汽车机械基础_第二章
机械设计基础第二章 摩擦、磨损及润滑
化学吸附膜 中等载荷、速度和温度
化学反应膜 重载、高速和高温 三、混合摩擦(润滑) 膜厚比
(a)
hlim /( Ra1 Ra 2 )
(b)
λ越大,油膜承载比例大,,f越小
四、流体摩擦(润滑) 膜厚比λ >5 全液体摩擦
§2—2 磨损
一、典型的磨损过程 1、跑合磨损过程 在一定载荷作用下形成 一个稳定的表面粗糙度, 且在以后过程中,此粗糙 度不会继续改变,所占时 间比率较小
2、磨粒磨损
由于摩擦表面上的硬质突出物或从外部进入摩擦表面 的硬质颗粒,对摩擦表面起到切削或刮擦作用,从而引起 表层材料脱落的现象,称为磨粒磨损。这种磨损是最常见 的一种磨损形式,应设法减轻这种磨损。 为减轻磨粒磨损,除注意满足润滑条件外,还应合理 地选择摩擦副的材料、降低表面粗糙度值以及加装防护密 封装置等。
1、润滑油 有机油、矿物油、合成油 性能指标: 1)粘度 2)油性 4)闪点和燃点 5)极压性能
3)凝点
6)氧化稳定性
2、润滑脂 钙基润滑脂、钠基润滑脂、锂基润滑脂 性能指标: 1)针入度 3、固体润滑剂 2)滴点 3)安定性
石墨、二硫化钼、氮化硼 、蜡、 聚氟乙烯、 酚醛树脂
4、润滑剂的添加 二、粘性定律与润滑油的粘度
合理地选择材料及材料的硬度(硬度高则抗疲劳磨 损能力强),选择粘度高的润滑油,加入极压添加剂或 MoS2及减小摩擦面的粗糙度值等,可以提高抗疲劳磨 损的能力。
8
2018/11/12 机械设计基础
4、腐蚀磨损
在摩擦过程中,摩擦面与周围介质发生化学或电化学反应而 产生物质损失的现象,称为腐蚀磨损。腐蚀磨损可分为氧化 磨损、特殊介质腐蚀磨损、气蚀磨损等。腐蚀也可以在没有 摩擦的条件下形成,这种情况常发生于钢铁类零件,如化工 管道、泵类零件、柴油机缸套等。
汽车机械基础课件2.材料力学
塑性材料的许用应力 脆性材料的许用应力
s
n
b
n
式中,σs —塑性材料的屈服点应力; σb —脆性材料的强度极限应力; n —安全系数,它反映了构件必要的强度储备。
2.2 轴向拉伸与压缩
六、拉伸、压缩时的强度条件
为保证构件安全可靠的正常工作,必须使构件最大工作应力不超过材料的许 用应力[ ],即
2.3 剪切与挤压
一、剪切 2.剪切变形的内力与应力
单剪切
双剪切
2.3 剪切与挤压
一、剪切
2.剪切变形的内力与应力 剪切时单位面积上的内力,称为剪应力,或称切应力。
= FQ /A —切应力,Pa或MPa; FQ —剪切时的内力,N; A —剪切面积,m2或mm2。
2.3 剪切与挤压
一、剪切 3.剪切时的强度条件 = FQ /A≤[]
一、构件的承载能力 承载能力: 为了保证机器安全可靠地工作,要求每个构件在外力作用下均具有足够的 承受载荷的能力 。
承载能力的大小主要由三方面来衡量:即强度、刚度和稳定性。
2.1 材料力学基础
一、构件的承载能力 1、强度 构件在外力作用下抵抗破坏的能力称为强度。
AB和BC两杆在起吊重物的过程中 不允许折断
2.2 轴向拉伸与压缩
一、拉伸与压缩的概念 作用于杆件上的外力的合力作用线与杆件的轴线重合,杆件的变形是沿轴线 方向的伸长和缩短。这类变形称为轴向拉伸或轴向压缩,这类杆件称为拉压 杆。
轴向拉伸或压缩的杆件的受力特点是:作用在直杆两端的合外力,大小相 等,方向相反,力的作用线与杆件的轴线重合。 其变形特点是:杆件沿轴线方向伸长(或缩短)。
二、杆件变形的四种基本形式
3、扭转
当作用面互相平行的两个力偶作用在杆件的两个横截面内时,杆件的横截面 将产生绕杆件轴线的相互转动,这种变形称为扭转变形。
《汽车机械基础》课程标准
《机械基础》课程教学大纲课程代码:课程名称:机械基础课程类型:理论总学时:48理论与实践课时比例:0学分:3适用对象:汽车运用与维修高职专业学生先修课程:一、课程性质、目的和任务课程性质:专业基础课、必修课本课程是高职学院机械类专业的一门技术基础课程。
其任务是培养学生具有一定的读图能力、图示能力和空间想象能力以及绘图技能,为提高学生全面素质,形成综合职业能力和继续学习打下基础。
二、教学基本要求(一)知识教学目标1.培养学生具有一定的读图能力、图示能力和空间想象能力以及绘图技能。
2.掌握机械高级技师所需要的技术测量、光滑圆柱形结合的公差配合与检测、形位公差与检测、表面粗糙度、尺寸链和常用结合件的公差与检测基本知识和基本技能。
3.具备从简单的工程实际问题中抽象、简化力学模型的能力,能够对简单工程结构和构件进行受力分析和平衡计算。
4.掌握工程中常见杆件的强度、刚度、稳定性设计的基本方法。
5.掌握测量材料的力学性质、构件的应力及变形的基本方法。
6.掌握液压与气动技术的基本理论和知识。
7.掌握一般机器中常用机构及传动装置的工作原理、运动特性、结构特点。
8.掌握通用零部件的一般使用和维护知识;掌握有关金属材料及热处理的基础知识,机械制造中毛坯成型方法和工艺过程的基本知识。
(二)能力培养目标1.具有识读零件图和装配图、初步的力学分析、液压传动相关知识基本分析、及机械传动相关知识能力。
2.具有创新精神和实践能力,认真负责的工作态度和一丝不苟的工作作风。
(三)思想教育目标通过本课程的学习培养学生实事求是的精神和理论联系实际的工作方法。
三、教学内容及要求第一章识图基础知识1.教学内容第一节机械制图的基本规定第二节机械制图的基本原理第三节零件表达方法第四节零件图的画法第五节常用零件的画法第六节装配图2.教学要求(1)掌握机械制图国家标准及其有关规定。
(2)掌握正投影基础概念。
(3)掌握正投影法的基本理论和作图方法。
(4)掌握组合体视图的画法和尺寸标注。
汽车机械基础
绪论一、填空1.机器是各种实体的组合,它的各部分之间具有确定的相对运动,并能来代替人们的劳动,完成有用的机械功或转换机械能。
2.机构的主要功能是传递或转变运动的形式而机器的主要功能是利用机械能做功或进行能量转换,这是两者的本质区别。
3.两个构件之间直接接触又能产生一定相对运动的连接称为运动副4.运动副分为低副,和高副5.零件是机器中最小的制造单元。
二、判断(正确的打√,错误的打×)1.机构就是具有相对运动构件的组合。
( ×)2.轴和滑动轴承组成高副。
(√)3.齿轮机构组成低副。
(√)4.内燃机的活塞与气缸体组成移动副。
( √)5.构件就是零件。
( ×)6.组成机构的所有构件都应具有确定的相对运动。
(√)7.运动副是连接,连接也是运动副。
(×)8.机构都是可动的。
(√)9.机器是由机构组合而成的,机构的组合一定就是机器。
(×)10.内燃机连杆构件上的螺栓和螺母组成螺旋副。
(√)三、选择(将正确答案的代号填入括号内)I.各部分之间具有确定的相对运动的构件组合称为( C)。
A.机器B.机械C.机构D.机床2.下列运动副属于低副的有( C)。
A.齿轮接触B.凸轮接触C.螺旋面接触D.火车车轮与轨道的接触3.机器中的运动单元是( C)。
A.机构B.构件C.零件4.下列零件属于通用零件的有( A、C )。
A.螺栓B.曲轴C.轴承D.连杆四、名词解释1.零件2.构件3.机械4.运动副5.移动副五、简答1.举例说明机器和机构的本质区别。
2.运动副中的高副和低副是如何区别分开的?他们在使用中有何特点?六.分析1.参观汽车发动机并根据图0—2所示,分析汽车发动机由那些机构组成?并回答这些机构的作用是什么?第一章轴系一.填空1.轴的用途是和它是机器的重要零件。
2.根据轴所起的作用和承受载荷性质的不同,轴可分为、、和。
3.轴上零件轴向固定的目的和作用是为了保证零件防止零件并能一般采用的方式是利用、、、和等零件,作为轴上零件的轴向固定用。
机械设计基础第二章答案
二、平面连杆机构2-1 判断题(1)×(2)×(3)√(4)×(5)√(6)×(7)√(8)√(9)√(10)×(11)×(12)√(13)×(14)×(15)√(16)×(17)×(18)√(19)×(20)√(21)×(22)×(23)×(24)×(25)√2-2 填空题(1)低(2)转动(3)3 (4)连杆,连架杆(5)曲柄,摇杆(6)最短(7)曲柄摇杆(8)摇杆,连杆(9)2 (10)>(11)运动不确定(12)非工作时间(13)惯性(14)大(15)中的摆动导杆机构有,中的转动导杆机构无(16)机架(17)曲柄(18)曲柄滑块(19)双摇杆(20)双曲柄机构(21)无,有2-3 选择题(1)A (2)C (3)B (4)A (5)B (6)B (7)A(8)C (9)A (10)A (11)A (12)C (13)C (14)A(15)A (16)A (17)A (18)A (19)A (20)A (21)A2-4 解:a)双曲柄机构,因为40+110<70+90,满足杆长条件,并以最短杆为机架b)曲柄摇杆机构,因为30+130<110+120,满足杆长条件,并以最短杆的邻边为机架c)双摇杆机构,因为50+100>60+70,不满足杆长条件,无论以哪杆为机架都是双摇杆机构d)双摇杆机构,因为50+120=80+90,满足杆长条件,并以最短杆的对边为机架2-5 解:(1)由该机构各杆长度可得l AB+ l BC<l CD+ l AD,由此可知满足杆长条件,当以AB杆或AB杆的邻边为机架时该机构有曲柄存在(2)以l BC或l AD杆成为机架即为曲柄摇杆机构,以l AB杆成为机架即为双曲柄机构,以l CD杆成为机架即为双摇杆机构2-6 解:(1)曲柄摇杆机构由题意知连架杆CD杆不是最短杆,要为曲柄摇杆机构,连架杆AB杆应为最短杆(0<l AB ≤300 mm)且应满足杆长条件l AB+l BC≤l CD+l AD,由此可得0<l AB≤150mm (2)双摇杆机构由题意知机架AD杆不是最短杆的对边,要为双摇杆机构应不满足杆长条件①AB杆为最短杆(0<l AB≤300mm)时,l AB+l BC>l CD+l AD,由此可得150mm<l AB≤300mm②AB杆为中间杆(300mm≤l AB≤500mm)时,l AD+l BC>l CD+l AB,由此可得300mm≤l AB<450mm③AB杆为最长杆(500mm≤l AB<1150mm)时,l AB+l AD>l CD+l BC,由此可得550mm<l AB<1150mm由此可知:150mm<l AB<450 mm,550mm<l AB<1150 mm(3)双曲柄机构要为双曲柄机构,AD 杆必须为最短杆且应满足杆长条件①AB 杆为中间杆(300mm ≤l AB ≤500mm )时,l AD +l BC ≤l CD + l AB ,由此可得450mm ≤l AB ≤500mm②AB 杆为最长杆(500mm ≤l AB <1150mm )时,l AB +l AD ≤l CD +l BC ,由此可得500mm ≤l AB ≤550mm由此可知:450mm ≤l AB ≤550mm2-7 解:a )b )c )d )e )各机构压力角和传动角如图所示,图a)、d )机构无死点位置,图b)、c )、e )机构有死点位置2-8 解:用作图法求解,主要步骤:(1)计算极位夹角:︒=+-⨯︒=+-⨯︒=3615.115.118011180K K θ (2)取比例尺μ=0.001m/mm(3)根据比例尺和已知条件定出A 、D 、C 三点,如图所示(4)连接AC ,以AC 为边作θ角的另一角边线,与以D 为圆心、摇杆DC 为半径的圆弧相交于C 1和C 2点,连接DC 1和DC 2得摇杆的另一极限位置(两个)(5)从图中量得AC =71mm ,AC 1=26mm ,AC 2=170mm(6)当摇杆的另一极限位置位于DC 1时:5mm .2221=⨯=AC AC l AB -μ,5mm .4821=+⨯=AC AC l BC μ (7)当摇杆的另一极限位置位于DC 1时: 5mm .4922=⨯=AC AC l AB -μ,5mm .12022=+⨯=AC AC l BC μ 答:曲柄和连杆的长度分别为22.5mm 、48.5mm 和49.5mm 、120.5mm 。
汽车机械基础(教案)
汽车机械基础(教案)第一章:汽车概述1.1 课程介绍本章主要介绍汽车的基本概念、分类、性能和参数。
通过学习,使学生了解汽车的基本情况,为后续课程打下基础。
1.2 教学目标1. 了解汽车的基本概念和分类。
2. 掌握汽车的主要性能和参数。
1.3 教学内容1. 汽车的概念与分类2. 汽车的主要性能指标3. 汽车的主要参数1.4 教学方法采用讲授法,结合实例进行分析。
1.5 教学重点与难点1. 汽车的分类2. 汽车的主要性能指标和参数第二章:发动机原理与结构2.1 课程介绍本章主要介绍发动机的基本原理、分类和结构。
通过学习,使学生了解发动机的工作原理,掌握发动机的分类和结构。
2.2 教学目标1. 了解发动机的基本原理。
2. 掌握发动机的分类和结构。
2.3 教学内容1. 发动机的基本原理2. 发动机的分类3. 发动机的结构组成2.4 教学方法采用讲授法,结合实例进行分析。
2.5 教学重点与难点1. 发动机的基本原理2. 发动机的分类和结构组成第三章:汽车传动系统3.1 课程介绍本章主要介绍汽车传动系统的基本原理和主要部件。
通过学习,使学生了解汽车传动系统的作用,掌握传动系统的组成和原理。
3.2 教学目标1. 了解汽车传动系统的基本原理。
2. 掌握汽车传动系统的主要部件。
3.3 教学内容1. 汽车传动系统的原理2. 汽车传动系统的主要部件3.4 教学方法采用讲授法,结合实例进行分析。
3.5 教学重点与难点1. 汽车传动系统的原理2. 汽车传动系统的主要部件第四章:汽车制动系统4.1 课程介绍本章主要介绍汽车制动系统的基本原理和主要部件。
通过学习,使学生了解汽车制动系统的作用,掌握制动系统的组成和原理。
4.2 教学目标1. 了解汽车制动系统的基本原理。
2. 掌握汽车制动系统的主要部件。
4.3 教学内容1. 汽车制动系统的原理2. 汽车制动系统的主要部件4.4 教学方法采用讲授法,结合实例进行分析。
4.5 教学重点与难点1. 汽车制动系统的原理2. 汽车制动系统的主要部件第五章:汽车电气系统5.1 课程介绍本章主要介绍汽车电气系统的基本原理和主要部件。
机械基础第二章力矩和力偶教案02
课堂教学实施方案点作逆时针方向转动. 应该注意,力臂是OD,注意:负号必须标注,正号可标也可不标。
一般不标注。
平面汇交力系的合力对其平面内任一点的矩等于所有各分力对本题有两种解法。
按力矩的定义计算由图中几何关系有:=(AB-DB)sinα=(AB- BCctgα)sinαα)sinα-bcosα在日常生活和工程实际中经常见到物体受动两个大小相等、方向相反,但不在同一直线上的两个平行力作用的情况。
(图a)司机转动驾驶汽车时两手作用在方向盘上的力;(图b)工人用丝锥攻螺纹时两手加在扳手上的力;(图c)以及用两个手指拧动水龙头所加的力等等。
▪力偶:在力学中把这样一对等值、反向而不共线的平行力称为力偶。
▪用符号( F ,F′) 表示。
▪两个力作用线之间的垂直距离称为力偶臂。
▪两个力作用线所决定的平面称为力偶的作用面。
偶使物体逆时针方向转动时,力偶矩为正,反之为负。
在国际单位制中,力矩的单位是牛顿•米(N•m)或千牛顿•米力和力偶是静力学中两个基本要素。
力偶与力具有不同的性质:)力偶不能简化为一个力,即力偶不能用一个力等效替代。
因此力偶不能与一个力平衡,力偶只能与力偶平衡。
)无合力,故不能与一个力等效;结论:只要保持力偶矩不变,力偶可在作用面内任意移动或转动,其对刚体的作用效果四力的平移定理力的平移定理:作用于刚体上的力可以平行移动到刚体上的任意一指定点,但必须同时在该力与指定点所决定的平面内附加一力偶,其力偶矩等于原力对指定点之矩。
力的平移定理只适用于刚体力的平移定理表明,可以将一个力分解为一个力和一个力偶;反过来,也可以将同一平面内的一个力和一个力偶合成为一个力。
《汽车机械基础》第二章 常用机构
(1)等速运动规律
(2)等加速等减速运动规律
(3)简谐运动规律
四、凸轮轮廓设计
1.反转法原理
凸轮机构工作时,通常凸轮是运动的。用图解法绘制凸轮 轮廓曲线时,却需要凸轮与图面相对静止。
一、 概述
凸轮机构主要由凸轮、从动件和机架三个基本构件组成。从动 件与凸轮轮廓为高副接触。
凸轮机构的优点为:只需设计适当的凸轮轮廓,便可使从动件 得到所需的运动规律,并且结构简单、紧凑、设计方便。
它的缺点是:凸轮轮廓与从动件之间为点接触或线接触,易于 磨损,高精度凸轮机构制造也比较困难。
二、 凸轮机构的分类
(1)按其用途可分为:
①传力螺旋 ②传动螺旋 ③调整螺旋
(2)按摩擦性质可分为
①滑动螺旋:螺旋副作相对运动时产生滑动摩擦的螺旋。 ②滚动螺旋:螺旋副作相对运动时产生滚动摩擦的螺旋。 ③静压螺旋:将静压原理应用于螺旋传动中。
二、滑动螺旋机构
滑动螺旋结构比较简单,螺母和螺杆的啮合是连续的,工 作平稳,易于自锁,这对起重设备,调节装置等很有意义。 但螺纹之间摩擦大、磨损大、效率低(一般在0.25~0.70之 间,自锁时效率小于50%);
一、 棘轮机构
1.工作原理:
2.棘轮机构的分类:
3.棘轮机构的特点与应用
棘轮机构结构简单、易于制造、运动可靠,改变棘轮转 角方便(如改变摇杆的摆角),可实现“超越运动’’(原动件 不动而从动件继续运动的现象叫超越运动)。但棘轮机构工作 时存在较大的冲击与噪声,运动精度不高,所以常用在传力 不大、转速不高的场合下以实现步进运动、分度、超越运动 和制动等要求。
汽车机械基础
定义:是用来传递运动和力的构件系统 特征:传递或转变运动的形式
3、区别
机器的功用:利用机械能做功或实现能量的转换; 机构的功用:在于传递或转变运动的形式
4、机器的组成
图0-1单缸内燃机
组成:汽缸、活塞、连杆、 曲轴、轴承。
机器的组成
动力部分:动力的来源
如:电动机、内燃机、空气压缩机
工作部分:完成工作,处于传动装置的终端
图1-3
工作原理和传动比
定义:带传动是由带和带轮组成,传递运动和动力
的传动。
分类(图1-4):摩擦传动(平带、V带、圆带) 和啮合传动(同步带) 工作原理:利用带(扰性件)与带轮之间的摩擦力
或啮合来传递运动和动力
传动比 :i=n1成:平带、带轮 工作面:平带内侧面 1、平带传动形式 2、平带传动的主要参数 3、平带的类型:皮革平带、帆布芯 平带、编织平带、复合平带。 4、平带的接头方式(图1-9):胶合、 缝合、铰链带扣。
§0-1引言
机械是人类劳动的主要工具,也是生产 力发展水平的重要标志。
§0-2性质、任务、内容
性质:专业基础课
任务:
1、熟悉和掌握基本知识、工作原理、应用特点 2、掌握分析机械工作原理的基本方法 3、能做简单的计算 4、会查资料、会选 标准件
• 内容:
• 1、常用机械传动:带、螺旋、链、齿轮、蜗杆、轮系 2、常用机构:平面连杆机构、凸轮机构、其他常用机构 3、轴系零件:常用连接、轴、轴承、联轴器、离合器、 制动器 4、液压传动:基本概念、液压元件、液压回路、液压系 统
2、带长L:带的内周长 3、传动比i:i=n1/n2=D2/D1
三、V带传动
工作面 : V带的两侧面 1、V带的结构和类型 2、普通V带传动的主要参数 3、普通V带传动的选用要点 4、普通V带传动的正确使用
汽车机械基础试题及参考答案
汽车机械基础试题库及参考答案第一章机件的表达方法一、名词解释1.正垂面:垂直于正投影面V面而与水平投影面H、侧投影面W倾斜的平面。
2.剖视图:假设用剖切平面剖开机件,将处在观察者和剖切面之间的部分移去,将其余部分向基本投影面投影,所得到的图形。
3.断面图:假想用剖切平面将物体从某处断开,仅画出该剖切平面与物体接触部分的图形。
二、填空题1.根据直线段和投影面的位置不同可以将直线段分为:投影面的垂直线、投影面的平行线和一般位置直线。
2.按照机件被剖开的范围划分,剖视图可以分为:全剖视图、半剖视图和局部剖视图。
3.在断面图中,移出断面的轮廓线用粗实线绘制,重合断面的轮廓线用细实线绘制。
4.断面分为移出断面和重合断面。
三、选择题1.局部视图的范围(断裂)边界用(A)。
A、波浪线表示B、细实线C、粗点画线D、双点画线2.在下列的五组视图中,其正确的两组视图是( AE )四、判断题1.全剖视图一般用于内外形都比较复杂的零件的表达。
(×)2.当机件的主要形状已经表达清楚,只有局部结构未表达清楚,为了简便,不必再画一个完整的视图,而只画出未表达清楚的局部结构叫局部视图。
(√)六、做图题1.补全水平投影,并作出侧面投影。
2. 补画第三面投影,并求出立体表面上点、线的另外两面投影。
3.补画第三面投影,并求出立体表面上点、线的另外两面投影。
4.补画第三面投影,并求出立体表面上点、线的另外两面投影。
第二章常用件的画法一、名词解释1.线数:形成的螺纹的螺旋线的数量。
2.导程:同一条螺旋线上相邻两牙在中径线上对应两点之间的距离。
二、填空题1.螺纹的五大要素为:牙形、公称直径、螺距、线数和旋向。
2.普通螺纹的完整标记由:螺纹代号、螺纹公差代号和螺纹旋合长度三部分组成。
3.平键按照轴槽结构可以分为:圆头普通平键、方头普通平键和单圆头普通平键。
4.滚动轴承一般由:内圈、外圈、滚动体和保持架等零件组成。
5.对于三线螺纹,其导程为螺距的3倍。
汽车机械基础第2章 极限与配合练习题答案
第二章 极限与配合答案一、名词解释1.互换性:机械装配时,若同一规格的零部件,不需经过任何挑选或修配,便能安装在机械上,并且能够达到规定的功能要求,则称这样的零部件具有互换性。
2.不完全互换:仅组内零件进行互换,组与组间不可互换,故称为不完全互换。
3.实际尺寸:实际尺寸是指通过测量得到的尺寸。
4.极限尺寸:极限尺寸是指允许尺寸变化的两个界限值。
5.偏差:尺寸偏差简称偏差,是指某一尺寸减去公称尺寸所得的代数差。
6.尺寸公差:尺寸公差是指允许尺寸的变动量。
7.基本偏差:基本偏差是国家标准规定的,用来确定公差带相对于零线位置的上极限偏差或下极限偏差,一般为靠近零线的那个偏差。
8.配合:配合是指公称尺寸相同的,相互结合的孔与轴公差带之间的关系。
9.配合公差:配合公差是指间隙或过盈的允许变动量,用f T 表示。
10.标准公差:标准公差为国家标准所规定的公差值。
它是根据公差等级、公称尺寸分段等计算,再经圆整后确定的(相关知识可参阅有关资料)。
11.被测要素:在图样上给出了形状或(和)位置公差要求的要素,是检测的对象。
12.基准要素:用来确定理想被测要素的方向或(和)位置的要素。
13.表面粗糙度:是指加工表面具有的较小间距的微小峰和谷组成的微观高低不平的痕迹。
其两波峰或两波谷之间的距离(波距)很小(在1mm 以下),因此它属于微观几何形状误差,也称微观不平度。
二、填空题1. 完全互换、 不完全互换。
2.实际尺寸、公称尺寸3. mm 25φ,mm 010.25φ,mm 977.24φ,+0.010mm ,-0.023mm ,0.033mm4.上极限尺寸、下极限尺寸5.ES ,ei6. mm 993.29φ,mm 99.29φ,0.003mm ,mm 99.29φ<合格尺寸<mm 993.29φ7.小于、大于8.基本偏差、零线9.+0.991mm,0.98mm10.上,实际11.+0.021mm ,0,0,-0.01312.28,基轴制、基孔制13. mm 50φ,标准公差等级,基本偏差代号14. ¢30,6,基本偏差代号15.大,低16.公称尺寸,公差带17.孔的公差,轴的公差18.间隙配合,过渡配合,过盈配合19.20,IT01,IT1820.极限,间隙,过渡,最紧21.极限,过盈,过渡,最松22.基准孔,下,H ,0,上23.基准轴,上,h ,0,下24.越小25.过盈,过渡,间隙,过渡26.孔,轴27. 几何参数,尺寸, 形状,位置28.同轴度(同心度),对称度,位置度,线轮廓度,面轮廓度29.理想要素30.圆跳动,全跳动31. 由一个基准方格,表示基准的英文大写字母,涂黑,空白32.峰和谷组成的微观高低不平的痕迹,光洁33.轮廓算术平均偏差Ra ,轮廓的最大高度Rz 、轮廓单元的平均宽度RSm 、轮廓单元平均线高度R C 、轮廓的支承长度率Rmr(C))。
汽车机械基础(教案)
汽车机械基础(教案)第一章:汽车概述1.1 课程目标:了解汽车的定义和发展历程。
掌握汽车的基本组成和分类。
理解汽车行业的现状和未来发展趋势。
1.2 教学内容:汽车的定义和发展历程。
汽车的基本组成:发动机、底盘、车身、电气系统。
汽车的分类:乘用车、商用车、特种车辆。
汽车行业的现状和未来发展趋势。
1.3 教学活动:教师讲解汽车的定义和发展历程。
学生观看汽车的组成和分类的图片。
小组讨论汽车行业的现状和未来发展趋势。
1.4 作业:学生完成汽车的基本组成和分类的练习题。
第二章:发动机原理与结构2.1 课程目标:了解发动机的定义和作用。
掌握发动机的基本原理和结构。
理解发动机的分类和工作原理。
2.2 教学内容:发动机的定义和作用。
发动机的基本原理:内燃机和外燃机。
发动机的结构:气缸、活塞、曲轴、凸轮轴、气门、燃油系统等。
发动机的分类:汽油发动机、柴油发动机、混合动力发动机等。
2.3 教学活动:教师讲解发动机的定义和作用。
学生观看发动机的基本原理和结构的图片。
小组讨论发动机的分类和工作原理。
2.4 作业:学生完成发动机的基本原理和结构的练习题。
第三章:汽车传动系统3.1 课程目标:了解汽车传动系统的定义和作用。
掌握汽车传动系统的基本原理和结构。
理解汽车传动系统的分类和工作原理。
3.2 教学内容:汽车传动系统的定义和作用。
汽车传动系统的基本原理:摩擦传动、链传动、齿轮传动等。
汽车传动系统的结构:离合器、变速器、传动轴、差速器等。
汽车传动系统的分类:手动传动系统、自动传动系统、CVT传动系统等。
3.3 教学活动:教师讲解汽车传动系统的定义和作用。
学生观看汽车传动系统的基本原理和结构的图片。
小组讨论汽车传动系统的分类和工作原理。
3.4 作业:学生完成汽车传动系统的基本原理和结构的练习题。
第四章:汽车制动系统4.1 课程目标:了解汽车制动系统的定义和作用。
掌握汽车制动系统的基本原理和结构。
理解汽车制动系统的分类和工作原理。
机械基础 第2章
8
应力:构件在外力作用下,单位面积上的内力。拉伸与压缩 时应力垂直于截面,称为正应力,记作σ。单位为帕,Pa。
式中
正应力的正负号规定为:拉伸时为正,压缩时为负。
伸(压缩)时金属材料的力学性能
金属材料的力学性能是指金属材料在外力作用下,其强度和变 形方面所表现出来的性能。它是强度计算和选用材料的重要依据。 通常按照标准把拉伸试样装夹在试验机上由实验来测定 ,如图2-8 所示。
26
二、圆轴扭转外力偶矩
为了利用截面法求出圆轴扭转时截面上的内力,要先计算出 轴上的外力偶矩。作用在轴上的外力偶矩一般不是直接给出,而 是根据所给定轴的传动功率和转速求出来的。
圆轴扭转外力偶矩的计算公式为:
27
三、圆轴扭转的变形
28
29
四、圆轴扭转的应力
圆轴扭转时横截面m-n上产生一个内力,该内力为一个力偶矩, 称为扭矩,用MT表示,如图2-30所示。
如图2-38所示。
40
梁在纯弯曲时,上下边缘处(到中性轴距离最大)正应力最大, 表达式如下:
(1)对于矩形截面
(2)对于圆形截面
(3)对于空心圆形截面
41
4.梁的强度 对于一般梁,影响强度的主要因素是弯曲正应力。因此,要
使梁有足够的强度,就应使梁内最大工作正应力不超过材料的许 用应力。
梁的弯曲强度条件:
⑶强化阶段: σb为抗拉强度; 工程中常用屈服点和抗拉强度作为材料的强度指标。 ⑷缩颈阶段:缩颈现象如图2-11所示。
13
2.低碳钢压缩时的力学性能 低碳钢压缩时的应力--应变曲线如图2-11所示。
14
3.铸铁拉伸(压缩)时的力学性能 如图2-12所示为灰口铸铁的拉伸、压缩应力—应变曲线,图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一页 下一页 返回
第二节
点、直线和平面的投影
2.平面内的直线和点 1)平面内的直线 直线属于平面的几何条件是: 过该平面内的两点, 或过该 平面内一点且平行于该面的一条直线。 如图2-12(a)所示, 相交直线 AB与 BC构成一平面, 在 AB、BC上各取一点 M和 N , 则过M、N两点的直线一定 在该平面内。其投影图作法如图2-12(b)所示。 如图2-13(a)所示, 相交直线 AB和 BC构成一平面, 过点 L∈AB作直线 LK∥BC , 则直线LK一定在该平面内。其 投影图作法如图2-13(b)所示。
上一页 下一页 返回
第一节 投影法与三视图
1.位置规律 以主视图为基准,俯视图在它的正下方,左视图在它的正右 方。三视图间的这种位置关系,称为按投影关系配置,一般 不能更动,当三视图按投影关系配置时,不必标注任一视图 的名称。
上一页 下一页 返回
第一节 投影法与三视图
2.尺寸规律 形体的一个视图反映两个方向的尺寸:主视图反映长和高, 俯视图反映长和宽,左视图反映宽和高。显然,每两个视图 中包含一个相同的尺寸:主视图与俯视图的长度相等且左右 对正;主视图与左视图的高度相等且上下对齐;俯视图与左 视图的宽度相等。上述“三等”规律可概括为:主、俯视图 长对正,主、左视图高平齐,俯、左视图宽相等。 “三等”规律不仅针对形体的总体尺寸,形体上的每一几何 元素也符合此规律,它实际上是对几何元素投影规律的进一 步概括。绘制三视图时,应从遵循形体上点、线、面的投影 规律出发,来保证此“三等”规律。
上一页 下一页 返回
第一节 投影法与三视图
三、三视图
为了表达物体的形状,通常采用互相垂直的三个投影面,建 立一个三投影面体系,如图2-3所示。正立位置的投影面称 为正投影面,用V表示;水平位置的投影面称为水平投影面, 用H表示;侧立位置的投影面称为侧投影面,用W表示。两 投影面的交线称为投影轴。正投影面(V)与水平投影面 (H)的交线称为X轴;水平投影面(H)与侧投影面(W) 的交线称为Y轴;正投影面(V)与侧投影面(W)的交线 称为Z轴。X、Y、Z三轴的交点称为原点,用O表示。
下一页 返回
第一节 投影法与三视图
一、投影法的分类
投影法分为两类:中心投影法和平行投影法。 1.中心投影法 投影线从一点发出的投影法是中心投影法。 2.平行投影法 投影线相互平行,在投影面上作出物体投影的方法,就称为 平行投影法。 平行投影法中又可分为以下两种。 ①正投影:投影线方向垂直于投影面。 ②斜投影:投影线方向倾斜于投影面。 在机械制图中应用的是正投影法,平时所说投影即正投影。
上一页 下一页 返回
第二节
点、直线和平面的投影
(3)作C点的投影: 在OX轴上量取 OC = X 15; 由于 Y = 0, Zc=0,c、c’都在OX轴上,与c重合,c’’与原 c 点O重合。 [例2-4] 如图2-11所示,已知点C及直线AB的两面投影, 试过C点作直线AB的垂线CD,D为垂足,并求CD的实长。
点、直线和平面的投影
五、平面的投影
1.平面的表示法 1)投影面垂直面 与一个投影面垂直,而与另外两个投影面倾斜的平面称为投 影面垂直面,包括铅垂面、正垂面和侧垂面(见表2-3)。 2)投影面平行面 平行于一个投影面的平面称为投影面平行面。由于三个投影 面相互垂直,故平行于一个投影面的平面,必同时垂直于另 外两个投影面。投影面平行面又分为水平面、正平面和侧平 面。投影面平行面特性:平面在所平行的投影面上的投影反 映实形,其余的投影都是平行于投影轴的直线(见表2-4)。
上一页 下一页 返回
第二节
点、直线和平面的投影
分析:因为ab∥OX,所以AB是正平线,又因CD与AB垂 直相交,D为交点,则a’b’⊥c’d’,由 d’可在 ab上求得 d 。 利用直角三角形法可求得 CD的实长。 作法: (1)c’作 c’d’⊥a’b’得交点 d’。 (2)由 d’引垂直投影连线与 ab交得 d。 (3)连接 d和 c , 则 c’d’、 cd即为垂线 CD的两面投影。 (4)用直角三角形法求得 C与直线 AB之间的真实距离 CD。
上一页 下一页 返回
第二节
点、直线和平面的投影
2)平面内的点 点属于平面的几何条件是: 点属于该平面内的一条直线。 [ 例2-5] 已知点 K ∈△ABC, 且知其正面投影 k’ , 求它的水平投影 k( 如图2-14(a)所示)。 分析: 因为 K∈△AABC, 所以 K ∈△ABC内过 K点的 任一直线。作图( 如图2-14(b)所示) : (1)连 a’k’,与 b’c’相交得 m’。 (2)求 m。 (3)连接 am并延长, 依投影关系求出 k。
上一页 下一页 返回
第二节
点、直线和平面的投影
3)一般位置平面 三个投影面都倾斜的平面称为一般位置平面。 综合所得平面的投影特性:平面垂直于投影面时,它在该投 影面上的投影积聚成一条直线—积聚性;平面平行于投影面 时,它在该投影面上的投影反映实形—实形性;平面倾斜于 投影面时,它在该投影面上的投影为类似图形—类似性。 [例2-3] 已知点A(20,15,10)、B(30,10,0)、C (15,0,0),求作各点的三面投影。 分析:由于ZB=0,所以B点在H面上,YC=0, ZC=0,则点C在X轴上(如图2-10所示)。
上一页 下一页 返回
第二节
点、直线和平面的投影
三、直线的投影
1.直线的投影 直线可以由线上的两点确定,所以直线的投影就是点的投影, 然后将点的同面投影连接,即为直线的投影。 2.各种位置直线的投影 1)投影面平行线 投影面平行线特性:平行于某个投影面,在此投影面上的投 影即反映该直线的实长,而且投影与投影轴的夹角,也反映 了该直线对另两个投影面的夹角,而另外两个投影都是类似 形,比实长要短(见表2-1)。
二、点的三面投影的形成
空间点用大写字母表示,水平投影用小写字母(正面小写加 一撇,侧面小写加两撇)表示(如图2-4所示)。
下一页 返回
第二节
点、直线和平面的投影
1.点在三投影面体系中的投影规律 点的水平投影和正面投影的连线垂直于OX轴。 点的侧面投影和正面投影的连线垂直于OZ轴。点的水平投 影到OX轴的距离等于点的侧面投影到OZ轴的距离,反映 空间点到正面的距离。 2.两点的相对位置 在投影图上判断空间两个点的相对位置,就是分析两点之间 上下、左右和前后的关系,如图2-5所示。 空间两点的左右、前后和上下位置关系可以用它们的坐标大 小来判断。 规定:X坐标大者为左,反之为右;Y坐标大者为前,反之 为后;Z坐标大者为上,反之为下。
上一页 下一页 返回
第二节
点、直线和平面的投影
作图: (1)自a引辅助线 aB1 。 (2)在 aB1上截取三等分,得1、2两点。 (3)连 B1b ,过1作 B1b 的平行线交ab于c点。 (4)过c点做aa′的平行线交a′b′线于c′点,求出c′。
上一页 下一页 返回
第二节
上一页 下一页 返回
第一节 投影法与三视图
二、正投影的基本特性
1.真实性 当直线或平面与投影面平行时,则直线的投影反映实长,平 面的投影反映实形,如图2-2(a)所示。 2.类似性 当直线或平面倾斜于投影面时,直线的投影仍为直线,但小 于实长;平面的投影面积变小,形状与原来形状相似,如图 2-2(b) 所示。 3.积聚性 当直线或平面垂直于投影面时,则直线的投影积聚成一点, 平面的投影积聚成一直线,如图2-2(c)所示。
第二章
正投影与三视图基础
学习目标 第一节 投影法与三视图 第二节 点、 直线和平面的投影 第三节 轴测投影
学习目标
学习目标:
①了解投影法的基本知识,理解和掌握正投影法的投影原理; ②掌握各种基本体的形成、投影及其表面取点的方法,为组 合体绘图打下基础; ③理解直线投影的方法; ④理解轴测图的画图方法。
上一页 下一页 返回
第二节
点、直线和平面的投影
2)投影面垂直线 投影面垂直线特性:垂直于某个投影面,在此投影面上的投 影积聚成一个点,而另外两个投影面上的投影平行于投影轴 且反映实长(见表2-2)。 3)一般位置直线 一般位置直线在三个投影面上的投影都不反映实长,而且直 线与投影轴的夹角也不反映空间直线对投影面的夹角。
上一页 下一页 返回
第二节
点、直线和平面的投影
[例2-1] 已知点A(15,16,12),求作其三面 投影(如图2-6所示)。 分析:可按照点的投影与坐标的关系来作。 作图:(1)画坐标轴,并由原点O在OX轴的左方取x= 15得点 ax(如图2-6(a)所示)。 (2)过 ax 作OX轴的垂线,自 ax 起延 YH 方向量取16m m得点a,沿Z方向量取12mm得a′(如图2-6(b)所 示)。 (3)按点的投影规律作出a″。 (4)擦去多余线条。点的立体图画法如图2-7所示。
上一页 下一页 返回
第二节
点、直线和平面的投影
作法:(1)作A点的投影: 在OX轴上量取 oaX=20; a'aZ =10; 过aX作aa’⊥OX轴,并使 aa x =15, 过a’作aa’’⊥OZ轴,并使 a''aZ = aax、a、a’、a’’即为所 求A点的三面投影。 (2)作B点的投影: 在OX轴上量取 ObX=30; ' 过bX作bb’⊥OX轴,并使 b bX =0, bbx =10,由于ZB=0, b’、bX重合。即b’在X轴上; 因为ZB=0,b’在 OYW轴上,在该轴上量取 ObYW =10,得 b’’,则b、b’、b’’即为所求B点的三面投影。