用matlab编程设计切比雪夫低通滤波器
基于MATLAB的切比雪夫II型数字低通滤波器设计
科技视界Science &Technology VisionScience &Technology Vision 科技视界(上接第94页)响,其中学校和家庭是重要因素,所以学校与家庭要建立共育机制。
学校是学生们学习、生活的主要场所,在积极创造学习生活条件,开展相应工作的同时,学校方面还应及时和家长沟通,了解学生生长环境、性格爱好,并反馈学生在校学习、生活和心理状况,与家长共同教育管理学生,必要时要共同商讨学生的成长计划。
对于有心理问题的学生,学校要加强关注的力度,及时与家长取得联系,共同采取有效的干预措施,将各种心理问题扼杀在萌芽中。
总之,做好大学生的心理健康教育工作,高校辅导员应及时了解学生的心理活动,学校要健全一系列心理健康教育和问题解决机制,并及时与家长沟通,针对学生的不同心理问题给予有效的指导,确保大学生以积极的心态面对学习、生活,为今后更顺利地步入社会奠定良好的基础。
[1]李逸龙,姚海田,等.大学生教育管理与发展指导案例[M].东营:中国石油大学出版社,2012:2-3.[2]陈小菊,丁留贯.高校辅导员参与大学生心理健康教育工作探析[J].文教资料,2009(7):199-199.[3]张东伟.高校辅导员在大学生心理健康教育中的作用[J].教育理论研究,2011年(1):111-112.[4]谭平.论高校心理健康教育课程的构建[J].理论探讨,2008(12).[5]张猛,杨琳.新时期高校辅导员工作的创新研究[J].中国科技信息,2007(10):190-192.[责任编辑:杨扬]干扰抑制常见的模拟滤波器是巴特沃斯(Butterworth)滤波器和切比雪夫(Chebyshev)滤波器。
巴特沃斯滤波器的特点是具有通带内最大平坦的振幅特性,且随频率,升高,幅频特性单调递减。
切比雪夫滤波器在通带范围内是等幅起伏的,所以同样的通带衰减,其阶数较巴特沃斯滤波器要小。
可根据需要对通带内允许的衰减量(波动范围)提出要求,如要求波动范围小于1dB [1,2]。
利用MATLAB仿真软件系统结合双线性变换法设计一个数字切比雪夫带通IIR滤波器。
目录目录 (1)Abstract (3)1 绪论 (4)2 IIR数字滤波器设计的原理与方法 (5)2.1 IIR数字滤波器设计的原理 (5)2.2 IIR 数字滤波器设计的基本方法 (7)3 IIR带通滤波器的MATLAB 设计 (9)3.1 IIR带通滤波器的设计流程 (10)3.2 IIR带通滤波器的设计步骤 (11)心得与体会 (22)参考文献 (23)摘要数字滤波是数字信号分析中最重要的组成部分之一,数字滤波与模拟滤波相比,具有精度和稳定性高、系统函数容易改变、灵活性高、不存在阻抗匹配问题、便于大规模集成、可实现多维滤波等优点。
数字滤波器的作用是利用离散时间系统的特性对输入信号波形(或频谱)进行加工处理,或者说利用数字方法按预定的要求对信号进行变换。
从广义讲,数字滤波是由计算机程序来实现的,是具有某种算法的数字处理过程。
MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
关键词: IIR 数字滤波器,MATLAB,仿真2AbstractDigital filter digital signal analysis is the most important part of digital filter and simulation filter, it is characterized by high precision and stability, system function to change, flexibility, high impedance matching problem does not exist, easy for large scale integrated, may realize the multidimensional filtering, etc. The role of digital filter is using discrete time the characteristics of the system of the input signal waveform (or spectrum) process, or using a digital method according to the requirements of the scheduled to signal transform. Broadly speaking, digital filter is by the computer program to realize, is has some kind of algorithm digital processing process.MATLAB is released by the American mathworks company mainly face of scientific calculation, visualization and interactive program design of the high-tech computing environment.It will numerical analysis, calculation , scientific data visualization and nonlinear dynamic system and simulation, and many other strong function integration in an easy to use Windows environment, for scientific research, engineering design, and to effectively the numerical calculation many fields of science provides a comprehensive solution, and to a large degree from the traditional the interactive programming language (such as C, Fortran) edit mode, which represents the current international scientific computing software advanced level.Keywords: IIR digital filters, MATLAB, the simulation31 绪论在现代通信系统中,由于信号中经常混有各种复杂成分,所以很多信号的处理和分析都是基于滤波器而进行的。
matlab 切比雪夫带通滤波器实现
matlab 切比雪夫带通滤波器实现
本文介绍如何使用matlab实现切比雪夫带通滤波器。
切比雪夫
滤波器是一种数字滤波器,可在给定的频率范围内阻止不需要的频率分量。
切比雪夫滤波器的特点在于它对幅频响应的最大偏差是可控的,因此被广泛地应用于信号处理、图像处理、通信等领域。
要在 matlab 中实现切比雪夫带通滤波器,需要先确定以下参数:通带频率范围、阻带频率范围、通带最大衰减度、阻带最小衰减度。
然后,使用 matlab 中提供的 cheb1ap 函数来计算切比雪夫滤波器
的传递函数。
具体步骤如下:
1. 确定通带频率范围、阻带频率范围、通带最大衰减度、阻带
最小衰减度,将这些参数赋值给对应的变量。
2. 使用 cheb1ap 函数计算切比雪夫滤波器的传递函数。
cheb1ap 函数的基本调用格式为 [n,wn]=cheb1ap(Wp,Ws,Rp,Rs),其中 Wp 和 Ws 分别是通带和阻带的归一化频率,Rp 和 Rs 分别是通
带最大衰减度和阻带最小衰减度。
函数返回的 n 和 wn 分别表示滤
波器的阶数和角频率。
3. 将传递函数转换为离散时间域上升通带滤波器的差分方程,
使用 tf2zp 函数将差分方程转换为零极点形式。
4. 使用 zp2sos 函数将零极点形式转换为二阶序列滤波器表示。
5. 使用 sosfilt 函数对信号进行滤波处理。
6. 将滤波结果可视化,比较滤波前后的信号,检查滤波效果。
使用 matlab 实现切比雪夫带通滤波器需要一定的数学基础和编程经验,但是掌握了这种滤波器的应用方法可以为信号处理和通信方面的工作提供很大的便利。
基于matlab的切比雪夫及巴特沃斯低通高通滤波器的设计
巴特沃斯低通、切比雪夫低通、高通IIR滤波器设计05941401 1120191454 焦奥一、设计思路IIR滤波器可以分为低通、高通、带通、带阻等不同类型的滤波器,而以系统函数类型又有巴特沃斯、切比雪夫等滤波器。
其中巴特沃斯较为简单,切比雪夫较为复杂;低阶比高阶简单,但却有着不够良好的滤波特性。
在满足特定的指标最低要求下,低阶、巴特沃斯滤波器能更大程度地节省运算量以及复杂程度。
滤波器在不同域内分为数字域和模拟域。
其中数字域运用最广泛。
在设计过程中,一般是导出模拟域的滤波器,之后通过频率转换变为数字域滤波器,实现模拟域到数字域的传递。
在针对高通、带通、带阻的滤波器上,可以又低通到他们的变换公式来进行较为方便的转换。
综上,IIR滤波器的设计思路是,先得到一个满足指标的尽可能简单的低通模拟滤波器,之后用频域变换转换到数字域。
转换方法有双线性变换法、冲激响应不变法等。
虽然方法不同,但具体过程有很多相似之处。
首先将数字滤波器的指标转换为模拟滤波器的指标,之后根据指标设计模拟滤波器,再通过变换,将模拟滤波器变换为数字滤波器,是设计IIR滤波器的最基本框架。
以下先讨论较为简单的巴特沃斯低通滤波器。
二、巴特沃斯低通滤波假设需要一个指标为0~4hz内衰减小于3db、大于60hz时衰减不小于30db的滤波器。
其中抽样频率为400hz。
以双线性变换方法来设计。
首先将滤波器转换到模拟指标。
T =1f f ⁄=1400Ωf ′=2ff f =8ff f =Ωf ′f =0.02fΩf ′=2ff f =120ff f =Ωf ′f =0.3f根据双线性变换Ω=2f tan (f 2) 得到Ωf =25.14Ωf =407.62这就得到了模拟域的指标。
由巴特沃斯的方程Α2(Ω)=|f f (f Ω)|2=11+(ΩΩf )2f20ff |f f (f Ω)|=−10ff [1+(ΩΩf)2f] {20ff |f f (f Ωf )|≥−320ff |f f (f Ωf )|≤−30ff得到{ −10ff [1+(Ωf Ωf)2f ]≥−3−10ff [1+(Ωf Ωf )2f]≤−30当N取大于最小值的整数时,解出N=2,因此为二阶巴特沃斯低通滤波器。
matlab 切比雪夫带通滤波器实现
matlab 切比雪夫带通滤波器实现带通滤波器是一种常见的数字信号处理技术,它可用于提取目标频率段内的信号,滤除无用频率段内的干扰信号。
在数字信号处理领域中,存在着多种带通滤波器的实现方式,而切比雪夫带通滤波器是其中一种方法。
切比雪夫带通滤波器与其他滤波器不同之处在于,它能够提供更为陡峭的通带和阻带边缘。
这是由于它声称的Chebyshev响应函数,其中的“Chebyshev”指的是切比雪夫多项式。
切比雪夫滤波器将极陡峭的边缘带给了滤波器,以便按照严格的信号频率进行过滤。
切比雪夫滤波器的设计,需要知道带通滤波器的通带上限fc,下限fc’,以及有选择性地保留其特定频率范围内的信号。
为了从信号中切除这些频率外的信息,切比雪夫设计要求用户指定这些频率范围的阻带跨越带宽bw,以及在通带中允许的最大衰减或输出变弱的增益tol_db。
为了设计一个切比雪夫带通滤波器,我们需要首先输入所需的频率截止值和带宽,然后计算其非标准化参数,最终,选择适当的滤波器阶数进行计算,生成相应的滤波器系数。
Matlab中可以使用signal库中的函数设计切比雪夫带通滤波器,具体步骤如下:1.输入所需的通带上限fc、下限fc’,以及阻带跨越带宽bw和允许的最大衰减或输出变弱的增益tol_db。
2.计算非标准化参数epsilon,并将其应用于滤波器阶数N的计算。
3.使用design()函数和signal.fir1()函数找到设计参数N和alpha。
4.通过signal.fir1()函数生成切比雪夫带通滤波器系数。
例如,以下代码可实现一个带有通带上限50Hz和下限20Hz,阻带跨越带宽10Hz和最大衰减40dB的切比雪夫带通滤波器:fc1 = 20;fc2 = 50;fs = 200;bw = 10;tol_db = 40;%计算非标准化参数epsilondelta_omega_p = 2*pi*bw/fs;delta_omega_s1 = 2*pi*(fc1-bw/2)/fs;delta_omega_s2 = 2*pi*(fc2+bw/2)/fs;epsilon = sqrt(10^(tol_db/10)-1);A =log10((1/epsilon)+sqrt(1+(1/epsilon)^2))/log10(1/delta_omega_ p);%求滤波器阶数和alpha[N, alpha] = cheb1ord(delta_omega_p, delta_omega_s2,tol_db, tol_db);%通过signal.fir1()函数生成切比雪夫带通滤波器系数h = fir1(N, [delta_omega_s1 delta_omega_s2]/(2*pi),'bandpass', chebwin(N+1, alpha));使用这个滤波器可以滤除一些干扰信号,保留20Hz到50Hz之间的信号,得到目标带通信号。
matlab 切比雪夫带通滤波器实现
matlab 切比雪夫带通滤波器实现
本文将介绍如何使用MATLAB实现切比雪夫带通滤波器。
切比雪夫带通滤波器是一种数字滤波器,用于将一定范围内的频率信号从输入信号中滤除。
使用 MATLAB 对信号进行数字滤波可以得到更加精确的结果,并且可以方便地进行可视化分析。
步骤:
1. 定义需要滤波的信号。
可以使用 MATLAB 自带的信号生成函数,如 sin、cos 等,也可以导入自己的信号数据。
2. 定义切比雪夫带通滤波器的参数。
主要包括通带频率、阻带频率、通带最大衰减、阻带最小衰减等。
3. 使用 MATLAB 自带的函数 butter 设计数字滤波器。
其中,第一个参数为滤波器的阶数,第二个参数为通带或阻带的频率,第三个参数为滤波器类型,可以选择带通、带阻、低通或高通等。
4. 使用设计好的滤波器对输入信号进行滤波。
可以使用MATLAB 自带的函数 filter 实现。
5. 对滤波后的信号进行可视化展示。
可以使用 MATLAB 自带的绘图函数 plot 进行绘制。
6. 分析滤波效果。
通过观察滤波后的信号波形和频谱图,可以评估滤波器的效果是否符合要求。
总之,使用 MATLAB 实现切比雪夫带通滤波器可以帮助我们更加精确地处理信号,并且可以通过可视化手段来分析滤波效果。
- 1 -。
基于MATLAB的切比雪夫I型模拟低通滤波器设计
基于MATLAB的切比雪夫I型模拟低通滤波器设计课程设计名称:数字信号处理课程设计专业班级:电信0604学生姓名:学号:20064300430指导教师:课程设计时间:2009. 6. 8-2009. 6. 14数字信号处理专业课程设讣任务书学生姓名专业班级电信0604学号20064300430题U基于MATLAB的切比雪夫I型模拟低通滤波器设讣课题性质其他课题来源自拟课题指导教师同组姓名根据已学的知识并结合MATLAB来设计一个切比雪夫I型模拟低通滤波器,技术指标如下:R, ldB通带截止频率:fp二1000Hz,通带最大衰减:p主要内容A,25 dB阻带截止频率:fs二1500Hz,阻带最小衰减:s画出滤波器的幅频、相频特性曲线。
1(写出设计原理和设计思路,画出程序流程图2(用MATLAB画出幅频特性图任务要求3(用MATLAB画出相频特性图4(用MATLAB画出零极点图1(程佩青著,《数字信号处理教程》,清华大学出版社,20012 (Sanjit K. Mitra著,孙洪,余翔宇译,《数字信号处理实验指导书(MATLAB 参考文献版)》,电子工业出版社,2003年1月3(郭仕剑等,《MATLAB 7. x数字信号处理》,人民邮电出版社,2006年指导教师签字:审查意见教研室主任签字:年月日说明:本表由指导教师填写,山教研室主任审核后下达给选题学生,装订在设计(论文)首页内容包括:一设计内容与技术要求设计一个切比雪夫I型模拟低通滤波器,满足指标如下:通带截止频率:R, ldBfp二1000Hz,通带最大衰减:,阻带截止频率:fs=1500Hz,阻带最小pA, 25 dB衰减:,写出设汁原理和设计思路,画出程序流程图,用MATLABs编写程序并画出幅频特性图,相频特性图和零极点图。
二设计原理及设计思路1设计原理Chebyshev滤波器是在通带或阻带上频率响应幅度等波纹波动的滤波器。
在通带波动的为“ChebyshevI型滤波器”,在阻带波动的为“ChebyshevI I滤波器”。
Matlab课程设计利用MATLAB结合双线性变换法设计数字切比雪夫带通IIR滤波器代码
开始↓读入数字滤波器技术指标↓将指标转换成归一化模拟低通滤波器的指标↓设计归一化的模拟低通滤波器阶数N 和截止频率↓模拟域频率变换,将H(P)变换成模拟带通滤波器H(s)↓用双线性变换法将H(s)转换成数字带通滤波器H(z)↓输入信号后显示相关结果求相应的幅频响应与相频响应↓50100150-202tx 1(t )x1的波形50100150-202tx 2(t )x2的波形50100150-202t x (t )输入信号x 的波形10203040-0.01-0.00500.0050.01ty滤波器输出y 的波形clc;clear all ;结束%数字滤波器的技术指标Rp = 1; % 通带最大衰减Rs = 40;% 阻带最小衰减OmegaS1_1=350; % 通带截止频率OmegaS1_2=550;% 通带截止频率OmegaP1_1=400; % 阻带截止频率OmegaP1_2=500;% 阻带截止频率Fp=2000; % 抽样频率Wp1=2*pi*OmegaP1_1/Fp; % 模数频率变换Wp2=2*pi*OmegaP1_2/Fp;Ws1=2*pi*OmegaS1_1/Fp;Ws2=2*pi*OmegaS1_2/Fp;OmegaP1=2*Fp*tan(Wp1/2); % 非线性变换OmegaP2=2*Fp*tan(Wp2/2); % 非线性变换OmegaS1=2*Fp*tan(Ws1/2); % 非线性变换OmegaS2=2*Fp*tan(Ws2/2); % 非线性变换OmegaP0=sqrt(OmegaP1*OmegaP2);% 等效中心频率Bw=OmegaP2-OmegaP1; % 带通滤波器的通带宽度Eta_P0=OmegaP0/Bw; % 归一化处理Eta_P1=OmegaP1/Bw; % 归一化处理Eta_P2=OmegaP2/Bw; % 归一化处理Eta_S1=OmegaS1/Bw; % 归一化处理Eta_S2=OmegaS2/Bw; % 归一化处理Lemta_P_EquivalentLowPass=Eta_P2/(Eta_P2^2-Eta_P0^2); % 转换成低通参数Lemta_S1_EquivalentLowPass=-Eta_S1/(Eta_S1^2-Eta_P0^2); % 转换成低通参数Lemta_S2_EquivalentLowPass=Eta_S2/(Eta_S2^2-Eta_P0^2); % 转换成低通参数Lemta_S_EquivalentLowPass=min(Lemta_S1_EquivalentLowPass,Lemta_S2 _EquivalentLowPass); % 取最小值% E求滤波器阶数[N, Wn]=cheb2ord(Lemta_P_EquivalentLowPass, Lemta_S_EquivalentLowPass, Rp, Rs,'s');% 滤波器设计[num1,den1]=cheby2(N,Rs,Wn,'s');[num2,den2]=lp2bp(num1,den1,OmegaP0,Bw);[num,den]=bilinear(num2,den2,Fp);[Z,P,K]=cheb1ap(N,Rp);w=linspace(1,1000,100)*2*pi;[M1,N1]=zp2tf(Z,P,K); %将零极点形式转换为传输函数形式[M,N]=lp2bp(M1,N1,OmegaP0,Bw); %对低通滤波器进行频率变换转换为带通滤波器% 计算增益响应w = 0:pi/255:pi;h = freqz(num,den,w);g = 20*log10(abs(h));%绘制切比雪夫带通滤波器幅频特性figure;plot(w/pi,g);gridaxis([0 1 -60 5]);xlabel('\频率/\pi'); ylabel('增益/dB'); title('切比雪夫II型带通滤波器幅频响应');%Plot the poles and zeros[z,p,k]=tf2zp(num,den);figure;zplane(z,p); %绘制传输函数零极点title('?传输函数的零极点')f1=450;f2=600;t=0:0.0001:1x1=sin(2*pi*f1*t);x2=sin(2*pi*f2*t);x=x1+x2;figure;subplot(2,2,1)%绘制x1的波形plot(x1);grid on;axis([0,50*pi,-3,3]);xlabel('t');ylabel('x1(t)');title('x1的波形');subplot(2,2,2)%绘制x2的波形plot(x2);grid on;axis([0,50*pi,-3,3]);xlabel('t');ylabel('x2(t)');title('x2的波形');subplot(2,2,3)%绘制输入x的波形plot(x);grid on;axis([0,50*pi,-3,3]);xlabel('t');ylabel('x(t)');title('输入信号x的波形')%X=fft(x);y=filter(num,den,x);%数字滤波器输出subplot(2,2,4);plot(real(y));grid on;axis([0,15*pi,-0.01,0.01]);xlabel('t');ylabel('y');title('滤波器输出y的波形');附录:PPpppp5. 用双线性变换法设计IIR数字带通滤波器例21-3采用双线性变换法设计一个切比雪夫Ⅰ型数字带通滤波器,要求:通带wp1=0.3p,wp2=0.7p,Rp=1 dB;阻带ws1=0.2p,ws2=0.8p,As=20 dB解程序如下:wp1=0.4*pi;wp2=0.5*pi;ws1=0.35*pi;ws2=0.55*pi;Rp=1;As=40;T=0.0005;Fs=1/T;Omgp1=(2/T)*tan(wp1/2);Omgp2=(2/T)*tan(wp2/2);Omgp=[Omgp1,Omgp2];Omgs1=(2/T)*tan(ws1/2);Omgs2=(2/T)*tan(ws2/2);Omgs=[Omgs1,Omgs2];bw=Omgp2-Omgp1;w0=sqrt(Omgp1*Omgp2);bw=Omgs2-Omgs1;w0=sqrt(Omgs1*Omgs2); %[ZK(]模拟滤波器阻带带宽和中心频率[n,Omgn]=cheb2ord(Omgp,Omgs,Rp,As,'s') %计算阶数n和截止频率[z0,p0,k0]=cheb2ap(n,As); %设计归一化的模拟原型滤波器[n,Omgn]=cheb1ord(Omgp,Omgs,Rp,As,'s')[z0,p0,k0]=cheb1ap(n,Rp);ba1=k0*real(poly(z0));aa1=real(poly(p0));[ba,aa]=lp2bp(ba1,aa1,w0,bw);[bd,ad]=bilinear(ba,aa,Fs)[H,w]=freqz(bd,ad);dbH=20*log10((abs(H)+eps)/max(abs(H)));subplot(2,2,1),plot(w/2/pi*Fs,abs(H),'k');ylabel('|H|');title('幅度响应');axis([0,Fs/2,0,1.1]);set(gca,'XTickMode','manual','XTick',[0,fs,fp,Fs/2]);set(gca,'YTickMode','manual','YTick',[0,Attn,ripple,1]);gridsubplot(2,2,2),plot(w/2/pi*Fs,angle(H)/pi*180,'k');ylabel('\phi');title('相位响应');axis([0,Fs/2,-180,180]);set(gca,'XTickMode','manual','XTick',[0,fs,fp,Fs/2]);set(gca,'YTickMode','manual','YTick',[-180,0,180]);gridsubplot(2,2,3),plot(w/2/pi*Fs,dbH);title('幅度响应( dB)');axis([0,Fs/2,-40,5]);ylabel('dB');xlabel('频率(\pi)');set(gca,'XTickMode','manual','XTick',[0,fs,fp,Fs/2]);set(gca,'YTickMode','manual','YTick',[-50,-20,-1,0]);gridsubplot(2,2,4),zplane(bd,ad);axis([-1.1,1.1,-1.1,1.1]);title('零极图');程序运行结果如下:n = 3Omgn =1.0e+003 * 1.0191 3.9252bd =0.0736 0.0000 -0.2208 0.0000 0.2208 -0.0000 -0.0736ad =1.0000 0.0000 0.9761 0.0000 0.8568 0.0000 0.2919 采用双线性变换法设计一个切比雪夫Ⅱ型数字带通滤波器,其它条件不变,则需要修改下面几句程序:bw=Omgs2-Omgs1;w0=sqrt(Omgs1*Omgs2); %[ZK(]模拟滤波器阻带带宽和中心频率[n,Omgn]=cheb2ord(Omgp,Omgs,Rp,As,'s') %计算阶数n和截止频率[z0,p0,k0]=cheb2ap(n,As); %设计归一化的模拟原型滤波器采用阻带截止频率来计算W0和BW,是因为切比雪夫Ⅱ型模拟低通原型是以阻带衰减As为主要设计指标的。
matlab 切比雪夫滤波器 截止频率
matlab 切比雪夫滤波器截止频率切比雪夫滤波器是一种常见的数字滤波器,它在信号处理领域有着广泛的应用。
本文将介绍切比雪夫滤波器的概念和原理,并以Matlab为例,演示如何设计和实现一个切比雪夫滤波器。
切比雪夫滤波器的截止频率是指滤波器在频域上对信号进行滤波的边界频率。
通过调整截止频率,可以实现对不同频段的信号进行滤波。
切比雪夫滤波器的特点之一是具有陡峭的滤波特性,可以在频域上实现对特定频段的增益或衰减。
这使得切比雪夫滤波器在需要对信号进行精确滤波的应用中具有重要的作用。
在Matlab中,可以使用`cheby1`函数来设计一个切比雪夫滤波器。
该函数的调用格式如下:```[b, a] = cheby1(n, Rp, Wp, 'ftype')```其中,`n`是滤波器的阶数,`Rp`是通带最大衰减量(单位为dB),`Wp`是通带边缘频率(归一化频率,取值范围为0到1),`ftype`是滤波器类型(可选参数,默认为'low')。
函数的返回值`b`和`a`分别是滤波器的分子和分母系数。
下面以设计一个截止频率为1kHz的切比雪夫低通滤波器为例进行说明。
假设我们需要设计一个4阶的切比雪夫低通滤波器,通带最大衰减量为3dB。
首先,我们需要将通带边缘频率归一化到0到1之间。
假设采样频率为10kHz,则通带边缘频率为1kHz,归一化后的频率为0.1。
接下来,我们可以使用以下代码来设计并实现该滤波器:```matlabfs = 10000; % 采样频率fc = 1000; % 截止频率Wp = fc / (fs/2); % 归一化通带边缘频率Rp = 3; % 通带最大衰减量[n, Wn] = cheb1ord(Wp, 0.9*Wp, -Rp, -40); % 计算滤波器阶数和归一化截止频率[b, a] = cheby1(n, Rp, Wn, 'low'); % 设计滤波器freqz(b, a, 512, fs); % 绘制滤波器的频率响应曲线```上述代码中,`cheb1ord`函数用于计算滤波器的阶数和归一化截止频率。
数字切比雪夫滤波器的设计及matlab仿真
数字切比雪夫滤波器的设计及matlab仿真数字切比雪夫滤波器是一种常见的数字滤波器,它是由切比雪夫多项式设计而成的。
切比雪夫多项式是一类代数多项式,在理论计算和实际应用中具有广泛的应用。
数字切比雪夫滤波器的设计和matlab仿真是数字信号处理领域中重要的研究内容。
数字切比雪夫滤波器的设计基本步骤如下:首先确定滤波器类型,例如低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。
然后,通过切比雪夫多项式计算出滤波器的传递函数H(s),转换成离散传递函数H(z),并确定滤波器的通带截止频率、阻带截止频率和通带最大衰减量。
最后在matlab中实现数字切比雪夫滤波器的设计和仿真。
在数字切比雪夫滤波器的设计中,需要注意以下几点:1.滤波器类型的选择要符合实际应用中的需求和要求,例如在音频处理中常用的是低通滤波器,用于去除高频噪声和杂音。
2.切比雪夫多项式的阶数越高,滤波器的设计越精细,但会使设计过程变得更加困难和计算量更大,需要权衡设计精细程度和计算成本。
3.通带截止频率和阻带截止频率的设置应该根据实际信号的频率分布情况来确定,保证滤波器能够有效去除噪声信号。
4.通带最大衰减量的选择应该综合考虑信号处理的精度和计算性能,保证在去除噪声的同时尽可能保留信号的有效信息。
数字切比雪夫滤波器的matlab仿真是设计过程中必不可少的环节之一。
在matlab中,可以使用自带的函数cheby1、cheby2、chebwin 等来进行数字切比雪夫滤波器的设计和仿真。
同时,matlab还提供了各种可视化工具,如fdatool、filter designer等,方便用户进行滤波器性能分析和优化。
在数字信号处理应用中,数字切比雪夫滤波器被广泛应用于图像处理、音频处理、信号解调等领域。
其设计和优化方法对于提高数字信号处理的效率和精度具有重要的意义。
因此,深入研究数字切比雪夫滤波器的设计和优化方法,不仅对于学术研究有所帮助,也对于工程实践具有重要的指导意义。
matlab 切比雪夫滤波器 设计 ftool
matlab 切比雪夫滤波器设计ftool [matlab 切比雪夫滤波器设计ftool]引言:在信号处理领域中,滤波器是一种常用的工具,可以对信号进行去噪、平滑等处理。
而切比雪夫滤波器是一种具有优秀频率响应特性的滤波器,被广泛运用于信号处理和通信系统中。
本文将介绍如何使用MATLAB中的FTOOL工具进行切比雪夫滤波器的设计。
第一部分:MATLAB FTOOL工具简介FTOOL是MATLAB中的一种可视化滤波器设计工具。
它提供了一种直观且简便的方式来设计和分析滤波器,用户可以通过简单的拖拽和点击操作来完成滤波器的设计。
第二部分:切比雪夫滤波器原理与特性切比雪夫滤波器是一种频率选择性滤波器,它可以实现在频率域内对信号进行有选择地衰减。
切比雪夫滤波器的特点是在通带内具有较大的纹波,但可以通过调整滤波器阶数和纹波限制来进行折衷。
第三部分:切比雪夫滤波器设计过程在MATLAB中,使用FTOOL工具进行切比雪夫滤波器的设计非常简便。
下面将介绍具体的设计步骤:Step 1:打开FTOOL工具在MATLAB命令窗口中输入"ftool"命令,即可打开FTOOL工具。
Step 2:选择滤波器类型在FTOOL工具界面中,选择滤波器类型为"Chebyshev"。
切比雪夫滤波器有两种类型,一种是第一类切比雪夫滤波器(Type I),一种是第二类切比雪夫滤波器(Type II)。
选择相应的类型后,单击"Next"按钮。
Step 3:选择滤波器参数在切比雪夫滤波器设计中,有两个重要的参数需要设置,分别是滤波器阶数和纹波限制。
滤波器阶数决定了滤波器的复杂度和性能,而纹波限制则影响了在通带内的纹波程度。
根据实际需求设置相应的参数,并单击"Next"按钮。
Step 4:选择滤波器响应类型切比雪夫滤波器可以设计为低通、高通、带通或带阻滤波器。
在这一步中,根据自己的需求选择合适的滤波器响应类型,并单击"Next"按钮。
基于MATLAB的切比雪夫低通滤波器设计_王建行
2011 年 12 月 Dec. 2011
基于 MATLAB 的切比雪夫低通滤波器设计
王建行,姚齐国
(浙江海洋学院 机电工程学院,浙江 舟山 316000)
摘 要: 讨论了 IIR 数字滤波器的设计思想,以切比雪夫低通滤波器的设计为例,讨论了用 MATLAB 软件 的设计过程,并通过与理想滤波效果比较,展示了在 MATLAB 环境下设计数字滤波器的可靠性和高效性 . 关键词: 数字滤波器; MATLAB;无限脉冲响应;仿真与分析 中图分类号: TP301.6 文献标志码: A 文章编号: 1674–3326(2011) 06–0531–03
2 ( )]1/ 2 ,其中 <1(正数 ),它与通带波 切比雪夫 I 型滤波器平方幅度响应函数为: | G ( j ) | [1 2 C N 2
纹有关, 越大,波纹也越大;CN ( ) 是切比雪夫多项式,它被定义为: C N ( ) cos(N arccos( )), | | 1,
2
MATLAB 软件简介
MATLAB 是用于数值计算和图形处理的数学计算环境,在 MATLAB 环境下,用户可集成程序设计、
数值计算、图形绘制、输入输出、文件管理等 . MATLAB 系统最初由 Cleve Moler 用 FORTRAN 语言设计, 现在的 MATLAB 程序是由 MathWorks 公司用 C 语言开发的 . 经过多年改进,不断升级,它的工具箱功能 越来越强,应用越来越广泛 . MATLAB 语言的特点可归纳如下 [5]:1)简单易学 . MATLAB 不仅是一个开发软 件,也是一门编程语言,其语法规则与结构化高级编程语言 (如 C 语言等 )大同小异,使用更为简便 . 2)计算
MATLAB 提供功能强大的、交互式的二维和三维绘图功能,可供用户绘制富有表现力的彩色图形,可
基于MATLAB的切比雪夫低通滤波器设计
e a l,d sg r c s y u ig M ATL sd s u s d x mp e e in p o e sb sn AB i ic s e .An o ae t h d a l rn fe t,i i d c mp rd wi te i e lf t ig e fcs t s h i e
种乘关系,所以,它比
计算等价 的时 域卷积快 得 多. ) ̄ 法 ,即通过对 离散 抽样 数据作 差分数学 运算 ,以达到滤 波的 目的I.无 2f 域 l 论 采用 哪种滤 波方式 ,其数值计 算都 比较 繁琐 ,因此 ,借 助 于计算 机 软件进 行辅助 设计 ,是数 字滤波 器研
De 2 l c. 0l
基 于 MA L B的切 比雪夫低通滤 波器设计 TA
王 建 行 ,姚 齐 国
( 江海 洋学院 机 电工程 学院 ,浙江 舟 山 3 6 0 浙 10 0)
摘 要 :讨论 了 IR数 字滤波 器 的设 计思 想 ,以切 比 雪夫低通 滤波 器的设 计为例 ,讨论 了用 MA L . I T AB软件 的, 设计过 程 ,并通过 与理 想滤波 效果 比较 ,展 示 了在 MA L T AB环境 下设计数 字滤波 器的可 靠性 和 高效性. 关键 词 :数字 滤波 器 ;MA L T AB;无限脉 冲响 应 ;仿 真- 析 b分 中图 分类 号 :T 3 1 P0. 6 文 献标 志 码 :A 文 章 编号 : l 7 - 3 62 1) 6 0 3 - 3 6 4 3 2 (0 1 0 - 5 l o
Ab t t h s a tce d s u s s t e d s g i g i e f fR i i lfl r a i g Ch b s e o p s l ra n s c :T i ri l ic s e h e i n n d a o I d g t t .T k n e y h v l w- a s f t sa r a a i e i e
基于MATLAB的切比雪夫II型数字低通滤波器设计
基于MATLAB的切比雪夫II型数字低通滤波器设计作者:王艳文史先红来源:《科技视界》2013年第17期【摘要】本文利用脉冲响应不变法实现了切比雪夫II型数字滤波器的设计,设计结果符合数字滤波器技术指标要求。
【关键词】MATLAB;切比雪夫II型;数字滤波器干扰抑制常见的模拟滤波器是巴特沃斯(Butterworth)滤波器和切比雪夫(Chebyshev)滤波器。
巴特沃斯滤波器的特点是具有通带内最大平坦的振幅特性,且随频率,升高,幅频特性单调递减。
切比雪夫滤波器在通带范围内是等幅起伏的,所以同样的通带衰减,其阶数较巴特沃斯滤波器要小。
可根据需要对通带内允许的衰减量(波动范围)提出要求,如要求波动范围小于1dB[1,2]。
MATLAB是美国MathWorks公司推出的一套用于工程计算的可视化高性能语言与软件环境,是数字信号处理技术实现的重要手段[3]。
本文采用脉冲响应不变法实现Chebyshev数字滤波器的设计。
1 程序设计及运行结果2 结果分析运行程序,可得滤波器阶数为N=3,Wc=0.5498。
符合设计要求。
切比雪夫II型数字低通滤波器的幅频特性曲线如图1所示。
3 结语利用MATLAB设计滤波器方法简单、快捷直观。
本文运用脉冲响应不变法,利用切比雪夫模拟滤波器设计了切比雪夫II型数字低通滤波器,程序运行结果符合设计技术指标要求,取得了较理想的实验效果。
【参考文献】[1]李勇.MATLAB辅助现代工程数字信号处理[M].西安:西安电子科技大学出版社,2002:83-95.[2]董霖.MATLAB使用详解[M].北京:科学出版社,2008:507-513.[3]石云霞.MATLAB在滤波器设计中的应用[J].青岛建筑工程学院学报,2004,25(2):93-96.[责任编辑:汤静]。
DSP课程设计 MATLAB实现切比雪夫滤波器的分析与设计
目录1 课题综述 (1)1.1 课题来源 (1)1.2预期目标 (1)1.3 面对的问题 (1)1.4 需要解决的关键技术 (1)2 系统分析 (2)2.1 涉及的基础知识 (2)2.2 解决的基本思路 (2)2.3 总体方案 (2)2.4 功能模块框图 (2)3 详细设计 (3)3.1 巴特沃斯低通滤波特性(MATLAB) (3)3.2 巴特沃斯高通滤波特性(MATLAB) (4)3.3 切比雪夫低通滤波特性(MATLAB) (4)3.4 切比雪夫高通滤波特性(MATLAB) (4)4 程序调试 (5)4.1 巴特沃斯低通滤波特性 (5)4.2 巴特沃斯高通滤波特性 (6)4.3 切比雪夫低通滤波特性 (8)4.4 切比雪夫高通滤波特性 (9)5 运行与测试 (10)5.1 选择音频文件(WAV) (10)5.2 滤波后音频特点 (10)6 全文代码设计 (10)总结 (14)致谢 (15)参考文献 (16)1 课题综述1.1 课题来源随着数字集成电路,设备和系统技术的快速进步,通过数字方法进行信号处理已变得越来越有吸引力。
大规模一般用途的计算机和特殊用途硬盘的高效性,已使得实时滤波既实用又经济。
目前主要有两类滤波器,模拟滤波器和数字滤波器,它们在物理组成和工作方式上完全不同,而模拟滤波器的技术发展已相当成熟,所以研究的重点基本上放在了数字滤波器上。
滤波器的功能是用来移除信号中不需要的部分,比如随机噪声;或取出信号中的有用部分,如位于某段频率范围内的成分。
目前随着计算机技术和数字信号处理器芯片的发展,使我们更为便利地识别和提取各种各样的信号。
因此研究不同数字滤波器的设计原理和稳定性分析对于满足军事、航空、民营等等各个领域的信号处理要求具有十分重要的意义。
1.2 预期目标能够理解并掌握无限脉冲响应数字滤波器(IIR)的机理,分析IIR滤波器的结构特性,观察IIR滤波器的频域特性。
能够通过MATLAB实现巴特沃斯,切比雪夫的高通低通滤波器的幅频响应,相频响应,以及零极点的图像的勾画。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1摘要 (3)2设计原理 (4)2.1 切比雪夫滤波器介绍 (4)2.2滤波器的分类 (5)2.3 模拟滤波器的设计指标 (6)3切比雪夫I型滤波器 (7)3.1 切比雪夫滤波器的设计原理 (7)3.2切比雪夫滤波器的设计步骤 (10)3.3 用matlab编程设计切比雪夫低通滤波器 (11)4 总结 (18)5 参考文献 (18)摘要随着信息和数字时代的到来,数字信号处理已成为当今一门极其重要的学科和技术领域。
在现代通信系统中,由于信号中经常混有各种复杂成分,因此很多信号的处理都是基于滤波器而进行的。
所以,数字滤波器在数字信号处理中起着举足轻重的作用。
而数字滤波器的设计都要以模拟滤波器为基础的,这是因为模拟滤波器的理论和设计方方法都已发展的相当成熟,且有典型的模拟滤波器供我们选择。
,如巴特沃思滤波器、切比雪夫滤波器等。
本次课程设计将运用MATLAB设计一个基于切比雪夫低通滤波器,并出所设计滤波器的幅度及幅度衰减特性。
关键词:滤波切比雪夫模拟低通1切比雪夫滤波器介绍在巴特沃兹滤波器中,幅度响应在通带和阻带内都是单调的。
因此,若滤波器的技术要求是用最大通带和阻带的逼近误差来给出的话,那么,在靠近通带低频端和阻带截止频率以上的部分都会超出技术指标。
一种比较有效的途径是使逼近误差均匀地分布于通带或阻带内,或同时在通带和阻带内都均匀分布,这样往往可以降低所要求的滤波器阶次。
通过选择一种具有等波纹特性而不是单调特性的逼近方法可以实现这一点。
切比雪夫型滤波器就具有这种性质:其频率响应的幅度既可以在通带中是等波纹的,而在阻带中是单调的(称为I 型切比雪夫滤波器),也可以在通带中是单调的,而在阻带中是等波纹的(称为II 型切比雪夫滤波器),其中切比雪夫II 型滤波器又称为逆切比雪夫滤波器。
I 型切比雪夫滤波器的幅度平方函数是2|)(|Ωj H C =)/(1122c N C ΩΩ+ε (2.1) 其中ε是一个小于1的正数,它与通带波纹有关,ε越大,波纹也越大,式中为N 阶切比雪夫多项式,定义为)cos cos()(1x N x C N -= (2.2) 当N 大于或等于1时,从定义切比雪夫多项式可以直接得出由)(x C N 和)(1x C N -求)(1x C N +的递推公式。
将三角恒等式代入 (2.2)式,得)(1x C N +=2x -)(x C N )(1x C N - (2.3)从 (2.2)式我们注意到,当0<x<1时,)(2x C N 在0和1之间变化;当x>1时,x 1cos -是虚数,所以)(x C N 像双曲余弦一样单调地增加。
参考(2.1),2|)(|Ωj H C 对于0≤p ΩΩ/≤1呈现出在1和1/(21ε+)之间的波动;而对于pΩΩ/〉1单调地减小。
需要用三个参量来确定该滤波器:ε,p Ω和N 。
在典型的设计中,用容许的通带波纹来确定ε,而用希望的通带截止频率来确定c Ω。
然后选择合适的阶次N ,以便阻带的技术要求得到满足。
定义允许的通带最大衰减p α用下式表示: 22max ()10lg ,min ()p p Ha j Ha j αΩ=Ω≤ΩΩ为了求切比雪夫滤波器在椭圆上极点的位置,我们首先要这样确定,在大圆和小圆上以等角度 等间隔排列的那些点:这些点对于虚轴呈对称分布,并且没有一个点落在虚轴上;但当N 为奇数时要有一个点落在实轴上,而当N 为偶数时,就都不会落在实轴上。
切比雪夫滤波器的极点落在椭圆上,起纵坐标由相应的大圆上点的纵坐标来表示,起横坐标由相应的小圆上点的横坐标来表示。
3切比雪夫I 型滤波器3.1切比雪夫低通滤波器的设计原理切比雪夫滤波器的幅频特性具有等波纹特性。
它有两种形式:振幅特性在通带内是等波纹的,在阻带内是单调递减的切比雪夫I 型滤波器,振幅特性在阻带内是等波纹的,在通带内是单调递减的切比雪夫II 型滤波器,如图所示分别画出了滤波器的幅频特性和衰减函数。
以切比雪夫I 型为例介绍其设计原理 幅度平方函数用2()H j Ω表示(2-3-1)式中,ε为小于1的正数,表示通带内幅度波动的程度,ε越大,波动幅度也越大。
p Ω称为通带截止频率。
令pλΩ=Ω ,称为对p Ω的归一化频率。
定义允许的通带内最大衰减p α用下式表示 22max ()10lg ,min ()p p Ha j Ha j αΩ=Ω≤ΩΩ (2-3-2)式中2max ()1ha j Ω= (2-3-3)221min ()1ha j εΩ=+ (2-3-4) 因此210lg(1)p αε=+ (2-3-5)221()1()N pH j C εΩ=Ω+Ω0.12101pαε=- (2-3-6)这样,可以根据通带内最大衰减p α,可求出参数ε。
阶数N 影响过渡带的宽度,同时也影响通带内波动的疏密,因为N 等于通带内的最大值和最小值的总个数。
设阻带的起点频率为s Ω,则有2221()1()s s N pH j C εΩ=Ω+Ω (2-3-7)令ss pλΩ=Ω,由s λ>1,有()()N s s C ch Narch λλ==(2-3-8)可以解出s N =(2-3-9)1s p ch arch N ⎧⎫⎪⎪Ω=Ω⎨⎬⎪⎪⎩⎭(2-3-10)3dB 截止频率用c Ω表示,()212a c H j Ω= (2-3-11)按照(2-3-1)式,有11c p ch arch N ε⎛⎫Ω=Ω ⎪⎝⎭ (2-3-12)经过一系列推论得归一化系统函数为(2-3-13)()()1112a NN ii G p p p ε-==-∏去归一化的系统函数为 ()()()112pNp a s Np N i p i H s G p p p αε=-Ω=Ω==-Ω∏ (2-3-14)3.2切比雪夫低通滤波器的设计步骤(1)确定低通滤波器的技术指标:边带频率p Ω,通带最大衰减p α、阻带最大衰减s α、阻带截至频率s Ω,它们满足(2-3-15)(2-3-16)(2)求滤波器阶数N 和参数ε ss pλΩ=Ω (2-3-17)11K -= (2-3-18) 11s archk N arch λ-= (2-3-19)这样,先由(2--18)式求出11K -,代入(2-3-19),求出阶数N ,最后取大于或等于N 的最小整数。
(3)求归一化系统函数()a G p()2110lgp p Ha j α=≤Ω()2110lgs s Ha j α=≤Ω()()1112a NN i i G p p p ε-==-∏ (2-3-20)(4)将去归一化,得到实际的()a H s ()()pa sp H s G p =Ω= (2-3-21)3.3用MATLAB 设计切比雪夫低通滤波器(1)Matlab 的信号处理工具箱提供了频谱分析函数:fft 函数、filter 函数和freqz 函数。
fft 函数filter 函数功能:利用IIR 滤波器和FIR 滤波器对数据进行滤波。
调用格式:y=filter(b,a,x) [y,zf]=filter(b,a,x) y=filter(b,a,x,zi)说明:filter 采用数字滤波器对数据进行滤波,其实现采用移位直接Ⅱ型结构,因而适用于IIR 和FIR 滤波器。
滤波器的系统函数为nn mm z a z a z a z a z b z b z b z b b Z H --------+⋅⋅⋅+++++⋅⋅⋅++++=33221133221101)(即滤波器系数a=[a0 a1 a2 ...an],b=[b0 b1 ...bm],输入序列矢量为x 。
这里,标准形式为a0=1,如果输入矢量a 时,a0≠1,则MATLAB 将自动进行归一化系数的操作;如果a0=0,则给出出错信息。
y=filter(b,a,x)利用给定系数矢量a 和b 对x 中的数据进行滤波,结果放入y 矢量中,y 的长度取max(N,M)。
y=filter(b,a,x,zi)可在zi 中指定x 的初始状态。
[y,zf]=filter(b,a,x)除得到矢量y 外,还得到x 的最终状态矢量zf 。
freqz 函数功能:离散时间系统的频率响应。
格式:[h,w]=freqz(b,a,n)[h,f]=freqz(b,a,n,Fs)h=freqz(b,a,w)h=freqz(b,a,f,Fs)freqz(b,a,n)说明: freqz 用于计算数字滤波器H(Z)的频率响应函数H(ejω)。
[h,w]=freqz(b,a,n)可得到数字滤波器的n点复频响应值,这n个点均匀地分布在[0,π]上,并将这n个频点的频率记录在w中,相应的频响值记录在h中。
要求n为大于零的整数,最好为2的整数次幂,以便采用FFT计算,提高速度。
缺省时n =512。
[h,f]=freqz(b,a,n,Fs)用于对H(ejω)在[0,Fs/2]上等间隔采样n点,采样点频率及相应频响值分别记录在f 和h中。
由用户指定FS(以HZ为单位)值。
h=freqz(b,a,w)用于对H(ejω)在[0,2π]上进行采样,采样频率点由矢量w指定。
h=freqz(b,a,f,Fs) 用于对H(ejω)在[0,FS]上采样,采样频率点由矢量f指定。
freqz(b,a,n) 用于在当前图形窗口中绘制幅频和相频特性曲线。
fft函数函数功能:对信号进行傅里叶变换。
格式:fft(X)fft(X,N)fft(X,[],DIM)或fft(X,N,DIM)说明:fft(X)是对输入信号X的离散傅里叶变换。
fft(X,N)是N点的傅里叶变换,如果X少于N点则补0凑齐位数,长于N点则截断。
如果x是个矩阵,列的长度将会以同样的方式调整,fft会对每列进行傅里叶变换,并返回一个相同维数的矩阵。
fft(X,[],DIM)或fft(X,N,DIM)是离散傅里叶变换在DIM尺度上的应用。
DIM 可适应于任意维度的fft运算。
(2)确定低通滤波器的技术指标:N-椭圆滤波器最小阶数;Wn为椭圆滤波器的带宽;Wp-椭圆滤波器通带截止角频率;Ws-椭圆滤波器阻带起始角频率;Rp-通带波纹(dB);Rs-阻带最小衰减(dB);设计要求是低通滤波器,需要屏蔽的是15Hz和30Hz的波形,所以可令fp=5Hz,设fs=8Hz,Rp<0.1dB,Rs>40dB。
(3)连续信号的产生及采样:clearf1=5;f2=15;f3=30;N=100;fs=100;n=(0:N-1); %采样点数为Nx1=sin(2*pi*f1*n/fs);x2=sin(2*pi*f2*n/fs);x3=sin(2*pi*f3*n/fs); %模拟信号转化为数字信号x=x1+x2+x3; %信号叠加plot(n,x); %作出时间-幅值图像xlabel('时间(s)');ylabel('幅值');grid;连续信号仿真图(4)低通滤波器的设计Wp=8;Ws=12;Rp=2;Rs=40;%设置指标参数[N,wp1]=cheb1ord(Wp/(fs/2),Ws/(fs/2),Rp,Rs);%利用cheb1ord函数求滤波器最小阶数[b,a]=cheby1(N,Rp,wp1); %计算切比雪夫I型模拟低通滤波器系统函数系数[H,f]=freqz(b,a,512,100); %求幅值H,频率fplot(f,abs(H));切比雪夫I型模拟低通滤波器仿真图(5)对滤波后的信号进行分析和变换sf=filter(b,a,x);%对原信号进行滤波plot(n,sf);xlabel('时间 (s)');ylabel('幅值');axis([0 1 -1 1]);X=fft(x,512); %滤波前信号的傅里叶变换SF=fft(sf,512); %滤波后信号的傅里叶变换f=(0:255)/256*(fs/2);plot(f,abs([X(1:256)' SF(1:256)'])); %滤波前后信号图像对比xlabel('频率(Hz)');ylabel('傅立叶变换图');grid;legend({'before','after'})信号通过椭圆低通滤波器的仿真图注:图中蓝色曲线代表滤波前的幅频曲线,绿线代表滤波后的幅频曲线。