[初二数学]《确定一次函数表达式》教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[初二数学]《确定一次函数表达式》教学设计

确定一次函数表达式

一、教学目标

(1)知识与技能目标

1.了解两个条件确定一次函数。

2.能根据所给信息确定一次函数的表达式。

3.能利用所学知识解决实际问题。

(2)过程与方法目标

经历对正比例函数及一次函数表达式的探求过程,培养学生对数学对象进行思考的习惯,逐步培养学生的探索能力。

(3)情感与态度目标

1.经历从不同信息中获取~次函数表达式的过程,体会到解决问题的多样性,培养学生思维的全面性。

2.经历对实际问题的解决过程,培养学生学数学,用数学的意识。

二、教材分析

教材前几节内容已对一次函数的表达式、函数图像及性质作了一定研究,给定一个一次函数的表达式可以得到对应的函数图像及性质,而本节则从相反角度来研究一次函数:即根据图像、表格等信息,确定一次函数的表达式。我首先安排想一想,让学生思考确定一次函数需要几个条件,教师可组织学生讨论陈述理由,从函数表达式及图像等方面让学生深刻理解两个条件确定一个一次函数。教学中应尽可能多的选择各种类型的信息帮助学生探索确定一次函数表达式的具体方法。

教学重点:能根据一个、两个条件或者实际确定一个一次函数。

教学难点:从各种问题情境中寻找条件,确定一次函数的表达式。三、学情分析

确定一次函数的表达式是本章教材的一个重、难点,学生往往会按老师讲述的方法,单纯地进行模仿,求出表达式,但却对为什么要这样做缺乏思考,结果是条件一变,就无法动手。因此在教学中应注重对解题思路的分析,注意控制难度。

四、教学过程

一、创设情境

前面我们已经学习了一次函数,那么什么是一次函数,一次函数的图像是什么,一次函数又有什么性质呢?

1、表达式形如 y=kx+b(k≠0)的函数称为一次函数;

表达式形如 y=kx(k≠0)的函数称为正比例函数

2、一次函数 y=kx+b的图像是一条直线;

3、一次函数y= kx+b,当k>0时y随x的增大而增大

当k<0时y随x的增大而减小。

二、自主探究

确定一次函数的表达式需要几个条件?确定正比例函数的表达式呢?

学生讨论:确定一次函数的表达式需要两个条件,确定正比例函数的表达式只需要一个条件。

引导学生从表达式和函数图像两方面思考。

1、觉得一次函数的表达式 y=kx+b有两个常数 k, b,要求出 k和b的值,因此需要两个条件。而正比例函数中b=0,只需求k,所以只需一个条

件。

2、因为一次函数的图像是一条直线,两点确定一条直线,所以需要两个条件,而正比例函数的图像是经过原点的一条直线,所以只需一点就可以确定这条直线。

三、讨论引导

下面我们结合具体问题来探索如何确定一次函数的表达式。

例1、某物体沿着一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒)的关系如图所示.

(1)写出v与t之间的关系;

(2)下滑3秒时物体的速度是多少?

分析:题目所给信息是函数的图象,首先从图象是一条经过原点的射线判断出该函数应是正比例了函数;其次在函数图象上任取一点(原点除外),如(2,5)点,代入表达式,就可计算出k值。

解:(1)设v = kt(k≠0),由图象可得,点(2,5)满足函数关系式,将其代入可得:

5 = 2k ,解得k = 2.5

∴v = 2.5t

(2)当t = 3时,v = 2.5×3 = 7.5(米/秒)

在这个例子中,我们先将表达式中的未知系数用字母表示出来,再根据条件求出这个未知系数,这种方法称为待定系数法。

确定正比例函数的表达式需要哪几个条件?确定一次函数的表达式呢?

学生思考,并总结出答案。

例2、写出满足下表的一个一次函数的解析式

x-?1-0-2

y-7.5-7-6

解析:设y = kx+b;注意到(0,7)这个特殊点,因此可选取(0,7),(2,6)代入进行计算,解得:y = ? x+7

求函数表达式的步骤。

(1)设函数表达式;(2)根据已知条件列出方程;(3)解方程;(4)把求出的R、b值代回到表达式中即可。

实践验证

1、若一次函数y = x+n的图象经过点A(?3,2),则n = __________;

2、一条直线与x轴的交点为(?3,0),与y轴的交点为(0,?7),那么这条直线对应的函数表达式是__________,这条直线与两坐标轴围成的三角形的面积S = ________

3、已知三点(3,5),(t,9),(?4,?9)在同一直线上,则t = ________

例3、已知y?2与x成正比例,当x = 3时,y = 1,求y与x之间的函数关系式

解:设y?2 = kx,(k≠0),将(3,1)点代入,得

1?2 = 3k,k = ?

∴y?2 = ? x,即y = ? x+2

用换元的思想,将y? 2看成一个整体。

练一练:已知y是x2的一次函数,当x = ?1时,y = 6;当x = 2时,y = 9,试求x,y的函数表达式。

答案:y = x2+5

五、创新发展

(09济南)如图所示,已知直线y=x+3的图象与x轴、y轴交于A,B两点,直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分,求直线l的表达式.

课堂小结

本节课我们学习了怎样确定一次函数的解析式,在确定一次函数的解析式时可使用待定系数法,即先设出解析式y=kx+b,再根据题目条件找到满足条件的两对(x,y)的值,(可根据图像、表格或具体问题得出)代人解析式,从而求出k,b的值。

教学反思

本节课是在学生掌握了一次函数的一般形式以及图像的特点的基础上展开教学的。本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求一些简单的一次函数表达式,并能解决有关现实问题。

本节课让学生感受确定一次函数表达式的必要性。通过一系列问题的设计,让学生运用不同的探索方式解决问题,从而各方面的能力得以全面提高,兼顾了不同层面学生的学习。鼓励学生从函数图象中获取条件,注重发展了学生的数形结合的思想方法,以及综合分析解决问题的能力,为后继学习打下基础。

唯一感觉不足之处就是对学生估计太高,板书了一个确定函数表达式的过程,以为学生能够准确写出过程,但检测时还有一部分学生过程写的不是很规范,下节课需要再次强调。总之,对学生要耐心细致,更要严格要求。

相关文档
最新文档