a 的所有可能取值构成集合S . 则()C S =( )A .1B .2C .3D .57、已知集合{}2|20,A x ax x a a R =++=∈,若集合A 有且仅有两个子集,则a 的值是( ) A .1 B .1- C .0,1 D .1-,0,18、已知集合{}2|1,M y y x x R ==-∈,集合2{|3}N x y x ==-,则MN =( )A .{(2,1),(2,1)}-B .{2,2,1}-C .[1,3]-D .∅9、已知集合}{10,3,2,1 =M ,A 是M 的子集,且A 中各元素和为8,则满足条件的子集A 共有( )A .6个B .7个C .8个D .9个10、设S 是整数集Z 的非空子集,如果,a b S ∀∈,有S ab ∈,则称S 关于数的乘法是封闭的.若T,V 是Z 的两个不相交的非空子集,T V Z =,且,,a b c T ∀∈,有,,,abc T x y z V ∈∀∈有V xyz ∈,则下列结论恒成立的是( )A .,T V 中至少有一个关于乘法是封闭的B .,T V 中至多有一个关于乘法是封闭的C .,T V 中有且只有一个关于乘法是封闭的D .,T V 中每一个关于乘法都是封闭的二、填空题(本大题共5小题,每小题4分,共20分)11、若{}A x x a =>,{}6B x x =>,且A B ⊆,则实数a 的取值范围是______.12、50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为 。
第一章集合与常用逻辑用语单元检测附答案
第一章集合与常用逻辑用语单元检测(时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个命题与它的逆命题、否命题、逆否命题这四个命题中( ).A .真命题与假命题的个数相同B .真命题的个数一定是奇数C .真命题的个数一定是偶数D .真命题的个数可能是奇数,也可能是偶数2.已知集合M ={0,1,2},N ={x |x =2a ,a ∈M },则集合M ∩N 等于( ).A .{0}B .{0,1}C .{1,2}D .{0,2}3.(2011福建高考,理2)若a ∈R ,则“a =2”是“(a -1)(a -2)=0”的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件4.命题“存在x ∈R ,x 2-3x +4>0”的否定是( ).A .存在x ∈R ,x 2-3x +4<0B .任意的x ∈R ,x 2-3x +4>0C .任意的x ∈R ,x 2-3x +4≥0D .任意的x ∈R ,x 2-3x +4≤05.集合P ={a |a =(-1,1)+m (1,2),m ∈R },Q ={b |b =(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q =( ).A .{(1,-2)}B .{(-13,-23)}C .{(1,2)}D .{(-23,-13)}6.对任意两个集合M ,N ,定义:M -N ={x |x ∈M 且x ∉N },M △N =(M -N )∪(N -M ),设M =⎩⎨⎧⎭⎬⎫x |x -31-x <0,N ={x |y =2-x },则M △N =( ). A .{x |x >3} B .{x |1≤x ≤2}C .{x |1≤x <2,或x >3}D .{x |1≤x ≤2,或x >3}7.已知全集U 为实数集R ,集合M =⎩⎨⎧⎭⎬⎫x |x +3x -1<0,N ={x ||x |≤1},则下图阴影部分表示的集合是( ).A .[-1,1]B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1)8.下列判断正确的是( ).A .命题“负数的平方是正数”不是全称命题B .命题“任意的x ∈N ,x 3>x 2”的否定是“存在x ∈N ,x 3<x 2”C .“a =1”是“函数f (x )=cos 2ax -sin 2ax 的最小正周期是π”的必要不充分条件D .“b =0”是“函数f (x )=ax 2+bx +c 是偶函数”的充要条件9.(2011陕西高考,文8)设集合M ={y |y =|cos 2x -sin 2x |,x ∈R },N =⎩⎨⎧⎭⎬⎫x |⎪⎪⎪⎪x i <1,i 为虚数单位,x ∈R ,则M ∩N 为( ). A .(0,1) B .(0,1]C .[0,1)D .[0,1]10.设命题p :函数y =lg(x 2+2x -c )的定义域为R ,命题q :函数y =lg(x 2+2x -c )的值域为R ,若命题p ,q 有且仅有一个为真,则c 的取值范围为( ).A .B .(-∞,-1)C .[-1,+∞)D .R二、填空题(本大题共5小题,每小题5分,共25分)11.设集合U ={1,2,3,4,5},A ={2,4},B ={3,4,5},C ={3,4},则(A ∪B )∩(∁U C )=__________.12.(2011浙江温州模拟)已知条件p :a <0,条件q :a 2>a ,则p 是q 的__________条件.(填:充分不必要、必要不充分、充要、既不充分也不必要)13.若命题“存在x ∈R ,x 2-ax -a <0”为假命题,则实数a 的取值范围为__________.14.给出下列命题:①原命题为真,它的否命题为假;②原命题为真,它的逆命题不一定为真;③一个命题的逆命题为真,它的否命题一定为真;④一个命题的逆否命题为真,它的否命题一定为真;⑤“若m >1,则mx 2-2(m +1)x +m +3>0的解集为R ”的逆命题.其中真命题是__________.(把你认为是正确命题的序号都填在横线上)15.已知命题p :不等式x x -1<0的解集为{x |0<x <1};命题q :在△ABC 中,“A >B ”是“sin A >sin B ”成立的必要不充分条件.有下列四个结论:①p 真q 假;②“p 且q ”为真;③“p 或q ”为真;④p 假q 真,其中正确结论的序号是__________.(请把正确结论的序号都填上)三、解答题(本大题共6小题,共75分)16.(12分)(1)设全集I 是实数集,则M ={x |x +3≤0},N =212{|22}x x x +=,求(∁I M )∩N .(2)已知全集U =R ,集合A ={x |(x +1)(x -1)>0},B ={x |-1≤x <0},求A ∪(∁U B ).17.(12分)已知p :-2≤1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0).若“非p ”是“非q ”的充分而不必要条件,求实数m 的取值范围.18.(12分)已知ab ≠0,求证:a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.19.(12分)(2011福建四地六校联合考试)已知集合A ={x |x 2-2x -3≤0,x ∈R },B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.(1)若A ∩B =[0,3],求实数m 的值;(2)若A ⊆∁R B ,求实数m 的取值范围.20.(13分)已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,对命题“若a +b ≥0,则f (a )+f (b )≥f (-a )+f (-b )”.(1)写出逆命题,判断其真假,并证明你的结论;(2)写出其逆否命题,判断其真假,并证明你的结论.21.(14分)已知三个不等式:①|2x -4|<5-x ;②x +2x 2-3x +2≥1;③2x 2+mx -1<0.若同时满足①和②的x 值也满足③,求m 的取值范围.参考答案一、选择题1.C 解析:在原命题、逆命题、否命题、逆否命题这四个命题中,互为逆否的命题是成对出现的,故真命题的个数和假命题的个数都是偶数. 2.D 解析:集合N ={0,2,4},所以M ∩N ={0,2}.3.A 解析:由(a -1)(a -2)=0,得a =1或a =2,所以a =2⇒(a -1)(a -2)=0.而由(a -1)(a -2)=0不一定推出a =2,故a =2是(a -1)(a -2)=0的充分而不必要条件.4.D 解析:含有存在量词的命题的否定,先把“存在”改为“任意的”,再把结论否定.5.B 解析:a =(m -1,2m +1),b =(2n +1,3n -2),令a =b ,得⎩⎪⎨⎪⎧ m -1=2n +1,2m +1=3n -2,解得⎩⎪⎨⎪⎧m =-12,n =-7. 此时a =b =(-13,-23),故选B.6.D 解析:∵M ={x |x >3或x <1},N ={x |x ≤2},∴M -N ={x |x >3},N -M ={x |1≤x ≤2},∴M △N ={x |1≤x ≤2,或x >3}.7.D 解析:∵M =⎩⎨⎧⎭⎬⎫x |x +3x -1<0={x |-3<x <1},N ={x ||x |≤1}={x |-1≤x ≤1},∴阴影部分表示的集合为M ∩(∁U N )={x |-3<x <-1},故选D.8.D 解析:依据各种命题的定义,可以判断A ,B ,C 全为假,由b =0,可以判断f (x )=ax 2+bx +c 是偶函数,反之亦成立. 9.C 解析:∵y =22|cos sin |x x -=|cos 2x |,x ∈R ,∴y ∈[0,1],∴M =[0,1].∵⎪⎪⎪⎪x i <1,∴|x |<1.∴-1<x <1.∴N =(-1,1).∴M ∩N =[0,1).10.D 解析:本题考查根据命题的真假求参数的取值范围.若函数y =lg(x 2+2x -c )的定义域为R ,则不等式x 2+2x -c >0对任意x ∈R 恒成立,则有Δ=4+4c <0,解得c <-1;若函数y =lg(x 2+2x -c )的值域为R ,则g (x )=x 2+2x -c 应该能够取到所有的正实数,因此Δ=4+4c ≥0,解得c ≥-1.当p 为真,q 为假时,有c <-1;当p 为假,q 为真时,有c ≥-1.综上,当命题p ,q 有且仅有一个为真时,c 的取值范围为R .故选D.二、填空题11.{2,5} 解析:∵A ∪B ={2,3,4,5},∁U C ={1,2,5},∴(A ∪B )∩(∁U C )={2,5}.12.必要不充分 解析:p 为:a ≥0,q 为a 2≤a ,a 2≤a ⇔a (a -1)≤0⇔0≤a ≤1, ∴p q ,而q ⇒p ,∴p 是q 的必要不充分条件.13.[-4,0] 解析:∵“存在x ∈R ,x 2-ax -a <0”为假命题,则“对任意的x ∈R ,x 2-ax -a ≥0”为真命题,∴Δ=a 2+4a ≤0,解得-4≤a ≤0.14.②③⑤ 解析:原命题为真,而它的逆命题、否命题不一定为真,互为逆否命题同真同假,故①④错误,②③正确,又因为不等式mx 2-2(m +1)x +m +3>0的解集为R ,由⎩⎪⎨⎪⎧ m >0,Δ=4(m +1)2-4m (m +3)<0⇒⎩⎪⎨⎪⎧m >0,m >1⇒m >1.故⑤正确. 15.①③ 解析:解不等式知,命题p 是真命题,在△ABC 中,“A >B ”是“sin A >sinB ”的充要条件,所以命题q 是假命题,∴①正确,②错误,③正确,④错误.三、解答题16.解:(1)M ={x |x +3=0}={-3},N ={x |x 2=x +12}={-3,4}, ∴(∁I M )∩N ={4}.(2)∵A ={x |x <-1,或x >1},B ={x |-1≤x <0},∴∁U B ={x |x <-1,或x ≥0}.∴A ∪(∁U B )={x |x <-1,或x ≥0}.17.解:由p :-2≤1-x -13≤2, 解得-2≤x ≤10,∴“非p ”:A ={x |x >10,或x <-2}.由q :x 2-2x +1-m 2≤0,解得1-m ≤x ≤1+m (m >0).∴“非q ”:B ={x |x >1+m 或x <1-m ,m >0},由“非p ”是“非q ”的充分不必要条件得A B .∴⎩⎪⎨⎪⎧ m >0,1-m ≥-2,1+m ≤10,解得0<m ≤3.∴满足条件的m 的取值范围为{m |0<m ≤3}.18.证明:必要性:∵a +b =1,即b =1-a ,∴a 3+b 3+ab -a 2-b 2=a 3+(1-a )3+a (1-a )-a 2-(1-a )2=0,必要性得证.充分性:∵a 3+b 3+ab -a 2-b 2=0,∴(a +b )(a 2-ab +b 2)-(a 2-ab +b 2)=0,∴(a 2-ab +b 2)(a +b -1)=0.又ab ≠0,即a ≠0且b ≠0,∴a 2-ab +b 2=22b a ⎛⎫- ⎪⎝⎭+3b 24≠0, ∴a +b =1,充分性得证.综上可知,a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.19.解:由已知得:A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3, ∴⎩⎪⎨⎪⎧m =2,m ≥1.∴m =2,即实数m 的值为2. (2)∁R B ={x |x <m -2,或x >m +2}.∵A ⊆∁R B ,∴m -2>3或m +2<-1.∴m >5或m <-3.∴实数m 的取值范围是(-∞,-3)∪(5,+∞).20.解:(1)逆命题是:若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0,为真命题. 用反证法证明:假设a +b <0,则a <-b ,b <-a .∵f (x )是(-∞,+∞)上的增函数,则f (a )<f (-b ),f (b )<f (-a ),∴f (a )+f (b )<f (-a )+f (-b ),这与题设相矛盾,∴逆命题为真.(2)逆否命题:若f (a )+f (b )<f (-a )+f (-b ),则a +b <0,为真命题. ∵原命题⇔它的逆否命题,∴证明原命题为真命题即可.∵a +b ≥0,∴a ≥-b ,b ≥-a .又∵f (x )在(-∞,+∞)上是增函数,∴f (a )≥f (-b ),f (b )≥f (-a ),∴f (a )+f (b )≥f (-a )+f (-b ).∴逆否命题为真.21.解:设不等式|2x -4|<5-x ,x +2x 2-3x +2≥1, 2x 2+mx -1<0的解集分别为A ,B ,C ,则由|2x -4|<5-x 得,当x ≥2时,不等式化为2x -4<5-x ,得x <3,所以有2≤x <3. 当x <2时,不等式化为4-2x <5-x ,得x >-1,所以有-1<x <2,故A =(-1,3).x +2x 2-3x +2≥1⇔x +2x 2-3x +2-1≥0⇔-x 2+4x x 2-3x +2≥0⇔x (x -4)(x -1)(x -2)≤0⇔0≤x <1或2<x ≤4, 即B =[0,1)∪(2,4].若同时满足①②的x 值也满足③,则有A ∩B ⊆C .设f (x )=2x 2+mx -1,则由于A ∩B =[0,1)∪(2,3),故结合二次函数的图像,得⎩⎪⎨⎪⎧ f (0)<0,f (3)≤0⇒⎩⎪⎨⎪⎧-1<0,18+3m -1≤0⇒m ≤-173.。
人教A版数学必修一第一章集合与常用逻辑用语 单元测试(含答案)
人教A版数学必修一第一章一、单选题1.设集合A={x|x2―4x+3≤0},B={x|2<x<4},则A∪B=( )A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.集合A={x∈N|―1<x<3}的真子集的个数为( )A.3B.4C.7D.83.下列式子中,不正确的是( )A.3∈{x|x≤4}B.{―3}∩R={―3}C.{0}∪∅=∅D.{―1}⊆{x|x<0} 4.已知集合M={1,4,2x},N={1,x2},若N⊆M,则实数x=( )A.-2或2B.0或2C.-2或0D.-2或0或25.下列四个条件中,使a>b成立的必要而不充分的条件是( )A.a>b﹣1B.a>b+1C.|a|>|b|D.2a>2b6.在平面直角坐标系xOy中,设Ω为边长为1的正方形内部及其边界的点构成的集合.从Ω中的任意点P作x轴、y轴的垂线,垂足分别为M P,N p.所有点M P构成的集合为M,M中所有点的横坐标的最大值与最小值之差记为x(Ω);所有点N P构成的集合为N,N中所有点的纵坐标的最大值与最小值之差记为y(Ω).给出以下命题:①x(Ω)的最大值为2:②x(Ω)+y(Ω)的取值范围是[2,22];③x(Ω)―y(Ω)恒等于0.其中所有正确结论的序号是( )A.①②B.②③C.①③D.①②③7.已知M={(x,y)|y―3x―2=3},N={(x,y)|ax+2y+a=0}且M∩N=∅,则a=( )A.-6或-2B.-6C.2或-6D.-28.设集合A={x|(x+2)(x―3)⩽0},B={a},若A∪B=A,则a的最大值为( )A.-2B.2C.3D.4二、多选题9.已知命题p:关于x的不等式2x―1≥0,命题q:a<x<a+1,若p是q的必要非充分条件,则实数a 的取值可以为( )A.a≥0B.a≥1C.a≥2D.a≥310.已知集合M={x∣x=kπ4+π4,k∈Z},集合N={x∣x=kπ8―π4,k∈Z},则( )A.M∩N≠ϕB.M⊆N C.N⊆M D.M∪N=M11.已知正实数m,n满足9n2―24n+17―4m2+1=2m+3n―4,若方程1m +1n=t有解,则实数t的值可以为( )A.5+264B.2+32C.1D.11412.1872年德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称“戴德金分割”),并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了数学史上的第一次大危机.将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割.试判断下列选项中,可能成立的是( )A.M={x∈Q|x<2},N={x∈Q|x≥2}满足戴德金分割B.M没有最大元素,N有一个最小元素C.M没有最大元素,N没有最小元素D.M有一个最大元素,N有一个最小元素三、填空题13.已知集合A={x|x2+2x-3≤0},集合B={x||x-1|<1},则A∩B= .14.设集合M={x|a1x2+b1x+c1=0},N={x|a2x2+b2x+c2=0},则方程a1x2+b1x+c1a2x2+b2x+c2=0的解集用集合M、N可表示为 .15.若规定集合M={a1,a2,…,a n}(n∈N*)的子集{ a i1,a i2,… a in}(m∈N*)为M的第k个子集,其中k= 2i1―1+ 2i2―1+…+ 2i n―1,则M的第25个子集是 16.记关于x的方程a x2―2ax+1=0在区间(0,3]上的解集为A,若A有2个不同的子集,则实数a的取值范围为 .四、解答题17.已知集合M={x|―2<x<4},N={x|x+a―1>0}.(1)若M∪N={x|x>―2},求实数a的取值范围;(2)若x∈N的充分不必要条件是x∈M,求实数a的取值范围.18.已知命题p:∀x∈R,|x|+x≥0;q:关于x的方程x2+mx+1=0有实数根.(1)写出命题p的否定,并判断命题p的否定的真假;(2)若命题“p∧q”为假命题,求实数m的取值范围.19.设全集为R,集合A={x|x2―7x―8>0},B={x|a+1<x<2a―3}.(1)若a=6,求A∩∁R B;(2)在①A∪B=A;②A∩B=B;③(∁R A)∩B=∅,这三个条件中任选一个作为已知条件,求实数a的取值范围.20.已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1}.(Ⅰ)当m=-3时,求( ∁R A)∩B;(Ⅱ)当A∩B=B时,求实数m的取值范围.21.已知集合A={―1,1},B={x|x2―2ax+b=0},若B≠∅,且A∪B=A求实数a,b的值。
《第一章 集合与常用逻辑用语》章节检测(原卷版附答案).pdf
《第一章 集合与常用逻辑用语》章节检测一.单项选择题1.(2019秋•东方校级月考)下列所给的对象能组成集合的是 ()A .2019届的优秀学生B .高一数学必修一课本上的所有难题C .遵义四中高一年级的所有男生D .比较接近1的全体正数2.(2020•天津模拟)已知集合,,则 {|24}A x x =-<…{|22}B x x =-<…(A B = )A .B .C .D .{|22}x x -<<{|24}x x -……{|22}x x -……{|24}x x -<…3.(2019秋•醴陵市期末)命题,的否定形式为 :p x N ∀∈32x x >p ⌝()A .,B .,C .,D .,x N ∀∈32x x …x N ∃∈32x x >x N ∃∈32x x <x N ∃∈32x x …4.(2020•东湖区校级一模)若集合,,则下列结论正确的是 {|A x N x =∈…a =()A .B .C .D .{}a A ⊆a A ⊆{}a A ∈a A∉5.(2020•丰台区二模)集合的子集个数为 {|22}A x Z x =∈-<<()A .4B .6C .7D .86.(2020•成都模拟)已知集合,,,2,,若,则实数的值为 {0A =}x {0B =4}A B ⊆x ()A .0或2B .0或4C .2或4D .0或2或47.(2019秋•临沂期末)“”是“关于的方程有实数解”的 0a …x 20()x ax a a R ++=∈()A .既不充分也不必要条件B .充要条件C .必要不充分条件D .充分不必要条件8.(2020•怀化模拟)设集合,2,,,若,则 {1A =5}2{|50}B x x x m =-+={1}A B = (B =)A .,B .,C .,D .,{13}-{10}{14}{15}二.多项选择题9.(2019秋•葫芦岛月考)已知集合,则有 2{|20}A x x x =-=()A .B .C .,D .A ∅⊆2A -∈{02}A ⊆{|3}A y y ⊆<10.已知集合,集合,则下列关系式正确的是 {|13}A x x =-<…{|||2}B x x =…()A .B .A B =∅{|23}A B x x =- ……C .或D .{|1R A B x x =- …ð2}x >{|23}R A B x x =< …ð11.(2019秋•市中区校级月考)给出下列关系,其中正确的选项是 ()A .B .C .D .{{}}∅∈∅{{}}∅∉∅{}∅∈∅{}∅⊆∅12.(2019秋•凤城市校级月考)下列命题正确的有 ()A .B .A ∅=∅()U U U A B A B = ðððC .D .A B B A= ()U U A A =ðð三.填空题13.(2019春•宿迁期末)若,则“”是“”的 条件.(从“充分不必要”、“必x R ∈3x >29x >要不充分”“充要”、“既不充分又不必要”中选填)14.(2019秋•揭阳期中)高一(1)班共有50名学生,在数学课上全班学生一起做两道数学试题,其中一道是关于集合的试题,一道是关于函数的试题,已知关于集合的试题做正确的有40人,关于函数的试题做正确的有31人,两道题都做错的有4人,则这两道题都做对的有 人.15.(2019春•攀枝花期末)若“存在实数,使”为真命题,则实数的取值范围是 .x 220x x m -+=m 16.(2019秋•香坊区校级月考)已知集合,集合,若,则实数2{|9140}A x x x =-+={|20}B x ax =+=B A Ü的取值集合为 .a 四.解答题17.(2019秋•石景山区期末)设非空集合,,不等式的解集为.{|12A x a x a =-<<}a R ∈2280x x --<B (Ⅰ)当时,求集合,;0a =A B (Ⅱ)当时,求实数的取值范围.A B ⊆a 18.(2019秋•兴宁区校级期末)已知集合,或,.3{|5}2A x x =-<…{|1B x x =<2}x >U R =(1)求,.A B ()U A B ð(2)若,且,求的取值范围.{|2131}C x m x m =-<+…B C U = m19.(2019秋•上高县校级月考)知集合,,且.2{|3100}A x x x =--…{|121}B x m x m =+-……B ≠∅(1)若“命题,”是真命题,求的取值范围.:p x B ∀∈x A ∈m (2)“命题,”是真命题,求的取值范围.:q x A ∃∈x B ∈m20.(2019秋•日照期末)已知集合,,.{|23}A x x =-<…22{|210}B x x mx m =-+-<{|||2}C x x m =-<(1)若,求集合;2m =A B (2)在,两个集合中任选一个,补充在下面问题中,命题,命题 ,求使是的必要B C :p x A ∈:q x ∈B p q 非充分条件的的取值范围.m 21.(2019秋•杨浦区校级期中)已知集合,,2{|(3)2(1)0}A x x m x m =-+++=2{|2(31)20}B x x n x =+++=其中,.m n R ∈(1)若,求,的值;A B A = m n (2)若,求,的取值范围.A B A = m n22.(2019秋•怀仁市校级月考)已知集合,集合{|015}A x ax =<+…{|0.52}B x x =-<…(1)若,求实数的取值范围;A B ⊆a (2)若,求实数的取值范围;B A ⊆a (3)、能否相等?若能,求出的值;若不能,试说明理由.A B a 《第一章 集合与常用逻辑用语》章节检测一.单项选择题1.(2019秋•东方校级月考)下列所给的对象能组成集合的是 ()A .2019届的优秀学生B .高一数学必修一课本上的所有难题C .遵义四中高一年级的所有男生D .比较接近1的全体正数【分析】根据集合的定义,利用集合元素的确定性进行判断.【解答】解:、2019 届的优秀学生不确定,无法确定集合的元素,不能组成集合,故本选项错误;A 、高一数学必修一课本上的所有难题不确定,无法确定集合的元素,不能组成集合,故本选项错误;B 、遵义四中高一年级的所有男生,元素确定,能组成集合,故本选项正确.C 、比较接近 1 的全体正数不确定,无法确定集合的元素,不能组成集合,故本选项错误;D 故选:.C 2.(2020•天津模拟)已知集合,,则 {|24}A x x =-<…{|22}B x x =-<…(A B = )A .B .C .D .{|22}x x -<<{|24}x x -……{|22}x x -……{|24}x x -<…【分析】直接利用并集的求法,求出即可.A B 【解答】解:由已知,集合,,所以.{|24}A x x =-<…{|22}B x x =-<…{|24}A B x x =- ……故选:.B 3.(2019秋•醴陵市期末)命题,的否定形式为 :p x N ∀∈32x x >p ⌝()A .,B .,C .,D .,x N ∀∈32x x …x N ∃∈32x x >x N ∃∈32x x <x N ∃∈32x x …【分析】命题为全称命题,根据全称命题的否定是特称命题解答.P 【解答】解:命题,的否定形式是特称命题;:p x N ∀∈32x x >:“,”.p ∴⌝x N ∃∈32x x …故选:.D4.(2020•东湖区校级一模)若集合,,则下列结论正确的是 {|A x N x =∈…a =()A .B .C .D .{}a A ⊆a A ⊆{}a A ∈a A∉【分析】根据集合元素可以判断.【解答】解:因为,{|A x N x =∈…所以中元素全是整数,A因为,a =所以,a A ∉故选:.D 5.(2020•丰台区二模)集合的子集个数为 {|22}A x Z x =∈-<<()A .4B .6C .7D .8【分析】先求出集合,再根据集合的元素个数即可求出集合的子集个数.A A A 【解答】解:,0,,{|22}{1A x Z x =∈-<<=- 1}集合的子集个数为个,∴A 328=故选:.D 6.(2020•成都模拟)已知集合,,,2,,若,则实数的值为 {0A =}x {0B =4}A B ⊆x ()A .0或2B .0或4C .2或4D .0或2或4【分析】由得中元素一定在中,求出.A B ⊆A B x 【解答】解:因为,,,2,,,所以,4.{0A =}x {0B =4}A B ⊆2x =故选:.C 7.(2019秋•临沂期末)“”是“关于的方程有实数解”的 0a …x 20()x ax a a R ++=∈()A .既不充分也不必要条件B .充要条件C .必要不充分条件D .充分不必要条件【分析】先利用△解出关于的不等式,结合充分必要条件的定义,从而求出参考答案.0…a 【解答】解:由关于的方程有实数解得:△,解得:或,x 20()x ax a a R ++=∈240a a =-…0a …4a … “”是“或 “的充分不必要条件,∴0a …0a …4a …故选:.D 8.(2020•怀化模拟)设集合,2,,,若,则 {1A =5}2{|50}B x x x m =-+={1}A B = (B =)A .,B .,C .,D .,{13}-{10}{14}{15}【分析】根据即可求出的值,进而得出集合.{1}A B = m B 【解答】解:,{1}A B = ,1B ∴∈,解得,150m ∴-+=4m =,.2{|540}{1B x x x ∴=-+==4}故选:.C 二.多项选择题9.(2019秋•葫芦岛月考)已知集合,则有 2{|20}A x x x =-=()A .B .C .,D .A ∅⊆2A -∈{02}A ⊆{|3}A y y ⊆<【分析】可以求出集合,根据子集的定义及元素与集合的关系即可判断每个选项的正误.A 【解答】解:,,{0A = 2},,,,.A ∴∅⊆2A -∉{02}A ⊆{|3}A y y ⊆<故选:.ACD 10.已知集合,集合,则下列关系式正确的是 {|13}A x x =-<…{|||2}B x x =…()A .B .A B =∅ {|23}A B x x =- ……C .或D .{|1R A B x x =- …ð2}x >{|23}R A B x x =< …ð【分析】求解绝对值不等式化简集合,再利用交、并、补集的运算性质逐一分析四个选项得参考答案.B 【解答】解:,,{|13}A x x =-< …{|||2}{|22}B x x x x ==-………,故不正确;{|13}{|22}{|12}A B x x x x x x ∴=-<-=-< …………A ,故正确;{|13}{|22}{|23}A B x x x x x x =-<-=- ……………B 或,{|2R B x x =<- ð2}x >或或,故不正确;{|13}{|2R A B x x x x ∴=-<<- …ð2}{|2x x x >=<-1}x >-C 或,故正确.{|13}{|2R A B x x x x =-<<- …ð2}{|23}x x x >=<…D 正确的是,.∴B D 故选:.BD 11.(2019秋•市中区校级月考)给出下列关系,其中正确的选项是 ()A .B .C .D .{{}}∅∈∅{{}}∅∉∅{}∅∈∅{}∅⊆∅【分析】根据元素与集合的关系,集合并集的运算,空集是任何集合的子集即可判断每个选项的正误.【解答】解:显然不是集合的元素,错误;∅{{}}∅A ∴不是集合的元素,是的元素,是任何集合的子集,从而得出选项,,都正确.∅{{}}∅∅{}∅∅B C D 故选:.BCD12.(2019秋•凤城市校级月考)下列命题正确的有 ()A .B .A ∅=∅()U U U A B A B = ðððC .D .A B B A = ()U U A A=ðð【分析】利用集合的交、并、补运算法则直接求解.【解答】解:在中,,故错误;A A A ∅= A 在中,,故错误;B ()()()U U U A B A B = ðððB 在中,同,故正确;C A B B A = C 在中,,故正确.D ()U U A A =ððD 故选:.CD 三.填空题13.(2019春•宿迁期末)若,则“”是“”的 条件.(从“充分不必要”、“必x R ∈3x >29x >要不充分”“充要”、“既不充分又不必要”中选填)【分析】由,解得或.即可判断出关系.29x >3x >3x <-【解答】解:由,解得或.29x >3x >3x <- “”是“”的 充分不必要条件.∴3x >29x >故参考答案为:充分不必要.14.(2019秋•揭阳期中)高一(1)班共有50名学生,在数学课上全班学生一起做两道数学试题,其中一道是关于集合的试题,一道是关于函数的试题,已知关于集合的试题做正确的有40人,关于函数的试题做正确的有31人,两道题都做错的有4人,则这两道题都做对的有 人.【分析】设这两道题都做对的有人,则,由此可得这两道题都做对的人数.x 4031450x +-+=【解答】解:设这两道题都做对的有人,则,x 4031450x +-+=.25x ∴=故参考答案为25.15.(2019春•攀枝花期末)若“存在实数,使”为真命题,则实数的取值范围是 .x 220x x m -+=m 【分析】根据“存在,”为真命题,△解不等式求出的取值范围.x R ∈220x x m -+=0…m 【解答】解: “存在,”为真命题,x R ∈220x x m -+=即△,440m =-…解得.1m …实数的取值范围是:.∴m 1m …故参考答案为:.1m …16.(2019秋•香坊区校级月考)已知集合,集合,若,则实数2{|9140}A x x x =-+={|20}B x ax =+=B A Ü的取值集合为 .a 【分析】先确定集合,,然后利用,得到集合的元素和的关系,分类讨论,即可得出结论.{2A =7}B A ⊆B A 【解答】解:,,因为,2{|9140}{2A x x x =-+==7}B A ⊆所以若,即时,满足条件.0a =B =∅若,则,0a ≠2{}B a=-若,则或,解得或.B A ⊆22a -=7-1a =-72-则实数的取值的集合为.a 71,,02⎧⎫--⎨⎬⎩⎭故参考答案为:.71,,02⎧⎫--⎨⎬⎩⎭四.解答题17.(2019秋•石景山区期末)设非空集合,,不等式的解集为.{|12A x a x a =-<<}a R ∈2280x x --<B (Ⅰ)当时,求集合,;0a =A B (Ⅱ)当时,求实数的取值范围.A B ⊆a 【分析】(Ⅰ)由二次不等式的解法得:,,{|10}A x x =-<<{|24}B x x =-<<(Ⅱ)由集合间的包含关系及空集的定义得:讨论①,即,即,符合题意,②,有A =∅21a a -…1a -…A ≠∅,解得:,综合①②得:,得解211224a a a a >-⎧⎪--⎨⎪⎩……12a -<…2a …【解答】解:(Ⅰ)当时,,0a ={|10}A x x =-<<解不等式得:,即,2280x x --<24x -<<{|24}B x x =-<<(Ⅱ)若,则有:A B ⊆①,即,即,符合题意,A =∅21a a -…1a -…②,有,A ≠∅211224a a a a >-⎧⎪--⎨⎪⎩……解得:,12a -<…综合①②得:,2a …18.(2019秋•兴宁区校级期末)已知集合,或,.3{|5}2A x x =-<…{|1B x x =<2}x >U R =(1)求,.A B ()U A B ð(2)若,且,求的取值范围.{|2131}C x m x m =-<+…B C U = m 【分析】(1)由与,求出两集合的交和并;A B(2)根据,求出范围.B C U = m 【解答】解:(1)集合,或, 3{|5}2A x x =-<…{|1B x x =<2}x > ∴3{|2}2A B x x x =≤> 或,或,.U R = {|1B x x =<2}x >{|12}U C B x x ∴=…….∴3(){|1}2U A B x x =≤≤ ð(2)依题意得:,2131211312m m m m -<+⎧⎪-<⎨⎪+⎩…即,2113m m m ⎧⎪>-⎪<⎨⎪⎪⎩….∴113m ≤<19.(2019秋•上高县校级月考)知集合,,且.2{|3100}A x x x =--…{|121}B x m x m =+-……B ≠∅(1)若“命题,”是真命题,求的取值范围.:p x B ∀∈x A ∈m (2)“命题,”是真命题,求的取值范围.:q x A ∃∈x B ∈m 【分析】(1)化简集合,根据,,真,建立不等式组,即可求得{|25}A x x =-……{|121}B x m x m =+-……B ≠∅p 的取值范围;m (2)为真,则,由于,从而,进而可建立不等式组,即可求得的取值范围.q A B ≠∅ B ≠∅2m …m 【解答】解:(1),,{|25}A x x =-……{|121}B x m x m =+-……B ≠∅“命题,”是真命题:p x B ∀∈x A ∈,B A ∴⊆B ≠∅,解得∴12112215m m m m +-⎧⎪+-⎨⎪-⎩ (23)m ……(2)为真,则,q A B ≠∅ ,B ≠∅ 2m ∴…∴2152m m -+⎧⎨⎩ (24)m ∴……20.(2019秋•日照期末)已知集合,,.{|23}A x x =-<…22{|210}B x x mx m =-+-<{|||2}C x x m =-<(1)若,求集合;2m =A B (2)在,两个集合中任选一个,补充在下面问题中,命题,命题 ,求使是的必要B C :p x A ∈:q x ∈B p q 非充分条件的的取值范围.m 【分析】(1)代入求出集合,进而求出结论;2m =B (2)若选,求出,再根据范围的大小即可求出的取值范围;同样的方法求出选时对应的的取值B B m C m 范围.【解答】解:(1)由及2m =22210x mx m -+-<得;2430x x -+<解得13x <<所以{|13}B x x =<<又,{|23}A x x =-<…所以.{|13}A B x x << (2)若选:B 由.22210x mx m -+-<得,[(_1)][(1)]0x m x m --+<11m x m ∴-<<+;{|11}B x m x m ∴=-<<+由是的必要非充分条件,得集合是集合的真子集.p q B A .∴121213m m m --⎧⇒-⎨+⎩…………若选:由.C ||2x m -<得;22m x m -<<+.{|22}C x m x m ∴=-<<+由是的必要非充分条件,得集合是集合的真子集p q C A 2223m m --⎧⎨+⎩……即.01m ……21.(2019秋•杨浦区校级期中)已知集合,,2{|(3)2(1)0}A x x m x m =-+++=2{|2(31)20}B x x n x =+++=其中,.m n R ∈(1)若,求,的值;A B A = m n (2)若,求,的取值范围.A B A = m n【分析】(1)解得:,或,若,则,将代入2(3)2(1)0x m x m -+++=2x =1x m =+A B A = A B ⊆2x =可得参考答案;22(31)20x n x +++=(2)若,则非空集合,分当△和当△两种情况讨论满足条件的,的值,综合讨论结A B A = B A ⊆0=0>m n 果,可得参考答案.【解答】解:(1)集合,2{|(3)2(1)0}A x x m x m =-+++=,其中,.2{|2(31)20}B x x n x =+++=m n R ∈解得:,或,2(3)2(1)0x m x m -+++=2x =1x m =+若,则,A B A = A B ⊆将代入得:,2x =22(31)20x n x +++=2n =-则,,.2{|2(31)20B x x n x =+++=2}{|2520}{2n R x x x ∈=-+==1}2则,则,112m +=12m =-当时,,解得,{2}A =12m +=1m =综上,,或,.12m =-2n =-1m =2n =-(2)若,则非空集合,A B A = B A ⊆当△时,,,,,2(31)160n =+-=53n =-{1}B =11m +=0m =或时,,,;1n ={1}B =-11m +=-2m =-当△,即,或时,则,由(1)得:,;2(31)160n =+- (5)3n -…1n …2B ∈12m =-2n =-当△时,即时,,对,故成立,2(31)160n =+-<513n -<<B =∅m R ∈综上,或或或.5(,1)3m R n ∈⎧⎪⎨∈-⎪⎩21m n =-⎧⎨=⎩053m n =⎧⎪⎨=-⎪⎩122m n ⎧=-⎪⎨⎪=-⎩22.(2019秋•怀仁市校级月考)已知集合,集合{|015}A x ax =<+…{|0.52}B x x =-<…(1)若,求实数的取值范围;A B ⊆a (2)若,求实数的取值范围;B A ⊆a (3)、能否相等?若能,求出的值;若不能,试说明理由.A B a 【分析】本题的关键是根据已知集合,集合,由(1)是的子集,确{|015}A x ax =<+…{|0.52}B x x =-<…A B 定实数的取值范围,(2)由是的子集,确定实数的取值范围;(3)假定、相等,确定的值a B A a A B a 【解答】解:,{|015}A x ax =<+ …①时,∴0a =A R=②时,,0a >14{|}A x x a a=-<…③时,,0a <41{|}A x x a a=<-…(1)若,集合A B ⊆{|0.52}B x x =-<…那么时,,即0a >4210.5a a⎧⎪⎪⎨⎪--⎪⎩……2a …时,,即0a <41212a a⎧>-⎪⎪⎨⎪-⎪⎩...8a <-综上,或2a (8)a <-(2)若,集合B A ⊆{|0.52}B x x =-<…①时,满足∴0a =A R =②时,,即0a >11242a a⎧--⎪⎪⎨⎪⎪⎩ (02)a <…③时,,即0a <41212a a⎧-⎪⎪⎨⎪<-⎪⎩ (10)2a-<<综上,122a -<…(3)若、相等,即且,A B A B ⊆B A ⊆结合(1)(2)的结论分析可得,2a =.2a ∴=知识改变命运。
第一章 集合与常用逻辑用语(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册
第一章集合与常用逻辑用语(单元测试卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列表述中正确的是( )A.{0}=∅B.{(1,2)}={1,2}C.{∅}=∅D.0∈N2.已知集合A={1,2},B={1},则下列关系正确的是( )A.B AB.B∈AC.B⊆AD.A⊆B3.已知集合A={a-2,2a2+5a,12},且-3∈A,则a=( )A.-1B.-23C.-32D.-134.集合A={1,2},B={2,4,6},则A∪B=( )A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}5.“x为整数”是“2x+1为整数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设集合M={菱形},N={平行四边形},P={四边形},Q={正方形},则这些集合之间的关系为( )A.P⊆N⊆M⊆QB.Q⊆M⊆N⊆PC.P⊆M⊆N⊆QD.Q⊆N⊆M⊆P7.已知a,b为实数,M:a<b ,N:a<b,则M是N的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.若命题“p:∀x∈R,x2-2x+m≠0”是真命题,则实数m的取值范围是( )A.{m|m≥1}B.{m|m>1}C.{m|m<1}D.{m|m≤1}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.下列关系正确的有( )A.12∈R B.2∉R C.|-3|∈N D.|-3|∈Q10.方程组Error!的解集可表示为( )A.Error!B.Error!C.(1,2)D.{(2,1)}11.已知A ={x|x +1>0},B ={-2,-1,0,1},则(A)∩B 中的元素有( )A.-2B.-1C.0D.1三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.若a ,b ∈R ,且a ≠0,b ≠0,则|a|a +|b|b的可能取值所组成的集合中元素的个数为________13.已知命题p :x 0∈R ,x 20-3x 0+3≤0,则¬p 为________14.已知集合A ={-2,1},B ={x|ax =2},若A ∪B =A ,则实数a 值集合为________四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知全集U =R ,集合A ={x|-1≤x ≤2},B ={x|-3≤x ≤1}.(1)求A ;(2)求B ∪(A).16.(14分)命题p 是“对任意实数x ,有x -a >0或x -b ≤0”,其中a ,b 是常数.(1)写出命题p 的否定;(2)当a ,b 满足什么条件时,命题p 的否定为真?R ð R ðR ð17.(15分)已知集合A ={x|2≤x <7},B ={x|5<2x -1<17}.(1)求A ∩B ,(B)∪A ;(2)已知C ={x|m +2<x ≤2m},若C ∩B =C ,求实数m 的取值范围.18.(16分)已知P ={x|1≤x ≤2},S ={x|1-m ≤x ≤1+m}.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件?若存在,求出m 的取值范围;若不存在,请说明理由.(2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件?若存在,求出m 的取值范围;若不存在,请说明理由.19.(18分)设集合A ={x|x 2-3x +2=0},B ={x|x 2+2(a -1)x +(a 2-5)=0}.(1)若A∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.R ð参考答案及解析:一、选择题1.D 解析:由集合的性质可知,∅表示没有任何元素的集合,而{0}表示有一个元素0,故A 错误;{(1,2)}表示有一个元素,是点的集合,而{1,2}表示有2个元素的集合,是数集,故B 错误;∅表示没有任何元素的集合,而{∅}表示有一个元素∅,故C 错误.故选D .2.C 解析:因两个集合之间不能用“∈或”,首先排除选项A ,B .因为集合A ={1,2},B ={1},所以集合B 中的元素都是集合A 中的元素,由子集的定义知B ⊆A .故选C .3.C 解析:因为-3∈A ,所以-3=a -2或-3=2a 2+5a ,所以a =-1或a =-32.所以当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去;当a =-32时,a -2=-72,2a 2+5a =-3,满足,所以a =-32.故选C .4.D 解析:∵A ={1,2},B ={2,4,6},∴A ∪B ={1,2,4,6}.故选D .5.A 解析:x 为整数时,2x +1也是整数,充分性成立;2x +1为整数时,x 不一定是整数,如2x +1=2时,x =12,所以必要性不成立,是充分不必要条件.故选A .6.B 解析:正方形都是菱形,菱形都是平行四边形,平行四边形都是四边形.故选B .7.A 解析:因为a ,b 为实数,所以由a <b ,能够得到a <b ,反之,由a <b ,不一定有a <b ,如-3<-2,而-3无意义,所以M 是N 的充分不必要条件.故选A .8.B 解析:命题p :∀x ∈R ,x 2-2x +m ≠0是真命题,则Δ<0,即m >1.二、选择题9.AC 解析:AC 正确,BD 错误.10.ABD 解析:方程组Error!只有一个解,解为Error!所以方程组Error!的解集中只有一个元素,且此元素是有序数对,所以A ,B ,D 都符合题意.11.AB 解析:∵A ={x|x +1>0}={x|x >-1},∴A ={x|x≤-1}.又∵B ={-2,-1,0,1},∴(A)∩B ={-2,-1}.∴(A)∩B 中的元素有-2,-1.三、填空题12.答案:3解析:当a ,b 同正时,|a|a +|b|b =a a +b b=1+1=2.当a ,b 同负时,|a|a +|b|b =-a a +-b b =-1-1=-2.当a ,b 异号时,|a|a +|b|b=0. R ðR ðR ð∴|a|a +|b|b的可能取值所组成的集合中元素共有3个.13.答案:x ∈R ,x 2-3x +3>0 解析:命题p :x 0∈R ,x 20-3x 0+3≤0,则¬p :x ∈R ,x 2-3x +3>0.14.答案:{0,-1,2} 解析:因为A ∪B =A ,所以B ⊆A ,当B =∅时,a =0;当B ≠∅时,B ={2a },则2a =-2或2a=1,解得a =-1或a =2,所以实数a 值集合为{0,-1,2}.四、解答题15.解:(1)∵A ={x|-1≤x ≤2},∴A ={x|x <-1或x >2}.(2)B ∪(A)={x|-3≤x ≤1}∪{x|x <-1或x >2}={x|x ≤1或x >2}.16.解:(1)命题p 的否定:存在实数x ,有x -a ≤0且x -b >0.(2)要使命题p 的否定为真,则需要使不等式组Error!的解集不为空集,通过画数轴(画数轴略)可看出,a ,b 应满足的条件是b <a .17.解:(1)因为B ={x|5<2x -1<17}={x|3<x <9},所以A ∩B ={x|3<x <7},B ={x|x ≤3或x ≥9},所以(B)∪A ={x|x <7或x ≥9}.(2)因为C ∩B =C ,所以C ⊆B .当C =∅时,m +2≥2m ,解得m ≤2;当C ≠∅时,{m +2<2m ,m +2≥3,2m <9,解得2<m <92.综上可得,实数m 的取值范围为Error!.18.解:(1)要使x ∈P 是x ∈S 的充要条件,需使P =S ,即Error!此方程组无解,故不存在实数m ,使x ∈P 是x ∈S 的充要条件.(2)要使x ∈P 是x ∈S 的必要条件,需使S ⊆P .当S =∅时,1-m >1+m ,解得m <0,满足题意;当S ≠∅时,1-m ≤1+m ,解得m ≥0,要使S ⊆P ,则有Error!解得m ≤0,所以m =0.综上可得,当实数m ≤0时,x ∈P 是x ∈S 的必要条件.∀∃∀R ðR ðR ðR ð19.解:(1)由题可知A ={x|x 2-3x +2=0}={1,2}.因为A∩B ={2},所以2∈B ,将2代入集合B 中,得4+4(a -1)+(a 2-5)=0,解得a =-5或a =1.当a =-5时,集合B ={2,10}符合题意;当a =1时,集合B ={2,-2},符合题意.综上所述,a =-5或a =1.(2)若A ∪B =A ,则B ⊆A .因为A ={1,2},所以B =∅或B ={1}或{2}或{1,2}.若B =∅,则Δ=4(a -1)2-4(a 2-5)=24-8a <0,解得a >3;若B ={1},则{Δ=24-8a =0,x =-2(a -1)2=1-a =1,不存在满足式子同时成立的a 值;若B ={2},则{Δ=24-8a =0,x =-2(a -1)2=1-a =2,不存在满足式子同时成立的a 值;若B ={1,2},则{Δ=24-8a >0,1+2=-2(a -1),1×2=a 2-5,不存在满足式子同时成立的a 值.综上所述,a >3.。
第一章 集合与常用逻辑用语、质量检测
第一章集合与常用逻辑用语(自我评估,考场亮剑,收获成功后进入下一章学习!)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合M={x∈R|-3<x<1},N={x∈Z|-1≤x≤2},则M∩N=()A.{0}B.{-1,0}C.{-1,0,1}D.{-2,-1,0,1,2}解析:因为集合N={-1,0,1,2},所以M∩N={-1,0}.答案:B2.(2009·全国卷Ⅱ)已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则∁U(M∪N)=() A.{5,7} B.{2,4} C.{2,4,8} D.{1,3,5,6,7}解析:M∪N={1,3,5,6,7},∴∁U(M∪N)={2,4,8}.答案:C3.命题“若a>b,则a-1>b-1”的否命题是()A.若a>b,则a-1≤b-1B.若a≥b,则a-1<b-1C.若a≤b,则a-1≤b-1D.若a<b,则a-1<b-1解析:即命题“若p,则q”的否命题是“若p,则q”.答案:C4.(2009·浙江高考)已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:a>0,b>0时显然有a+b>0且ab>0,充分性成立;反之,若a+b>0且ab>0,则a,b同号且同正,即a>0,b>0.必要性成立.答案:C5.(文)设全集U是实数集R,M={x|x2>4},N={x|1<x<3},则图中阴影部分表示的集合是() A.{x|-2≤x<1} B.{x|1<x≤2}C.{x|-2≤x≤2}D.{x|x<2}解析:阴影部分表示的集合为N∩∁U M={x|1<x≤2}.⌝⌝答案:B(理)设全集U=R,集合A={x|2x(x-2)<1},B={x|y=ln(1-x)},则图中阴影部分表示的集合为()A.{x|x≥1}B.{x|x≤1}C.{x|0<x≤1}D.{x|1≤x<2}解析:由2x(x-2)<1得x(x-2)<0,故集合A={x|0<x<2},由1-x>0得x<1,故B ={x|x<1},所以A∩B={x|0<x<1},所以∁A(A∩B)={x|1≤x<2},即图中阴影部分表示的集合为{x|1≤x<2}.答案:D6.下列说法错误的是()A.命题:“已知f(x)是R上的增函数,若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”的逆否命题为真命题B.“x>1”是“|x|>1”的充分不必要条件C.若p且q为假命题,则p、q均为假命题D.命题p:“∃x∈R,使得x2+x+1<0”,则p:“∀x∈R,均有x2+x+1≥0”解析:A中∵a+b≥0,∴a≥-b.又函数f(x)是R上的增函数,∴f(a)≥f(-b),①同理可得,f(b)≥f(-a),②由①+②,得f(a)+f(b)≥f(-a)+f(-b),即原命题为真命题.又原命题与其逆否命题是等价命题,∴逆否命题为真.若p且q为假命题,则p、q中至少有一个是假命题,所以C错误.答案:C7.同时满足①M⊆{1,2,3,4,5};②若a∈M,则6-a∈M的非空集合M有()A.16个B.15个C.7个D.6个解析:∵1+5=2+4=3+3=6,∴集合M可能为单元素集:{3};二元素集:{1,5},{2,4};三元素集:{1,3,5},{2,3,4};四元素集:{1,2,4,5};五元素集:{1,2,3,4,5}.共7个.答案:C8.(2010·温州模拟)下列命题中,真命题是()A.∃x∈R,使得sin x+cos x=2B.∀x∈(0,π),有sin x>cos xC.∃x∈R,使得x2+x=-2D.∀x∈(0,+∞),有e x>1+x解析:∵sin x +cos x =2sin(x +π4)≤2,故A 错;当0<x <π4时,cos x >sin x ,故B 错;∵方程x 2+x +2=0无解,故C 错误; 令f (x )=e x -x -1,则f ′(x )=e x -1又∵x ∈(0,+∞),∴f ′(x )=e x -x -1在(0,+∞)上为增函数,∴f (x )>f (0)=0, 即e x >1+x ,故D 正确. 答案:D9.(文)设A ,B 是非空集合,定义A ×B ={x |x ∈A ∪B 且x ∉A ∩B },已知A ={x |0≤x ≤2},B ={x |x ≥0},则A ×B 等于( )A.(2,+∞)B.[0,1]∪[2,+∞)C.[0,1)∪(2,+∞)D.[0,1]∪(2,+∞)解析:由题意知,A ∪B =[0,+∞),A ∩B =[0,2],所以A ×B =(2,+∞). 答案:A(理)定义一种集合运算A ⊗B ={x |x ∈A ∪B ,且x ∉A ∩B },设M ={x ||x |<2},N ={x |x 2-4x +3<0},则M ⊗N 表示的集合是 ( ) A.(-∞,-2]∪[1,2)∪(3,+∞) B.(-2,1]∪[2,3) C.(-2,1)∪(2,3) D.(-∞,-2]∪(3,+∞)解析:M ={x |-2<x <2},N ={x |1<x <3},所以M ∩N ={x |1<x <2},M ∪N ={x |-2<x <3},故M ⊗N =(-2,1]∪[2,3). 答案:B10.“a =1”是“函数f (x )=|x -a |在区间[1,+∞)上为增函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a =1时,函数f (x )=|x -1|在区间[1,+∞)上为增函数,而当函数f (x )=|x -a |在区间[1,+∞)上为增函数时,只要a ≤1即可. 答案:A11.下列说法正确的是( )A.函数y =2sin(2x -π6)的图象的一条对称轴是直线x =π12B.若命题p :“存在x ∈R ,x 2-x -1>0”,则命题p 的否定为:“对任意x ∈R , x 2-x -1≤0”C.若x ≠0,则x +1x≥2D.“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件解析:对于A ,令2x -π6=kπ+π2,k ∈Z ,则x =kπ2+π3,k ∈Z ,即函数y =2sin(2x -π6)的对称轴集合为{x |x =kπ2+π3,k ∈Z},x =π12不适合,故A 错;对于B ,特称命题的否定为全称命题,故B 正确;对于C ,当x <0时,有x +1x ≤-2;对于D ,a =-1时,直线x -ay =0与直线x +ay =0也互相垂直,故a =1是两直线互相垂直的充分而非必要条件. 答案:B12.(文)已知P ={x |x 2-4x +3≤0},Q ={x |y =x +1+3-x },则“x ∈P ”是“x ∈Q ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:解集合P 中的不等式x 2-4x +3≤0可得1≤x ≤3,集合Q 中的x 满足,13x x +⎧⎨-⎩≥0≥0,解之得-1≤x ≤3,所以满足集合P 的x 均满足集合Q ,反之,则不成立. 答案:A(理)设集合A ={x |xx -1<0},B ={x |x 2-4x <0},那么“m ∈A ”是“m ∈B ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 解析:∵A ={x |0<x <1},B ={x |0<x <4},∴AB ,∴“m ∈A ”是“m ∈B ”的充分不必要条件. 答案:A二、填空题(本大题共4小题,每小题4分,共16分.将答案填写在题中的横线上.) 13.令p (x ):ax 2+2x +1>0,若对∀x ∈R ,p (x )是真命题,则实数a 的取值范围是 . 解析:对∀x ∈R ,p (x )是真命题,就是不等式ax 2+2x +1>0对一切x ∈R 恒成立. (1)若a =0,不等式化为2x +1>0,不能恒成立; (2)若0044a a >⎧⎨⎩<△=- 解得a >1;(3)若a <0,不等式显然不能恒成立.Ü综上所述,实数a 的取值范围是a >1. 答案:a >114.已知m 、n 是不同的直线,α、β是不重合的平面.命题p :若α∥β,m α,nβ,则m ∥n ; 命题q :若m ⊥α,n ⊥β,m ∥n ,则α∥β;下面的命题中,①p 或q ;②p 且q ;③p 或 q ;④p 且q . 真命题的序号是 (写出所有真命题的序号). 解析:∵命题p 是假命题,命题q 是真命题.∴p 是真命题, q 是假命题, ∴p 或q 是真命题,p 且q 是假命题,p 或 q 是假命题, p 且q 是真命题.答案:①④15.已知集合A ={x |-1≤x ≤1},B ={x |1-a ≤x ≤2a -1},若B ⊇A ,那么a 的取值范围是 .解析由数轴知,2111121a a a --⎧⎪--⎨⎪-⎩≥≤≥1即2321a a a ⎧⎪⎪⎨⎪⎪⎩≥≥≥ 故a ≥2. 答案:a ≥2 16.(文)下列结论:①若命题p :∃x ∈R ,tan x =1;命题q :∀x ∈R ,x 2-x +1>0.则命题“p ∧q ”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab =-3;③命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”.其中正确结论的序号为 (把你认为正确结论的序号都填上).解析:①中命题p 为真命题,命题q 为真命题,所以p ∧q 为假命题,故①正确; ②当b =a =0时,有l 1⊥l 2,故②不正确; ③正确,所以正确结论的序号为①③. 答案:①③(理)给出下列四个命题:①∃α>β,使得tan α<tan β;ÜÜ⌝⌝⌝⌝⌝⌝⌝⌝②若f (x )是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,θ∈(π4,π2),则f (sin θ)>f (cos θ);③在△ABC 中,“A >π6”是“sin A >12”的充要条件;④若函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=3.其中所有正确命题的序号是 .解析:①存在α=7π6>β=π3,使tan 7π6=tan π6<tan π3,①正确;②f (x )是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,则在[0,1]上是减函数,θ∈(π4,π2),1>sin θ>cos θ>0, ∴f (sin θ)<f (cos θ),②错误;③在△ABC 中,A >π6,则0<sin A ≤1.sin A >12,则5π6>A >π6,所以“A >π6”是“sin A >12”的既必要不充分条件,③错误;④函数y =f (x )在点M (1,f (1))处的切线斜率为f ′(1)=12,M (1,f (1))是曲线上的点也是切线上的点,x =1时,f (1)=52,∴f (1)+f ′(1)=3,④正确.答案:①④三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)设集合A ={-4,2a -1,a 2},B ={9,a -5,1-a },且A ∩B ={9},求实数a 的值.解:因为A ∩B ={9},所以9∈A . 若2a -1=9,则a =5,此时A ={-4,9,25},B ={9,0,-4},A ∩B ={-4,9},与已知矛盾(舍去). 若a 2=9,则a =±3.当a =3时,A ={-4,5,9},B ={-2,-2,9},与集合中元素的互异性矛盾(舍去); 当a =-3时,A ={-4,-7,9},B ={-8,4,9},符合题意. 综上所述,a =-3.18.(本小题满分12分)判断下列命题的真假. (1)∀x ∈R ,都有x 2-x +1>12.(2)∃α,β使cos(α-β)=cos α-cos β. (3)∀x ,y ∈N ,都有x -y ∈N.(4)∃x 0,y 0∈Z ,使得2x 0+y 0=3.解:(1)真命题,∵x 2-x +1=(x -12)2+34≥34>12.(2)真命题,如α=π4,β=π2,符合题意.(3)假命题,例如x =1,y =5,但x -y =-4∉N. (4)真命题,例如x 0=0,y 0=3符合题意.19.(本小题满分12分)设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}. (1)若A ∩B ={2},求实数a 的值; (2)若A ∪B =A ,求实数a 的取值范围. 解:由x 2-3x +2=0得x =1或x =2, 故集合A ={1,2}.(1)∵A ∩B ={2},∴2∈B ,代入B 中的方程, 得a 2+4a +3=0⇒a =-1或a =-3;当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件; 当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件; 综上,a 的值为-1或-3; (2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3). ∵A ∪B =A ,∴B ⊆A ,①当Δ<0,即a <-3时,B =∅满足条件; ②当Δ=0,即a =-3时,B ={2},满足条件; ③当Δ>0,即a >-3时,B =A ={1,2}才能满足条件, 则由根与系数的关系得()2251221212 5.7.a a a a ⎧⎧+=-+=-⎪⎪⇒⎨⎨⨯=-⎪⎪⎩=⎩‚‚ 矛盾;综上,a 的取值范围是a ≤-3.20.(本小题满分12分)(2010·盐城模拟)命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0,命题q :实数x 满足x 2-x -6≤0或x 2+2x -8>0,且 p 是 q 的必要不充分条件,求a 的取值范围.解:设A ={x |x 2-4ax +3a 2<0(a <0)}={x |3a <x <a }, B ={x |x 2-x -6≤0或x 2+2x -8<0} ={x |x 2-x -6<0}∪{x |x 2+2x -8>0}⌝⌝={x |-2≤x ≤3}∪{x |x <-4或x >2}={x |x <-4或x ≥-2}. 因为 p 是 q 的必要不充分条件,所以 q ⇒ p ,且 p 推不出 q 而∁R B ={x |-4≤x <-2},∁R A ={x |x ≤3a ,或x ≥a } 所以{x |-4≤x <-2} {x |x ≤3a 或x ≥a },320a a -⎧⎨⎩≥<或40a a -⎧⎨⎩≤< 即-23≤a <0或a ≤-4.21.(本小题满分12分)设全集是实数集R ,A ={x |2x 2-7x +3≤0}, B ={x |x 2+a <0}.(1)当a =-4时,求A ∩B 和A ∪B ; (2)若(∁R A )∩B =B ,求实数a 的取值范围. 解:(1)∵A ={x |12≤x ≤3},当a =-4时,B ={x |-2<x <2},∴A ∩B ={x |12≤x <2},A ∪B ={x |-2<x ≤3}.(2)∁R A ={x |x <12或x >3},当(∁R A )∩B =B 时,B ⊆∁R A ,①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时,B ={x |--a <x <-a },要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0. 综上可得,实数a 的取值范围是a ≥-14.22.(文)(本小题满分14分)已知m ∈R ,对p :x 1和x 2是方程x 2-ax -2=0的两个根,不等 式|m -5|≤|x 1-x 2|对任意实数a ∈[1,2]恒成立;q :函数f (x )=3x 2+2mx +m +43有两个不同的零点.求使“p 且q ”为真命题的实数m 的取值范围. 解:由题设知x 1+x 2=a ,x 1x 2=-2, ∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=a 2+8.a ∈[1,2]时,a 2+8的最小值为3,要使|m -5|≤|x 1-x 2|对任意实数a ∈[1,2]恒成立,只需|m -5|≤3,即2≤m ≤8.⌝⌝⌝⌝⌝⌝Ü由已知,得f (x )=3x 2+2mx +m +43=0的判别式Δ=4m 2-12(m +43)=4m 2-12m -16>0,得m <-1或m >4.,综上,要使“p 且q ”为真命题,只需p 真q 真,即 解得实数m 的取值范围是(4,8]. (理)(本小题满分14分)设命题p :函数f (x )=lg(ax 2-x +116a )的定义域为R ;命题q :不等式2x +1<1+ax 对一切正实数均成立,如果命题p 或q 为真命题,命题p 且q 为假命题,求实数a 的取值范围.解:命题p 为真命题⇔函数f (x )=lg(ax 2-x +116a )的定义域为R ,即ax 2-x +116a >0对任意实数x 均成立,得a =0时,-x >0的解集为R ,不可能;或22.1104a a a ⎧⎪⇔⎨-⎪⎩>0>< a <0时,ax 2-x +116解集显然不为R ,所以命题p 为真命题⇔a >2.命题q 为真命题⇔2x +1-1<ax 对一切正实数均成立,即a >2x +1-1x=22x +1+1对一切正实数x 均成立.由于x >0,所以2x +1>1. 所以2x +1+1>2,所以22x +1+1<1.所以,命题q 为真命题⇔a ≥1. ∵p 或q 为真命题,p 且q 为假命题, ∴p 、q 一真一假.若p 为真命题,q 为假命题,无解; 若p 为假命题,q 为真命题,则1≤a ≤2. ∴a 的取值范围是[1,2].2814m m m ⎧⎨-⎩或≤≤<>。
第1章 集合与常用逻辑用语 高中数学必修第一册(Word含答案)
第一章:集合与常用逻辑用语测试题一、选择题:(每小题5分,共65分)1、已知集合A={2,4,5},B={3,5,7},则A ∪B=( )。
A 、{5}B 、{2,4,5}C 、{3,5,7}D 、{2,3,4,5,7} 2、设集合{|21}A x x =-<<,{|04}B x x =<≤,则=B A ( )。
A .{|24}x x -<≤B .{|01}x x <<C .{|14}x x <≤D .{|20}x x -<< 3、已知全集U =R ,集合{}|23A x x =-≤≤,那么集合A =R( )。
A .{}|23x x -<<B .{}|23x x x -或≤≥ C .{}|23x x -≤≤D .{}|23x x x <->或4、已知集合M={x|x 2=1},集合N={x|ax=1},若N ⊂≠M ,那么a 的值为( )。
A 、1B 、-1C 、1或-1D 、0,1或-1 5、设a,b ∈R ,集合{1,a+b,a}=⎭⎬⎫⎩⎨⎧a b b ,,0,则b-a 等于( )。
A 、1 B 、-1 C 、2 D 、-26、已知:P={y|y=x 2+1,x ∈R},Q={y|y=x+1,x ∈R}则P ∩Q=( )。
A.RB.),1[+∞C.{0,1}D.{(0,1),(1,2)} 7、设集合M={}1,2,3|---x ,N={}02|2≤-+x x x ,则MN =( )。
A 、{-2,0,1} B 、{-3,-2,-1}C 、{-2,-1,0,1}D 、{-3,-2,-1,0,1}8、“三角形的三条边相等”是“三角形为等边三角形”的( )。
A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件9、下列命题中,真命题是( )。
A .质数都是奇数B .{||1|3}x N x ∈-<是无限集C .π是有理数D .250x x -=的根是自然数10、22530x x --<的一个必要不充分条件是( )。
人教版高中数学必修第一册第一章集合与常用逻辑用语单元测试卷
人教版高中数学必修第一册第一章集合与常用逻辑用语单元测试卷一、单选题 1.命题“0x R ∃∈,0012x x +”的否定形式是( )A .x R ∀∈,12x x +> B .x R ∃∈,12x x +< C .x R ∃∈,12x x+> D .x R ∀∈,12x x+< 2.若{}1,4,A x =,{}21,B x =且B A ⊆,则x =( ).A .2±B .2±或0C .2±或1或0D .2±或±1或03.满足条件{1,2,3,4}{1,2,3,4,5,6}M ⊆的集合M 的个数是( )A .2B .3C .4D .54.设集合U ={1,2,3,4,5},A ={1,3,5},B ={2,3,5},则图中阴影部分表示的集合的真子集有( )个A .3B .4C .7D .85.设集合A ={0,1,2},B ={m |m =x +y ,x ∈A ,y ∈A },则集合A 与B 的关系为( ) A .A B ∈B .A B =C .B A ⊆D .A B ⊆6.设全集为R ,集合{}A |10x x =->,{}B |||2x x =>,则集合()R A B (⋃= ) A .{|1}x x ≤ B .{|2x x <-或1}x > C .{|12}x x ≤<D .{|1x x ≤或2}x >7.设,a b ∈R 且0ab ≠,则1ab >是1a b>的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要8. “22530xx --<”的一个必要不充分条件是( ) A .13x -<<B .16x -<<C .132x -<<D .102x -<<二、多选题 9.下列不等式中可以作为21x <的一个充分不必要条件的有( )A .1x <B .201x <<C .10x -<<D .11x -<<10.设非空集合P ,Q 满足P Q Q ⋂=,且P Q ≠,则下列选项中错误的是( ).A .x Q ∀∈,有x P ∈ B .x P ∃∈,使得x Q ∉ C .∃∈x Q ,使得x P ∉D .x Q ∀∉,有x P ∉11.已知集合{}2|1A y y x ==+,集合{}2(,)|1B x y y x ==+,下列关系正确的是( ).A .(1,2)B ∈ B .A B =C .0A ∉D .(0,0)B ∉12.由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足Q M N ⋃=,M N ⋂=∅,M 中的每一个元素都小于N 中的每一个元素,则称(),M N 为戴德金分割.试判断,对于任一戴德金分割(),M N ,下列选项中,可能成立的是( )A .M 没有最大元素,N 有一个最小元素B .M 没有最大元素,N 也没有最小元素C .M 有一个最大元素,N 有一个最小元素D .M 有一个最大元素,N 没有最小元素三、填空题13.若A ={a 2,a +1,﹣3},B ={a ﹣3,2a ﹣1,a 2+1},A ∩B ={﹣3},则a =________.14.已知命题:1p x <-或3x >,命题:31q x m <+或2x m >+,若p 是q 的充分非必要条件,则实数m 的取值范围是________15.已知集合1A={x|x=(21),}9k k Z +∈,41B={x|x=,}99k k Z ±∈,则集合A ,B 之间的关系为________.四、双空题 16.已知全集{}2,3,5U =,集合{}2|0A x x bx c =++=,若{2}U A =,则b =_______,c =_______.五、解答题 17.已知集合{}2,,1,,,0y A x B x x y x ⎧⎫==+⎨⎬⎩⎭,若A B =,求20192018x y +的值.18.已知集合{}2|2A x x -=≤≤,集合{}|1B x x =>. (1)求()R C B A ⋂;(2)设集合{}|6M x a x a =<<+,且A M M ⋃=,求实数a 的取值范围.19.设集合{}12,A x a x a a =-<<∈R ,不等式 2280x x --<的解集为B . (1)当0a =时,求集合A ,B . (2)当A B ⊆时,求实数a 的取值范围.20.已知命题:“{}11x x x ∀∈-≤≤,都有不等式2x x m --<0成立”是真命题. (1)求实数m 的取值集合B ;(2)设不等式(3)(2)0x a x a ---<的解集为A ,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围.21.已知两个关于x 的一元二次方程2440mx x -+=和2244450x mx m m -+--=,求两方程的根都是整数的充要条件.22.给定数集A ,若对于任意,a b A ∈,有a b A +∈,且a b A -∈,则称集合A 为闭集合. (1)判断集合{4,2,0,2,4},{|3,}A B x x k k Z =--==∈是否为闭集合,并给出证明. (2)若集合A ,B 为闭集合,则A B 是否一定为闭集合?请说明理由. (3)若集合A ,B 为闭集合,且,AR BR ,求证:()A B R ⋃.参考答案:1.D 【解析】根据特称命题的否定是全称命题进行判断即可. 【详解】解:命题“0x R ∃∈,0012x x +”为特称命题,其否定为全称命题,则否定是:x R ∀∈,12x x+<, 故选:D . 【点睛】本题主要考查含有量词的命题的否定,结合特称命题的否定是全称命题是解决本题的关键. 2.B 【解析】利用条件B A ⊆,得24x =或2x x =,求解之后进行验证即可. 【详解】解:因为{}1,4,A x =,{}21,B x=,若B A ⊆,则24x =或2x x =,解得x =2或−2或1或0. ∈当x =0,集合A ={1,4,0},B ={1,0},满足B A ⊆. ∈当x =1,集合A ={1,4,1},不成立.∈当x =2,集合A ={1,4,2},B ={1,4},满足B A ⊆. ∈当x =−2,集合A ={1,4,−2},B ={1,4},满足B A ⊆. 综上,x =2或−2或0. 故选:B . 【点睛】本题主要考查集合关系的应用,考查分类讨论的思想,属于基础题. 3.B 【解析】根据子集和真子集的知识判断出集合M 的个数. 【详解】由题意可知:M应在{1,2,3,4}的基础上不增加元素或增加5,6中的一个,所以M的个数就是集合{5,6}的真子集个数,即集合M的个数是2213-=.故选:B【点睛】本小题主要考查子集和真子集,属于基础题.4.C【解析】先求出A∩B={3,5},再求出图中阴影部分表示的集合为:C U(A∩B)={1,2,4},由此能求出图中阴影部分表示的集合的真子集的个数.【详解】∈集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},∈A∩B={3,5},图中阴影部分表示的集合为:C U(A∩B)={1,2,4},∈图中阴影部分表示的集合的真子集有:23–1=8–1=7.故选C.【点睛】本题考查集合的真子集的个数的求法,考查交集定义、补集、维恩图等基础知识,考查运算求解能力,是基础题.5.D【解析】先分别求出集合A和B,由此能求出结果.【详解】∈合A={0,1,2},B={m|m=x+y,x∈A,y∈A}={0,1,2,3,4},∈A⊆B.故选D.【点睛】本题考查命题真假的判断,考查集合的包含关系等基础知识,考查运算求解能力,是基础题.6.D【解析】先分别求出集合A 和集合集合B ,再求出R C A ,与集合B 求并集即可. 【详解】因为{}A |1x x =>,B {x |x 2=<-或x 2}>; R A {x |x 1}∴=≤;()R A B {x |x 1∴⋃=≤或x 2}>.故选D 【点睛】本题主要考查集合的混合运算,熟记概念即可,属于基础题型. 7.D 【解析】由题意看命题“ab >1”与“1a b>”能否互推,然后根据必要条件、充分条件和充要条件的定义进行判断. 【详解】若“ab >1”当a =﹣2,b =﹣1时,不能得到“1a b >”,若“1a b >”,例如当a =1,b =﹣1时,不能得到“ab >1“,故“ab >1”是“1a b>”的既不充分也不必要条件,故选D . 【点睛】本小题主要考查了充分必要条件,考查了对不等关系的分析,属于基础题. 8.B 【解析】由集合的包含关系直接判断即可. 【详解】212530(3)(21)032x x x x x --<⇔-+<⇔-<<,因为1{|3}{|16}2x x x x -<<-<<,所以142x -<<是22530x x --<的必要不充分条件.故选:B. 9.BC 【解析】由题意解不等式,再由集合间的关系、充分不必要条件的概念逐项判断即可得解. 【详解】解:{}2111x x x <⇔-<<,因为{}11xx -<<∣{}1x x <∣, ()()2011,00,1x <<⇔-,()()1,00,1-{}11xx -<<∣, {}11xx -<<∣{}10x x -<<∣, 所以21x <的一个充分不必要条件有:201x <<或10x -<<. 故选:BC. 10.CD 【解析】由两集合交集的结果推出Q 是P 的真子集,再根据真子集的概念进行判断. 【详解】因为P Q Q ⋂=,且P Q ≠,所以Q 是P 的真子集, 所以x Q ∀∈,有x P ∈,x P ∃∈,使得x Q ∉,CD 错误. 故选:CD 【点睛】本题考查集合交集的概念、真子集的概念,属于基础题. 11.ACD 【解析】根据集合的定义判断,注意集合中代表元形式. 【详解】由已知集合{}1}[1,)A y y =≥=+∞,集合B 是由抛物线21y x =+上的点组成的集合,A 正确,B 错,C 正确,D 正确, 故选:ACD . 【点睛】本题考查集合的概念,确定集合中的元素是解题关键. 12.ABD 【解析】举特例根据定义分析判断,进而可得到结果. 【详解】令{|10,}M x x x Q =<∈,{|10,}N x x x Q =≥∈,显然集合M 中没有最大元素,集合N 中有一个最小元素,即选项A 可能;令{|}M x x x Q =<∈,{|}N x x x Q =≥∈,显然集合M 中没有最大元素,集合N 中也没有最小元素,即选项B 可能;假设答案C 可能,即集合M 、N 中存在两个相邻的有理数,显然这是不可能的; 令{|10,}M x x x Q =≤∈,{}10,N x x x Q =>∈,显然集合M 中有一个最大元素,集合N 中没有最小元素,即选项D 可能. 故选:ABD . 13.-1 【解析】根据题意,由A ∩B ={﹣3}可得3B -∈,由于B 中有3个元素,则分三种情况讨论,∈a ﹣3=﹣3,∈2a ﹣1=﹣3,∈a 2+1=﹣3,分别求出a 的值,求出A ∩B 并验证是否满足A ∩B ={1,﹣3},即可得答案. 【详解】A ∩B ={﹣3},则3B -∈,分3种情况讨论:∈33a -=-,则0a =,此时B ={﹣3,﹣1,1},A ={0,1,﹣3},A ∩B ={1,﹣3},不合题意,∈213a -=-,则1a =-,此时A ={1,0,﹣3},B ={﹣4,﹣3,2},此时A ∩B ={﹣3},符合题意,∈213a +=-,此时a 无解,不合题意; 综上所述1a =- 故答案为:﹣1. 【点睛】本题考查集合的交集运算与性质,注意集合中元素的特征:互异性、确定性、无序性,属于基础题. 14.2,3⎡⎫-+∞⎪⎢⎣⎭【解析】根据充分条件,必要条件和集合之间的关系等价法,即可求出. 【详解】因为p 是q 的充分非必要条件,所以()(),13,-∞-+∞是()(),312,m m -∞+⋃++∞的真子集.当312m m +≤+,即12m ≤时,31123m m +≥-⎧⎨+≤⎩,解得213m -≤≤,又因为12m ≤,所以2132m -≤≤; 当12m >时,()(),312,m m R -∞+⋃++∞=,显然()(),13,-∞-+∞是()(),312,m m -∞+⋃++∞的真子集.综上,实数m 的取值范围是2,3⎡⎫-+∞⎪⎢⎣⎭.故答案为:2,3⎡⎫-+∞⎪⎢⎣⎭.15.A=B 【解析】分别讨论k=2n 和k=2n-1,n ∈Z 时,集合A 所表示的集合,由描述法的定义即可知道集合A=B. 【详解】对于集合A ,k=2n 时,()14141,999n x n n Z =+=+∈ , 当k=2n-1时,()141421,999n x n n Z =-+=-∈ 即集合A=41,99n x x n Z ⎧⎫=±∈⎨⎬⎩⎭ ,由B=41,99k x x k Z ⎧⎫=±∈⎨⎬⎩⎭可知A=B ,故填:A=B. 【点睛】本题考查了集合之间的关系,考查了集合相等的判断,涉及了集合的表示法,是基础题. 16.8- 15【解析】根据补集的结果推出集合A ,可知方程20x bx c ++=的两个实数根为3和5,利用根与系数的关系即可求得b 、c . 【详解】 ∈{2}UA =,∈{3,5}A =,∈方程20x bx c ++=的两个实数根为3和5, ∈(35)8,3515b c =-+=-=⨯=. 故答案为:8-;15 【点睛】本题考查集合补集的概念、一元二次方程,属于基础题. 17.-1. 【解析】由集合相等,分析两集合中元素,列出方程组,解得,x y 后可求值. 【详解】∈集合{}2,,1,,,0,y A x B x x y A B x ⎧⎫==+=⎨⎬⎩⎭,∈201,1y x x =⎧⎪=⎨⎪≠⎩解得1,0x y =-=, 则2019201820192018(1)01x y +=-+=-. 故答案为:-1. 【点睛】本题考查集合的相等,解题时注意集合中元素的性质,特别是互异性. 18.(1)(){|21}R C B A x x ⋂=-≤≤(2){}|42a a -<<- 【解析】(1)根据集合的补集和并集的定义计算即可(2)根据并集的定义得出关于a 的不等式组,求出解集即可 【详解】(1)集合{}1B x x =.则{}|1R C B x x =≤ 集合{}|22A x x =-≤≤, 则(){}|21R C B A x x ⋂=-≤≤(2)集合{}|6M x a x a =<<+,且A M M ⋃=622a a +>⎧∴⎨<-⎩,解得42a -<<-故实数a 的取值范围为{}|42a a -<<- 【点睛】本题主要考查了交集、并集、补集的运算,在解答时需要将并集转化为子集问题来求解. 19.(1){}10A x x =-<<,{}24B x x =-<<;(2)}{2a a ≤. 【解析】(1)0a =代入即可求得A ,解一元二次不等式2280x x --<得B ;(2)注意讨论A =∅与A ≠∅的两种情况,最后求解并集即可.【详解】(1)解:当0a =时,{}10A x x =-<<,解不等式2280x x --<得:24x -<<,即{}24B x x =-<<. (2)解:若A B ⊆,则有:∈A =∅,即21a a ≤-,即1a ≤-,符合题意,∈A ≠∅,有211224a a a a >-⎧⎪-≥-⎨⎪≤⎩,解得:12a -<≤.综合∈∈得:}{2a a ≤.20.(1)(2,)+∞;(2)2[,)3+∞.【解析】(1)分离出m ,将不等式恒成立转化为函数的最值,求出2max ()x x -,即可求出m 范围;(2)分析讨论二次不等式对应方程的两个根的大小,写出解集A, x A ∈是 x B ∈的充分不必要条件得出A B ⊆,求出a 的范围.【详解】(1)命题:“{}11x x x ∀∈-≤≤,都有不等式2x x m --<0成立”是真命题,得2x x m --<0在11x -≤≤时恒成立,∈2max ()m x x >-,得2m >,即{}2(2,)B m m =>=+∞.(2)不等式(3)(2)0x a x a ---<,∈当32a a >+,即1a >时,解集{}23A x a x a =+<<,若x A ∈是x B ∈的充分不必要条件,则A 是B 的真子集,∈22a +≥,此时1a >;∈当32a a =+,即1a =时,解集A φ=,满足题设条件;∈当32a a <+,即1a <时,解集{}32A x a x a =<<+,若x A ∈是x B ∈的充分不必要条件,则A 是B 的真子集,32a ∴≥,此时213a ≤<. 综上∈∈∈可得2[,)3a ∈+∞ 【点睛】本题主要考查了含参数一元二次不等式的解法,分类讨论的思想,以及充分必要条件的理解转化,集合的交集运算等,属于中档题.解决不等式恒成立求参数的范围问题,常采用分离参数求最值;解含参数的二次不等式时,常从二次项系数、判别式、两个根的大小进行讨论.21.1m =【解析】∈2440mx x -+=是一元二次方程,∈ 0m ≠.又另一方程为2244450x mx m m -+--=,且两方程都要有实根,∈()()212224160,1644450,m m m m ⎧∆=--≥⎪⎨∆=---≥⎪⎩ 解得5,14m ⎡⎤∈-⎢⎥⎣⎦. ∈两方程的根都是整数,∈其根的和与积也为整数, 即24,4,445,Z m m Z m m Z ⎧∈⎪⎪∈⎨⎪--∈⎪⎩∈m 为4的约数.又∈5,14m ⎡⎤∈-⎢⎥⎣⎦, ∈11,2m =±±当1m =-时,第一个方程可化为,其根不是整数; 当12m =-,第一个方程可化为2880x x +-=,其根不是整数; 当12m =,第一个方程可化为2880x x -+=,其根不是整数; 当1m =时,两方程的根均为整数,∈两方程的根均为整数的充要条件是 1m =. 考点:充分必要条件.22.(1)A 不为闭集合.B 为闭集合.证明见解析;(2)不是,理由见解析;(3)证明见解析.【解析】(1)根据新定义,确定集合中任间两个元素的和与差是否还是该集合中的元素可得; (2)可举反例说明;(3)用反证法,假设若A B R =,A R ,存在a R ∈且a A ∉,故a B ∈,同理,由B R ,存在b R ∈且b B ∉,故b A ∈,利用a b +及闭集合的定义得出矛盾.【详解】(1)因为4A ∈,但是448A +=∉,所以A 不为闭集合.任取,a b B ∈,设3,3,,a m b n m n Z ==∈,则333()a b m n m n +=+=+且m n Z +∈,所以a b B +∈,同理,a b B -∈,故B 为闭集合.(2)结论:不一定.令{|2,},{|3,}A x x k k Z B x x k k Z ==∈==∈,则由(1)可知,A ,B 为闭集合,但2,3,235A B A B ∈⋃+=∉⋃,因此,A B 不为闭集合.(3)证明:(反证法)若A B R =,则因为A R ,存在a R ∈且a A ∉,故a B ∈,同理,因为B R ,存在b R ∈且b B ∉,故b A ∈, 因为a b R A B +∈=⋃,所以,a b A +∈或a b B +∈,若a b A +∈,则A 为闭集合,()a a b b A =+-∈,与a A ∉矛盾,若a b B +∈,则B 为闭集合,()b a b a B =+-∈,与b B ∉矛盾,综上,存在R c ∈,使得c A B ∉⋃.∈A BR ⋃.【点睛】本题考查集合新定义问题,解题关键是理解新定义“闭集合”,把问题转化为利用,a b a b +-的属性得出结论.考查学生理解能力,创新意识.。
第一章 集合与常用逻辑用语单元测试(基础卷)(原卷版)
第一册第一章集合与常用逻辑用语单元测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列描述中不能够成集合的是( )A .中国的直辖市B .我国的小河流C .大于3小于11的奇数D .方程2320x x +-=的所有实数根 2.已知集合{}1,2,3A =,{}29B x x =<,则A B =( )A .{}2,1,0,1,2,3--B .{}2,1,0,1,2--C .{}1,2,3D .{}1,2 3.若集合{}1,2,3,4,5A =,集合{}04B x x =<<,则图中阴影部分表示( )A .{}1,2,3,4B .{}1,2,3C .{}4,5D .{}1,44.已知集合{}12A x x =<≤,{}B x x a =<.若A B ⊆,则a 的取值范围是( ) A .1a a ≥ B .1a a ≤ C .{}2a a ≥ D .{}2a a > 5.命题“[1,2]x ∀∈,220x a -≥”为真命题的一个充分不必要条件是( )A .1a ≤B .2a ≤C .3a ≤D .4a ≤6.下列集合中表示同一集合的是( )A .{(3,2)}M =,{(2,3)}N =B .{2,3}M =,{3,2}N =C .{(,)1}M x y x y =+=∣,{1}N y x y =+=∣ D .{2,3}M =,{(2,3)}N =7.对于集合A ,B ,定义{|,}A B x x A x B -=∈∉,()()⊕=--A B A B B A .设{}1,2,3,4,5,6M =,{}4,5,6,7,8,9,10N =,则M N ⊕中元素的个数为( ).A .5B .6C .7D .88.对于任意两个正整数m 、n ,定义某种运算,当m 、n 都为正偶数或正奇数时,m n m n ∆=+;当m 、n 中一个为正奇数,另一个为正偶数时,m n mn ∆=.则在上述定义下,(){}**,36,,M x y x y x y =∆=∈∈N N ,集合M 中元素的个数为( ) A .40B .48C .39D .41二、多选题 9.下列说法中正确的是( )A .“AB B =”是“B =∅”的必要不充分条件B .“3x =”的必要不充分条件是“2230x x --=”C .“m 是实数”的充分不必要条件是“m 是有理数”D .“1x =”是“1x =”的充分条件10.下列命题正确的有() A .A ⋃∅=∅B .()()()U U UC A B C A C B ⋃=⋃ C .A B B A ⋂=⋂D .()U U C C A A = 11.(多选)已知A B ⊆,A C ⊆,{}2,0,1,8B =,{}1,9,3,8C =,则A 可以是( ) A .{}1,8 B .{}2,3 C .{}1 D .{}212.定义集合运算:()(){},,A B z z x y x y x A y B ⊗==+⨯-∈∈,设{}{}2,3,2,A B ==则( )A .当2,2x y ==1z = B .x 可取两个值,y 可取两个值,()()z x y x y =+⨯-对应4个式子C .A B ⊗中有4个元素D .A B ⊗的真子集有7个 E.A B ⊗中所有元素之和为4三、填空题13.命题 “2,(1)0x R x ∀∈->”的否定是_____.14.设全集为U ,有下面四个命题:①M N M ⋂=;②U U N M ⊆;③U N M ⋂=∅;④U M N ⋂=∅.其中是命题M N ⊆的充要条件的命题序号是________.15.设a ,b ∈R ,若集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则20202020a b +=_______. 16.若命题“p :x R ∀∈,2210ax x ++>”是假命题,则实数a 的取值范围是______.四、解答题17.设集合{}{}2|8150,|10A x x x B x ax =-+==-=. (1)若15a =,判断集合A 与B 的关系; (2)若AB B =,求实数a 组成的集合C .18.设全集为R ,集合{3A x x =≤或}6x ≥{}29B x x =-<<.(1)求A B ,()U A B ⋂;(2)已知{}1C x a x a =<<+,若C B ⊆,求实数a 的取值范围.19.已知集合{}22A x a x a =-≤≤+,{1B x x =≤或}4x ≥.(1)当3a =时,求A B ;(2)若>0a ,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.20.求证:ABC ∆是等边三角形的充要条件是222a b c ab ac bc ++=++.这里,,a b c 是ABC ∆的三条边.21.向50名学生调查对A 、B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成;赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A ,B 都不赞成的学生数比对A ,B 都赞成的学生数的三分之一多1人.问对A ,B 都赞成的学生和都不赞成的学生各有多少人?22.已知全集U =R ,集合{|4A x x =<-或1}x >,{}312B x x =-≤-≤,(1)求A B 、()()U U A B ;(2)若集合{}2121M x k x k =-≤≤+是集合A 的子集,求实数k 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 《集合与常用逻辑用语》 章节测试
一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合项目要求的)
1.给出下列关系:①12
R ∈;②Q ;③|3|N -∈;④|Z ∈;⑤0N ∉,其中正确的个数为( )
A .1
B .2
C .3
D .4
2.已知集合{}0,1,2,3A =,{}13B x x =<<,则=⋂B A ( )
A .{}1,2
B .{}0,1,2
C .{}2
D .{}2,3
3. 已知命题p :“0a ∃>,有12a a +
<成立”,则命题p ⌝为( ) A .0a ∀≤,有12a a +≥成立
B .0a ∀>,有12a a
+≥成立 C .0a ∃>,有1
2a a +≥成立 D .0a ∃>,有12a a +>成立 4. 已知:p A φ=,:q A B φ⋂=,则p 是q 的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
5. 已知集合M 满足{1,2}⊆M {1,2,3,4,5},那么这样的集合M 的个数为( )
A .5
B .6
C .7
D .8
6. 设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-≤≤⋂=Z ,则
A .{}01,
B .{}101-,,
C .{}012,,
D .{}101
2-,,, 7. 如图所示的韦恩图中,,A B 是非空集合,定义集合A B *为阴影部分表示的集合,则A B *=( )
A .()u C A
B ⋃ B .()u A
C B ⋃ C .()()u u C A C B ⋃
D .()()u A B C A B ⋃⋂⋂
8. 若集合A ={x |kx 2+4x +4=0,x ∈R}中只有一个元素,则实数k 的值为( )
A .1
B .0
C .0或1
D .以上答案都不对
二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)
9. 下列关系中,正确的有()
A .{}0⊆Φ
B .13Q ∈
C .Q Z ⊆
D .{}0∅∈
10. 若集合A ={x |x 2-2x =0},则有 ( )
A.⌀⊆A
B.-2∈A
C.{0,2}⊆A
D.A ⊆{y |y <3}
11. 设全集U ={0,1,2,3,4},集合A ={0,1,4},B ={0,1,3},则 ( )
A.A ∩B ={0,1}
B.∁U B ={4}
C.A ∪B ={0,1,3,4}
D.集合A 的真子集的个数为8
12. 已知M ,N ,P 为全集U 的子集,且满足M P N ⊆⊆,下列结论不正确的
是( ).
三、填空题(本题共4小题,每小题5分,共20分)
13. 设集合{}2S x x =>-,{}41T x x =-≤≤,则()S T =R ________.
14. 已知全集{}{}2{2,3,23},1,2,3U U a a A a C A a =+-=+=+,则a 的值
________.
15. 已知集合A ={x |1<x <3},B ={x |-1<x <m +2},若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是 .
16. 设集合{|||1A x x a =-<,}x R ∈,{|15B x x =<<,}x R ∈,若A B ,则a 的取值范围为 .
四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(10分)已知集合A 有三个元素:a -3,2a -1,a 2+1,集合B 也有三个元素:0,1,x .
(1)若-3∈A ,求a 的值;
(2)若x 2∈B ,求实数x 的值;
(3)是否存在实数a ,x ,使A =B .
18.(12分)设集合,.
(1)用列举法表示集合;
(2)若是的充分条件,求实数的值.
2{|320}A x x x =++=2{|(1)0}B x x m x m =+++=A x B ∈x A ∈m
19.(12分)已知集合{|121}A x a x a =-<<+,{}B 03x x =<≤,U =R .
(1)若12
a =,求A B ⋃;()U A C B ⋂. (2)若A B φ⋂=,求实数a 的取值范围.
20.(12分)知集合2{|3100}A x x x =--,}121|{-≤≤+=m x m x B ,且B ≠∅.
(1)若“命题:p x B ∀∈,x A ∈”是真命题,求m 的取值范围.
(2)“命题:q x A ∃∈,x B ∈”是真命题,求m 的取值范围.
21.(12分)已知集合A ={x ∈R|x 2-ax +b =0},B ={x ∈R|x 2+cx +15=0},A ∩B ={3},A ∪B ={3,5}.
(1)求实数a ,b ,c 的值;
(2)设集合P ={x ∈R|ax 2+bx +c ≤7},求集合P ∩Z.
22.(12分)设集合{|12}A x x =-≤≤,集合{|21}B x m x =<<.
(1)若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围;
(2)若()R B C A ⋂中只有一个整数,求实数m 的取值范围.
参考答案:
1-8 B C B A C B D C
9、AB 10、ACD 11、AC 12、B 13、}24|{-≤≤-x x
14、2
15、}1|{≥m m
16、16、}42|{≤≤a a
17、(1)a=0或a=-1
(2)x=-1
(3)不存在
18、(1)A={-1,-2}
(2) m=1或m=2
19、(1)}32
1|{≤<-=⋃x x B A }02
1|{)(≤<-=⋂x x B C A U (2)}42
1|{≥-≤a a a 或
20、(1)}32|{≤≤m m
(2)}42|{≤≤m m
21、(1)a=6,b=9,c=-8
(2)}1,0,1,2{--=⋂Z P
22、(1)}2
1|{-≥m m (2)}12
3|{-<≤-m m。