2018-2019学年福建省漳州市漳浦县八年级(上)期末数学试卷(解析版)

合集下载

福建省漳州市八年级上学期数学期末考试试卷

福建省漳州市八年级上学期数学期末考试试卷

福建省漳州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016九上·平凉期中) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2018七上·瑶海期末) 在下列调查中,适宜采用全面调查的是()A . 了解我省中学生的视力情况B . 了解七(1)班学生校服的尺码情况C . 检测一批电灯泡的使用寿命D . 调查安徽卫视《超级演说家》栏目的收视率3. (2分) (2019七上·蚌埠月考) 2018年合肥市常住总人口约800万,关于“800万”,下列说法正确的是()A . 它精确到个位B . 它精确到百位C . 它精确到万位D . 它精确到百万位4. (2分)(2016·株洲) 如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A . 1B . 2C . 3D . 45. (2分) (2019八上·鄂州期末) 已知点P(a+1,2a -3)关于x轴的对称点在第一象限,则a的取值范围是()A .B .C .D .6. (2分) (2016七上·嘉兴期中) 数轴上的点与下列各数中的什么数一一对应()A . 整数B . 有理数C . 无理数D . 实数7. (2分) (2017八上·上城期中) 下列各组所列条件中,不能判断和全等的是().A . ,,B . ,,C . ,,D . ,,8. (2分) (2016九上·龙湾期中) 下列选项中的事件,属于必然事件的是()A . 掷一枚硬币,正面朝上B . 某运动员跳高的最好成绩是20.1米C . 明天是晴天D . 三角形的内角和是180°9. (2分)三角形两边长为6与8,那么周长l的取值范围()A . 2<l<14B . 16<l<28C . 14<l<28D . 20<l<2410. (2分)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A . 甲、乙两人的速度相同B . 甲先到达终点C . 乙用的时间短D . 乙比甲跑的路程多二、填空题 (共8题;共9分)11. (1分) (2016八上·盐城期末) 分式有意义的条件是________.12. (1分) (2017九上·潮阳月考) 平面直角坐标系中,P(2,3)关于原点对称的点A 坐标是________.13. (1分) (2019八下·番禺期末) 将一次函数y=2x﹣3的图象沿y轴向上平移3个单位长度,所得直线的解析式为________.14. (1分)在△ABC中,∠A+∠B=150°,∠C=3∠A,则∠A=________ °.15. (1分) (2017八下·老河口期末) 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高长度为________.16. (1分)(2018·长春) 如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x 与线段AB有公共点,则n的值可以为________.(写出一个即可)17. (2分)从2001年2月21日零时起,中国电信执行新的固定电话收费标准,其中本地网营业区内通话费是:前3分钟是0.2元(不足3分钟近3分钟计算),以后每分钟加收0.1元(不足1分钟按1分钟科计算),现有一个学生星期天打本地网营业区内电话t分钟(t>3)应交电话费________元.18. (1分) (2017八下·丽水期末) 如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为________三、解答题 (共8题;共84分)19. (10分)求下列各式中的x.①x2=25②(x﹣3)3=27.20. (2分) (2020九上·莘县期末) 如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点△ABC的三个顶点A,B,C都在格点上将△ABC绕点A顺时针方向旋转90°得到△AB'C'。

福建省漳州市八年级上学期数学期末考试试卷

福建省漳州市八年级上学期数学期末考试试卷

福建省漳州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·官渡期末) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)分式有意义的条件是()A . x≠0B . y≠0C . x≠0或y≠0D . x≠0且y≠03. (2分) (2018八上·洛阳期中) 在下列图形中,正确画出△ABC的AC边上的高的图形是()A .B .C .D .4. (2分)下列运算正确的是()A . 6a﹣5a=1B . 3a2+2a3=5a5C . a6•a2=a8D . (a2)3=a55. (2分)如图,AD∥BC,点E在BD的延长线上,若∠ADE=155°,则∠DBC的度数为()A . 155度B . 50度C . 45度D . 25度6. (2分)如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM≌△CFN;④△EAO≌△CNO,其中正确的是()A . ①②B . ②③C . ②④D . ③④7. (2分) (2017七下·平谷期末) 下列因式分解正确的是()A .B .C .D .8. (2分)(2018·阳信模拟) 如图,在△ABC中,CA=CB=4,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰好在弧EF上,下列关于图中阴影部分的说法正确的是()A . 面积为B . 面积为C . 面积为D . 面积随扇形位置的变化而变化9. (2分)从1开始得到如下的一列数:1,2,4,8,16,22,24,28,…其中每一个数加上自己的个位数,成为下一个数,上述一列数中小于100的个数为()A . 21B . 22C . 23D . 9910. (2分)已知等边三角形ABC的边长为12,点P为AC上一点,点D在CB的延长线上,且BD=AP,连接PD交AB于点E,PE⊥AB于点F,则线段EF的长为()A . 6B . 5C . 4.5D . 与AP的长度有关二、填空题 (共6题;共6分)11. (1分)计算:(1)(﹣12a2b2c)•(abc2)2=________ ;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=________ 。

〖汇总3套试卷〗漳州市2018年八年级上学期数学期末综合测试试题

〖汇总3套试卷〗漳州市2018年八年级上学期数学期末综合测试试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,过点D 作DE AB ⊥于点E .若4DC =,则DE =( )A .6B .5C .4D .3【答案】C【分析】先根据角平分线的性质,得出DE=DC ,再根据DC=1,即可得到DE=1. 【详解】解:∵∠C=90°,AD 平分∠BAC ,DE ⊥AB 于E , ∴DE=DC , ∵DC=1, ∴DE=1, 故选:C . 【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等. 2.在下图所示的几何图形中,是轴对称图形且对称轴最多的图形的是( )A .B .C .D .【答案】A【解析】根据轴对称图形的定义:在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴,逐一判定即可.【详解】A 选项,是轴对称图形,有4条对称轴; B 选项,是轴对称图形,有2条对称轴; C 选项,不是轴对称图形;D 选项,是轴对称图形,有3条对称轴; 故选:A. 【点睛】此题主要考查对轴对称图形以及对称轴的理解,熟练掌握,即可解题.3.若多项式224x ax ++能用完全平方公式进行因式分解,则a 值为( )A .2B .2-C .2±D .4±【答案】C【分析】利用完全平方公式的结构特征判断即可确定出a 的值. 【详解】∵多项式x 1+1ax+4能用完全平方公式进行因式分解, ∴1a=±4, 解得:a=±1. 故选:C . 【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.4.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( )A .30°B .45°C .50°D .75°【答案】B【解析】试题解析:∵AB=AC ,∠A=30°,∴∠ABC=∠ACB=75°,∵AB 的垂直平分线交AC 于D ,∴AD=BD ,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B . 5.将3-a b ab 进行因式分解,正确的是( ) A .()2a ab b - B .()21ab a - C .()()11ab a a +- D .()21ab a -【答案】C【分析】多项式3-a b ab 有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选C . 【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;6.如图,在平行四边形ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E ,且AE=3,则AB 的长为( )A .4B .3C .52D .2【答案】B【分析】根据平行四边形性质得出AB=DC ,AD ∥BC ,推出∠DEC=∠BCE ,求出∠DEC=∠DCE ,推出DE=DC=AB ,得出AD=2DE 即可.【详解】解:∵四边形ABCD 是平行四边形, ∴AB=DC ,AD ∥BC , ∴∠DEC=∠BCE , ∵CE 平分∠DCB , ∴∠DCE=∠BCE , ∴∠DEC=∠DCE , ∴DE=DC=AB ,∵AD=2AB=2CD ,CD=DE , ∴AD=2DE , ∴AE=DE=3, ∴DC=AB=DE=3, 故选B . 【点睛】本题考查了平行四边形性质,平行线性质,角平分线定义,等腰三角形的性质和判定的应用,关键是求出DE=AE=DC .7.如图,在平面直角坐标系中,点1A ,2A ,3A ,和1B ,2B ,3B ,分别在直线15y x b =+和x 轴上,11OA B ∆,122B A B ∆,233B A B ∆,是以1A ,2A ,3A ,为顶点的等腰直角三角形.如果点()11,1A ,那么点2020A 的纵坐标是( )A .201932⎛⎫ ⎪⎝⎭B .202032⎛⎫ ⎪⎝⎭C .201923⎛⎫ ⎪⎝⎭D .202023⎛⎫ ⎪⎝⎭【答案】A【分析】设点A 2,A 3,A 4…,A 2019坐标,结合函数解析式,寻找纵坐标规律,进而解题. 【详解】解:1(1,1)A 在直线15y x b =+, 45b ∴=, 1455y x ∴=+, 设22(A x ,2)y ,33(A x ,3)y ,44(A x ,4)y ,⋯,20202020(A x ,2019)y ,则有221455y x =+,331455y x =+,⋯,202020201455y x =+,又△11OA B ,△122B A B ,△233B A B ,⋯,都是等腰直角三角形,2122x y y ∴=+,312322x y y y =++,⋯,2020123201920202222x y y y y y =+++⋯++.将点坐标依次代入直线解析式得到: 21112y y =+,3121131222y y y =++=2y ,432y =3y ,⋯,2020201932y y =,又11y =,232y ∴=,233()2y =,343()2y =,⋯,201920203()2y =,故选:A . 【点睛】此题主要考查了一次函数点坐标特点,等腰直角三角形斜边上高等于斜边长一半,解题的关键是找出规律. 8.若把分式x yyx +中的x 、y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变C .缩小一半D .缩小4倍【答案】C【分析】可将式中的x ,y 都用2x ,2y 来表示,再将后来的式子与原式对比,即可得出答案. 【详解】解:由题意,分式x yyx +中的x 和y 都扩大2倍, ∴2222x y x y +⋅=2x yyx +,分式的值是原式的12,即缩小一半, 故选:C .本题考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,分子、分母、分式本身同时改变两处的符号,分式的值不变,掌握知识点是解题关键.9.如图,在四边形ABCD 中AB AD =,添加下列一个条件后,仍然不能证明ABC ADC ∆∆≌,那么这个条件是( )A .CD CB = B .AC 平分BAD ∠ C .90B D ∠=∠=︒ D .ACB ACD ∠=∠【答案】D【分析】根据全等三角形的判定定理:SSS 、SAS 、AAS 、ASA 、Hl 逐一判定即可. 【详解】A 选项,AB AD =,CD CB =,AC=AC ,根据SSS 可判定ABC ADC ∆∆≌; B 选项,AC 平分BAD ∠,即∠DAC=∠BAC ,根据SAS 可判定ABC ADC ∆∆≌; C 选项,90B D ∠=∠=︒,根据Hl 可判定ABC ADC ∆∆≌; D 选项,ACB ACD ∠=∠,不能判定ABC ADC ∆∆≌; 故选:D. 【点睛】此题主要考查全等三角形的判定,熟练掌握,即可解题.10.如图,△ABC 与△AEF 中,AB=AE ,BC=EF ,∠B=∠E ,AB 交EF 于D ,给出下列结论:①AF=AC ;②DF=CF ;③∠AFC=∠C ;④∠BFD=∠CAF , 其中正确的结论个数有. ()A .4个B .3个C .2个D .1个【答案】B【分析】先根据已知条件证明△AEF ≌△ABC ,从中找出对应角或对应边.然后根据角之间的关系找相似,即可解答.【详解】解:在△ABC 与△AEF 中,{AB AE B E BC EF=∠=∠=, ∴△AEF ≌△ABC ,∴∠AFC=∠C ;由∠B=∠E ,∠ADE=∠FDB , 可知:△ADE ∽△FDB ; ∵∠EAF=∠BAC , ∴∠EAD=∠CAF ,由△ADE ∽△FD ,B 可得∠EAD=∠BFD , ∴∠BFD=∠CAF . 综上可知:②③④正确. 故选:B . 【点睛】本题主要考查了全等三角形的判定与性质,相似三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键. 二、填空题11.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.【答案】1【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题. 【详解】解:设正方形A ,B 的边长分别为a ,b . 由图甲得:2()1a b -=,由图乙得:22()()12+--=a b a b ,化简得6ab =, ∴22()()412425+=-+=+=a b a b ab , ∵a+b >0, ∴a+b=1, 故答案为:1. 【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型.12.图1是小慧在“天猫•双11”活动中购买的一张多档位可调节靠椅.档位调节示意图如图2所示,己知两支脚10AB AC ==分米,12BC =分米,O 为AC 上固定连接点,靠背10OD =分米.档位为Ⅰ档时,//OD AB ,档位为Ⅱ档时,OD AC '⊥.当靠椅由Ⅰ档调节为Ⅱ档时,靠背顶端D 向后靠的水平距离(即EF )为______分米.【答案】1【分析】如图,作AN ⊥BC ,交PO 于G 点,延长GO ,交DE 于H ,交D’F 于M ,根据等腰三角形的性质得到NC 的长,故得到cos ∠ABN 的值,根据题意知GO ∥BC ,DO ∥AB ,可得到cos ∠DOH=cos ∠ABN ,根据10OD =即可得到OH 的长,又OD AC '⊥,可得∠D’OM=∠OAG ,再求出cos ∠OAG=ANAC即可求出OM ,故可得到EF 的长.【详解】如图,作AN ⊥BC ,交PO 于G 点,延长GO ,交DE 于H ,交D’F 于M , ∵10AB AC ==,12BC =, ∴BN=CN=6,221068-= ∴cos ∠ABN=63105BN AB ==, 根据题意得GO ∥BC ,DO ∥AB , ∴∠DOH=∠APG=∠ABG ∴cos ∠DOH=cos ∠ABN ∴cos ∠DOH= OH OD = 35∴OH=6, 由OD AC '⊥,∴∠AOG+∠D’OM=90°,又∠AOG+∠OAG =90° ∴∠D’OM=∠OAG ,∵cos ∠OAG=AN AC =45 ∴cos ∠D’OM ='OM OD =45∴OM=8 ∴HM=1, 则EF=1, 故答案为:1.【点睛】此题主要考查解直角三角形,解题的关键是根据题意构造直角三角形,利用三角函数的定义进行求解. 13.为了增强学生体质,某学校将“抖空竹”引阳光体育一小时活动,图1是一位同学抖空竹时的一个瞬间,小明把它抽象成图2的数学问题:已知//,80,110AB CD EAB ECD ∠=︒∠=︒,则E ∠的度数是_____.【答案】30°【分析】过E 点作EF ∥AB ,由两直线平行,同旁内角互补即可求解. 【详解】解:过E 点作EF ∥AB ,如下图所示:∵EF ∥AB ,∴∠EAB+∠AEF=180°,又∠EAB=80° ∴∠AEF=100° ∵EF ∥AB ,AB ∥CD ∴EF ∥CD∴∠CEF+∠ECD=180°,又∠ECD=110° ∴∠CEF=70°∴∠AEC=∠AEF-∠CEF=100°-70°=30°. 故答案为:30°. 【点睛】本题考查平行线的构造及平行线的性质,关键是能想到过E 点作EF ∥AB ,再利用两直线平行同旁内角互14.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为__________.【答案】5.6×10-2【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.056用科学记数法表示为5.6×10-2,故答案为:5.6×10-2【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg【答案】20【解析】设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg16.如图,在△ABC中,∠ABC=∠ACB,AB的垂直平分线交AC于点M,交AB于点N.连接MB,若AB =8,△MBC的周长是14,则BC的长为____.【答案】1【解析】根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解.【详解】∵M、N是AB的垂直平分线∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,故答案为:1.【点睛】线段垂直平分线的性质, 等腰三角形的性质.17.已知x的整数部分,y的小数部分,则xy的值_____.【答案】﹣1<<可得,x=2,y﹣2,代入求解即可.【分析】根据23<【详解】∵x的整数部分,23∴x=2,∵y的小数部分,∴y﹣2,∴yx=2﹣2)=﹣1,故答案为﹣1.【点睛】本题考查了无理数的混合运算问题,掌握无理数大小比较的方法以及无理数混合运算法则是解题的关键.三、解答题18.某商场计划购进A、B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯进货数量的4倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?【答案】(1)75盏;25盏(2)购进A型台灯20盏,B型台灯80盏;1元【分析】(1)设商场应购进A型台灯x盏,表示出B型台灯为(100﹣x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.【详解】解:(1)设购进A型台灯x盏,则购进B型台灯(100﹣x)盏,由题意可得:30x +50(100﹣x )=3500∴x =75∴100﹣x =25答:购进A 型台灯75盏,购进B 型台灯25盏;(2)设商场销售完这批台灯可获利y 元,y =15x +20(100﹣x )=﹣5x +2000又∵100﹣x ≤4x ,∴x ≥20∵k =﹣5<0,∴y 随x 的增大而减小∴当x =20时,y 取得最大值,最大值是1.答:购进A 型台灯20盏,购进B 型台灯80盏时获利最多,此时利润为1元.【点睛】本题考查了一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x 的取值范围是解题的关键.19.如图,四边形ABCD 中,//AB CD ,CD AD =,60ADC ∠=︒,对角线BD 平分ABC ∠交AC 于点P .CE 是ACB ∠的角平分线,交BD 于点O.(1)请求出BAC ∠的度数;(2)试用等式表示线段BE 、BC 、CP 之间的数量关系,并说明理由;【答案】(1)60︒;(2)BE+CP=BC ,理由见解析.【分析】(1)先证得ADC ∆为等边三角形,再利用平行线的性质可求得结论;(2)由BP 、CE 是△ABC 的两条角平分线,结合BE=BM ,依据“SAS ”即可证得△BEO ≌△BMO ;利用三角形内角和求出∠BOC=120°,利用角平分线得出∠BOE=∠BOM=60︒,求出∠BOM ,即可判断出∠COM=∠COP ,即可判断出△OCM ≌△OCP ,即可得出结论;【详解】(1)∵CD AD =,60ADC ∠=︒,∴ADC ∆为等边三角形,∴∠ACD=60︒,∵//AB CD ,∴∠BAC=∠ACD=60︒;(2)BE+CP=BC ,理由如下:在BC 上取一点M ,使BM=BE ,连接OM ,如图所示:∵BP 、CE 是△ABC 的两条角平分线,∴∠OBE=∠OBM=12∠ABC , 在△BEO 和△BMO 中,BE BM OBE OBM BO BO =⎧⎪∠=∠⎨⎪=⎩,∴△BEO ≅△BMO(SAS),∴∠BOE=∠BOM=60︒,∵BP 、CE 是△ABC 的两条角平分线,∴∠OBC+∠OCB=()1ABC ACB 2∠∠+, 在△ABC 中,∠BAC+∠ABC+∠ACB=180︒,∵∠BAC =60︒,∴∠ABC+∠ACB=180︒-∠A=180︒-60︒=120︒,∴∠BOC=180︒-(∠OBC+∠OCB)=180()1ABC ACB 2∠∠︒-+=180︒-12×120︒=120︒, ∴∠BOE=60︒,∴∠COP=∠BOE=60︒∵△BEO ≌△BMO ,∴∠BOE=∠BOM=60︒,∴∠COM=∠BOC-∠BOM=120︒-60︒=60︒,∴∠COM=∠COP=60︒,∵CE 是∠ACB 的平分线,∴∠OCM=∠OCP ,在△OCM 和△OCP 中,OCM OCP OC OC COM COP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△OCM ≌△OCP (ASA ),∴CM=CP ,∴BC=CM+BM=CP+BE ,∴BE+CP=BC .【点睛】本题是三角形综合题,主要考查了角平分线的定义、三角形内角和定理、全等三角形的判定和性质,熟练掌握三角形内角和定理、全等三角形的判定和性质,证明∠CFM=∠CFD 是解题的关键.20.如图,已知四边形ABCD 中,90,B ∠=︒15,20,24,7AB BC AD CD ====,求四边形ABCD 的面积.【答案】234【分析】连接AC ,如图,先根据勾股定理求出AC ,然后可根据勾股定理的逆定理得出∠D=90°,再利用S 四边形ABCD =S △ABC +S △ACD 求解即可.【详解】解:连接AC ,如图,∵90,B ∠=︒15,20AB BC ==, ∴2222152025AC AB BC =+=+=,∵AD 2+CD 2=242+72=625,AC 2=252=625,∴AD 2+CD 2=AC 2,∴∠D=90°,∴S 四边形ABCD =S △ABC +S △ACD =111520247150+8423422⨯⨯+⨯⨯==.【点睛】本题考查了勾股定理及其逆定理,属于常见题型,熟练掌握勾股定理及其逆定理是解题的关键.21.计算:(m+n+2)(m+n﹣2)﹣m(m+4n).【答案】n2﹣2mn﹣1.【分析】根据平方差公式,多项式乘多项式,单项式乘多项式的运算法则进行展开运算即可.【详解】解:原式=(m+n)2﹣1﹣m2﹣1mn,=m2+2mn+n2﹣1﹣m2﹣1mn,=n2﹣2mn﹣1.【点睛】本题考查了整式的混合运算,解题关键是掌握平方差公式,多项式乘多项式,单项式乘多项式的运算法则.22.一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,梯子的顶端下滑2米后,底端将水平滑动2米吗?试说明理由.【答案】梯子的顶端下滑2米后,底端将水平滑动2米【解析】根据题意两次运用勾股定理即可解答【详解】解:由题意可知,AB=10m,AC=8m,AD=2m,在Rt△ABC中,由勾股定理得BC===6;当B划到E时,DE=AB=10m,CD=AC﹣AD=8﹣2=6m;在Rt△CDE中,CE===8,BE=CE﹣BC=8﹣6=2m.答:梯子的顶端下滑2米后,底端将水平滑动2米.【点睛】本题考查了勾股定理的应用,根据两边求第三边是解决问题的关键23.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件数如下:每人加工零件数540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件的平均数、中位数和众数;(2)生产部负责人要定出合理的每人每月生产定额,你认为应该定为多少件合适?【答案】(1)平均数是:260件,中位数是:240件,众数是:240件;(2)240件.【分析】(1)利用加权平均数公式即可求得平均数,中位数是小到大的顺序排列时,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个; (2)根据(1)求得的中位数,平均数以及众数进行比较,根据实际情况进行判断.【详解】解:(1)这15人该月加工零件总数=540145013002240621031202⨯+⨯+⨯+⨯+⨯+⨯=3900(件),这15人该月加工零件的平均数:390026015x ==(件), 中位数是:240件,众数是:240件;(2)240件合适.因为当定额为240件时,有10人达标,4人超额完成,有利于提高大多数工人的积极性.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.24.探究活动:(1)如图①,可以求出阴影部分的面积是__________.(写成两数平方差的形式)(2)如图②,若将阴影部分裁剪下来,重新拼成一个长方形,面积是__________.(写成多项式乘法的形式)(3)比较图①、图②阴影部分的面积,可以得到公式__________.知识应用,运用你所得到的公式解决以下问题:(1)计算:(2)(2)a b c a b c +-++.(2)若224910x y -=,466x y +=,求23x y -的值.【答案】(1)22a b -;(2)()()a b a b +-;(3)22()()a b a b a b +-=-;应用(1)a 2+2ab+b 2-4c 2;(2)103. 【详解】解:(1)阴影部分的面积是:a 2-b 2,故答案是:a 2-b 2;(2)长方形的面积是(a+b)(a-b),故答案是:(a+b)(a-b);(3)可以得到公式:a2-b2=(a+b)(a-b),故答案是:a2-b2=(a+b)(a-b);应用:(1)原式=(a+b)2−4c2=a2+2ab+b2-4c2;(2)4x2-9y2=(2x+3y)(2x-3y)=10,由4x+6y=6得2x+3y=3,则3(2x-3y)=10,解得:2x-3y=103.25.将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P (3,0),与s轴相交于点Q.(1)试确定三角板ABC的面积;(2)求平移前AB边所在直线的解析式;(3)求s关于m的函数关系式,并写出Q点的坐标.【答案】(1)S 3(2)y33(3)s23﹣3(3,Q(03.【分析】(1)根据点P坐标可得OB的长,根据含30°角的直角三角形的性质及勾股定理可求出OA的长,即可求出△ABC的面积;(2)设AB的解析式y=kx+b,把A(1,0),B(03)代入列方程组即可求出b、k的值,进而可得直线AB解析式;(3)设移动过程中,AB与x轴的交点为D,可得3,根据含30°角的直角三角形的性质可用m 表示出OD的长,即可得出s关于m的关系式,把m=0代入即可求出点Q坐标.【详解】∵与m轴相交于点P30),∴s=0,∴OB,∵∠ABC =30°,∴AB=2OA ,∴OA 2+OB 2=AB 2,即OA 2+3=4OA 2,解得:OA=1,(负值舍去)∴S △ABC=112⨯(2)∵B (0,A (1,0),设AB 的解析式y =kx+b ,∴0b k b ⎧=⎪⎨+=⎪⎩,∴k b ⎧=⎪⎨=⎪⎩,∴y;(3)设移动过程中,AB 与x 轴的交点为D ,∵,平移的距离为m ,∴平移后OBm ,∵∠ABC=30°,∴BD=2OD ,∴OD 2+OB 2=BD 2,即OD 2+m )2=4OD 2∴OD =1﹣, ∵s 在第一象限,∴∴s =12×m )×(1﹣3m)=2m 6﹣m+2(, 当m =0时,s∴Q(0,3).【点睛】本题考查含30°角的直角三角形的性质、待定系数法求一次函数解析式及勾股定理,熟练掌握30°角所对的直角边等于斜边的一半的性质是解题关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图是一段台阶的截面示意图()AH GH ≠,若要沿A B C D E F G ------铺上地毯(每个调节的宽度和高度均不同),已知图中所有拐角均为直角.须知地毯的长度,至少需要测量( )A .2次B .3次C .4次D .6次【答案】A 【分析】根据平移的特点即可到达只需测量AH ,HG 即可得到地毯的长度.【详解】∵图中所有拐角均为直角∴地毯的长度AB+BC+CD+DE+EF+FG=AH+HG,故只需要测量2次,故选A.【点睛】本题主要运用平移的特征,把台阶的长平移成长方形的长,把台阶的高平移成长方形的宽,然后进行求解. 2.已知13a a +=,则221a a +的值为 A .5B .6C .7D .8 【答案】C【分析】根据完全平方公式的变形即可求解. 【详解】∵13a a += ∴219a a ⎛⎫+= ⎪⎝⎭ 即22129a a ++= ∴221a a+=7, 故选C.【点睛】此题主要考查完全平方公式的运用,解题的关键是熟知完全平方公式的变形及运用.3.计算22的结果是( ) A .2 B .4 C .2± D .4±【答案】A【分析】根据乘方的意义转化为二次根式的乘法运算,即可得出结果.【详解】2==2故选:A【点睛】本题考查了乘方的意义以及二次根式的乘法运算,属基础题,认真计算即可.4.当4x =-时,代数式3x +的值为( ).A .7B .1-C .7-D .1【答案】B【分析】把4x =-代入即可求解.【详解】把4x =-代入3x +得3-4=-1故选B.【点睛】此题主要考查代数式求值,解题的关键把x 的值代入.5.已知()()()12321,1.7,y y --,,,y 是直线5(y x b b =-+为常数)上的三个点,则123,,y y y 的大小关系是( )A .123y y y >>B .321y y y >>C .132y y y >>D .312y y y >> 【答案】A【分析】由5(y x b b =-+为常数)可知k=-5<0,故y 随x 的增大而减小,由21 1.7-<-<,可得y 1,y 2,y 3的大小关系.【详解】解:∵k=-5<0,∴y 随x 的增大而减小,∵21 1.7-<-<,∵123y y y >>,故选:A .【点睛】本题主要考查一次函数的增减性,熟练掌握一次函数的增减性是解题的关键.6.下列图形中是轴对称图形的个数是( )A .4个B .3个C .2个D .1个【答案】C【解析】根据轴对称图形的概念解答即可.【详解】第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,第五个图形不是轴对称图形.综上所述:是轴对称图形的是第一、四共2个图形.故选C .【点睛】本题考查了中对称图形以及轴对称图形,掌握中心对称图形与轴对称图形的概念是解决此类问题的关键. 7.要使分式242x x -+无意义,则x 的取值范围是( ) A .2x =-B .2x =C .2x ≠-D .2x ≠±【答案】A【分析】根据分式无意义,分母等于0列方程求解即可. 【详解】∵分式242x x -+无意义, ∴x+1=0,解得x=-1.故选A .【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(1)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 8.根据下列条件作图,不能作出唯一三角形的是( )A .已知两边和它们的夹角B .已知两边和其中一条边所对的角C .已知两角和它们的夹边D .已知两角和其中一个角所对的边【答案】B【分析】根据全等三角形的判定方法得到不能作出唯一三角形的选项即可.【详解】解:A 、根据SAS 可得能作出唯一三角形;B 、已知两边及其中一边所对的角不能作出唯一的三角形;C 、根据ASA 可得能作出唯一三角形;D 、根据AAS 可得能作出唯一三角形.故选B .【点睛】本题考查全等三角形的判定定理的应用,全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .注意SSA 不能判定两三角形全等,也不能作出唯一的三角形.9. “I am a good student.”这句话中,字母“a ”出现的频率是( )A .2B .215C .118D .111 【答案】B【解析】这句话中,15个字母a 出现了2次,所以字母“a”出现的频率是215. 故选B.10.以下运算正确的是( )A .326)ab ab =(B .333(3)9xy x y -=-C .3412x x x •=D .22(3)9x x =【答案】D【分析】由积的乘方运算判断A ,由积的乘方运算判断B ,由同底数幂的运算判断C ,由积的乘方运算判断D .【详解】解:3226(),ab a b =故A 错误; 333(3)27,xy x y -=-故B 错误;347x x x •=,故C 错误;22(3)9x x =,故 D 正确;故选D .【点睛】本题考查的是积的乘方运算,同底数幂的运算,掌握以上运算法则是解题的关键.二、填空题11.小明从家跑步到学校,接着马上原路步行回家.如图所示为小明离家的路程()y m 与时间(min)t 的图像,则小明回家的速度是每分钟步行________m .【答案】1【分析】先分析出小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),再根据路程、时间、速度的关系即可求得.【详解】解:通过读图可知:小明家距学校10米,小明从学校步行回家的时间是15-5=10(分), 所以小明回家的速度是每分钟步行10÷10=1(米).故答案为:1.【点睛】本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.12.直线26y x =-+与x 轴的交点为M ,将直线26y x =-+向左平移5个单位长度,点M 平移后的对应点M '的坐标为______________,平移后的直线表示的一次函数的解析式为_____________.【答案】(2,0)- 24y x =--【分析】求出M 的坐标,把M 往左平移5个单位即可得到'M 的坐标,直接利用一次函数图象的平移性质可得到平移后的一次函数.【详解】解:∵直线y=-2x+6与x 轴的交点为M ,∴y=0时,0=-2x+6, 解得:x=3,所以:(3,0)M∵将直线y=-2x+6向左平移5个单位长度,∴点M 平移后的对应点M ′的坐标为:(-2,0),平移后的直线表示的一次函数的解析式为:y=-2(x+5)+6=-2x-1.故答案为:(-2,0),y=-2x-1.【点睛】此题主要考查了一次函数与几何变换,正确掌握点的平移与函数图像的平移规律是解题关键. 13.已知一个三角形的三边长为3、8、a ,则a 的取值范围是_____________.【答案】5<a <1【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得8-3<a <8+3,再解即可.【详解】解:根据三角形的三边关系可得:8-3<a <8+3,解得:5<a <1,故答案为:5<a <1.【点睛】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和. 14.甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间比乙做40个所用的时间相等,则乙每小时所做零件的个数为_____.【答案】1【详解】解:设乙每小时做x个,则甲每小时做(x+4)个,甲做60个所用的时间为604x+,乙做40个所用的时间为40x,列方程为:604x+=40x,解得:x=1,经检验:x=1是原分式方程的解,且符合题意,所以乙每小时做1个,故答案为1.【点睛】本题考查了列分式方程解实际问题的运用,解答时甲做60个零件所用的时间与乙做90个零件所用的时间相等建立方程是关键.15.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为_____小时.【答案】2 1 3【分析】根据图象可得沙漏漏沙的速度,从而得出从开始计时到沙子漏光所需的时间.【详解】沙漏漏沙的速度为:15﹣6=9(克/小时),∴从开始计时到沙子漏光所需的时间为:15÷9=213(小时).故答案为:213.【点睛】本题考查了一次函数的运用,学会看函数图象,理解函数图象所反映的实际意义,从函数图象中获取信息,并且解决有关问题.16.如图,△ABC≌△DEC,∠ACD=28°,则∠BCE=_____°.【答案】1【分析】根据全等三角形对应角相等可得∠ACB=∠DCE,再根据等式的性质两边同时减去∠ACE可得结论.【详解】证明:∵△ABC≌△DEC,∴∠ACB =∠DCE ,∴∠ACB ﹣∠ACE =∠DCE ﹣∠ACE ,即∠ACD =∠BCE =1°.故答案是:1.【点睛】本题考查了全等三角形的性质,三角形的内角和定理的应用,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应角相等.17.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是_____.【答案】1【分析】试题分析:过D 作DE ⊥BC 于E ,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D 作DE ⊥BC 于E ,∵∠A=90°,∴DA ⊥AB ,∵BD 平分∠ABC ,∴AD=DE=3,∴△BDC 的面积是:12×DE×BC=12×10×3=1, 故答案为1.考点:角平分线的性质.三、解答题18.如图,在等边ABC ∆中,,D E 分别为,AB AC 的中点,延长BC 至点F ,使12CF BC =,连结CD 和EF .(1)求证:CD EF=(2)猜想:ABC∆的面积与四边形BDEF的面积的关系,并说明理由.【答案】(1)见解析;(2)相等,理由见解析.【分析】(1)直接利用三角形中位线定理得出DE∥BC,且DE=12BC,再利用平行四边形的判定方法得出答案;(2)分别过点A,D,作AM⊥DE,DN⊥BC,根据等底等高的三角形面积相等求得S△ADE=S△ECF,再根据S△ADE +S四边形BDEC=S△ECF+S四边形BDEC可得出结果.【详解】(1)证明:∵D,E分别为AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=12 BC.∵CF=12 BC,∴DE∥CF,DE=CF,∴四边形DEFC为平行四边形,∴CD=EF;(2)解:相等.理由如下:分别过点A,D,作AM⊥DE,DN⊥BC,则∠AMD=∠DNB=90°,∵DE∥BC,∴∠ADM=∠DBN.∵AD=DB,∴△ADM≌△DBN(AAS),∴AM=DN.又∵DE=CF,∴S△ADE=S△ECF (等底等高的三角形面积相等).∴S△ADE+S四边形BDEC=S△ECF+S四边形BDEC,∴△ABC的面积等于四边形BDEF的面积.【点睛】此题主要考查了等边三角形的性质以及平行四边形的判定与性质、三角形中位线定理等知识,正确掌握相。

2018-2019学年度八年级上数学期末试卷(解析版) (2)

2018-2019学年度八年级上数学期末试卷(解析版) (2)

2018-2019学年八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

(汇总3份试卷)2019年漳州市八年级上学期数学期末学业水平测试试题

(汇总3份试卷)2019年漳州市八年级上学期数学期末学业水平测试试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°【答案】C【解析】由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=12∠ABC,∠BCD=12∠BCA,∴∠CBE+∠BCD=12(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选C.2.四根小棒的长分别是5,9,12,13,从中选择三根小棒首尾相接,搭成边长如下的四个三角形,其中是直角三角形的是()A.5,9,12 B.5,9,13 C.5,12,13 D.9,12,13【答案】C【分析】当一个三角形中,两个较小边的平方和等于较大边的平方,则这个三角形是直角三角形.据此进行求解即可.【详解】A、52+92=106≠122=144,故不能构成直角三角形;B、52+92=106≠132=169,故不能构成直角三角形;C、52+122=169=132,故能构成直角三角形;D、92+122=225≠132=169,故不能构成直角三角形,故选C.3.若20a ab-=(b≠0),则aa b+=()A .0B .12C .0或12D .1或 2【答案】C 【详解】解:∵20a ab -= ()0b ≠,∴a(a-b)=0,∴a=0,b=a .当a=0时,原式=0;当b=a 时,原式=12,故选C4.要使分式11x -有意义,x 应满足的条件是( ) A .1x >B .1x =C .1x ≠-D .1x ≠ 【答案】D【分析】要使分式有意义,则分式的分母不能为0,如此即可. 【详解】若分式11x -有意义,则需要保证10x -≠,解此不等式,可得1x ≠, 故本题答案选D.【点睛】本题的关键点在于,分式有意义条件:分母不为0.5.下列方程是二元一次方程的是( )A .2y xy -+=B .3115x x -=C .32x y =+D .2612x y -= 【答案】C【分析】根据二元一次方程的定义对各选项分析判断后利用排除法求解.【详解】解:A 、2y xy -+=是二元二次方程,故本选项错误;B 、3115x x -=是一元一次方程,故本选项错误;C 、32x y =+是二元一次方程,故本选项正确;D 、不是整式方程,故本选项错误.故选C .【点睛】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.6.如图,△ABC 中,∠C=90°,∠A=30°,AB =12,则BC =( )A .6B .62C .63D .12【答案】A 【详解】∵30°的角所对的直角边等于斜边的一半,1112622BC AB ∴==⨯= , 故选A. 7.如图,木工师傅在做完门框后,为防止变形常常象图中所示那样钉上两条斜拉的木条(图中的AB ,CD 两根木条),这样做是运用了三角形的( )A .全等性B .灵活性C .稳定性D .对称性【答案】C 【解析】解:三角形具有稳定性,其他多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变,故这样做是运用了三角形的稳定性故选:C8.若实数m 、n 满足等式|m ﹣n-4,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( )A .6B .8C .8或10D .10【答案】D【分析】由已知等式,结合非负数的性质求m 、n 的值,再根据m 、n 分别作为等腰三角形的腰,分类求解.【详解】解:∵n-4,∴m-2=0,n-4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=1.故选D .【点睛】本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求m 、n 的值,再根据m 或n 作为腰,分类求解.9.点D 在△ABC 的边BC 上,△ABD 和△ACD 的面积相等,则AD 是( )A .中线B .高线C .角平分线D .中垂线 【答案】A【分析】过A 作AH ⊥BC 于H ,根据三角形的面积公式得到S △ACD =12CD•AH ,S △ABD =12BD•AH ,由于△ACD 和△ABD 面积相等,于是得到12CD•AH=12BD•AH ,即可得到结论. 【详解】过A 作AH ⊥BC 于H ,∵S △ACD =12CD ⋅AH,S △ABD =12BD ⋅AH , ∵△ACD 和△ABD 面积相等,∴12CD ⋅AH=12BD ⋅AH , ∴CD=BD ,∴线段AD 是三角形ABC 的中线故选A.【点睛】此题考查三角形的角平分线、中线和高,解题关键在于画出图形.10.如图,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )A .B .C .D .【答案】D【分析】根据一次函数的系数与图象的关系依次分析选项,找k 、b 取值范围相同的即得答案.【详解】根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,1y kx b =+中,0k >,0b >,2y bx k =+中,0b <,0k >,不符合;B 、由图可得,1y kx b =+中,0k <,0b <,2y bx k =+中,0b >,0k <,不符合;C 、由图可得,1y kx b =+中,0k >,0b >,2y bx k =+中,0b <,0k <,不符合;D 、由图可得,1y kx b =+中,0k >,0b <,2y bx k =+中,0b <,0k >,符合;故选:D .【点睛】本题考查了一次函数的图象问题,解答本题注意理解:直线y kx b =+所在的位置与k b 、的符号有直接的关系.二、填空题11.如图,在Rt ABC ∆中,90BAC ∠=︒,AD BC ⊥于D ,BE 平分ABC ∠交AC 于E ,交AD 于F ,//FG BC ,//FH AC ,下列结论:①AE AF =;②AF FH =;③AG CE =;④AB FG BC +=,其中正确的结论有____________. (填序号)【答案】①②③④【分析】只要证明∠AFE =∠AEF ,四边形FGCH 是平行四边形,△FBA ≌△FBH 即可解决问题.【详解】∵∠FBD =∠ABF ,∠FBD +∠BFD =90°,∠ABF +∠AEB =90°∴∠BFD =∠AEB∴∠AFE =∠AEB∴AF =AE,故①正确∵FG ∥BC ,FH ∥AC∴四边形FGCH 是平行四边形∴FH =CG ,FG =CH ,∠FHD =∠C∵∠BAD +∠DAC =90°,∠DAC +∠C =90°∴∠BAF =∠BHF∵BF =BF ,∠FBA =∠FBH∴△FBA ≌△FBH (AAS )∴FA =FH ,AB =BH ,故②正确∵AF =AE ,FH =CG∴AE =CG∴AG =CE ,故③正确∵BC =BH +HC ,BH =BA ,CH =FG∴BC =AB +FG ,故④正确故答案为:①②③④【点睛】本题主要考查全等三角形的判定和性质,关键是选择恰当的判定条件,同时要注意利用公共边、公共角进行全等三角形的判定.12.计算2144x y x ⎛⎫⋅-⎪⎝⎭=________. 【答案】3-x y .【分析】根据单项式乘以单项式的法则进行计算即可.【详解】解:原式=214()4x x y ⨯-⋅⋅⋅=3-x y故答案为:3-x y .【点睛】本题考查单项式乘以单项式,掌握计算法则正确计算是关键.13.如图,四边形ABCD 中,AB =AD ,AC =5,∠DAB =∠DCB =90°,则四边形ABCD 的面积为_____.【答案】12.1【分析】过A 作AE ⊥AC ,交CB 的延长线于E ,判定△ACD ≌△AEB ,即可得到△ACE 是等腰直角三角形,四边形ABCD 的面积与△ACE 的面积相等,根据S △ACE =12×1×1=12.1,即可得出结论. 【详解】如图,过A 作AE ⊥AC ,交CB 的延长线于E ,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC ,∴∠D=∠ABE ,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB(ASA),∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=12×1×1=12.1,∴四边形ABCD的面积为12.1,故答案为12.1.【点睛】本题主要考查了全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题14.如图,在等边ABC∆中,D是BC的中点,E是AB的中点,H是AD上任意一点.如果10AB AC BC===,53AD=,那么HE HB+的最小值是.【答案】53【分析】从题型可知为”将军饮马”的题型,连接CE,CE即为所求最小值.【详解】∵△ABC是等边三角形,∴B点关于AD的对称点就是C点,连接CE交AD于点H,此时HE+HB的值最小.∴CH=BH,∴HE+HB=CE,根据等边三角形的性质,可知三条高的长度都相等,∴CE=AD=53.故答案为: 53.【点睛】本题考查三角形中动点最值问题,关键在于寻找对称点即可求出最值.15.如图所示,是由截面相同的长方形墙砖粘贴的部分墙面,根据图中信息可得每块墙砖的截面面积是__________2cm .【答案】112【分析】设每块墙砖的长为xcm ,宽为ycm ,根据题意,有“三块横放的墙砖比一块竖放的墙砖高5cm ,两块横放的墙砖比两块竖放的墙砖低18cm ”列方程组求解可得.【详解】解:设每块墙砖的长为xcm ,宽为ycm ,根据题意得:532218x y x y +=⎧⎨=+⎩, 解得:167x y =⎧⎨=⎩, ∴每块墙砖的截面面积是:167112⨯=;故答案为:112.【点睛】本题主要考查二元一次方程组的应用,理解题意找到题目蕴含的相等关系列方程组是解题的关键. 16.某同学在解关于x 的分式方程3622x m x x -+=--去分母时,由于常数6漏乘了公分母,最后解得1x =-.1x =-是该同学去分母后得到的整式方程__________的解,据此可求得m =__________,原分式方程的解为__________.【答案】x-3+6=m ; 2; 17x 7= 【分析】根据题意,常数6没有乘以(x-2),即可得到答案;把1x =-代入方程,即可求出m 的值;把m 的值代入,重新计算原分式方程,即可得到原分式方程的解.【详解】解:根据题意,由于常数6漏乘了公分母,则3(2)6(2)22x m x x x x -⨯-+=⨯--- ∴36x m -+=;把1x =-代入36x m -+=,得:136m --+=,解得:2m =; ∴32622x x x -+=--,∴36(2)2x x -+-=,∴717x =, ∴17x 7=. 经检验,17x 7=是原分式方程的解. 故答案为:36x m -+=;2;17x 7=. 【点睛】本题考查了解分式方程,解题的关键是熟练掌握解分式方程的方法和步骤.注意不要漏乘公分母,解分式方程需要检验.17.因式分解:224a a -=___.【答案】2a (a-2)【详解】2242(2)-=-a a a a三、解答题18.解答下列各题(1)已知:如图1,直线AB 、CD 被直线AC 所截,点E 在AC 上,且∠A =∠D+∠CED ,求证:AB ∥CD ; (2)如图2,在正方形ABCD 中,AB =8,BE =6,DF =1.①试判断△AEF 的形状,并说明理由;②求△AEF 的面积.【答案】(1)详见解析;(2)①△AEF 是直角三角形,理由详见解析;②2.【分析】(1)延长AC 至F ,证明∠FCD =∠A ,则结论得证;(2)①延长AF 交BC 的延长线于点G ,证明△ADF ≌△GCF ,可得AF =FG ,然后求出AE =EG ,由等腰三角形的性质可得△AEF 是直角三角形;②根据S △AEF =S 正方形ABCD ﹣S △ABE ﹣S △ADF ﹣S △CEF 进行计算即可.【详解】解:(1)延长AC 至F ,如图1,∵∠FCD =∠CED+∠D ,∠A =∠D+∠CED ,∴∠FCD =∠A ,∴AB ∥CD ;(2)①如图2,延长AF 交BC 的延长线于点G ,∵正方形ABCD 中,AB =8,DF =1,∴DF =CF =1,∵∠D =∠FCG =90°,∠AFD =∠CFG ,∴△ADF ≌△GCF (ASA ),∴AF =FG ,AD =GC =8,∵AB =8,BE =6,∴AE 22AB BE +2286+10,CE =2,∵EG =CE+CG =2+8=10,∴AE =EG ,∴EF ⊥AG ,∴△AEF 是直角三角形;②∵AB =AD =8,DF =CF =1,BE =6,CE =2,S △AEF =S 正方形ABCD ﹣S △ABE ﹣S △ADF ﹣S △CEF , =11188868442222⨯-⨯⨯-⨯⨯-⨯⨯, =61-21-16-1,=2.【点睛】本题是四边形综合题,考查了平行线的判定,正方形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的性质及三角形的面积计算等知识,熟练掌握全等三角形的判定与性质是解题的关键. 19.如图,已知,DE AC BF AC ⊥⊥,垂足分别是//E F AE CF DC AB =,,,.(1)证明:DE BF =.(2)连接,DF BE ,猜想DF 与BE 的关系?并证明你的猜想的正确性.【答案】(1)证明见解析;(2)DF=BE ,DF ∥BE ,证明见解析.【分析】(1)求出AF=CE ,∠AFB=∠DEC=90°,根据平行线的性质得出∠DCE=∠BAF ,根据ASA 推出△AFB ≌△CED 即可;(2)根据平行四边形的判定得出四边形是平行四边形,再根据平行四边形的性质得出即可.【详解】(1)证明:∵AE=CF ,∴AE+EF=CF+EF ,∴AF=CE ,∵DE ⊥AC ,BF ⊥AC ,∴∠AFB=∠DEC=90°,∵DC ∥AB ,∴∠DCE=∠BAF ,在△AFB 和△CED 中BAF DCE AF CEAFB DEC ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△AFB ≌△CED ,∴DE=EF ;(2)DF=BE ,DF ∥BE ,证明:∵DE ⊥AC ,BF ⊥AC ,∴DE ∥BF ,∵DE=BF ,∴四边形DEBF 是平行四边形,∴DF=BE ,DF ∥BE .【点睛】本题考查了全等三角形的性质和判定,平行线的性质,平行四边形的性质和判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,HL ,全等三角形的对应边相等,对应角相等.20.甲、乙两名战士在相同条件下各射击10次,每次命中的环数如下:甲:8,6,7,8,9,10,6,5,4,7乙:7,9,8,5,6,7,7,6,7,8(1)分别计算以上两组数据的平均数;(2)分别计算以上两组数据的方差.【答案】(1)甲:7,乙:7;(1)甲:3,乙:1.1【分析】(1)根据平均数的公式:平均数=所有数之和再除以数的个数;(1)方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可,所以计算方差前要先算出平均数,然后再利用方差公式计算,【详解】解:(1)x 甲 =8678910654710+++++++++=7; x 乙 =798567767810+++++++++=7; (1)2S 甲=110×[(4-7)1+(5-7)1+1×(6-7)1+1×(7-7)1+1×(8-7)1+(9-7)1+(10-7)1]=3; 2S 乙=110×[(5-7)1+1×(6-7)1+4×(7-7)1+1×(8-7)1+(9-7)1]=1.1. 【点睛】本题考查平均数、方差的定义:一般地设n 个数据,x 1,x 1,…x n 的平均数为x ,则方差S 1=1n[(x 1-x )1+(x 1-x )1+…+(x n -x )1],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 21.已知:如图,在ABC 中,BE AC ⊥,垂足为点E ,CD AB ⊥,垂足为点D ,且BD CE =. 求证:A ABC CB =∠∠.【答案】见解析.【分析】根据垂直的定义得到∠BEC =∠CDB =90°,然后利用HL 证明Rt △BEC ≌Rt △CDB ,根据全等三角形的性质即可得出结论.【详解】解:∵BE ⊥AC ,CD ⊥AB ,∴∠BEC =∠CDB =90°,在Rt △BEC 和Rt △CDB 中,BD CE BC CB =⎧⎨=⎩, ∴Rt △BEC ≌Rt △CDB (HL ),∴∠DBC =∠ECB ,即∠ABC =∠ACB .【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题关键.22.ABC 在平面直角坐标系中的位置如图所示.()1在图中画出ABC 与关于y 轴对称的图形111A B C ,并写出顶点1A 、1B 、1C 的坐标;()2若将线段11A C 平移后得到线段22A C ,且()()2222A a C b ,,,-,求a b +的值.【答案】(1)作图见解析,A 1(2,3)、B 1(3,2)、C 1(1,1);(2)a+b=-1.【分析】(1)根据轴对称的性质确定出点A 1、B 1、C 1的坐标,然后画出图形即可;(2)由点A 1、C 1的坐标,根据平移与坐标变化的规律可规定出a 、b 的值,从而可求得a+b 的值.【详解】解:(1)如图所示:A 1(2,3)、B 1(3,2)、C 1(1,1).(2)∵A 1(2,3)、C 1(1,1),A 2(a ,2),C 2(-2,b ).∴将线段A 1C 1向下平移了1个单位,向左平移了3个单位.∴a=-1,b=2.∴a+b=-1+2=-1.本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a 、b 的值是解题的关键.23.如图,在ABC ∆中,120AB AC BAC =∠=︒,,直线DE 垂直平分AC ,交BC 于点D ,交AC 于点E ,且2DE cm =,求BC 的长.【答案】12BC cm =【分析】首先连接AD ,由DE 垂直平分AC ,根据线段垂直平分线的性质,易得AD=CD ,又由在△ABC 中,AB=AC ,∠BAC=120°,易求得∠DAC=∠B=∠C=30°,继而可得∠BAD=90°,然后利用含30°角的直角三角形的性质,可求得CD 、BD 的长,进而得出BC 的长.【详解】连接AD .∵DE 垂直平分AC ,∴AD=CD ,∠DEC=90°,∴∠DAC=∠C .∵在△ABC 中,AB=AC ,∠BAC=120°,∴∠B=∠C 1802BAC ︒-∠==30°, ∴∠DAC=∠C=∠B=30°,∴∠ADB=∠DAC+∠C=60°,∴∠BAD=180°﹣∠B ﹣∠ADB=90°,在Rt △CDE 中,∠C=30°,DE=2cm ,∴CD=2DE=4cm ,∴AD=CD=4cm ,在Rt △BAD 中,∠B=30°,∴BD=2AD=8cm ,∴BC=BD+CD=12cm .本题考查了线段垂直平分线的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.24.解下列方程. (1)21122x x x =+-- (2)2221141242x x x +=-- 【答案】(1)3x =-是该方程的解;(2)0x =是该方程的解.【分析】(1)方程两边同时乘以(2x -),化为整式方程后求解,然后进行检验即可得;(2)方程两边同时乘以()()22121x x +-,化为整式方程后求解,最后进行检验即可得.【详解】(1) 21122x x x=+-- 方程两边同时乘以(2x -),得:221x x =--,解得:3x =-,经检验: 3x =-是原分式方程的解;(2) 2221141242x x x +=-- 方程两边同时乘以()()22121x x +-,得:()()()24212121x x x x -+=+-, 解得:0x =,经检验: 0x =是原分式方程的解.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤以及注意事项是解题的关键.25.如图,在四边形ABCD 中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD 的长.【答案】CD=2.【分析】先延长AD 、BC 交于E,根据已知证出△CDE 是等边三角形,设CD=x=CE=DE=x,根据AD=4,BC=1和30度角所对的直角边等于斜边的一半,求出x 的值即可.【详解】延长AD 、BC ,两条延长线交于点E,∵∠B=90°,∠A=30°∴∠E=60°∵∠ADC=120°∴∠CDE=60°∴△CDE是等边三角形则CD=CE=DE设CD=x,则CE=DE=x,AE=x+4,BE=x+1∵ 在Rt△ABE中,∠A=30°∴ x+4=2(x+1)解得:x=2∴CD=2.【点睛】此题考查了含30度角的直角三角形,用到的知识点是30度角所对的直角边等于斜边的一半,等边三角形的判定与性质,关键是作出辅助线,构造直角三角形.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.解分式方程2x 23x 11x ++=--时,去分母后变形为 A .()()2x 23x 1++=- B .()2x 23x 1-+=-C .()()2x 231?x -+=- D .()()2x 23x 1-+=- 【答案】D【解析】试题分析:方程22311x x x++=--,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D. 考点:解分式方程的步骤.2.当分式21x x +-的值为0时,字母x 的取值应为( ) A .﹣1B .1C .﹣2D .2【答案】C【分析】解分式方程,且分式的分母不能为0.【详解】解:由题意,得x+2=0且x ﹣1≠0,解得x=﹣2,故选:C .【点睛】掌握分式方程的解法为本题的关键.3.下列四个互联网公司logo 中,是轴对称图形的是( )A .B .C .D . 【答案】D【分析】根据轴对称图形的概念判断即可.【详解】解:A 、不是轴对称图形;B 、不是轴对称图形;C 、不是轴对称图形;D 、是轴对称图形;故选:D .【点睛】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 4.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .4【答案】C 【解析】根据轴对称图形的概念求解.【详解】第1,2,3个图形为轴对称图形,共3个.故选:C .【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合. 5.若把分式x yy x +中的x 、y 都扩大2倍,那么分式的值( ) A .扩大2倍B .不变C .缩小一半D .缩小4倍 【答案】C【分析】可将式中的x ,y 都用2x ,2y 来表示,再将后来的式子与原式对比,即可得出答案. 【详解】解:由题意,分式x yy x +中的x 和y 都扩大2倍, ∴2222x y x y +⋅=2x yy x +, 分式的值是原式的12,即缩小一半, 故选:C .【点睛】本题考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,分子、分母、分式本身同时改变两处的符号,分式的值不变,掌握知识点是解题关键.6.以下列各组线段为边,能组成三角形的是( )A .1cm ,2cm ,3cmB .2cm ,3cm ,4cmC .5cm ,6cm ,12cmD .2cm ,3cm ,5cm【答案】B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A 、1+2=3,不能组成三角形;B 、2+3>4,能组成三角形;C 、5+6<12,不能够组成三角形;D、2+3=5,不能组成三角形.故选:B.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或20【答案】C【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8-4<8<8+4,符合题意.故此三角形的周长=8+8+4=1.故选C【点睛】本题考查了等腰三角形的性质及三角形三边关系,分情况分析师解题的关键.8.关于x的不等式(m+1)x>m+1的解集为x<1,那么m的取值范围是()A.m<﹣1 B.m>﹣1 C.m>0 D.m<0【答案】A【解析】本题是关于x的不等式,不等式两边同时除以(m+1)即可求出不等式的解集,不等号发生改变,说明m+1<0,即可求出m的取值范围.【详解】∵不等式(m+1)x>m+1的解集为x<1,∴m+1<0,∴m<−1,故选:A.【点睛】考查解一元一次不等式,熟练掌握不等式的3个基本性质是解题的关键.9=2,则x的值为()A.4 B.8 C.﹣4 D.﹣5【答案】B【分析】根据立方根的定义,解答即可.=2,∴x=23=1.故选:B.【点睛】 本题主要考查立方根的定义,掌握“若3x =a ,则a 3=x ”是解题的关键.10.在38,0,2π,﹣227,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)这六个数中,无理数的个数共有( ) A .2个B .3个C .4个D .5个 【答案】A【解析】根据无理数的定义对每个数进行判断即可.【详解】在38,1,2π,﹣227,1.1111111111…(相邻两个1之间的1的个数逐渐增加1)这六个数中,无理数有:2π,1.1111111111…(相邻两个1之间的1的个数逐渐增加1)共2个. 故选:A .【点睛】本题考查了无理数的定义,掌握无理数的定义以及判定方法是解题的关键.二、填空题11.如图,ABC ∆中,12AB AC ==,10BC =,AD 平分BAC ∠交BC 于点D ,点E 为AC 的中点,连接DE ,则CDE ∆的周长为_______________.【答案】2【分析】根据等腰三角形三线合一的性质可得AD ⊥BC ,CD=BD ,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE 12=AC ,然后根据三角形的周长公式列式计算即可得解. 【详解】∵AB=AC ,AD 平分∠BAC ,BC=10,∴AD ⊥BC ,CD=BD 12=BC=1. ∵点E 为AC 的中点,∴DE=CE 12=AC=6, ∴△CDE 的周长=CD+DE+CE=1+6+6=2.故答案为:2.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解答本题的关键.12.过多边形的一个顶点可以作9条对角线,那么这个多边形的内角和比外角和大_____.【答案】1440°【分析】从多边形一个顶点可作9条对角线,则这个多边形的边数是12,n 边形的内角和可以表示成(n ﹣2)•180°,代入公式就可以求出内角和.再根据多边形外角和等于360°列式计算即可.【详解】解:∵过多边形的一个顶点共有9条对角线,故该多边形边数为12,∴内角和是(12﹣2)•180°=1800°,∴这个多边形的内角和比外角和大了:1800°﹣360°=1440°.故答案为:1440°【点睛】本题主要考查了多边形的对角线、内角和公式.外角和公式,是需要熟记的内容,比较简单.13.在平面直角坐标系中,点()42P ,关于y 轴的对称点的坐标是__________. 【答案】()4,2-【分析】点P 的横坐标的相反数为所求的点的横坐标,纵坐标不变为所求点的纵坐标.【详解】解:点()42P ,关于y 轴的对称点的横坐标为-4;纵坐标为2; ∴点()42P ,关于y 轴的对称点的坐标为()4,2-, 故答案为:()4,2-.【点睛】用到的知识点为:两点关于y 轴对称,横坐标互为相反数,纵坐标不变.14.为了增强学生体质,某学校将“抖空竹”引阳光体育一小时活动,图1是一位同学抖空竹时的一个瞬间,小明把它抽象成图2的数学问题:已知//,80,110AB CD EAB ECD ∠=︒∠=︒,则E ∠的度数是_____.【答案】30°【分析】过E 点作EF ∥AB ,由两直线平行,同旁内角互补即可求解.【详解】解:过E 点作EF ∥AB ,如下图所示:∵EF ∥AB ,∴∠EAB+∠AEF=180°,又∠EAB=80°∴∠AEF=100°∵EF ∥AB ,AB ∥CD∴EF ∥CD∴∠CEF+∠ECD=180°,又∠ECD=110°∴∠CEF=70°∴∠AEC=∠AEF-∠CEF=100°-70°=30°.故答案为:30°.【点睛】本题考查平行线的构造及平行线的性质,关键是能想到过E 点作EF ∥AB ,再利用两直线平行同旁内角互补即可解决.15.已知25,23m n ==,则+2m n =__________.【答案】1【分析】逆用同底数幂的乘法法则,即a m+n =a m ·a n 解答即可.【详解】解:∵2m =5,2n =3,∴2m+n =2m •2n =5×3=1.故答案为:1.【点睛】本题考查了同底数幂的乘法法则的逆运用,灵活运用公式是解题的关键.16.因式分解:3xy ﹣6y=_____.【答案】3y (x ﹣2).【分析】直接提取公因式进而分解因式即可.【详解】解:3xy ﹣6y=3y (x ﹣2).故答案为:3y (x ﹣2).【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题的关键.17.函数3 4y x =-自变量x 的取值范围是______. 【答案】4x ≠【分析】根据分母不为零分式有意义,可得答案.【详解】解:由题意,得1-x≠0,解得x≠1,故答案为x≠1.【点睛】本题考查了函数值变量的取值范围,利用分母不为零得出不等式是解题关键.三、解答题18.计算:(1)4﹣38(2)(2-1)0﹣|1﹣23|(3)+-【答案】(1)0;(2)5﹣3【分析】(1)先求算术平方根与立方根,再进行减法运算,即可;(2)先求零次幂,绝对值和算术平方根,再进行加减法运算,即可求解.【详解】(1)原式=2﹣2=0;(2)原式=1+(1﹣3)+3=5﹣3.【点睛】本题主要考查实数的混合运算,掌握求算术平方根,立方根,零次幂是解题的关键.19.阅读下面材料:数学课上,老师给出了如下问题:如图,AD 为△ABC 中线,点E 在AC 上,BE 交AD 于点F ,AE =EF .求证:AC =BF .经过讨论,同学们得到以下两种思路:思路一如图①,添加辅助线后依据SAS 可证得△ADC ≌△GDB ,再利用AE =EF 可以进一步证得∠G =∠FAE=∠AFE=∠BFG,从而证明结论.思路二如图②,添加辅助线后并利用AE=EF可证得∠G=∠BFG=∠AFE=∠FAE,再依据AAS可以进一步证得△ADC≌△GDB,从而证明结论.完成下面问题:(1)①思路一的辅助线的作法是:;②思路二的辅助线的作法是:.(2)请你给出一种不同于以上两种思路的证明方法(要求:只写出辅助线的作法,并画出相应的图形,不需要写出证明过程).【答案】(1)①延长AD至点G,使DG=AD,连接BG;②作BG=BF交AD的延长线于点G;(2)详见解析【分析】(1)①依据SAS可证得△ADC≌△GDB,再利用AE=EF可以进一步证得∠G=∠FAE=∠AFE=∠BFG,从而证明结论.②作BG=BF交AD的延长线于点G.利用AE=EF可证得∠G=∠BFG=∠AFE=∠FAE,再依据AAS可以进一步证得△ADC≌△GDB,从而证明结论.(2)作BG∥AC交AD的延长线于G,证明△ADC≌△GDB(AAS),得出AC=BG,证出∠G=∠BFG,得出BG=BF,即可得出结论.【详解】解:(1)①延长AD至点G,使DG=AD,连接BG,如图①,理由如下:∵AD为△ABC中线,∴BD=CD,在△ADC和△GDB中,=AD DGADC GD CD BDB ⎧=∠⎪∠⎪⎨⎩=,∴△ADC≌△GDB(SAS),∴AC=BG,∵AE=EF,∴∠CAD=∠EFA,∵∠BFG=∠G,∠G=∠CAD,∴∠G=∠BFG,∴BG=BF,∴AC=BF.故答案为:延长AD至点G,使DG=AD,连接BG;②作BG=BF交AD的延长线于点G,如图②.理由如下:∵BG=BF,∴∠G=∠BFG,∵AE=EF,∴∠EAF=∠EFA,∵∠EFA=∠BFG,∴∠G=∠EAF,在△ADC和△GDB中,CAD GADC GCD BDDB ⎧⎪⎨⎪=⎩∠∠∠∠==,∴△ADC≌△GDB(AAS),∴AC=BG,∴AC=BF;故答案为:作BG=BF交AD的延长线于点G;(2)作BG∥AC交AD的延长线于G,如图③所示:则∠G=∠CAD,∵AD为△ABC中线,∴BD=CD,在△ADC和△GDB中,CAD GADC GCD BDDB ⎧⎪⎨⎪=⎩∠∠∠∠==,∴△ADC≌△GDB(AAS),∴AC=BG,∵AE=EF,∴∠CAD=∠EFA,∵∠BFG=∠EFA,∠G=∠CAD,∴∠G=∠BFG,∴BG=BF,∴AC=BF.【点睛】本题主要考查全等三角形的判定和性质、等腰三角形的性质、其中一般证明两个三角形全等共有四个定理:AAS 、ASA 、SAS 、SSS ,需要同学们灵活运用,解题的关键是学会做辅助线解决问题.20.在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,△ADC 和△CEB 全等吗?请说明理由;(2)聪明的小亮发现,当直线MN 绕点C 旋转到图1的位置时,可得DE=AD+BE ,请你说明其中的理由;(3)小亮将直线MN 绕点C 旋转到图2的位置,发现DE 、AD 、BE 之间存在着一个新的数量关系,请直接写出这一数量关系。

2018~2019(上)初二数学期末考试试题解析

2018~2019(上)初二数学期末考试试题解析

(1) 求证:CD⊥AB; (2) 求 AC 的长. 【考点】勾股定理及其逆定理
【难度星级】★★
【答案】(1)证明:在 BCD 中, BD 1, CD 2 , BC 5 ,
∴ BD2 +CD2 12 22 5 , BC 2 5 ∴ BD2 +CD2 BC2 ∴ BCD 是直角三角形,且 CDB 90 ∴CD⊥AB. (2)解:由(1)知 CD⊥AB,∴ ADC 90 ∵ AB 4 , BD 1,∴ AD AB DB 3 在 RtACD 中, CD 2 , AD 3
【考点】函数与方程 【难度星级】★ 【答案】B 【解析】 2x 3y 6,整理可得y 2 x 2 ,图象过一、三、四象限.
3
-1-
-1--1-
4.如图,将含 30°角的直角三角板 ABC 的直角顶点 C 放在直尺的一边上,已知 A 30,1 40 ,则 2 的度数为( )
A.55°
B.60°
一个角的两边,那么这两个角相等.其中是真命题的有( )
A.0 个
B.1 个
C.2 个
D.3 个
【考点】真命题与假命题的判定 【难度星级】★ 【答案】C 【解析】③如果一个角的两边分别平行于另一个角的两边,那么这两个角可能相等也可能互补.真命题个 数有 2 个.
-3-
-3--3-
9. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出 八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出 8 钱, 还多 3 钱;每人出 7 钱,则差 4 钱.求物品的价格和共同购买该物品的人数.设该物品的价格是 x 钱,共同 购买该物品的有 y 人,则根据题意,列出的方程组是()

(汇总3份试卷)2018年漳州市八年级上学期数学期末复习能力测试试题

(汇总3份试卷)2018年漳州市八年级上学期数学期末复习能力测试试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知(m-n )2=8,(m+n )2=2,则m 2+n 2=( )A .10B .6C .5D .3【答案】C【分析】根据完全平方公式可得()22228m n m mn n -=-+= ,()22222m n m mn n +=++=,再把两式相加即可求得结果.【详解】解:由题意得()22228m n m mn n -=-+= ,()22222m n m mn n +=++= 把两式相加可得,则 故选C.考点:完全平方公式点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.2.将一副直角三角尺如图放置,已知AE ∥BC ,则∠AFD 的度数是( )A .45°B .50°C .60°D .75°【答案】D【解析】本题主要根据直角尺各角的度数及三角形内角和定理解答.解:∵∠C=30°,∠DAE=45°,AE ∥BC ,∴∠EAC=∠C=30°,∠FAD=45﹣30=15°,在△ADF 中根据三角形内角和定理得到:∠AFD=180﹣90﹣15=75°.故选D .3.如图,根据计算长方形ABCD 的面积,可以说明下列哪个等式成立( )A .222()2a b a ab b +=++B .222()2a b a ab b -=-+C .22()()a b a b a b +-=-D .2()a a b a ab +=+【答案】D 【详解】长方形ABCD 的面积的两种表示方法可得()2a ab a ab +=+, 故选D.4.下列长度的三条线段能组成三角形的是( )A .6cm ,8cm ,9cmB .4cm ,4cm ,10cmC .5cm ,6cm ,11cmD .3cm ,4cm ,8cm【答案】A【分析】根据三角形中:两边之和大于第三边,两边之差小于第三边即可求解.【详解】解:A 、∵两边之和大于第三边,两边之差小于第三边,∴能构成三角形,故本选项正确; B 、∵4+4<10,∴不能构成三角形,故本选项错误;C 、∵5+6=11,∴不能构成三角形,故本选项错误;D 、∵3+4=7<8,∴不能构成三角形,故本选项错误.故选:A .【点睛】本题考查的是三角形三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.5.2011年3月11日,里氏9.0级的日本大地震导致当天地球的自转时间较少了0.000 001 6秒,将0.000 001 6用科学记数法表示为 ( )A .71610-⨯B .61.610-⨯C .51.610-⨯D .51610-⨯ 【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000016=1.6×10-6.故选B.【点睛】科学计数法:绝对值大于10的数记成a×10n 的形式,其中1≤|a|<10,n 是正整数.6.到三角形三个顶点距离相等的点是( )A .三条角平分线的交点B .三边中线的交点C .三边上高所在直线的交点D .三边的垂直平分线的交点 【答案】D【分析】根据垂直平分线的性质定理的逆定理即可做出选择.【详解】∵到一条线段两端点的距离相等的点在这条线段的垂直平分线上,∴到三角形三个顶点距离相等的点是三边的垂直平分线的交点,故选:D.【点睛】本题考查了线段垂直平分线,理解线段垂直平分线的性质的逆定理是解答的关键.7.若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3D.x=3【答案】C【解析】试题分析:要使有意义,则x-3≠0,即x≠3,故答案选C.考点:分式有意义的条件.8.已知等腰三角形一腰上的高与另一腰的夹角是40º,则底角是()A.65ºB.50ºC.25ºD.65º或25º【答案】D【分析】从锐角三角形和钝角三角形两种情况,利用三角形内角和定理即可求出它的底角的度数.【详解】在三角形ABC中,设AB=AC BD⊥AC于D,①若是锐角三角形,如图:∠A=90°-40°=50°,底角=(180°-50°)÷2=65°;②若三角形是钝角三角形,如图:∠A=40°+90°=130°,此时底角=(180°-130°)÷2=25°,所以等腰三角形底角的度数是65°或者25°.故选:D.【点睛】本题主要考查了等腰三角形的性质和三角形内角和定理,此题的关键是熟练掌握三角形内角和定理. 9.分式11x --可变形为( ) A .11x -- B .11x + C .11x -+ D .11x - 【答案】D【分析】根据分式的性质逐项进行化简即可,注意负号的作用. 【详解】1111=1(1)11x x x x -==----+- 故选项A 、B 、C 均错误,选项D 正确,故选:D .【点睛】本题考查分式的性质,涉及带负号的化简,是基础考点,亦是易错点,掌握相关知识是解题关键. 10.把x 2y -y 分解因式,正确的是( )A .y (x 2-1)B .y (x+1)C .y (x -1)D .y (x+1)(x -1) 【答案】D【解析】试题解析:原式()()()2111.y x y x x =-=+- 故选D.点睛:因式分解的常用方法:提取公因式法,公式法,十字相乘法.二、填空题11.将0.000056用科学记数法表示为____________________.【答案】55.610-⨯【分析】根据科学记数法的表示方法解答即可.【详解】解:0.000056=55.610-⨯.故答案为:55.610-⨯.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.在正整数中,2111111222⎛⎫⎛⎫⎛⎫-=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 2111111333⎛⎫⎛⎫⎛⎫-=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 2111111444⎛⎫⎛⎫⎛⎫-=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭利用上述规律,计算2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭_____. 【答案】10102019【分析】先依据题例用平方差公式展开,再利用乘法分配律交换位置后,相乘进行约分计算即可.【详解】解:2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=11111111(1)(1)(1)(1)(1)(1)(1)(1)22334420192019+-+-+-+- =11111111(1)(1)(1)(1)(1)(1)(1)(1)23420192342019++++⨯---- =3452020123201823420192342019⨯⨯⨯⨯⨯⨯⨯⨯⨯ =2020122019⨯ =10102019, 故答案为:10102019. 【点睛】 本题考查运用因式分解对有理数进行简便运算.熟练掌握平方差公式是解题关键.13.已知CD 是Rt △ABC 的斜边AB 上的中线,若∠A =35°,则∠BCD =_____________.【答案】55°【分析】这道题可以根据CD 为斜边AB 的中线得出CD=AD ,由∠A=35°得出∠A=∠ACD=35°,则∠BCD=90°- 35°=55°.【详解】如图,∵CD 为斜边AB 的中线∴CD=AD∵∠A=35°∴∠A=∠ACD=35°∵∠ACD+∠BCD=90°则∠BCD=90°- 35°=55°故填:55°.【点睛】此题主要考查三角形内角度求解,解题的关键是熟知直角三角形的性质.14.若340x y +-=,则327x y ⋅=__________.【答案】1【分析】将x+3y 看作一个整体并求出其值,然后逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】∵x+3y-4=0,∴x+3y=4,∴3x •27y =3x •33y =3x+3y =34=1.故答案为:1.【点睛】本题考查了同底数幂相乘,底数不变指数相加,熟记性质并灵活运用是解题的关键,要注意整体思想的利用.15.如图,在△ABC 中,AB 和AC 的垂直平分线分别交BC 于E 、F ,若∠BAC=130°,则∠EAF=________.【答案】80°【解析】由在△ABC 中,AB 和AC 的垂直平分线分别交BC 于E 、F ,易得∠B=∠BAE ,∠C=∠CAF ,又由∠BAC=130°,可求得∠B+∠C 的度数,继而求得答案.【详解】∵在△ABC 中,AB 和AC 的垂直平分线分别交BC 于E 、F ,∴AE=BE ,AF=CF ,∴∠B=∠BAE ,∠C=∠CAF ,∵∠BAC=130°,∴∠B+∠C=180°-∠BAC=50°,∴∠BAE+∠CAF=50°,∴∠EAF=∠BAC-(∠BAE+∠CAF )=130°-50°=80°.故答案为:80°.【点睛】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意掌握整体思想的应用是解此题的关键. 16.已知点A (m+3,2)与点B (1,n ﹣1)关于y 轴对称,则代数式(m+n )2017的值为 .【答案】﹣1.【详解】解:∵点A (m +3,2)与点B (1,n ﹣1)关于y 轴对称,∴m +3=﹣1,n ﹣1=2,解得:m =﹣4,n =3,∴(m +n)2017=﹣1.故答案为﹣1.【点睛】本题主要考查了关于y 轴对称的点的坐标特征,若两个关于y 轴对称,则这两点的横坐标互为相反数,纵坐标相等.17.如图,将△ABC 沿着DE 对折,点A 落到A′处,若∠BDA′+∠CEA′=70°,则∠A =_____.【答案】35°【分析】根据折叠的性质得到∠A′DE =∠ADE ,∠A′ED =∠AED ,由平角的定义得到∠BDA′+2∠ADE =180°,∠A′EC+2∠AED =180°,根据已知条件得到∠ADE+∠AED =140°,由三角形的内角和即可得到结论.【详解】解:∵将△ABC 沿着DE 对折,A 落到A′,∴∠A′DE =∠ADE ,∠A′ED =∠AED ,∴∠BDA′+2∠ADE =180°,∠A′EC+2∠AED =180°,∴∠BDA′+2∠ADE+∠CE A′+2∠AED =360°,∵∠BDA′+∠CEA′=70°,∴∠ADE+∠AED =()3603607022BDA CEA ∠'+∠-'-==145°, ∴∠A =35°.故答案为:35°.【点睛】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.三、解答题18.计算①1323482-- ②()()()2525221-+-- 【答案】①1122-;②22 【分析】①根据二次根式的加减法则计算;②利用平方差、完全平方公式进行计算.【详解】解:①原式=3422822--=1122-; ②原式=()5-23-22-=22.【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.19.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于点D ,BE ⊥MN 于点E .(1)当直线MN 绕点C 旋转到图(1)的位置时,求证:DE =AD +BE ;(2)当直线MN 绕点C 旋转到图(2)的位置时,求证:DE =AD -BE ;(3)当直线MN 绕点C 旋转到图(3)的位置时,试问:DE ,AD ,BE 有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)见解析;(2)见解析;(3)DE =BE -AD ,证明见解析【分析】(1)利用垂直的定义得∠ADC=∠CEB=90°,则根据互余得∠DAC+∠ACD=90°,再根据等角的余角相等得到∠DAC=∠BCE ,然后根据“AAS ”可判断△ADC ≌△CEB ,所以CD=BE ,AD=CE ,再利用等量代换得到DE=AD+BE ;(2)与(1)证法类似可证出∠DAC=∠BCE ,能推出△ADC ≌△CEB ,得到AD=CE ,CD=BE ,从而有DE=CE-CD=AD-BE ;(3)与(1)证法类似可证出∠DAC=∠BCE ,能推出△ADC ≌△CEB ,得到AD=CE ,CD=BE ,于是有DE=CD-CE=BE-AD .【详解】(1)证明:∵AD ⊥MN,BE ⊥MN∴∠ADC =∠CEB =90°∴∠DAC +∠DCA =90°∵∠ACB =90°∴∠ECB+∠DCA=90°∴∠DAC=∠ECB在△ACD和△CBE中,∵DAC ECBADC CEB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△CBE(AAS)∴CE=AD, CD=BE∵DE=CE+CD∴DE=AD+BE(2)证明:与(1)一样可证明△ADC≌△CEB,∴CD=BE,AD=CE,∴DE=CE-CD=AD-BE;(3)DE=BE-AD.证明如下:证明:证明:∵AD⊥MN,BE⊥MN∴∠ADC=∠CEB=90°∴∠DAC+∠DCA=90°∵∠ACB=90°∴∠ECB+∠DCA=90°∴∠DAC=∠ECB在△ACD和△CBE中,∵DAC ECBADC CEB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△CBE(AAS)∴CE=AD, CD=BE∴DE=CD-CE= BE-AD;【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.20.已知a是2的相反数,计算|a一2|的值.【答案】4【分析】根据相反数的概念及绝对值的运算法则计算即可.【详解】解:∵a是2的相反数,∴a=-2,∴|a一2|=|-2-2|=|-4|=4【点睛】本题考查相反数的含义、有理数的加减运算、及去绝对值法则,掌握运算法则是基础.21.如图甲,正方形ABCD和正方形CEFG共一顶点C,且点G在DC上.连接BG并延长交DE于点H.(1)请猜想BG与DE的位置关系和数量关系,并说明理由;(2)若点G不在DC上,其它条件不变,如图乙.BG与DE是否还有上述关系?试说明理由.【答案】(1)BG=DE,BG⊥DE,理由见解析;(2)BG和DE还有上述关系:BG=DE,BG⊥DE,理由见解析【分析】(1)由四边形ABCD,CEFG都是正方形,得到CB=CD,CG=CE,∠BCG=∠DCE=90°,于是Rt△BCG≌Rt△DCE,得到BG=DE,∠CBG=∠CDE,根据三角形内角和定理可得到∠DHG=∠GCB=90°,即BG⊥DE.(2)BG和DE还有上述关系.证明的方法与(1)一样.【详解】(1)BG=DE,BG⊥DE.理由:∵四边形ABCD,CEFG都是正方形,∴CB=CD,CG=CE,∠BCG=∠DCE=90°,∴△BCG≌△DCE(SAS),∴BG=DE,∵△BCG≌△DCE,∴∠CBG=∠CDE,而∠BGC=∠DGH,∴∠DHG=∠GCB=90°,即BG⊥DE.∴BG=DE,BG⊥DE;(2)BG和DE还有上述关系:BG=DE,BG⊥DE.∵四边形ABCD ,CEFG 都是正方形,∴CB =CD ,CG =CE ,∠BCD =∠GCE =90°∵∠BCG=∠BCD+∠DCG ,∠DCE=∠GCE+∠DCG∴∠BCG=∠DCE∴△BCG ≌△DCE (SAS ),∴BG =DE ,∠CBG =∠CDE ,又∵∠BKC =∠DKH ,∴∠DHK=∠DCB=90° 即BG ⊥DE .∴BG =DE ,BG ⊥DE .【点睛】本题主要考查正方形的性质,全等三角形的性质和判定,利用全等三角形的性质证得∠CBG =∠CDE ,∠CBG =∠CDE 是解题的关键.22.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.【答案】(1)见解析;(2)见解析;(3)若AB BC = ,则2BF AE =,理由见解析【分析】(1)首先利用SAS 证明BDF ADC ≅,即可得出结论;(2)利用全等三角形的性质和等量代换即可得出90CBE ECB ∠+∠=︒,从而有90,BEC ∠=︒,则结论可证; (3)直接根据等腰三角形三线合一得出2AC AE =,又因为BF AC =,则结论可证.【详解】解答:(1)证明:AD BC ⊥,90ADB ADC ∴∠=∠=︒.在BDF 和ADC 中,BD AD BDF ADC DF DC =⎧⎪∠∠⎨⎪=⎩=,()BDF ADC SAS ∴≅△△,BF AC ∴=;(2)证明:∵BDF ADC ≅,BFD ACD ∠=∠∴.90DBF BFD ∠+∠=︒∵,90DBF ACD ∠+∠=︒∴,即90CBE ECB ∠+∠=︒,90BEC ∴∠=︒,BE AC ∴⊥;(3)若AB BC = ,则2BF AE =.理由如下:,AB BC BF AC =⊥,∴BE 是中线,2AC AE ∴=.BF AC =,2BF AE ∴=.【点睛】本题主要考查全等三角形的判定及性质,等腰三角形的性质,掌握全等三角形的判定及性质和等腰三角形的性质是解题的关键.23.在ABC 中,BAC α∠=,点D ,点E 在BC 上,连接AD ,AE .(1)如图,若120α=︒,BA BE =,CA CD =,求DAE ∠的度数;(2)若DA DB =,EA EC =,直接写出DAE =∠ (用α的式子表示)【答案】(1)30°;(2)90°-12α【分析】(1)根据三角形的内角和定理即可求出∠B +∠C ,然后根据等边对等角可得∠BAE=∠BEA 、∠CAD=∠CDA ,从而求出∠BEA +∠CDA ,再根据三角形的内角和定理即可求出∠DAE ;(2)根据三角形的内角和定理即可求出∠B +∠C ,然后根据等边对等角可得∠BAE=∠BEA 、∠CAD=∠CDA ,从而求出∠BEA +∠CDA ,再根据三角形的内角和定理即可求出∠DAE ;【详解】解:(1)∵120BAC α∠==︒∴∠B +∠C=180°-∠BAC=60°∵BA BE =,CA CD =∴∠BAE=∠BEA=12(180°-∠B ) ∠CAD=∠CDA=12(180°-∠C )∴∠BEA +∠CDA=12(180°-∠B )+12(180°-∠C )=12[360°-(∠B +∠C )]=150° ∴DAE ∠=180°-(∠BEA +∠CDA )=30°(2)∵BAC α∠=∴∠B +∠C=180°-∠BAC=180°-α∵BA BE =,CA CD =∴∠BAE=∠BEA=12(180°-∠B ) ∠CAD=∠CDA=12(180°-∠C ) ∴∠BEA +∠CDA=12(180°-∠B )+12(180°-∠C )=12[360°-(∠B +∠C )]= 90°+12α ∴DAE ∠=180°-(∠BEA +∠CDA )=90°-12α 故答案为:90°-12α. 【点睛】此题考查的是三角形的内角和定理和等腰三角形的性质,掌握三角形的内角和定理和等边对等角是解决此题的关键.24.化简求值:2(2)3()(2)(2)x y x x y x y x y +-+--+,其中12x =,2y =-. 【答案】xy+5y 2,19【分析】通过整式的混合运算对原式先进行化简,再将x 和y 的值代入即可得解. 【详解】原式2222244334x xy y x xy x y =+++﹣﹣﹣ 25xy y =+将12x =,2y =-代入,原式21 (2)5(2)192=⨯-+⨯-=. 【点睛】本题主要考查了整式的先化简再求值,熟练掌握整式的混合运算是解决本题的关键.25.九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设x (分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为1y 千米,骑自行车学生骑行的路程为2y 千米,12y y 、关于x 的函数图象如图所示.(1)求2y 关于x 的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?【答案】20.24y x =﹣;(2)骑自行车的学生先到达百花公园,先到了10分钟.【分析】(1)根据函数图象中的数据可以求得2y 关于x 的函数解析式;(2)根据函数图象中的数据和题意可以分别求得步行学生和骑自行车学生到达百花公园的时间,从而可以解答本题.【详解】解:(1)设2y 关于x 的函数解析式是2y kx b +=,200404k b k b +=⎧⎨+=⎩,得0.24k b =⎧⎨=-⎩, 即2y 关于x 的函数解析式是20.24y x=﹣; (2)由图象可知,步行的学生的速度为:4400.1÷=千米/分钟,∴步行同学到达百花公园的时间为:60.160÷=(分钟), 当28y =时, 60.24x =﹣,得50x =,605010﹣=,答:骑自行车的学生先到达百花公园,先到了10分钟.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.两个三角形只有以下元素对应相等,不能判定两个三角形全等的( )A .两角和一边B .两边及夹角C .三个角D .三条边 【答案】C【解析】判定两三角形全等,就必须有边的参与,因此C 选项是错误的.A 选项,运用的是全等三角形判定定理中的AAS 或ASA ,因此结论正确;B 选项,运用的是全等三角形判定定理中的SAS ,因此结论正确;D 选项,运用的是全等三角形判定定理中的SSS ,因此结论正确;故选C .2,113,π中,无理数是 ( )AB .113CD .π 【答案】D【分析】无理数就是无限不循环小数,利用无理数的定义即可判定选择项.,113,π中,=2=-3,π是无理数.故选D.【点睛】此题主要考查了无理数的定义.初中范围内学习的无理数有三类:①π类,②开方开不尽的数,③虽有规律但是无限不循环的数.3.若等腰三角形的周长为26cm ,底边为11cm ,则腰长为( )A .11cmB .11cm 或7.5cmC .7.5cmD .以上都不对 【答案】C【分析】根据等腰三角形的性质和三角形的周长公式即可得到结论.【详解】解:∵11cm 是底边, ∴腰长=12(26﹣11)=7.5cm , 故选:C .【点睛】本题考查了等腰三角形的性质,解题的关键是熟练掌握等腰三角形的性质.4.已知以下三个数, 不能组成直角三角形的是 ( )A .9、12、15B 3、C .0.3、0.4、0.5;D .222345、、【答案】D【解析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】A 、92+122=152,能构成直角三角形,故不符合题意;B 、(3)2+32=(23)2,能构成直角三角形,故不符合题意;C 、0.32+0.42=0.52,能构成直角三角形,故不符合题意;D 、(32)2+(42)2≠(52)2,不能构成直角三角形,故符合题意;故选D .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5.如图,直线l 分别与直线AB 、CD 相交于点E 、F ,EG 平分∠BEF 交直线CD 于点G ,若∠1=∠BEF=68°,则∠EGF 的度数为( )A .34°B .36°C .38°D .68°【答案】A 【分析】先根据角平分线的定义可得34BEG ∠=︒,再根据平行线的判定可得//AB CD ,然后根据平行线的性质即可得.【详解】EG 平分BEF ∠,68BEF ∠=︒1342EG F B BE ∴∠∠==︒ 又168BEF ∠=∠=︒//AB CD ∴34BEG EGF ∴=∠=∠︒故选:A .【点睛】本题考查了角平分线的定义、平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键. 6.如图,已知△ABC 中,∠A=75°,则∠1+∠2=( )A.335°°B.255°C.155°D.150°【答案】B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故选B.点睛:本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n﹣2)×180°(n≥3且n为整数)是解题的关键.7.某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元【答案】C【分析】根据加权平均数的定义列式计算可得.【详解】解:这天销售的矿泉水的平均单价是510%315%255%120% 2.25⨯+⨯+⨯+⨯=(元),故选C.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.8.在22、0.3•、227-38中,无理数的个数有()A.1个B.2个C.3个D.4个【答案】A【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断【详解】解:在实数22、•0.3、227-、38中,22是无理数;•0.3循环小数,是有理数;227-是分数,是有理数;38=2,是整数,是有理数;所以无理数共1个.故选:A.【点睛】此题考查了无理数的概念,解答本题的关键是掌握无理数的定义,属于基础题,要熟练掌握无理数的三种形式,难度一般.9.已知x2+2mx+9是完全平方式,则m的值为()A.±3 B.3 C.±6 D.6【答案】A【分析】将原式转化为x2+2mx +32,再根据x2+2mx +32是完全平方式,即可得到x2+2mx +32=(x±3)2,将(x±3)2展开,根据对应项相等,即可求出m的值.【详解】原式可化为x2+2mx+32,又∵x2+2mx+9是完全平方式,∴x2+2mx+9=(x±3)2,∴x2+2mx+9= x2±6mx+9,∴2m=±6,m=±3.故选A.【点睛】此题考查完全平方式,掌握运算法则是解题关键10.如图,△ABO关于x轴对称,若点A的坐标为(a,b),则点B的坐标为( )A.(b,a)B.(﹣a,b)C.(a,﹣b)D.(﹣a,﹣b)【分析】由于△ABO 关于x 轴对称,所以点B 与点A 关于x 轴对称.根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于x 轴对称的点,横坐标相同,纵坐标互为相反数,得出结果.【详解】由题意,可知点B 与点A 关于x 轴对称,又∵点A 的坐标为(a ,b ),∴点B 的坐标为(a ,−b ).故选:C .【点睛】本题考查了平面直角坐标系中关于x 轴成轴对称的两点的坐标之间的关系.能够根据题意得出点B 与点A 关于x 轴对称是解题的关键.二、填空题11.如图所示,AB=AC ,AD=AE ,∠BAC=∠DAE ,∠1=22°,∠2=34°,则∠3=___.【答案】56°.【解析】先求出∠BAD=∠EAC ,证△BAD ≌△CAE ,推出∠2=∠ABD=22°,根据三角形的外角性质求出即可.【详解】∵∠BAC=∠DAE ,∴∠BAC-∠DAC=∠DAE-∠DAC ,∴∠1=∠EAC ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS ),∴∠2=∠ABD=34°,∵∠1=22°,∴∠3=∠1+∠ABD=34°+22°=56°,故答案为56°.【点睛】本题主要考查全等三角形的性质和判定,三角形的外角性质的应用.解此题的关键是推出△BAD ≌△CAE. 12.当a=3,a -b=-1时,a 2-ab 的值是【答案】-1【解析】试题分析:直接提取公因式,然后将已知代入求出即可.即a 2-ab=a (a-b )=1×(-1)=-1. 考点:因式分解-提公因式法.点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.如图,已知△ABC 的面积为12,将△ABC 沿BC 平移到△A'B'C',使B'和C 重合,连接AC'交A'C 于D ,则△C'DC 的面积为_____【答案】1.【解析】根据平移变换只改变图形的位置,不改变图形的形状与大小,可得∠B=∠A′CC′,BC=B′C′,再根据同位角相等,两直线平行可得CD ∥AB ,然后求出CD=12AB ,点C′到A′C 的距离等于点C 到AB 的距离,根据等高的三角形的面积的比等于底边的比即可求解.【详解】解:根据题意得,∠B=∠A′CC′,BC=B′C′,∴CD ∥AB ,CD=12AB (三角形的中位线), ∵点C′到A′C 的距离等于点C 到AB 的距离, ∴△C′DC 的面积=12△ABC 的面积=12×12=1. 故答案为1.【点睛】本题考查了平移变换的性质,平行线的判定与性质,三角形的中位线等于第三边的一半的性质,以及等高三角形的面积的比等于底边的比,是小综合题,但难度不大.14.若1m n -=-,则()2m n m n --+的值为______.【答案】1【分析】根据题意把(m-n )看作一个整体并直接代入代数式进行计算即可得解.【详解】解:∵1m n -=-,∴()2m n m n --+,=()2()m n m n ---=(-1)1-(-1),=1+1,=1.故答案为:1.【点睛】本题考查代数式求值,熟练掌握整体思想的利用是解题的关键.15.用图象法解二元一次方程组20kx y bx y-+=⎧⎨-+=⎩小英所画图象如图所示,则方程组的解为_________.【答案】13 xy=⎧⎨=⎩【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【详解】∵直线y=kx+b与y=x+2的交点坐标为(1,3),∴二元一次方程组20kx y bx y-+=⎧⎨-+=⎩的解为13xy=⎧⎨=⎩,故答案为13 xy=⎧⎨=⎩.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.16.十边形的外角和为________________________.【答案】360°【分析】根据任何多边形的外角和都等于360°即可解答.【详解】解:∵任何多边形的外角和都等于360°∴十边形的外角和为360°故答案为:360°.【点睛】此题考查的是求多边形的外角和,掌握任何多边形的外角和都等于360°是解决此题的关键.17.3-_________.3【分析】根据相反数的意义,可得答案.【详解】333.【点睛】本题考查相反数,掌握相反数的定义是关键.三、解答题18.已知ABC 在平面直角坐标系内的位置如图,ACB 90∠=︒,AC BC 5==,OA 、OC 的长满足关系式()2OA 4OC 30-+-=.(1)求OA 、OC 的长;(2)求点B 的坐标;(3)在x 轴上是否存在点P ,使ACP 是以AC 为腰的等腰三角形.若存在,请直接写出点P 的坐标,若不存在,请说明理由.【答案】(1)OA=4,OC=3;(2)(7,3)B ;(3)存在,1(3,0)P -,2(8,0)P ,3(2,0)P- 【分析】(1)由平方的非负性、绝对值的非负性解题;(2)作BD x ⊥轴与点D ,()AOC CDB AAS ≅,再由全等三角形的对应边相等性质解题;(3)分三种情况讨论,当当点P 在x 轴的负半轴时,使AP=AC ,或当点P 在x 轴的负半轴时,使CP=AC=5,或当点P 在x 轴的正半轴时,使AC=CP 时,根据等腰三角形的性质解题.【详解】解:⑴由2OA 4)OC 30-+-=(.可知, OA 4030OC -=-=,,∴OA 43OC ==,.⑵作BD x ⊥轴与点D ,180OCA ACB BCD ∠+∠+∠=︒90ACO BCD ∴∠+∠=︒90CBD BCD ∠+∠=︒ACO CBD ∴∠=∠AC BC =()AOC CDB AAS ∴≅3BD OC ∴==4CD OA ==347OD OC CD ∴=+=+=(73)B ∴,⑶存在.当点P 在x 轴的负半轴时,使AP=AC ,则ACP △为等腰三角形,P 的坐标为(30)-,; 当点P 在x 轴的负半轴时,使CP=AC ,由勾股定理得,CP=AC=5,则ACP △为等腰三角形,P 的坐标为(20)-,;当点P 在x 轴的正半轴时,使AC=CP ,则ACP △为等腰三角形,5CP AC ==358OP OC CP ∴=+=+=,(80)P ∴,; 所以存在,点P (30)-,或(20)-,或(8)0,. 【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质、绝对值的非负性、平方的非负性、勾股定理、分类讨论等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.观察下列等式:221401-⨯=①; 223415-⨯=②; 225429-⨯=③……根据上述规律解决下列问题:(1)完成第四个等式: ;(2)猜想第n 个等式(用含n 的式子表示),并证明其正确性.【答案】(1)2274313-⨯= ;(2)第n 个等式()()()222141411n n n ---=-+,证明见解析.【分析】(1)根据题目中的几个等式可以写出第四个等式;(2)根据题目中等式的规律可得第n 个等式.再将整式的左边展开化简,使得化简后的结果等于等式右边即可证明结论正确.【详解】解:(1)由题目中的几个例子可得,第四个等式是:72-4×32=13,故答案为72-4×32=13;(2)第n 个等式是:(2n-1)2-4×(n-1)2=()411-+n ,证明:∵(2n-1)2-4×(n-1)2=4n 2-4n+1-4(n 2-2n+1)=4n 2-4n+1-4n 2+8n-4=4n-3=()411-+n ,∴(2n-1)2-4×(n-1)2=()411-+n 成立.【点睛】本题考查整式的混合运算、数字的变化,解题的关键是掌握整式的混合运算法则、发现题目中等式的变化规律,写出相应的等式.20.计算24063-﹣22(53-) 【答案】1【解析】根据二次根式的混合运算的法则计算即可.【详解】原式=2102621026--+=1.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.21.阅读下面的证明过程,在每步后的横线上填写该步推理的依据,如图,1E ∠=∠,3180ABC ∠+∠=,BE 是ABC ∠的角平分线,求证://DF AB .证明:BE 是ABC ∠的角平分线12∠∠∴=( )又1∠=∠E ( )2E ∴∠=∠( )//AE BC ∴( )180A ABC ∴∠+∠=︒( )又3180ABC ∠+∠=︒( )3A ∴∠=∠ ( )//DF AB ∴( )【答案】见解析.【分析】根据内错角相等两直线平行,角平分线的定义,等量代换,同位角相等两直线平行填空即可.【详解】证明:BE 是ABC ∠的角平分线12∠∠∴=( 角平分线的定义 )又1∠=∠E2E ∴∠=∠( 等量代换 )//AE BC ∴( 内错角相等,两直线平行 )180A ABC ∴∠+∠=︒( 两直线平行,同旁内角互补 )又3180ABC ∠+∠=︒3A ∴∠=∠ ( 同角的补角相等 )//DF AB ∴( 同位角相等,两直线平行 )【点睛】此题考查平行线的性质及判定,同角的补角相等,角平分线的定义,熟练运用是解题的关键.22. “a 2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x 2+4x+5=x 2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x 2+4x+5≥1.试利用“配方法”解决下列问题: (1)填空:x 2﹣4x+5=(x )2+ ;(2)已知x 2﹣4x+y 2+2y+5=0,求x+y 的值;(3)比较代数式:x 2﹣1与2x ﹣3的大小.【答案】(1)﹣2,1;(2)1;(2)x 2﹣1>2x ﹣2【分析】(1)直接配方即可;(2)先配方得到非负数和的形式,再根据非负数的性质得到x 、y 的值,再求x +y 的值;(2)将两式相减,再配方即可作出判断.【详解】解:(1)x 2﹣4x+5=(x ﹣2)2+1;(2)x 2﹣4x+y 2+2y+5=0,(x ﹣2)2+(y+1)2=0,则x ﹣2=0,y+1=0,解得x =2,y =﹣1,则x+y =2﹣1=1;(2)x 2﹣1﹣(2x ﹣2)=x 2﹣2x+2=(x ﹣1)2+1,∵(x ﹣1)2≥0,∴(x ﹣1)2+1>0,∴x 2﹣1>2x ﹣2.【点睛】本题考查了配方法的综合应用,配方的关键步骤是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.23.已知一次函数y=2x+b.(1)它的图象与两坐标轴所围成的图形的面积等于4,求b 的值;(2)它的图象经过一次函数y=-2x+1、y=x+4图象的交点,求b 的值.【答案】(1)±4;(2)5【解析】(1)分别求出一次函数y=2x+b 与坐标轴的交点,然后根据它的图象与坐标轴所围成的图象的面积等于4列出方程即可求出b 的值;(2)由题意可知:三条直线交于一点,所以可先求出一次函数y=-2x+1与y=x+4的交点坐标,然后代入y=2x+b 求出b 的值.【详解】解:(1)令x=0代入y=2x+b ,∴y=b ,令y=0代入y=2x+b ,∴x=-2b , ∵y=2x+b 的图象与坐标轴所围成的图象的面积等于4, ∴12×|b|×|-2b |=4, ∴b 2=16,∴b=±4;(2)联立214y x y x =-+⎧⎨=+⎩, 解得:13x y =-⎧⎨=⎩, 把(-1,3)代入y=2x+b ,∴3=-2+b ,∴b=5,【点睛】本题考查了一次函数与坐标轴的交点,图形与坐标的性质,待定系数求一次函数的解析式,解题的关键是根据条件求出b 的值,本题属于基础题型.24.如图,点D ,E 在△ABC 的边BC 上,AB =AC ,AD =AE ,求证:BD =CE.【答案】见解析【分析】如图,过点 A 作 ⊥AP BC 于 P ,根据等腰三角形的三线合一得出BP=PC ,DP=PE ,进而根据等式的性质,由等量减去等量差相等得出BD=CE .【详解】如图,过点A 作⊥AP BC 于 P .∵AB AC =,∴BP PC =;∵AD AE =,∴DP PE =,∴BP DP PC PE -=-,∴BD=CE .【点睛】本题考查了等腰三角形的性质,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合. 25.如图,点A ,B ,C 的坐标分别为(2,3),(3,1),(1,2)---(1)画出ABC 关于y 轴对称的图形111A B C △.(2)直接写出1A 点关于x 轴对称的点的坐标.(3)在x 轴上有一点P ,使得PA PB +最短,求最短距离是多少?【答案】(1)图见解析;(2)(2,-3);(317【分析】(1)分别作出点A 、B 、C 关于y 轴的对称点,再首尾顺次连接即可;(2)先根据1A 的位置得出1A 的坐标,再根据关于x 轴对称的点的横坐标相等、纵坐标互为相反数求解即。

八年级上册漳州数学期末试卷测试卷附答案

八年级上册漳州数学期末试卷测试卷附答案

八年级上册漳州数学期末试卷测试卷附答案一、八年级数学全等三角形解答题压轴题(难)1.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问:()1当a 为多少时,能使得图()2中//AB CD ?说出理由,()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析.【解析】【分析】(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105︒,由FEM CAM C ∠=∠+∠,30C ∠=︒, EFM BDC DBM ∠=∠+∠, 45M ∠=︒,即可利用三角形内角和求出答案.【详解】()1当a 为15时,//AB CD ,理由:由图()2,若//AB CD ,则30BAC C ∠=∠=, 453015a CAM BAM BAC ∴=∠=∠-∠=-︒=︒,所以,当a 为15时,//AB CD .注意:学生可能会出现两种解法:第一种:把//AB CD 当做条件求出a 为15,第二种:把a 为15当做条件证出//AB CD ,这两种解法都是正确的.()2DBM CAM BDC ∠+∠+∠的大小不变,是105︒证明: ,30FEM CAM C C ∠=∠+∠∠=︒,30FEM CAM ∴∠=∠+︒,EFM BDC DBM ∠=∠+∠,DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠,180,45EFM FEM M M ∠+∠+∠=∠=︒,3045180BDC DBM CAM ∴∠+∠+∠+︒+︒=︒,1803045105DBM CAM BDC ∴∠+∠+∠=︒--=︒,所以,DBM CAM BDC ∠+∠+∠的大小不变,是105.【点睛】此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.2.如图,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一动点,连接AD .以AD 为直角边且在AD 的上方作等腰直角三角形ADF .(1)若AB AC =,90BAC ∠=︒①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系; ②当点D 在线段C 的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;(2)如图3,若AB AC ≠,90BAC ∠≠︒,45BCA ∠=︒,点D 在线段BC 上运动,试探究CF与BD的位置关系.【答案】(1)①CF⊥BD,证明见解析;②成立,理由见解析;(2)CF⊥BD,证明见解析.【解析】【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD,然后利用“边角边”证明△ACF和△ABD全等,②先求出∠CAF=∠BAD,然后与①的思路相同求解即可;(2)过点A作AE⊥AC交BC于E,可得△ACE是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD,然后利用“边角边”证明△ACF和△AED全等,根据全等三角形对应角相等可得∠ACF=∠AED,然后求出∠BCF=90°,从而得到CF⊥BD.【详解】解:(1)①∵∠BAC=90°,△ADF是等腰直角三角形,∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,∴∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠ABD=45°,∵∠ACB=45°,∴∠FCB=90°,∴CF⊥BD;②成立,理由如下:如图2:∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF ⊥BD ;(2)如图3,过点A 作AE ⊥AC 交BC 于E ,∵∠BCA=45°,∴△ACE 是等腰直角三角形,∴AC=AE ,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,∴∠CAF=∠EAD ,在△ACF 和△AED 中,∵AC=AE ,∠CAF=∠EAD ,AD=AF ,∴△ACF ≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF ⊥BD .【点睛】本题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.3.已知4AB cm =,3AC BD cm ==.点P 在AB 上以1/cm s 的速度由点A 向点B 运动,同时点Q 在BD 上由点B 向点D 运动,它们运动的时间为()t s .(1)如图①,AC AB ⊥,BD AB ⊥,若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP △与BPQ 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2)如图②,将图①中的“AC AB ⊥,BD AB ⊥”为改“60CAB DBA ∠=∠=︒”,其他条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP △与BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.【答案】(1)全等,PC 与PQ 垂直;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP 和△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t=⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等.【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.4.(1)问题发现:如图(1),已知:在三角形ABC ∆中,90BAC ︒∠=,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点,D E ,试写出线段,BD DE 和CE 之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在ABC ∆中, ,,,AB AC D A E =三点都在直线l 上,并且BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图(3),,D E 是,,D A E 三点所在直线m 上的两动点,(,,D A E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF ∆与ACF ∆均为等边三角形,连接,BD CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF ∆的形状并说明理由.【答案】(1)DE=CE+BD ;(2)成立,理由见解析;(3)△DEF 为等边三角形,理由见解析.【解析】【分析】(1)利用已知得出∠CAE=∠ABD ,进而根据AAS 证明△ABD 与△CAE 全等,然后进一步求解即可;(2)根据BDA AEC BAC α∠=∠=∠=,得出∠CAE=∠ABD ,在△ADB 与△CEA 中,根据AAS 证明二者全等从而得出AE=BD ,AD=CE ,然后进一步证明即可;(3)结合之前的结论可得△ADB 与△CEA 全等,从而得出BD=AE ,∠DBA=∠CAE ,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF 与△EAF 全等,在此基础上进一步证明求解即可.【详解】(1)∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD ,在△ABD 与△CAE 中,∵∠ABD=∠CAE ,∠BDA=∠AEC ,AB=AC ,∴△ABD ≌△CAE(AAS),∴BD=AE ,AD=CE ,∵DE=AD+AE,∴DE=CE+BD,故答案为:DE=CE+BD;(2)(1)中结论还仍然成立,理由如下:∠=∠=∠=,∵BDA AEC BACα∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,在△ADB与△CEA中,∵∠ABD=∠CAE,∠ADB=∠CEA,AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE,即:DE=CE+BD,∆为等边三角形,理由如下:(3)DEF由(2)可知:△ADB≌△CEA,∴BD=EA,∠DBA=∠CAE,∵△ABF与△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+CAF,∴∠DBF=∠FAE,在△DBF与△EAF中,∵FB=FA,∠FDB=∠FAE,BD=AE,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键. 5.(1)如图(a)所示点D是等边ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明.(2)如图(b)所示当动点D运动至等边ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(直接写出结论)(3)①如图(c)所示,当动点D在等边ABC边BA上运动时(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边DCF和等边DCF',连接AF、BF',探究AF、BF'与AB有何数量关系?并证明.②如图(d)所示,当动点D在等边ABC边BA的延长线上运动时,其他作法与(3)①相同,①中的结论是否成立?若不成立,是否有新的结论?并证明.【答案】(1)AF=BD ,理由见解析;(2)AF=BD ,成立;(3)①AF BF AB '+=,证明见解析;②①中的结论不成立新的结论是AF AB BF '=+,理由见解析【解析】【分析】(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS 可证得BCD ACF △≌△,然后由全等三角形的对应边相等知AF BD = .(2)通过证明BCD ACF △≌△,即可证明AF BD =.(3)①'AF BF AB += ,利用全等三角形BCD ACF △≌△的对应边BD AF = ,同理'BCF ACD △≌△ ,则'BF AD = ,所以'AF BF AB +=;②①中的结论不成立,新的结论是'AF AB BF =+ ,通过证明BCF ACD △≌△,则'BF AD =(全等三角形的对应边相等),再结合(2)中的结论即可证得'AF AB BF =+ .【详解】(1)AF BD = 证明如下:ABC 是等边三角形,BC AC ∴=,60BCA ︒∠=.同理可得:DC CF =,60DCF ︒∠=.BCA DCA DCF DCA ∴∠-∠=∠-∠.即BCD ACF ∠=∠.BCD ACF ∴△≌△.AF BD ∴=.(2)证明过程同(1),证得BCD ACF △≌△,则AF BD =(全等三角形的对应边相等),所以当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF BD =依然成立.(3)①AF BF AB '+=证明:由(1)知,BCD ACF △≌△.BD AF ∴=.同理BCF ACD '△≌△.BF AD '∴=.AF BF BD AD AB '∴+=+=.②①中的结论不成立新的结论是AF AB BF '=+;BC AC =,BCF ACD '∠=∠,F C DC '=,BCF ACD '∴△≌△.BF AD '∴=.又由(2)知,AF BD =.AF BD AB AD AB BF '∴==+=+.即AF AB BF '=+.【点睛】本题考查了三角形的综合问题,掌握等边三角形的三条边、三个内角都相等的性质、全等三角形的判定定理、全等三角形的对应边相等是解题的关键.6.已知点P 是线段MN 上一动点,分别以PM ,PN 为一边,在MN 的同侧作△APM ,△BPN ,并连接BM ,AN .(Ⅰ)如图1,当PM =AP ,PN =BP 且∠APM =∠BPN =90°时,试猜想BM ,AN 之间的数量关系与位置关系,并证明你的猜想;(Ⅱ)如图2,当△APM ,△BPN 都是等边三角形时,(Ⅰ)中BM ,AN 之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.(Ⅲ)在(Ⅱ)的条件下,连接AB 得到图3,当PN =2PM 时,求∠PAB 度数.【答案】(1)BM =AN ,BM ⊥AN .(2)结论成立.(3)90°.【解析】【分析】(1)根据已知条件可证△MBP ≌△ANP ,得出MB =AN ,∠PAN =∠PMB ,再延长MB 交AN 于点C ,得出MCN 90∠=︒,因此有BM ⊥AN ;(2)根据所给条件可证△MPB ≌△APN ,得出结论BM =AN ;(3) 取PB 的中点C ,连接AC ,AB ,通过已知条件推出△APC 为等边三角形,∠PAC =∠PCA =60°,再由CA =CB ,进一步得出∠PAB 的度数.【详解】解:(Ⅰ)结论:BM =AN ,BM ⊥AN .理由:如图1中,∵MP=AP,∠APM=∠BPN=90°,PB=PN,∴△MBP≌△ANP(SAS),∴MB=AN.延长MB交AN于点C.∵△MBP≌△ANP,∴∠PAN=∠PMB,∵∠PAN+∠PNA=90°,∴∠PMB+∠PNA=90°,∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,∴BM⊥AN.(Ⅱ)结论成立理由:如图2中,∵△APM,△BPN,都是等边三角形∴∠APM=∠BPN=60°∴∠MPB=∠APN=120°,又∵PM=PA,PB=PN,∴△MPB≌△APN(SAS)∴MB=AN.(Ⅲ)如图3中,取PB的中点C,连接AC,AB.∵△APM,△PBN都是等边三角形∴∠APM=∠BPN=60°,PB=PN∵点C是PB的中点,且PN=2PM,∴2PC=2PA=2PM=PB=PN,∵∠APC=60°,∴△APC为等边三角形,∴∠PAC=∠PCA=60°,又∵CA=CB,∴∠CAB=∠ABC=30°,∴∠PAB=∠PAC+∠CAB=90°.【点睛】本题是一道关于全等三角形的综合性题目,充分考查了学生对全等三角形的判定定理及其性质的应用的能力,此类题目常常需要数形结合,借助辅助线才得以解决,因此,作出合理正确的辅助线是解题的关键.7.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE,再由AB=AD,AE=AC,根据SAS即可证得△ABC≌△ADE;(2)已知∠CAE=90°,AC=AE ,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC ≌△DAE ,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE 即可得∠FAE 的度数;(3)延长BF 到G ,使得FG=FB ,易证△AFB ≌△AFG ,根据全等三角形的性质可得AB=AG ,∠ABF=∠G ,再由△BAC ≌△DAE ,可得AB=AD ,∠CBA=∠EDA ,CB=ED ,所以AG=AD ,∠ABF=∠CDA ,即可得∠G=∠CDA ,利用AAS 证得△CGA ≌△CDA ,由全等三角形的性质可得CG=CD ,所以CG=CB+BF+FG=CB+2BF=DE+2BF .【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB 和△AFG 中,BF F AFB AFG AF AF G =⎧⎪∠=∠⎨⎪=⎩, ∴△AFB ≌△AFG (SAS ),∴AB=AG ,∠ABF=∠G ,∵△BAC ≌△DAE ,∴AB=AD ,∠CBA=∠EDA ,CB=ED ,∴AG=AD ,∠ABF=∠CDA ,∴∠G=∠CDA ,在△CGA 和△CDA 中,GCA DCACGA CDAAG AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CGA≌△CDA,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.8.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=29CP,求PFAF的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)【答案】(1)∠AFE=60°;(2)见解析;(3)75【解析】【分析】(1)通过证明BCE CAD≌得到对应角相等,等量代换推导出60AFE∠=︒;(2)由(1)得到60AFE∠=︒,CE AD=则在Rt AHF△中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF上取一点K使得KF=AF,作辅助线证明ABK和ACF全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在BCE和CAD中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK =60°,AF =KF ,∴△AFK 为等边三角形,∴∠KAF =60°,∴∠KAB =∠FAC , 在ABK 和ACF 中,AB AC KAB ACF AK AF =⎧⎪∠=∠⎨⎪=⎩,∴ ABK ACF ≌(SAS ),BK CF =∴∠AKB =∠AFC =120°,∴∠BKE =120°﹣60°=60°,∵∠BPC =30°,∴∠PBK =30°,∴29BK CF PK CP ===, ∴79PF CP CF CP =-=, ∵45()99AF KF CP CF PK CP CP CP ==-+=-= ∴779559CP PF AF CP == . 【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.9.已知:在ABC ∆中,,90AB AC BAC =∠=︒,PQ 为过点A 的一条直线,分别过B C 、两点作,BM PQ CN PQ ⊥⊥,垂足分别为M N 、.(1)如图①所示,当PQ 与BC 边有交点时,求证:MN CN BM =-;(2)如图②所示,当PQ 与BC 边不相交时,请写出线段BM CN 、和MN 之间的数量关系,并说明理由.【答案】(1)见解析;(2)MN BM CN =+(或BM MN CN =-或CN MN BM =-),理由见解析【解析】【分析】(1)根据已知条件先证AMB CNA ≌∆∆,得到,AM CN BM AN ==,即可证得MN CN BM =-;(2)由(1)知AMB CNA ≌∆∆,得到,AM CN BM AN ==,即可确定MN BM CN =+.【详解】证明:∵,BM PQ CN PQ ⊥⊥,∴∠AMB=∠CAN=90︒,∵∠BAC=90︒,∴∠CAN+∠ACN=90︒,∠CAN+∠BAM=90︒(或CAN ACN CAN BAM ∠+∠=∠+∠)∴BAM ACN ∠=∠,在AMB ∆和CNA ∆中,∵AMB CNA BAM ACN AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AMB CNA AAS ≌∆∆,∴,AM CN BM AN ==,∵MN AM AN =-,∴MN CN BM =-.(2)MN BM CN =+(或BM MN CN =-或CN MN BM =-).理由:∵,BM PQ CN PQ ⊥⊥,∴∠AMB=∠CAN=90︒,∵∠BAC=90︒,∴∠CAN+∠ACN=90︒,∠CAN+∠BAM=90︒(或CAN ACN CAN BAM∠+∠=∠+∠),∴BAM ACN∠=∠,在AMB∆和CNA∆中,∵AMB CNABAM ACNAB CA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AMB CNA AAS≌∆∆,∴,AM CN BM AN==,∴MN AN AM BM CN=+=+.【点睛】此题考察三角形全等的应用,正确确定全等三角形是解题关键,由此得到对应相等的线段,确定它们之间的和差关系得到BM CN、和MN之间的关系式.10.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA =∠CEA=90°,∵∠BAC =90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB ≌△CEA ,∴AE=BD ,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE∵BF=AF,∴△DBF≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.二、八年级数学轴对称解答题压轴题(难)11.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°,AC=15,则DE的长为.【答案】(1)见解析;(2)5【解析】【分析】定理证明:先证明△PAC≌△PBC,然后再运用三角形全等的性质进行解答即可;(1)连结AO、BO、CO利用线段的垂直平分线的判定和性质即可解答;(2)连接BD,BE,证明△BDE是等边三角形即可解答.【详解】解:定理证明:∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)如图2,连结OA、OB、OC.∵直线m是边BC的垂直平分线,∴OB=OC,∵直线n是边AC的垂直平分线,∴OA=OC,∴OA=OB∵OH⊥AB,∴AH=BH;(2)如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=15=AD+DE+EC=3DE,∴DE=5,故答案为:5.【点睛】本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键.12.如图1,△ABC 中,AB=AC,∠BAC=90º,D、E 分别在 BC、AC 边上,连接 AD、BE 相交于点 F,且∠CAD=12∠ABE.(1)求证:BF=AC;(2)如图2,连接 CF,若 EF=EC,求∠CFD 的度数;(3)如图3,在⑵的条件下,若 AE=3,求 BF 的长.【答案】(1)答案见详解;(2)45°,(3)4.【解析】【分析】(1)设∠CAD=x,则∠ABE=2x,∠BAF=90°-x,∠AFB=180°-2x-(90°-x)= 90°-x,进而得到∠BAF =∠AFB,即可得到结论;(2)由∠AEB=90°-2x,进而得到∠EFC=(90°-2x)÷2=45°-x,由BF=AB,可得:∠EFD=∠BFA=90°-x,根据∠CFD=∠EFD-∠EFC,即可求解;(3)设EF=EC=x,则AC=AE+EC=3+x,可得BE=BF+EF=3+x+x=3+2x,根据勾股定理列出方程,即可求解.【详解】(1)设∠CAD=x,∵∠CAD=12∠ABE,∠BAC=90º,∴∠ABE=2x,∠BAF=90°-x,∵∠ABE+∠BAF+∠AFB=180°,∴∠AFB=180°-2x-(90°-x)= 90°-x,∴∠BAF =∠AFB,∴BF=AB;∵AB =AC ,∴BF =AC ;(2)由(1)可知:∠CAD=x ,∠ABE=2x ,∠BAC =90º,∴∠AEB=90°-2x ,∵EF =EC ,∴∠EFC=∠ECF ,∵∠EFC+∠ECF=∠AEB=90°-2x ,∴∠EFC=(90°-2x )÷2=45°-x ,∵BF =AB ,∴∠BFA=∠BAF=(180°-∠ABE)÷2=(180°-2x)÷2=90°-x ,∴∠EFD=∠BFA=90°-x ,∴∠CFD=∠EFD-∠EFC=(90°-x )-(45°-x)=45°;(3)由(2)可知:EF =EC ,∴设EF =EC =x ,则AC=AE+EC=3+x ,∴AB=BF=AC=3+x ,∴BE=BF+EF=3+x+x=3+2x ,∵∠BAC =90º,∴222AB AE BE +=,∴222(3)3(32)x x ++=+,解得:11x =,23x =-(不合题意,舍去)∴BF=3+x=3+1=4.【点睛】本题主要考查等腰三角形的性质定理和勾股定理,用代数式表示角度和边长,把几何问题转化为代数和方程问题,是解题的关键.13.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.理解:(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”;在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);应用:(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.【答案】(1)36°;(2)见详解;(3)18°或42°【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作27°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】解:(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=°180-2x可得°180-22x x∴x=36°则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE 时,∵2x+x=27°+27°,∴x=18°;②当AD=DE 时,∵27°+27°+2x+x=180°,∴x=42°;综上所述,∠C 为18°或42°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.14.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)【答案】(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.15.如果一个三角形能被一条线段割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,ABC ∆是等腰锐角三角形,()AB AC AB BC =>,若ABC ∠的角平分线BD 交AC 于点D ,且BD 是ABC ∆的一条特异线,则BDC ∠= 度.(2)如图2,ABC ∆中,2B C ∠=∠,线段AC 的垂直平分线交AC 于点D ,交BC 于点E ,求证:AE 是ABC ∆的一条特异线;(3)如图3,若ABC ∆是特异三角形,30A ∠=,B 为钝角,不写过程,直接写出所有可能的B 的度数.【答案】(1)72;(2)证明见解析;(3)∠B 度数为:135°、112.5°或140°.【解析】【分析】(1)根据等腰三角形性质得出∠C=∠ABC=∠BDC=2∠A ,据此进一步利用三角形内角和定理列出方程求解即可;(2)通过证明△ABE 与△AEC 为等腰三角形求解即可;(3)根据题意分当BD 为特异线、AD 为特异线以及CD 为特异线三种情况分类讨论即可.【详解】(1)∵AB=AC ,∴∠ABC=∠C ,∵BD 平分∠ABC ,∴∠ABD=∠CBD=12∠ABC,∵BD是△ABC的一条特异线,∴△ABD与△BCD为等腰三角形,∴AD=BD=BC,∴∠A=∠ABD,∠C=∠BDC,∴∠ABC=∠C=∠BDC,∵∠BDC=∠A+∠ABD=2∠A,设∠A=x,则∠C=∠ABC=∠BDC=2x,在△ABC中,∠A+∠ABC+∠C=180°,即:x+2x+2x=180°,∴x=36°,∴∠BDC=72°,故答案为:72;(2)∵DE是线段AC的垂直平分线,∴EA=EC,∴△EAC为等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,∴△EAB为等腰三角形,∴AE是△ABC的一条特异线;(3)如图3,当BD是特异线时,如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°+15°=135°;如果AD=AC,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°;如果AD=DB,DC=DB,则∠ABC=∠ABD+∠DBC=30°+60°=90°,不符合题意,舍去;如图4,当AD是特异线时,AB=BD,AD=DC,则:∠ABC=180°−20°−20°=140°;当CD为特异线时,不符合题意;综上所述,∠B度数为:135°、112.5°或140°.【点睛】本题主要考查了等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.16.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【答案】(1)∠A=36°;(2)如图所示:见解析;(3)如图所示:见解析;∠C为20°或40°的角.【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的三等分线;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C 在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180?-x2,可得2x=180?-x2,解得:x=36°,则∠A=36°;(2)根据(1)的解题过程作出△ABC的三等分线,如图1;由45°自然想到等腰直角三角形,有两种情况,①如图2,过底角一顶点作对边的高,形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;②如图3,以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)如图4所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x+x=180°,∴x=40°;综上所述,∠C 为20°或40°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.已知:等边ABC ∆中.(1)如图1,点M 是BC 的中点,点N 在AB 边上,满足60AMN ∠=︒,求AN BN的值. (2)如图2,点M 在AB 边上(M 为非中点,不与A 、B 重合),点N 在CB 的延长线上且MNB MCB ∠=∠,求证:AM BN =.(3)如图3,点P 为AC 边的中点,点E 在AB 的延长线上,点F 在BC 的延长线上,满足AEP PFC ∠=∠,求BF BE BC-的值. 【答案】(1)3;(2)见解析;(3)32. 【解析】【分析】(1)先证明AMB ∆,MBN ∆与MAN ∆均为直角三角形,再根据直角三角形中30所对的直角边等于斜边的一半,证明BM=2BN ,AB=2BM ,最后转化结论可得出BN 与AN 之间的数量关系即得;(2)过点M 作ME ∥BC 交AC 于E ,先证明AM=ME ,再证明MEC ∆与NBM ∆全等,最后转化边即得;(3)过点P 作PM ∥BC 交AB 于M ,先证明M 是AB 的中点,再证明EMP ∆与FCP ∆全等,最后转化边即得.【详解】(1)∵ABC ∆为等边三角形,点M 是BC 的中点∴AM 平分∠BAC ,AM BC ⊥,60B BAC ∠=∠=︒∴30BAM ∠=︒,90AMB ∠=︒∵60AMN ∠=︒∴90AMN BAM ∠+=︒∠,30∠=︒BMN∴90ANM ∠=︒。

2018-2019学年度第一学期八年级数学期末试卷(解析版) (1)

2018-2019学年度第一学期八年级数学期末试卷(解析版) (1)

2018-2019学年八年级(上)期末数学试卷一、选择题(本大题共8小题,共16.0分)1.在下列黑体大写英文字母中,不是轴对称图形的是A. TB. IC. ND. H【答案】C【解析】解:A、“T”是轴对称图形,故本选项不合题意;B、“I”是轴对称图形,故本选项不合题意;C、“N”不是轴对称图形,故本选项符合题意;D、“H”是轴对称图形,故本选项不合题意.故选:C.根据轴对称图形的概念对各个大写字母判断即可得解.本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列各点中,位于第四象限的点是A. B. C. D.【答案】A【解析】解:A、在第四象限,故本选项正确;B、在第一象限,故本选项错误;C、在第二象限,故本选项错误;D、在第三象限,故本选项错误.故选:A.根据各象限内点的坐标特征对各选项分析判断利用排除法求解.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.3.小亮的体重为,用四舍五入法将精确到的近似值为A. 48B.C. 47D.【答案】B【解析】解:精确到的近似值为.故选:B.把百分位上的数字5进行四舍五入即可.本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字近似数与精确数的接近程度,可以用精确度表示一般有,精确到哪一位,保留几个有效数字等说法.4.若一个三角形的三边长分别为3、4、5,则这个三角形最长边上的中线为A. B. 2 C. D.【答案】D【解析】解:,该三角形是直角三角形,.故选:D.根据勾股定理逆定理判断出三角形是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的逆定理,判断出直角三角形是解题的关键.5.已知一次函数,函数值y随自变量x的增大而减小,且,则函数的图象大致是A. B.C. D.【答案】B【解析】解:一次函数,y随着x的增大而减小,,一次函数的图象经过第二、四象限;,,图象与y轴的交点在x轴下方,一次函数的图象经过第二、三、四象限.故选:B.根据一次函数的性质得到,而,则,所以一次函数的图象经过第二、四象限,与y轴的交点在x轴下方.本题考查了一次函数的图象:一次函数、b为常数,是一条直线,当,图象经过第一、三象限,y随x的增大而增大;当,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为.6.如图,点B、E、C、F在同一条直线上,,,要用SAS证明≌ ,可以添加的条件是A. B. C. D.【答案】C【解析】解:,,可添加条件,理由:在和中,,≌ ;故选:C.根据得出,添加条件,则利用SAS定理证明 ≌ .本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图,在中,AB、AC的垂直平分线分别交BC于点E、F,若,则为A. B. C. D.【答案】D【解析】解:,,、FH分别为AC、AB的垂直平分线,,,,,,,故选:D.根据三角形内角和定理求出,根据线段垂直平分线的性质得到,,根据等腰三角形的性质得到,,计算即可.此题主要考查线段的垂直平分线的性质等几何知识线段的垂直平分线上的点到线段的两个端点的距离相等.8.小苏和小林在如图1所示的跑道上进行米折返跑在整个过程中,跑步者距起跑线的距离单位:与跑步时间单位:的对应关系如图2所示下列叙述正确的是A. 两人从起跑线同时出发,同时到达终点B. 小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D. 小林在跑最后100m的过程中,与小苏相遇2次【答案】D【解析】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,,所以小苏跑全程的平均速度小于小林跑全程的平均速度,而路程相同,根据速度路程时间故B错误;根据图象小苏前15s跑过的路程小于小林前15s跑过的路程,故C错误;小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D正确;故选:D.通过函数图象可得,两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏,根据行程问题的数量关系可以求出甲、乙用的时间多,而路程相同,根据速度路程时间的速度,所以小苏跑全程的平均速度小于小林跑全程的平均速度,根据图象小苏前15s 跑过的路程小于小林前15s跑过的路程,两人相遇时,即实线与虚线相交的地方有两次,即可解答.本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题(本大题共8小题,共16.0分)9.4的平方根是______.【答案】【解析】解:,的平方根是.故答案为:.根据平方根的定义,求数a的平方根,也就是求一个数x,使得,则x就是a的平方根,由此即可解决问题.本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.已知点,关于y轴对称的点的坐标为______.【答案】【解析】解:首先可知点,再由平面直角坐标系中关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变,可得:点P关于y轴的对称点的坐标是.故答案为:.本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.11.在实数,,,,中,无理数有______个【答案】2【解析】解:,,,是有理数,,是无理数,故答案为:2.根据无理数的概念判断即可.本题考查的是无理数的概念,掌握无限不循环小数叫做无理数是解题的关键.12.若点在函数的图象上,则______.【答案】【解析】解:点在函数的图象上,,解得,,故答案为:.根据点在函数的图象上,可以求得m的值,本题得以解决.本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.13.下列关于建立平面直角坐标系的认识,合理的有______.尽量使更多的点在坐标轴上;尽量使图形关于坐标轴对称;建立坐标系沟通了“数”与“形”之间的联系.【答案】【解析】解:下列关于建立平面直角坐标系的认识,合理的有,尽量使更多的点在坐标轴上;尽量使图形关于坐标轴对称;建立坐标系沟通了“数”与“形”之间的联系,故答案为:根据平面直角坐标系的性质判断即可.此题考查了关于x轴、y轴对称的点的坐标,以及轴对称图形,熟练掌握平面直角坐标系的性质是解本题的关键.14.如图,在等边中,D、E分别是边AB、AC上的点,且,则______【答案】180【解析】解:是等边三角形,≌.,,,故答案为:180.根据等边三角形的性质,得出各角相等各边相等,已知,利用SAS判定≌ ,从而得出,所以,进而利用四边形内角和解答即可.此题考查了等边三角形的性质及全等三角形的判定方法,常用的判定方法有SSS,SAS,AAS,HL等.15.如图,在中,,AD平分,,,则点D到直线AB的距离是______.【答案】【解析】解:作于E,,,,,平分,,,.故答案为:.作于E,根据勾股定理求出CD的长,根据角平分线的性质解答即可.本题考查的是勾股定理,角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16.已知的三条边长分别为3,4,6,在所在平面内画一条直线,将分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画______条【答案】7【解析】解:如图所示:当,,,,,,时,都能得到符合题意的等腰三角形.故答案为:7.根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.三、计算题(本大题共2小题,共18.0分)17.阅读理解:,即,.的整数部分为1.的小数部分为解决问题:已知a是的整数部分,b是的小数部分,求的平方根.【答案】解:,,,,,,,,,则25的平方根是.【解析】估算确定出a与b的值,代入原式计算即可求出平方根.此题考查了估算无理数的大小,以及平方根,熟练掌握估算的方法是解本题的关键.18.如图所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地如图是汽车行驶时离C站的路程千米与行驶时间小时之间的函数关系的图象.填空:______km,AB两地的距离为______km;求线段PM、MN所表示的y与x之间的函数表达式;求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【答案】240 390【解析】解:由题意和图象可得,千米,A,B两地相距:千米,故答案为:240,390由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:MN所表示的函数关系式为:由得,解得:由得,解得:由图象可知当行驶时间满足:,小汽车离车站C的路程不超过60千米根据图象中的数据即可得到A,B两地的距离;根据函数图象中的数据即可得到两小时后,货车离C站的路程与行驶时间x之间的函数关系式;根据题意可以分相遇前和相遇后两种情况进行解答.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.四、解答题(本大题共7小题,共50.0分)19.已知:,求x的值.【答案】解:,,.【解析】直接利用平方根的性质计算得出答案.此题主要考查了平方根,正确把握平方根的定义是解题关键.20.计算:.【答案】解:原式.【解析】直接利用零指数幂的性质以及绝对值、立方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.已知:如图,在中,,BE、CD是中线求证:.【答案】证明:,,、CD是中线,,,,在和中,,≌ ,.【解析】由等腰三角形的性质得出,由已知条件得出,证明≌ ,得出对应边相等,即可得出结论.本题考查了等腰三角形的性质、全等三角形的判定与性质;熟练掌握等腰三角形的性质,证明三角形全等得出对应边相等是解决问题的关键.22.如图,点D是内部的一点,,过点D作,,垂足分别为E、F,且求证:为等腰三角形.【答案】证明:,,.在和中,≌ ,,,,,即,.【解析】欲证明,只要证明即可;本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.请你用学习“一次函数”时积累的经验和方法研究函数的图象和性质,并解决问题.完成下列步骤,画出函数的图象;列表、填空;描点:连线观察图象,当x______时,y随x的增大而增大;结合图象,不等式的解集为______.【答案】2 0【解析】解:填表正确画函数图象如图所示:由图象可得:时,y随x的增大而增大;由图象可得:不等式的解集为;故答案为:2;0;;.根据函数值填表即可;根据图象得出函数性质即可;根据图象得出不等式的解集即可.本题考查了一次函与不等式的关系,一次函数的图象等知识点注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数,则需要两组x,y的值.24.某产品每件成本10元,试销阶段每件产品的销售价元与产品的日销售量件之间的关系如表:已知日销售量y是销售价x的一次函数.求日销售量件与每件产品的销售价元之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【答案】解:设日销售量件与每件产品的销售价元之间的函数表达式是,,解得,,即日销售量件与每件产品的销售价元之间的函数表达式是;当每件产品的销售价定为35元时,此时每日的销售利润是:元,即当每件产品的销售价定为35元时,此时每日的销售利润是125元.【解析】根据题意可以设出y与x的函数关系式,然后根据表格中的数据,即可求出日销售量件与每件产品的销售价元之间的函数表达式;根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.25.问题解决:如图1,在平面直角坐标系xOy中,一次函数与x轴交于点A,与y 轴交于点B,以AB为腰在第二象限作等腰直角,,点A、B的坐标分别为A______、B______.求中点C的坐标.小明同学为了解决这个问题,提出了以下想法:过点C向x轴作垂线交x轴于点请你借助小明的思路,求出点C的坐标;类比探究数学老师表扬了小明同学的方法,然后提出了一个新的问题,如图2,在平面直角坐标系xOy中,点A坐标,点B坐标,过点B作x轴垂线l,点P是l 上一动点,点D是在一次函数图象上一动点,若是以点D为直角顶点的等腰直角三角形,请直接写出点D与点P的坐标.【答案】【解析】解:针对于一次函数,令,,,令,,,,故答案为,;如图1,由知,,,,,过点C作轴于E,,,,,,是等腰直角三角形,,在和中,,≌ ,,,,;如图2,过点D作轴于F,延长FD交BP于G,,点D在直线上,设点,,轴,,,同的方法得, ≌ ,,,如图2,,,,或,或,当时,,,,,当时,,,,,即:,或,利用坐标轴上点的特点建立方程求解,即可得出结论;先构造出 ≌ ,求出AE,CE,即可得出结论;同的方法构造出 ≌ ,分两种情况,建立方程求解即可得出结论.此题是一次函数综合题,主要考查了全等三角形的判定和性质,方程的思想,构造全等三角形是解本题的关键.。

2018-2019八年级(上)期末数学试卷(五四学制)(解析版)

2018-2019八年级(上)期末数学试卷(五四学制)(解析版)

2018-2019八年级(上)期末数学试卷(五四学制)一、选择题(每小题3分,共计30分)1.在,,﹣3xy+y2,,,分式的个数为()A.2B.3C.4D.52.下列图形中,是轴对称图形的是()A.B.C.D.3.下列运输正确的是()A.a2•a3=a6B.(2a)2=2a2C.(a2)3=a6D.(a+1)2=a2+14.若把分式中的x和y都扩大2倍,则分式的值()A.扩大2倍B.缩小4倍C.缩小2倍D.不变5.下列二次根式中最简二次根式是()A.B.C.D.6.已知等腰三角形的一个底角为50°,则其顶角为()A.50°B.80°C.100°D.150°7.若x2+kx+9是完全平方式,则k的值是()A.6B.﹣6C.9D.6或﹣68.等式成立的条件是()A.x≥1B.x≥﹣1C.﹣1≤x≤1D.x≥1或x≤﹣19.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20B.﹣=20C.﹣=D.﹣=10.如图,在锐角三角形ABC中,∠BAC=60°,BF,CE为高,点D为BC的中点,连接EF,ED,FD,有下列四个结论:①ED=FD;②∠ABC=60°时,EF∥BC;③BF=2AF;④AF:AB=AE:AC.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共计30分)11.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.12.当x时,分式有意义.13.计算:﹣=.14.把多项式4m2﹣16n2分解因式的结果是.15.当x时,分式的值为正.16.如果a+b=3,ab=2,那么代数式a2+b2的值为.17.如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,已知BD=2,AB=4,则DE=.18.自由落体的公式为s=gt2(g为重力加速度,g=9.8m/s2).若物体下落的高度s为78.4m,则下落的时间t是s.19.已知等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为°.20.如图,在等腰直角△ABC中,∠BAC=90°,AC=AB,以AB为斜边在△ABC内部作Rt=9,则线段AD的长度为.△ABD,连接CD,若∠ADC=135°,S△ABD三、解答题(第21-25题各8分,第26-27题各10分,共计60分)21.(8分)计算:(1)(2x+3y)(x﹣y)(2)(a2b﹣3)﹣2•(a﹣2b3)2.22.(8分)先化简,再求值:,其中x=.23.(8分)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1(,),B1(,),C1(,);(2)画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是.24.(8分)如图1,已知∠ABC=90°,△ABC是等腰三角形,点D为斜边AC的中点,连接DB,过点A作∠BAC的平分线,分别与DB,BC相交于点E,F.(1)求证:BE=BF;(2)如图2,连接CE,在不添加任何辅助线的条件下,直接写出图中所有的等腰三角形.25.(8分)某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?26.(10分)如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D 在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC 的延长线于点G,AG=5CG,BH=3.求CG的长.27.(10分)如图,在平面直角坐标系中,点O是坐标原点,点B(0,12),点A在第一象限内,△AOB为等腰三角形,∠BAO=90°,AB=AO,AC⊥OB,点D从点B出发,以每秒2个单位的速度沿y轴向终点O运动,连接DA,过点A作AE⊥AD,射线AE交x轴于点E,连接BE,交线段AC于点F,交线段OA于点G.(1)请直接写出A的坐标;(2)点D运动的时间为t秒时,用含t的代数式表示△ACD的面积S,并写出t的取值范围;(3)在(2)的条件下,当四边形DAEO的面积等于6S时,求△AGF的面积.2018-2019学年八年级(上)期末数学试卷(五四学制)参考答案与试题解析一、选择题(每小题3分,共计30分)1.在,,﹣3xy+y2,,,分式的个数为()A.2B.3C.4D.5【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:分式有:,,共2个.故选:A.【点评】本题主要考查分式的定义,注意判断分式的条件是:含有分母,且分母中含有未知数.2.下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:A.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.下列运输正确的是()A.a2•a3=a6B.(2a)2=2a2C.(a2)3=a6D.(a+1)2=a2+1【分析】直接利用同底数幂的乘法运算法则以及积的乘方运算法则、幂的乘方运算法则、完全平方公式分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(2a)2=4a2,故此选项错误;C、(a2)3=a6,正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘法运算以及积的乘方运算、幂的乘方运算、完全平方公式等知识,正确掌握运算法则是解题关键.4.若把分式中的x和y都扩大2倍,则分式的值()A.扩大2倍B.缩小4倍C.缩小2倍D.不变【分析】利用分式的基本性质求解即可判定.【解答】解:分式中的x和y都扩大2倍,得.故选:D.【点评】本题主要考查了分式的基本性质,解题的关键是熟记分式的基本性质.5.下列二次根式中最简二次根式是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=2,故此选项错误;B、==,故此选项错误;C、,是最简二次根式,故此选项正确;D、=|mn|,故此选项错误;故选:C.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.6.已知等腰三角形的一个底角为50°,则其顶角为()A.50°B.80°C.100°D.150°【分析】根据三角形的内角和是180°以及等腰三角形的两个底角相等进行分析.【解答】解:由题意得,顶角=180°﹣50°×2=80°.故选:B.【点评】本题主要考查了等腰三角形的性质以及三角形的内角和定理的运用,难度不大.7.若x2+kx+9是完全平方式,则k的值是()A.6B.﹣6C.9D.6或﹣6【分析】本题是完全平方公式的应用,这里首末两项是x和9这两个数的平方,那么中间一项为加上或减去x和9乘积的2倍.【解答】解:∵x2+kx+9是一个完全平方式,∴这两个数是x和3,∴kx=±2×3x=±6x,解得k=±6.故选:D.【点评】本题考查的是完全平方公式,两数平方和再加上或减去它们乘积的2倍,是完全平方式的主要结构特征,本题要熟记完全平方公式,注意积的2倍的符号,有正负两种情况,避免漏解.8.等式成立的条件是()A.x≥1B.x≥﹣1C.﹣1≤x≤1D.x≥1或x≤﹣1【分析】根据二次根式的乘法法则适用的条件列出不等式组解答即可.【解答】解:∵,∴,解得:x≥1.故选:A.【点评】本题考查的是二次根式的乘法法则,即•=(a≥0,b≥0).9.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20B.﹣=20C.﹣=D.﹣=【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,﹣=,故选:C.【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.10.如图,在锐角三角形ABC中,∠BAC=60°,BF,CE为高,点D为BC的中点,连接EF,ED,FD,有下列四个结论:①ED=FD;②∠ABC=60°时,EF∥BC;③BF=2AF;④AF:AB=AE:AC.其中正确的个数有()A.1个B.2个C.3个D.4个【分析】①由BF、CE为高,D为BC的中点,根据直角三角形斜边上的中线等于斜边的一半,即可证得FD=ED;②由两角对应相等,易证得△AEF∽△ABC,然后由∠BAC=60°与∠ABC=60°,可得△ABC是等边三角形,则易得∠AEF=∠ABC=60°,即可得EF∥BC;③根据锐角三角函数的定义,可得③错误;④可证△ABF∽△ACE,可得结论.【解答】解:①∵BF、CE为高,∴∠BEC=∠BFC=90°,∵D为BC的中点,∴FD=ED,故①正确;②∵BF、CE为高,∴∠BFA=∠CEA=90°,∵∠A=∠A,∴△BFA∽△CEA,∵∠BAC=60°,∠ABC=60°,∴△ABC是等边三角形,∴△AEF也是等边三角形,∴∠AEF=∠ABC=60°,∴EF∥BC,故②正确;③∵∠ABC=60°,tan60°==,∴BF=AF,故③错误;④∵∠AFB=∠AEC=90°,∠A=∠A,∴△ABF∽△ACE,得AF:AB=AE:AC.故④正确;本题正确的个数有3个:①②④;故选:C.【点评】此题考查了直角三角形的性质,等边三角形的判定与性质以及相似三角形的判定与性质等知识.此题综合性较强,难度适中,解题的关键是直角三角形斜边上的中线性质的应用.二、填空题(每小题3分,共计30分)11.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【分析】因为0.0000025<1,所以0.0000025=2.5×10﹣6.【解答】解:0.0000025=2.5×10﹣6;故答案为:2.5×10﹣6.【点评】本题考查了较小的数的科学记数法,10的次数n是负数,它的绝对值等于非零数字前零的个数.12.当x≠﹣时,分式有意义.【分析】根据,分式有意义,可得答案.【解答】解:由题意,得3x+5≠0,解得x≠﹣,故答案为:≠﹣.【点评】本题考查了分式有意义的条件,利用分母不能为零得出不等式是解题关键.13.计算:﹣=﹣.【分析】先化简,再进一步合并同类二次根式即可.【解答】解:原式=﹣=﹣【点评】此题考查二次根式的加减,注意先化简再合并.14.把多项式4m2﹣16n2分解因式的结果是4(m+2n)(m﹣2n).【分析】首先提取公因式进而利用平方差公式法分解因式得出即可.【解答】解:4m2﹣16n2=4(m2﹣4n2)=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n).【点评】此题主要考查了提取公因式法与公式法综合应用分解因式,注意分解因式要彻底是解题关键.15.当x>时,分式的值为正.【分析】因为分母是x2>0,所以主要分子的值是正数则可,从而列出不等式.【解答】解:∵分式的值为正,x2>0,∴2x﹣1>0,解得x>.故答案是:>.【点评】本题考查不等式的解法和分式值的正负条件,解不等式时当未知数的系数是负数时,两边同除以未知数的系数需改变不等号的方向,当未知数的系数是正数时,两边同除以未知数的系数不需改变不等号的方向.16.如果a+b=3,ab=2,那么代数式a2+b2的值为5.【分析】首先把a+b=3的两边平方,再代入计算,即可得出结果.【解答】解:∵a+b=3,∴(a+b)2=a2+2ab+b2=9,∴a2+b2=9﹣2×2=5;故答案为:5.【点评】本题考查了完全平方公式、代数式的求值;熟练掌握完全平方公式是解决问题的关键.17.如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,已知BD=2,AB=4,则DE= 6.【分析】因为AD⊥BC,BD=DC,点C在AE的垂直平分线上,由垂直平分线的性质得AB=AC=CE,即可得到结论.【解答】解:∵AD⊥BC,BD=DC,∴AB=AC;又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE=5;∵BD=CD=3,∴DE=CD+CE=2+4=6,故答案为6.【点评】本题主要考查线段的垂直平分线的性质等几何知识,利用线段的垂直平分线上的点到线段的两个端点的距离相等是解答此题的关键.18.自由落体的公式为s=gt2(g为重力加速度,g=9.8m/s2).若物体下落的高度s为78.4m,则下落的时间t是4s.【分析】把物体下落的高度s=78.4、g=9.8代入,利用算术平方根计算即可.【解答】解:将s=78.4、g=9.8代入=gt2,得:78.4=×9.8t2,整理可得:t2=16,则t=4或t=﹣4(舍),即下落的时间t是4s,故答案为:4.【点评】此题考查算术平方根,关键是根据实际问题分析.19.已知等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为60或120°.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故答案为:60或120.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.20.如图,在等腰直角△ABC中,∠BAC=90°,AC=AB,以AB为斜边在△ABC内部作Rt=9,则线段AD的长度为3.△ABD,连接CD,若∠ADC=135°,S△ABD【分析】作辅助线,构建三角形AEB,由旋转的性质可得△AED和是等腰直角三角形△BED是等腰直角三角形,设AD=AE=x,则ED=BE=x,BD=x×=2x,根据S△ABD=9,可求得x的值,即AD的长.【解答】解:将△ADC绕点A顺时针旋转90°得到△AEB,连接ED,∴∠EAD=90°,AE=AD,∠AEB=∠ADC=135°,∴△AED是等腰直角三角形,∴∠AED=∠ADE=45°,∴∠BED=135°﹣45°=90°,∵∠ADB=90°,∴∠BDE=45°,∴△BED是等腰直角三角形,设AD=AE=x,则ED=BE=x,BD=x×=2x,=9,∵S△ABD∴AD•BD=9,•x•2x=9,x2=9,x1=3,x2=﹣3,∴AD=3,故答案为:3.【点评】本题主要考查了等腰直角三角形的性质和判定,勾股定理,三角形的面积,解本题的关键是判断△AED和是等腰直角三角形△BED是等腰直角三角形,难点是已知的面积求AD的长.三、解答题(第21-25题各8分,第26-27题各10分,共计60分)21.(8分)计算:(1)(2x+3y)(x﹣y)(2)(a2b﹣3)﹣2•(a﹣2b3)2.【分析】(1)直接利用多项式乘法计算得出答案;(2)直接利用积的乘方运算法则以及负指数幂的性质分别化简得出答案.【解答】解:(1)(2x+3y)(x﹣y)=2x2﹣2xy+3xy﹣3y2=2x2+xy﹣3y2;(2)(a2b﹣3)﹣2•(a﹣2b3)2=a﹣4b6•a﹣4b6=a﹣8b12=.【点评】此题主要考查了多项式乘法以及负指数幂的性质,正确掌握运算法则是解题关键.22.(8分)先化简,再求值:,其中x=.【分析】根据分式的运算法则即可求出答案.【解答】解:由于x==﹣2原式=×﹣=﹣===【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.23.(8分)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1(﹣4,﹣1),B1(﹣3,﹣3),C1(﹣1,﹣2);(2)画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是4.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得.【解答】解:(1)如图所示,△A1B1C1即为所求.A1(﹣4,﹣1)B1(﹣3,﹣3),C1(﹣1,﹣2),故答案为:﹣4、﹣1、﹣3、﹣3、﹣1、﹣2;(2)如图所示,△CC1C2的面积是×2×4=4,故答案为:4.【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.24.(8分)如图1,已知∠ABC=90°,△ABC是等腰三角形,点D为斜边AC的中点,连接DB,过点A作∠BAC的平分线,分别与DB,BC相交于点E,F.(1)求证:BE=BF;(2)如图2,连接CE,在不添加任何辅助线的条件下,直接写出图中所有的等腰三角形.【分析】(1)根据直角三角形的性质得到BD⊥AC,∠DBC=45°,根据角平分线的定义得到∠BAF=22.5°,根据三角形内角和定理计算,根据等腰三角形的判定定理证明即可;(2)根据等腰三角形的概念解答.【解答】(1)证明:∠ABC=90°,BA=BC,点D为斜边AC的中点,∴BD⊥AC,∠DBC=45°,∵AF是∠BAC的平分线,∴∠BAF=22.5°,∴∠BFE=67.5°,∴∠BEF=180°﹣∠EBF﹣∠EFB=67.5°,∴∠BFE=∠BEF,∴BE=BF;(2)∵∠ABC=90°,BA=BC,点D为斜边AC的中点,∴BD=AD=CD,∴△ABD、△CBD是等腰三角形,由已知得,△ABC是等腰三角形,由(1)得,△BEF是等腰三角形,∵AF是∠BAC的平分线,BD是∠ABC的平分线,∴点E是△ABC的内心,∴∠EAC=∠ECA=22.5°,∴△AEC是等腰三角形.【点评】本题考查的是等腰三角形的判定和性质、直角三角形的性质,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.25.(8分)某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?【分析】(1)设购买一个乙礼品需要x元,根据“花费600元购买甲礼品和花费360元购买乙礼品的数量相等”列分式方程求解即可;(2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(30﹣m)个,根据题意列不等式求解即可.【解答】解:(1)设购买一个乙礼品需要x元,根据题意得:=,解得:x=60,经检验x=60是原方程的根,∴x+40=100.答:甲礼品100元,乙礼品60元;(2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(30﹣m)个,根据题意得:100m+60(30﹣m)≤2000,解得:m≤5.答:最多可购买5个甲礼品.【点评】此题主要考查了分式方程和不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,列出方程和不等式.26.(10分)如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D 在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC 的延长线于点G,AG=5CG,BH=3.求CG的长.【分析】(1)根据等边三角形的性质、三角形的外角的性质得到∠EDB=∠B,根据等腰三角形的判定定理证明;(2)取AB的中点O,连接CO、EO,分别证明△ACD≌△OCE和△COE≌△BOE,根据全等三角形的性质证明;(3)取AB的中点O,连接CO、EO、EB,根据(2)的结论得到△CEG≌△DCO,根据全等三角形的性质解答.【解答】(1)证明:∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=30°,∴∠EDB=∠B,∴DE=EB;(2)解:ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=30°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,在△ACD和△OCE中,,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,在△COE和△BOE中,,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(3)取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=3,∵GE∥AB,∴∠G=180°﹣∠A=120°,在△CEG和△DCO中,,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+3+3,解得,a=2,即CG=2.【点评】本题考查的是等边三角形的性质、全等三角形的判定和性质以及直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.27.(10分)如图,在平面直角坐标系中,点O是坐标原点,点B(0,12),点A在第一象限内,△AOB为等腰三角形,∠BAO=90°,AB=AO,AC⊥OB,点D从点B出发,以每秒2个单位的速度沿y轴向终点O运动,连接DA,过点A作AE⊥AD,射线AE 交x轴于点E,连接BE,交线段AC于点F,交线段OA于点G.(1)请直接写出A的坐标;(2)点D运动的时间为t秒时,用含t的代数式表示△ACD的面积S,并写出t的取值范围;(3)在(2)的条件下,当四边形DAEO的面积等于6S时,求△AGF的面积.【分析】(1)先确定出OB=12,再用等腰直角三角形的性质得AC=BC=OC=OB=6,即可得出结论;(2)当点D在线段BC上时(不包括点C),即:0≤t<3,得出CD=BC﹣BD=6﹣2t,利用三角形面积公式即可;当点D在线段BC上时(不包括点C),即:3<t≤6,如图2,CD=BD﹣BC=2t﹣6,最后利用三角形面积公式即可;(3)①当点D在线段BC上时(不包括点C),即:0≤t<3,如图1,先判断出S△ACD=S△AME ,进而S四边形DOEA=S正方形ACOM=AC2=36,即可求出S,进而t=2,CD=EM=2,OE=4,再求出AF=AC﹣CF=4=OE,最后判断出△AFG≌△OEG,求出PG=QG=6即可得出结论;②当点D在线段OC上(不包括点C),即:3<t≤6,如图2,同①的方法知,S=6,t=4,CD=EM=2,OE=8,同①的方法得,OF=4,即AF=AC﹣OF=2,再判断出△AFG∽△OEG,得出h'=4h,即可得出h=即可得出结论.【解答】解:(1)∵B(0,12),∴OB=12,∵△AOB为等腰三角形,∠BAO=90°,AB=AO,AC⊥OB,∴AC=BC=OC=OB=6,∴A(6,6);(2)当点D在线段BC上时(不包括点C),即:0≤t<3,如图1,由运动知,BD=2t,∴CD=BC﹣BD=6﹣2t,∴S=S△ACD=CD×AC=18﹣6t,当点D在线段BC上时(不包括点C),即:3<t≤6,如图2,由运动知,BD=2t,∴CD=BD﹣BC=2t﹣6,∴S=S△ACD=CD×AC=6t﹣18;(3)①当点D在线段BC上时(不包括点C),即:0≤t<3,如图1,过点A作AM⊥x轴于M,∴四边形OCAM是矩形,∵A(6,6),∴AC=AM,∴矩形OCAM是正方形,∴OM=AC=6,∠CAM=90°,∵∠DAE=90°,∴∠CAD=∠EAM,在△ACD和△AME中,,∴△ACD≌△AME,=S△AME,∴S△ACD=S△ACD+S四边形COEA=S△AMF+S四边形COEA=S正方形ACOM=AC2=36,∴S四边形DOEA∵四边形DAEO的面积等于6S,∴6S=36,∴S=6,由(2)知,S=18﹣6t,∴18﹣6t=6,∴t=2,∴CD=EM=6﹣2t=2,∵OM=6,∴OE=OM﹣EM=4,∵AC∥OM,OC=BC,∴CF=OE=2,∴AF=AC﹣CF=4=OE,过点G作GQ⊥OM于Q,交AC于P,∴PG⊥AC,∴四边形OCPQ是矩形,∴PQ=OC=6,易知,△AFG≌△OEG,∴PG=QG=6,=AF×PG=6;∴S△AFG②当点D在线段OC上(不包括点C),即:3<t≤6,如图2,同①的方法知,S=6,∵S=6t﹣18,∴6t﹣18=6,∴t=4,∴CD=EM=2,∴OE=8,同①的方法得,OF=4,∴AF=AC﹣OF=2,∵AC∥OM,∴△AFG∽△OEG,设△AFG的边AF上的高为h,△OEG的边OE上的高为h',∴=.∴h'=4h,∵h+h'=6,∴h=,=AF×h=.∴S△AFG【点评】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,三角形的面积公式,用分类讨论的思想是解本题的关键.。

福建省漳州市八年级上学期数学期末考试试卷

福建省漳州市八年级上学期数学期末考试试卷

福建省漳州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单项选择题:(每小题3分,满分18分) (共6题;共18分)1. (3分) (2017八上·北部湾期中) 如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A . 30°B . 50°C . 90°D . 100°2. (3分)下列图形中,具有稳定性的是()A . 三角形B . 平行四边形C . 梯形D . 正方形3. (3分) a (a b)的结果是()A . a bB . a bC . a bD . 3a b4. (3分)计算(a+b)(-a+b)的结果是()A . b -aB . a -bC . -a -2ab+bD . -a +2ab+b5. (3分)(2020·海门模拟) 勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,已知∠BAC=90°,AB=6,AC=8,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形KLMJ的周长为()A . 40B . 44C . 84D . 886. (3分) A地在河的上游,B地在河的下游,若船从A地开往B地的速度为V1 ,从B地返回A地的速度为V2 ,则A,B两地间往返一次的平均速度为()A .B .C .D . 无法计算二、填空题:(每小题4分,满分32分) (共8题;共30分)7. (4分)(2020·五华模拟) 党的十九大以来,党中央把打好精准脱贫攻坚战作为全面建成小康社会的三大攻坚战之一,并取得了决定性成就.现行标准下的农村贫困人口从2012年底98990000人减少至2019年底的5510000人,累计减贫93480000人.93480000用科学记数法表示为________.8. (4分)如图所示,将等腰直角三角形ABC放置到平面直角坐标系中,直角顶点C在x轴上,点B在y轴上,反比例函数y=图象过点A,若点B与点C坐标分别为(0,1)与(﹣2,0),则k=________ .9. (2分)(2012·湖州) 如图,在△ABC中,D、E分别是AB、AC上的点,点F在BC的延长线上,DE∥BC,∠A=46°,∠1=52°,则∠2=________度.10. (4分) (2019八上·哈尔滨期末) 分式无意义的条件是________.11. (4分) (2019七上·进贤期中) 写出两个只含字母x的二次二项式,使它们的和为x+1,满足要求的多项式可以是: ________、________。

(汇总3份试卷)2018年漳州市八年级上学期数学期末经典试题

(汇总3份试卷)2018年漳州市八年级上学期数学期末经典试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列添括号正确的是( )A .()x y x y +=--B .()x y x y -=-+C .()x y x y -+=--D .()x y x y --=--【答案】C【分析】添加括号,若括号前是负号,则括号内需要变号,根据这个规则判断下列各选项.【详解】A 中,()x y x y +=---,错误;B 中,()x y x y -=--+,错误;C 中,()x y x y -+=--,正确;D 中,(+)x y x y --=-,错误故选:C【点睛】本题考查添括号,注意去括号和添括号关注点一样,当括号前为负号时,去括号需要变号.2.下列各式正确的是( )A .2235x x x +=B .3362b b b =C .441622x x x =D .5210()x x = 【答案】D【分析】根据幂的运算法则即可依次判断.【详解】A. 235x x x +=,故错误;B. 336b b b =,故错误;C. 44822x x x =,故错误;D. 5210()x x =,正确,故选D .【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.3.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .1 【答案】D【解析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m 、n 的值,代入计算可得.【详解】∵点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选D .【点睛】本题考查了关于y 轴对称的点,熟练掌握关于y 轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.4.如果关于x 的分式方程4122ax x x =+--有解,则a 的值为( ) A .1a ≠B .2a ≠C .1a ≠-且2a ≠-D .1a ≠且2a ≠【答案】D【分析】先去分母,然后讨论无解情况,求出即可.【详解】去分母得:42ax x =+- 21x a =-,则1a ≠, 当x=2时,为增根方程无解,则2a ≠,则1a ≠且2a ≠,故选D.【点睛】本题是对分式方程的考查,熟练掌握分式方程知识的考查是解决本题的关键.5.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )A .7B .8C .9D .10【答案】B 【分析】根据正方形的面积公式及勾股定理即可求得结果.【详解】因为是以Rt ABC ∆的三边为边,分别向外作正方形,所以AB 2=AC 2+BC 2所以123S S S =+因为12316S S S ++=所以1S =8故选:B【点睛】考核知识点:勾股定理应用.熟记并理解勾股定理是关键.6.△ABC 中,AB =AC ,BD 平分∠ABC 交AC 边于点D ,∠BDC=1.,则∠A 的度数是( )A .35︒B .40︒C .70︒D .110︒【答案】B【解析】设∠A 的度数是x ,则∠C=∠B=1802x-,∵BD 平分∠ABC 交AC 边于点D∴∠DBC=1804x-, ∴1802x-+1804x-+1=180°,∴x=40°,∴∠A 的度数是40°.故选:B.7.化简24142x x +-+的结果是( )A .2x -B .12x - C .22x - D .22x【答案】B 【分析】原式通分并利用同分母分式的加法法则计算即可求出值. 【详解】原式4221(2)(2)(2)(2)(2)(2)2x x x x x x x x x -+=+==+-+-+--故选:B .【点睛】本题考查分式的加减法;熟练掌握分式的运算法则,正确进行因式分解是解题的关键.8.下列各图中,a ,b ,c 为三角形的边长,则甲,乙,丙三个三角形中和左侧ABC 全等的是()A .甲和乙B .乙和丙C .甲和丙D .只有丙【答案】B 【分析】根据全等三角形的判定定理逐图判定即可.【详解】解:∵甲图为SSA 不能全等;乙图为SAS ;丙图为AAS∴乙、丙两图都可以证明.故答案为B .【点睛】本题考查了全等三角形的判定定理,牢记AAS 、SAS 、ASA 、SSS 可证明三角形全等,AAA 、SSA 不能证明三角形全等是解答本题的关键.9.如图,△ABC 中,∠C=90°,∠A=30°,AB =12,则BC =( )A .6B .2C .3D .12【答案】A 【详解】∵30°的角所对的直角边等于斜边的一半,1112622BC AB ∴==⨯= , 故选A. 10.某青少年篮球队有12名队员,队员的年龄情况统计如下表,则这12名队员年龄的众数和中位数分别是( ) 年龄(岁)12 13 14 15 16 人数 3 12 5 1 A .15岁和14岁B .15岁和15岁C .15岁和14.5岁D .14岁和15岁 【答案】C【分析】根据众数和中位数的定义判断即可.【详解】解:该组数据中数量最多的是15,所以众数为15;将该组数据从小到大排列:12,12,12,13,14,14,15,15,15,15,15,16其中位数为1415=14.52+. 故选:C.【点睛】 本题主要考查数据统计中众数与中位数的定义,理解掌握定义是解答关键.二、填空题11.已知:在ABC ∆中,AH BC ⊥,垂足为点H ,若AB BH CH +=,70ABH ∠=︒,则BAC ∠=______. 【答案】75°或35°【分析】分两种情况:当ABC ∠为锐角时,过点A 作AD=AB ,交BC 于点D ,通过等量代换得出CD AB AD ==,从而利用三角形外角的性质求出C ∠,最后利用三角形内角和即可求解;当ABC ∠为钝角时,直接利用等腰三角形的性质和外角的性质即可求解.【详解】当ABC ∠为锐角时,过点A 作AD=AB ,交BC 于点D ,如图1AB AD =70,ADB ABH BH DH ∴∠=∠=︒=,AB BH CH CH CD DH +==+CD AB AD ∴==1352C ADB ∴∠=∠=︒ 18075BAC ABH C ∴∠=︒-∠-∠=︒当ABC ∠为钝角时,如图2,AB BH CH +=AB BC ∴=1352BAC ACB ABH ∴∠=∠=∠=︒ 故答案为:75°或35°.【点睛】本题主要考查等腰三角形的性质和三角形外角的性质,分情况讨论是解题的关键.12.已知m 2﹣mn=2,mn ﹣n 2=5,则3m 2+2mn ﹣5n 2=________.【答案】31【解析】试题解析:根据题意,222,5,m mn mn n -=-=故有222,5m mn n mn =+=-,∴原式=3(2+mm)+2mn−5(mn−5)=31.故答案为31.13.在学校文艺节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差分别是2 1.5S =甲,2 2.5S =乙,那么身高更整齐的是________(填“甲”或“乙”)队.【答案】甲【分析】根据方差的大小关系判断波动大小即可得解,方差越大,波动越大,方差越小,波动越小.【详解】因为2S <甲2S 乙,所以甲队身高更整齐,故答案为:甲.【点睛】本题主要考查了方差的相关概念,熟练掌握方差与数据波动大小之间的关系是解决本题的关键. 14.点(2,b )与(a ,-4)关于y 轴对称,则a= ,b= .【答案】-2,-4.【解析】试题分析:关于y 轴对称的点的坐标的特征:纵坐标相同,横坐标互为相反数.由题意得,.考点:关于y 轴对称的点的坐标的特征.15.如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,AC ⊥CD ,OE ∥BC 交CD 于E ,若OC=4,CE=3,则BC 的长是____.【答案】1.【分析】首先利用三角形的中位线定理求得CD 的长,然后利用勾股定理求得AD 的长,即可求出BC 的长.【详解】解:∵四边形ABCD 是平行四边形,∴OA=OC ,AD ∥BC .∵OE ∥BC ,∴OE ∥AD ,∴OE 是△ACD 的中位线.∵CE=3cm ,∴DC=2OE=2×3=2.∵CO=4,∴AC=3.∵AC ⊥CD ,∴AD 222268AC CD =+=+=1,∴BC=AD=1.故答案为:1.【点睛】考查了平行四边形的性质,三角形中位线定理,勾股定理,正确的理解平行四边形的性质是解答本题的关键,难度不大.16.如图,ABC ∆中,90ACB ∠=︒,以它的各边为边向外作三个正方形,面积分别为1S 、2S 、3S ,已知16=S ,28S =,则3S =______.【答案】1【分析】由ABC ∆中,90ACB ∠=︒,得222AC BC AB +=,结合正方形的面积公式,得1S +2S =3S ,进而即可得到答案.【详解】∵ABC ∆中,90ACB ∠=︒,∴222AC BC AB +=,∵1S =2AC ,2S =2BC ,3S =2AB ,∴1S +2S =3S ,∵16=S ,28S =,∴3S =6+8=1,故答案是:1.【点睛】本题主要考查勾股定理与正方形的面积,掌握勾股定理,是解题的关键.17.如图,Rt △ABC 中,∠C=90°,∠BAC 的角平分线AE 与AC 的中线BD 交于点F ,P 为CE 中点,连结PF ,若CP=2,15BFP S ∆=,则AB 的长度为_______.【答案】15【分析】作辅助线EH AB ⊥交AB 于H ,再利用等量关系用△BFP 的面积来表示△BEA 的面积,利用三角形的面积公式来求解底边AB 的长度【详解】作EH AB ⊥∵AE 平分∠BACBAE CAE ∴∠=∠EC EH ∴=∵P 为CE 中点4EC EH ==∴∵D 为AC 中点,P 为CE 中点=x =y PEF PCF CDF ADF S S S S ==△△△△∴设,15x BEF S =-△∴15+x+y BCD BDA S S ==△△∴y=15+x+y-y=15+x BFA BDA S S =-△△∴15x+15+x=30BEA BEF BFA S S S =+=-△△△∴ 1=302BEA S AB EH ⨯=△∵ =15AB ∴【点睛】本题考查了辅助线的运用以及三角形的中线平分三角形的面积,解题的关键在于如何利用△BFP 的面积来表示△BEA 的面积三、解答题18.已知32,32m n =-=+,求代数式22m mn n ++的值.【答案】11【解析】先求出m+n 和mn 的值,再根据完全平方公式变形,代入求值即可.【详解】∵32,32m n =-=+,∴m+n=23,mn=1∴22m mn n ++=222()(23)111m n mn +-=-=.【点睛】此题考查了二次根式的混合运算法则,完全平方公式的应用,主要考查了学生的计算能力,题目较好. 19.已知:如图,点A 是线段CB 上一点,△ABD 、△ACE 都是等边三角形,AD 与BE 相交于点G ,AE 与CD 相交于点F .求证:△AGF 是等边三角形.【答案】见解析【分析】由等边三角形可得AD=AB ,AE=AC ,∠BAE=∠DAC=120°,再由两边夹一角即可判定△BAE ≌△DAC ,可得∠1=∠2,进而可得出△BAG ≌△DAF ,AG=AF ,则可得△AGF 是等边三角形.【详解】证明:∵△ABD ,△ACE 都是等边三角形,∴AD=AB ,AE=AC ,∴∠DAE=∠BAD=∠CAE=60°∴∠BAE=∠DAC=120°,在△BAE 和△DAC 中AD=AB ,∠BAE=∠DAC ,AE=AC ,∴△BAE ≌△DAC .∴∠1=∠2在△BAG 和△DAF 中∠1=∠2,AB=AD ,∠BAD=∠DAE ,∴△BAG ≌△DAF ,∴AG=AF ,又∠DAE=60°,∴△AGF 是等边三角形.【点睛】本题主要考查了全等三角形的判定及性质,以及等边三角形的性质和判定,解答本题的关键是明确题意,利用数形结合的思想解答.20.王华由225382-=⨯,229784-=⨯,22153827-=⨯,22115812-=⨯,22157822-=⨯,这些算式发现:任意两个奇数的平方差都是8的倍数(1)请你再写出两个(不同于上面算式)具有上述规律的算式;(2)请你用含字母的代数式概括王华发现的这个规律(提示:可以使用多个字母);(3)证明这个规律的正确性.【答案】(1)22113=814-⨯,22175=833-⨯;(2)22(21)(21)8m n a +--=;(3)见解析.【分析】(1)根据已知算式写出符合题意的答案;(2)利用平方差公式计算,即可得出答案;(3)先把代数式进行分解因式,然后对m 、n 的值进行讨论分析,即可得到结论成立.【详解】解:(1)根据题意,有:22113=1219=112=814--⨯,22175=28925=264=833--⨯; ∴22113=814-⨯,22175=833-⨯;(2)根据题意,得:22(21)(21)8m n a +--=(m ,n , a 都是整数且互不相同);(3) 证明:22(21)(21)m n +--=(2121)(2121)m n m n ++++--=4(1)()m n m n ++-;当m 、n 同是奇数或偶数时,(m-n )一定是偶数,∴ 4(m-n )一定是8的倍数;当m 、n 是一奇一偶时,(m+n+1)一定是偶数,∴ 4(m+n+1)一定是8的倍数;综上所述,任意两个奇数的平方差都是8的倍数.【点睛】本题考查了因式分解的应用及平方差公式的应用,解题的关键是熟练掌握因式分解的方法进行解题.注意:平方差公式是a 2-b 2=(a+b )(a-b ).21.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积.方法1: ;方法2: ;(2)观察图②请你写出下列三个代数式:()()22,,m n m n mn +-之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知:5,6a b ab -==-,求()2a b +的值;②已知:220a a --=,求:2a a+的值. 【答案】(1)方法1:(m-n )2;方法2:(m+n )2-4mn ;(2)(m-n )2=(m+n )2-4mn ;(1)①1;②±1.【分析】(1)大正方形的面积减去矩形的面积即可得出阴影部分(小正方形)的面积;(2)由面积关系容易得出结论;(1)①根据(2)所得出的关系式,容易求出结果; ②先求出21a a -=,再求(a 2a+)2,即可得出结果. 【详解】(1)方法1:(m+n)2﹣4mn ,方法2:(m ﹣n)2.故答案为:(m+n)2﹣4mn ,(m ﹣n)2;(2)(m ﹣n)2=(m+n)2﹣4mn ;(1)①(a+b)2=(a ﹣b)2+4ab=52+4×(﹣6)=1;②∵220a a --=, ∴21a a-=, ∴(a 2a+)2=(a 2a -)2+4×a 2a ⨯=12+8=9, ∴a 2a +=±1. 【点睛】本题考查了完全平方公式的几何背景,正方形和矩形面积的计算;注意仔细观察图形,表示出各图形的面积是解答本题的关键.22.如图,正方形ABCD 的对角线交于点O 点E ,F 分别在AB ,BC 上(AE BE <)且90EOF ∠=︒,OE ,DA 的延长线交于点M ,OF ,AB 的延长线交于点N ,连接MN .(1)求证:OM ON =.(2)若正方形ABCD 的边长为4,E 为OM 的中点,求MN 的长.【答案】(1)见解析(2)210 【解析】(1)证△OAM ≌△OBN 即可得;(2)作OH ⊥AD ,由正方形的边长为4且E 为OM 的中点知OH=HA=2、HM=4,再根据勾股定理得OM=25,由直角三角形性质知MN=2OM .【详解】(1)∵四边形ABCD 是正方形,∴OA=OB ,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON ,∴△OAM ≌△OBN (ASA ),∴OM=ON ;(2)如图,过点O 作OH ⊥AD 于点H ,∵正方形的边长为4,∴OH=HA=2,∵E 为OM 的中点,∴HM=4,则22254=2+∴210.【点睛】本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.23.小明在作业本上写了一个代数式的正确演算结果,但不小心被墨水污染了一部分,形式如下:2621932x x x x -⎛⎫-÷= ⎪-+-⎝⎭ ()1求被墨水污染部分“”化简后的结果;()2原代数式的值能等于1吗?并说明理由.【答案】(1)13x -;(2)原代数式的值能等于1,理由见解析. 【分析】(1)设被墨水污染部分“”为A ,根据题意求出A 的表达式,再根据分式混合运算的法则进行计算即可;(2)令原代数式的值为1,求出x 的值,再代入代数式的式子中进行验证即可.【详解】解:(1)设被墨水污染部分“”为A , 则2621932x A x x x -⎛⎫-÷= ⎪-+-⎝⎭ 2621932x A x x x -∴-=⋅-+- 26193A x x ∴-=-+ 2616(3)3193(3)(3)(3)(3)3x x A x x x x x x x +-+∴=+===-++-+-- 故化简后的结果13x -; (2)原代数式的值能等于1,理由如下:令113x =-, 解得:4x =,经检验:4x =是原分式方程的解,所以原代数式的值能等于1.【点睛】本题考查的是分式的化简求值,在解答此类问题时要注意x 的取值要保证每一个分式有意义. 24.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -. ①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”;②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可;(2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值;②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.【答案】(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-1;②334k -≤<- 【分析】(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上, ∵点A 关于点B 的“正矩点”为点(,)C C C x y ,∴∠ABC=90°,BC=BA ,∴∠1+∠2=90°,∵∠AOB=90°,∴∠2+∠1=90°,∴∠1=∠1.∴△BFC ≌△AOB ,∴3FC OB ==,可得OE =1.∵点A 在x 轴的正半轴上且3OA <,0C x ∴<,∴点C 的横坐标C x 的值为-1.②因为△BFC ≌△AOB ,3(,0)A k-,A 在x 轴正半轴上, 所以BF =OA ,所以OF =OB-OF =33k+ 点3(3,3)C k-+,如图2, -1<C y ≤2, 即:-1<33k+ ≤2, 则334k -≤<-. 【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.25.如图,四边形ABDC 中,∠D=∠ABD=90゜,点O 为BD 的中点,且OA 平分∠BAC .(1)求证:OC 平分∠ACD ;(2)求证:AB+CD=AC【答案】(1)见解析;(2)见解析【分析】(1)首先根据角平分线的性质得出OB OE =,然后通过线段中点和等量代换得出OD OE =,最后根据角平分线的性质定理的逆定理得出结论即可;(2)首先根据HL 证明Rt BEP Rt PFQ △≌△,得出AB AE =,同理可得CD CE =,最后通过等量代换即可得出结论.【详解】(1)如图,过点O 作OE AC ⊥于点E ,OA 平分∠BAC ,∠ABD=90°,OE AC ⊥,OB OE ∴=.∵点O 为BD 的中点,OB OD ∴=,OD OE ∴=.∵∠ABD=90°,OE AC ⊥,∴ OC 平分∠ACD ;(2)在Rt ABO 和Rt AEO 中,OB OE AO AO=⎧⎨=⎩ ()Rt BEP Rt PFQ HL ∴△≌△ ,AB AE =∴,同理可得,CD CE =.AC AE CE =+,∴=+.AC AB CD【点睛】本题主要考查角平分线的性质定理及逆定理,直角三角形的判定及性质,掌握这些性质及判定是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若一个三角形的三边长分别为6、8、10,则这个三角形最长边上的中线长为( )A .3.6B .4C .4.8D .5【答案】D【分析】首先根据勾股定理的逆定理可判定此三角形是直角三角形,则最大边上的中线即为斜边上的中线,然后根据直角三角形斜边上的中线等于斜边的一半,从而得出结果.【详解】解:∵62+82=100=102,∴三边长分别为6cm 、8cm 、10cm 的三角形是直角三角形,最大边是斜边为10cm .∴最大边上的中线长为5cm .故选D .【点睛】本题考查勾股定理的逆定理;直角三角形斜边上的中线.2.500米口径球面射电望远镜,简称FAST ,是世界上最大的单口径球面射电望远镜,被誉为“中国天眼”.FAST 望远镜首次发现的毫秒脉冲星得到国际认证,新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为( )A .20.51910-⨯B .35.1910-⨯C .25.1910-⨯D .551910-⨯ 【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00519=5.19×10-1.故选:B .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.已知:如图,下列三角形中,AB AC =,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的有( )A .1个B .2个C .3个D .4个【答案】C【分析】顶角为:36°,90°,108°的等腰三角形都可以用一条直线把等腰三角形分割成两个小的等腰三角形,再用一条直线分其中一个等腰三角形变成两个更小的等腰三角形.【详解】由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°,72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故选:C .【点睛】本题考查了等腰三角形的判定;在等腰三角形中,从一个顶点向对边引一条线段,分原三角形为两个新的等腰三角形,必须存在新出现的一个小等腰三角形与原等腰三角形相似才有可能.4.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )A 51B 51C 31D 31【答案】B 【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即5BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则51.【详解】解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB∵ADC 2B ∠=∠∴∠B=∠DAB ∴5BD AD ==在Rt △ADC 中,由勾股定理得:22DC 541AD AC =-=-=∴51故选B【点睛】 本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.5.某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )A .17,8.5B .17,9C .8,9D .8,8.5 【答案】D【解析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为898.52+=; 故选:D .【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数. 6.如果把分式x y y x +中的x ,y 同时扩大为原来的4倍,现么该分式的值( ) A .不变B .扩大为原来的4倍C .缩小为原来的12 D .缩小为原来的14【答案】D 【分析】根据分式的性质可得4444x y x y +⋅=4()16x y xy +=14•x y y x +,即可求解. 【详解】解:x ,y 同时扩大为原来的4倍,则有4444x y x y +⋅=4()16x y xy +=14•x y y x +, ∴该分式的值是原分式值的14, 故答案为D .【点睛】 本题考查了分式的基本性质,给分子分母同时乘以一个整式(不为0),不可遗漏是解答本题的关键. 7.关于直线(:)0,l y kx k k =+≠下列说法正确的是( )A .点()0,k 不在l 上B .直线过定点()1,0-C .y 随x 增大而增大D .y 随x 增大而减小【答案】B【分析】将点的坐标代入可判断A 、B 选项,利用一-次函数的增减性可判断C 、D 选项.【详解】解:A.当x=0时,可得y=k ,即点(0,k )在直线I 上,故A 不正确;B.当x=-1时,y=-k+k=0,即直线过定点(-1,0),故B 正确;C 、D.由于k 的符号不确定,故C 、D 都不正确;故答案为B .【点睛】本题主要考查了一次函数图象与系数的关系,掌握函数图象上点的坐标与函数解忻式的关系及一次函数的增减性是解答本题的关键.8.给出下列实数:227、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个0),其中无理数有( )A .2个B .3个C .4个D .5个 【答案】B【分析】根据无理数是无限不循环小数,可得答案.【详解】解:−5,实数:227、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个0),2π、-0.1010010001…(每相邻两个1之间依次多一个0)共3个. 故选:B .【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.9.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )A .众数是5B .中位数是5C .平均数是6D .方差是3.6 【答案】D【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A 、数据中5出现2次,所以众数为5,此选项正确;B 、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C 、平均数为(7+5+3+5+10)÷5=6,此选项正确;D 、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误; 故选D .【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.10.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0【答案】C 【解析】根据一次函数的图象与系数的关系进行解答即可.【详解】∵一次函数y=kx+b 的图象经过一、二、四象限,∴k <0,b >0,故选C .【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b (k≠0)中,当k <0,b >0时图象在一、二、四象限.二、填空题11.如图,在Rt ABC ∆中,90BAC ∠=︒,D ,E 分别是AB ,BC 的中点,F 在CA 的延长线上,FDA B =∠∠,6AC =,8AB =,则四边形AEDF 的周长是____________.【答案】1【分析】根据勾股定理先求出BC 的长,再根据三角形中位线定理和直角三角形的性质求出DE 和AE 的长,进而由已知可判定四边形AEDF 是平行四边形,从而求得其周长.【详解】解:在Rt △ABC 中,∵AC=6,AB=8,∴BC=10,∵E 是BC 的中点,∴AE=BE=5,∴∠BAE=∠B ,∵∠FDA=∠B ,∴∠FDA=∠BAE ,∴DF∥AE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=12AC=3,∴四边形AEDF是平行四边形∴四边形AEDF的周长=2×(3+5)=1.故答案为:1.【点睛】本题考查三角形中位线定理的运用,熟悉直角三角形的性质、等腰三角形的判定以及平行四边形的判定.熟练运用三角形的中位线定理和直角三角形的勾股定理是解题的关键.12.若点P关于x轴的对称点为P1(2a+b, -a+1),关于y轴对称点的点为P2(4-b,b+2),则点P的坐标为【答案】(2a+b,b+2)【解析】答案应为(-9,-3)解决此题,先要根据关于x轴的对称点为P1(2a+b,-a+1)得到P点的一个坐标,根据关于y轴对称的点P2(4-b,b+2)得到P点的另一个坐标,由此得到一个方程组,求出a、b的值,即可得到P点的坐标.解:∵若P关于x轴的对称点为P1(2a+b,-a+1),∴P点的坐标为(2a+b,a-1),∵关于y轴对称的点为P2(4-b,b+2),∴P点的坐标为(b-4,b+2),则2a b b4 {a1b2+=--=+,解得a2 {b5=-=-.代入P点的坐标,可得P点的坐标为(-9,-3).13.A(3,y1),B(1,y2)是直线y=kx+3(k>0)上的两点,则y1____y2(填“>”或“<).【答案】>.【分析】由k>0,利用一次函数的性质可得出y值随x值的增大而增大.再结合3>1即可得出y1>y1.【详解】解:∵k>0,∴y值随x值的增大而增大.又∵3>1,∴y1>y1.故答案为:>.【点睛】本题考查了一次函数的性质,牢记“k>0,y 随x 的增大而增大;k<0,y 随x 的增大而减小”是解题的关键.14.因式分解:281x -=______,22363ax axy ay -+=________.【答案】(x+9)(x -9) 3a 2()x y -【分析】(1).利用平方差公式分解因式;(2).先提公因式,然后利用完全平方公式分解因式.【详解】(1) 222819x x -=-=(x+9)(x -9);(2) ()22222363(3)23ax axy ay a x xy ya x y =-+=--+.【点睛】本题考查了利用提公因式法分解因式和利用公式法分解因式,解题的关键是根据式子特点找到合适的办法分解因式.15.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.【答案】1【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣1|+(b ﹣1)2=0,∴a ﹣1=0,b ﹣1=0,解得a=1,b=1,∵1﹣1=6,1+1=8,∴68c <<,又∵c 为奇数,∴c=1,故答案为1.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系. 16.若23a b =,则a b b -=_____. 【答案】13- 【解析】通过设k 法计算即可. 【详解】解:∵23a b =, ∴设a=2k ,b=3k (k ≠0), 则23133a b k k b k --==-,故答案为:13-.【点睛】本题考查比例的性质,比较基础,注意设k 法的使用.17.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产___台机器.【答案】1【详解】设现在平均每天生产x 台机器,则原计划可生产(x ﹣52)台,根据现在生产622台机器的时间与原计划生产452台机器的时间相同,等量关系为:现在生产622台机器时间=原计划生产452台时间,从而列出方程:600450x x 50=-, 解得:x=1.检验:当x=1时,x (x ﹣52)≠2.∴x=1是原分式方程的解.∴现在平均每天生产1台机器.三、解答题18.解下列方程. (1)21122x x x=+-- (2)2221141242x x x +=-- 【答案】(1)3x =-是该方程的解;(2)0x =是该方程的解.【分析】(1)方程两边同时乘以(2x -),化为整式方程后求解,然后进行检验即可得;(2)方程两边同时乘以()()22121x x +-,化为整式方程后求解,最后进行检验即可得.【详解】(1) 21122x x x=+-- 方程两边同时乘以(2x -),得:221x x =--,解得:3x =-,经检验: 3x =-是原分式方程的解; (2) 2221141242x x x +=-- 方程两边同时乘以()()22121x x +-,得:()()()24212121x x x x -+=+-, 解得:0x =,经检验: 0x =是原分式方程的解.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤以及注意事项是解题的关键.19.如图,CE 是△ABC 的外角∠ACD 的平分线,交BA 的延长线于点E ,已知∠B =25°,∠E =30°,求∠BAC 的度数.【答案】85°【分析】根据三角形外角性质求出∠ECD ,根据角平分线定义求出∠ACE ,根据三角形外角性质求出即可.【详解】解:∵∠ECD 是△BCE 的一个外角,∴∠ECD =∠B +∠E =55°.∵CE 是∠ACD 的平分线,∴∠ACE =∠ECD =55°.∵∠BAC 是△CAE 的一个外角,∴∠BAC =∠ACE +∠E =85°.【点睛】本题考查了三角形外角性质,角平分线定义的应用,本题的关键是掌握三角形外角性质,并能灵活运用定理进行推理20.设2244322M x xy y x y =-+-+,则M 的最小值为______. 【答案】38-【分析】把M 化成完全平方的形式,再示出其最小值即可.【详解】2244322M x xy y x y =-+-+ 22112224x y y y ⎛⎫=--++- ⎪⎝⎭ 22111132224488x y y ⎛⎫⎛⎫=--++--≥- ⎪ ⎪⎝⎭⎝⎭ 当且仅当14y =-,316x =表达式取得最小值. 故答案为:38-.【点睛】考查了完全平方公式,解题关键是把整式化成完全平方的形式.21.如图,已知:∠BDA = ∠CEA ,AE = AD .求证:∠ABC =∠ACB .【答案】见解析【分析】由已知条件加上公共角相等,利用ASA 得到△ABD 与△ACE 全等,利用全等三角形对应边相等即可得证.【详解】在△ABD 和△ACE 中,A A AD AEBDA CEA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABD ≌△ACE (ASA ),∴AB=AC ,∴∠ABC =∠ACB .【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.22.如图,在平面直角坐标系中,已知A (4,0)、B (0,3).(1)求AB 的长为____.(2)在坐标轴上是否存在点P ,使△ABP 是等腰三角形?若存在,请直接写出点P 坐标;若不存在,请说明理由.【答案】(1)5;(2)(0,8),(0,-3),(0,-2),70,6⎛⎫-⎪⎝⎭,(9,0),(-1,0),(-4,0),7,08⎛⎫ ⎪⎝⎭;理由见解析【分析】(1)根据A 、B 两点坐标得出OA 、OB 的长,再根据勾股定理即可得出AB 的长(2)分三种情况,AB=AP ,AB=BP ,AP=BP ,利用等腰三角形性质和两点之间距离公式,求出点P 坐标.。

2018-2019学年上期八年级数学期末试卷(解析版)

2018-2019学年上期八年级数学期末试卷(解析版)

2018-2019学年上期八年级数学期末试卷一、填空题(本大题共12小题,共24.0分)1.9的平方根等于______.2.比较大小:-1______(填“>”、“=”或“<”).3.若式子有意义,则x的取值范围是______.4.△ABC中,AB=AC,且∠A=80°,则∠B=______°.5.在平面直角坐标系中,点A(2,-3)关于y轴对称的点的坐标为______.6.Rt△ABC中,两条直角边长分别为5和12,则斜边上的中线长等于______.7.正比例函数y=(m-1)x图象经过二、四象限,则m的值可以是______(写一个即可).8.如图,△ABC≌△DBE,A、D、C在一条直线上,且∠A=60°,∠C=35°,则∠DBC=______°.9.如图,△ABC中,AB=AC,BE⊥AC,D为AB中点,若DE=5,BE=8.则EC=______.10.如图,根据函数图象回答问题:方程组的解为______.11.如图,点P是∠AOB的角平分线上一点,PD⊥OA于点D,CE垂直平分OP,若∠AOB=30°,OE=4,则PD=______.12.下表给出的是关于某个一次函数的自变量x及其对应的函数值y的若干信息.请你根据表格中的相关数据计算:.二、选择题(本大题共6小题,共18.0分)13.下面四个图形分别是低碳、节水、回收和绿色食品标志,在这四个标志中,是轴对称图形的是()A. B. C. D.14.数3.14、、π、、、中,无理数的个数为()A. 2个B. 3个C. 4个D. 5个15.关于一次函数y=1-2x,下列说法正确的是()A. 它的图象过点B. 它的图象与直线平行C. y随x的增大而增大D. 当时,总有16.如图,点A、B、C都在方格纸的“格点”上,请找出“格点”D,使点A、B、C、D组成一个轴对称图形,这样的点D共有()个.A. 1B. 2C. 3D. 417.某超市以每千克0.8元的价格从批发市场购进若干千克西瓜,在销售了部分西瓜之后,余下的每千克降价0.3元,直至全部售完.销售金额y与售出西瓜的千克数x 之间的关系如图所示,那么超市销售这批西瓜一共赚了()A. 20元B. 32元C. 35元D. 36元18.如图△ABC中,∠ACB=90°,AC=8,BC=6,点E是AB中点,将△CAE沿着直线CE翻折,得到△CDE,连接AD,则线段AD的长等于()A. 8B.C.D. 10三、解答题(本大题共8小题,共78.0分)19.(1)求x的值:4x2-9=0;(2)计算:-+.20.已知直线y=kx+b与直线y=2x平行,且经过点A(4,4).(1)求k和b的值;(2)若直线y=kx+b与y轴相交于点B,求△AOB的面积.21.已知点A(1,3)、B(3,-1),利用图中的“格点”完成下列作图或解答:(1)在第三象限内找“格点”C,使得CA=CB;(2)在(1)的基础上,标出“格点”D,使得△DCB≌△ABC;(3)点M是x轴上一点,且MA-MB的值最大,则点M的坐标______.22.如图,四边形ABCD中,AD∥BC,∠A=90°,CE⊥BD,垂足为E,BE=DA.(1)求证:△ABD≌△ECB;(2)若∠DBC=45°,BE=1,求DE的长(结果精确到0.01,参考数值:≈1.414,≈1.732)23.快递员张师傅并快递公司出发骑电动车匀速前往幸福家园小区投送快递,到达小区后将快递投放到快递专柜,然后原路匀速返回快递公司,且返回时的速度是返回前速度的1.5倍,张师傅距离快递公司的路程y(千米)与从公司出发所用时间t(小时)的函数图象如图所示,根据图象回答问题:(1)合理解释线段AB表示的实际意义______;(2)图中a=______,直线BC的函数表达式为______.(3)出发t小时,快递员距离快递公司10千米,求t的值.24.如图,正比例函数y=x的图象与一次函数y=kx+b的图象交于点A(m,3),一次函数y=kx+b图象与x轴负半轴交于点B.(1)根据图象回答问题:不等式kx+b>x的解为______;(2)若AB=5,求一次函数的表达式;(3)在第(2)问的条件下,若点P是直线AB上的一个动点,则线段OP长的最小值为______.25.在等边三角形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,小明和小慧对这个图形展开如下研究:问题初探:(1)如图1,小明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为______;问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.成果运用(3)若边长AB=4,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L的变化范围是______.26.如图,在平面直角坐标系中,点B的坐标是(0,2),动点A从原点O出发,沿着x轴正方向移动,△ABP是以AB为斜边的等腰直角三角形(点A、B、P顺时针方向排列),当点A与原点O重合时,得到等腰直角△OBC(此时点P与点C重合).(1)BC=______;当OA=2时,点P的坐标是______;(2)设动点A的坐标为(t,0)(t≥0).①求证:点A在移动过程中,△ABP的顶点P一定在射线OC上;②用含t的代数式表示点P的坐标为:(______,______);(3)过点P做y轴的垂线PQ,Q为垂足,当t=______时,△PQB与△PCB全等.答案和解析1.【答案】±3【解析】解:∵(±3)2=9,∴9的平方根是±3.故答案为:±3.直接根据平方根的定义进行解答即可.本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.2.【答案】<【解析】解:-1=2-1=1,∵1<,∴-1<.故答案为:<.首先求出-1的值是多少;然后根据实数大小比较的方法判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3.【答案】x≥-2【解析】解:根据题意得:x+2≥0,解得:x≥-2.故答案是:x≥-2.根据二次根式的性质和,被开方数大于或等于0,可以求出x的范围.本题考查的知识点为:二次根式的被开方数是非负数.4.【答案】50【解析】解:∵△ABC中,∠A=80°,AB=AC,∴∠B=∠C=(180°-∠A)÷2=(180°-80°)÷2=50°.故答案为:50.根据等腰三角形的性质:∠B=∠C,再根据三角形的内角和定理即可解答.本题考查了等腰三角形两底角相等的性质,是基础题.5.【答案】(-2,-3)【解析】解:点A(2,-3)关于y轴对称的点的坐标为(-2,-3),故答案为:(-2,-3).根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.此题主要考查了关于y轴对称的点的坐标,关键是掌握点的坐标的变化规律.6.【答案】6.5【解析】解:∵直角三角形两直角边长为5和12,∴斜边==13,∴此直角三角形斜边上的中线的长==6.5.故答案为:6.5.根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.此题主要考查勾股定理及直角三角形斜边上的中线的性质;熟练掌握勾股定理,熟记直角三角形斜边上的中线的性质是解决问题的关键.7.【答案】0(答案不唯一)【解析】解:∵正比例函数y=(m-1)x,它的图象经过二、四象限,∴m-1<0,解得m<1.∴m的值可以是0.故答案为:0(答案不唯一).先根据正比例函数y=(m-1)x,它的图象经过二、四象限得出关于m的不等式,求出m的取值范围即可.本题考查的是正比例函数的性质,熟知正比例函数的增减性是解答此题的关键.8.【答案】25【解析】解:∵△ABC≌△DBE,∴AB=BD,∴∠A=∠BDA=60°,∵∠BDA=∠C+∠DBC,∠C=35°,∴∠DBC=60°-35°=25°,故答案为25.由△ABC≌△DBE,推出AB=BD,推出∠A=∠BDA=60°,再根据∠BDA=∠C+∠DBC,求出∠DBC即可.本题考查全等三角形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】4【解析】解:∵BE⊥AC,∴∠AEB=90°,∵D为AB中点,∴AB=AC=2DE=2×5=10,∵BE=8,∴AE==6,∴EC=AC-AE=4,故答案为:4.由BE⊥AC,D为AB中点,DE=5,根据直角三角形斜边的中线等于斜边的一半,即可求得AB的长,然后由勾股定理求得AE的长.此题考查了直角三角形斜边上的中线的性质以及勾股定理.注意掌握直角三角形斜边的中线等于斜边的一半定理的应用是解此题的关键.10.【答案】【解析】解:根据图象知:y=kx+3经过点(-3,0),所以-3k+3=0,解得:k=1,所以解析式为y=x+3,当x=-1时,y=2,所以两个函数图象均经过(-1,2)所以方程组的解为,故答案为:.首先观察函数的图象y=kx+3经过点(-3,0),然后求得k值确定函数的解析式,最后求得两图象的交点求方程组的解即可;此题主要考查一次函数与二元一次方程组,关键是能根据函数图象的交点解方程组.11.【答案】2【解析】解:如图,过点P作PF⊥OB于点F,∵点P是∠AOB的角平分线上一点,PD⊥OA于点D,∴PD=PF,∠AOP=∠BOP=∠AOB=15°.∵CE垂直平分OP,∴OE=OP.∴∠POE=∠EPO=15°.∴∠PEF=2∠POE=30°.∴PF=PE=OE=2.则PD=PF=2.故答案是:2.过点P作PF⊥OB于点F,由角平分线的性质知:PD=PF,所以在直角△PEF中求得PF的长度即可.考查了角平分线的性质,线段垂直平分线的性质,由已知能够注意到PD=PF 是解决的关键.12.【答案】6【解析】解:设一次函数解析式为:y=kx+b,…则可得:-k+b=m①;k+b=2②;2k+b=n③;m+2n=①+2③=3k+3b=3×2=6.故答案为:6.设y=kx+b,将(-1,m)、(1,2)、(2,n)代入即可得出答案.本题考查待定系数法求函数解析式的知识,比较简单,注意掌握待定系数法的运用.13.【答案】D【解析】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.14.【答案】A【解析】解:在所列实数中,无理数有、π这2个,故选:A.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.【答案】D【解析】解:A、当x=1时,y=-1.所以图象不过(1,-2),故错误;B、因为一次函数y=1-2x与直线y=2x的k不相等,所以它的图象与直线y=2x 平行,故错误;C、因为k=-2,所以y随x的增大而减小,故错误;D、因为y随x的增大而减小,当x=0时,y=1,所以当x>0时,y<1,故正确.故选:D.根据一次函数y=kx+b(k≠0)的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降进行分析即可.此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b(k≠0)的性质.16.【答案】D【解析】解:如图所示:点A、B、C、D组成一个轴对称图形,这样的点D共有4个.故选:D.直接利用轴对称图形的性质得出符合题意的答案.此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题关键.17.【答案】B【解析】解:由图可求:60÷40=1.5元,由于后来每千克降价0.3元,可以求后来的出售的西瓜重量:(72-60)÷(1.5-0.3)=10 (千克)所有进货的总重量:10+40=50 (千克);所以进货总进价:50×0.8=40 (元)赚了:出售总价格-进货总价格=72-40=32 (元)故选:B.通过审题,发现题目中不知道购进的西瓜重量,而问题一共赚了多少元,由出售的总价格-进货的总价格=赚了多少和右图所示出售的总价格是72元,那么可以用一次函数求出购进的西瓜重重,就可以求出进货的总价格;考查一次函数的应用,经济问题相关公式,看图分析问题能力;要理解题目意思和看懂图中的信息,易错点是:看懂图中的信息,把两次不同价格出售的西瓜重量加起来.18.【答案】C【解析】解:如图,延长CE交AD于F,连接BD,∵∠ACB=90°,AC=8,BC=6,∴AB=10,∵∠ACB=90°,CE为中线,∴CE=AE=BE,∴∠ACF=∠BAC,又∵∠AFC=∠BCA=90°,∴△ABC∽△CAF,∴=,即=,∴CF=6.4,∴EF=CF-CE=1.4,由折叠可得,AC=DC,AE=DE,∴CE垂直平分AD,又∵E为AB的中点,∴EF为△ABD的中位线,∴BD=2EF=2.8,∵AE=BE=DE,∴∠DAE=∠ADE,∠BDE=∠DBE,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt△ABD中,AD===,故选:C.延长CE交AD于F,连接BD,先判定△ABC∽△CAF,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF为△ABD的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD的长.本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题.19.【答案】解:(1)4x2-9=0,4x2=9,x2=x=±;(2)原式=6-3+2=5.【解析】(1)首先把-9移到等号右边,再两边同时除以4,然后再求的平方根即可;(2)首先化简二次根式和立方根,再计算有理数的加减即可.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.【答案】解:(1)∵直线y=kx+b与直线y=2x平行,∴k=2,∴y=2x+b,把点A(4,4)代入y=2x+b得8+b=4,解得b=-4;∴k和b的值分别为2、-4;(2)由(1)得,一次函数解析式为:y=2x-4,令x=0,可得y=-4,∴B点坐标为(0,-4),∴△AOB的面积为:•|OB|•x A=×4×4=8.答:△AOB的面积为8.【解析】(1)由一次函数y=kx+b的图象与正比例函数y=2x的图象平行得到k=2,然后把点A(4,4)代入一次函数解析式可求出b的值;(2)由(1)的结果可得一次函数解析式,令x=0,可得B点坐标,利用三角形的面积公式可得结果.本题是一次函数综合题,主要考查了两条直线相交或平行问题,待定系数法,三角形的面积公式等知识.解答此类题关键是掌握若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.21.【答案】(4,0)【解析】解:(1)格点C如图所示.(2)格点D如图所示.(3)作点B关于x轴的对称点B′,连接AB′,延长AB′交x轴于点M,点M即为所求,M(4,0).(1)点C想线段AB的垂直平分线上.(2)根据全等三角形的性质即可解决问题.(3)作点B关于x轴的对称点B′,连接AB′,延长AB′交x轴于点M,点M即为所求,M(4,0).本题考查作图-应用与设计,全等三角形的判定和性质,轴对称最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【答案】证明:(1)∵∠A=90°,CE⊥BD∴∠A=∠BEC=90°∵AD∥BC∴∠ADB=∠DBC,且∠A=∠BEC,BE=DA,∴△ABD≌△ECB(AAS)(2)∵∠DBC=45°,∠A=90°,BE=AD=1∴∠ADB=∠ABD=45°∴AD=AB=1∴BD==∴DE=BD-BE≈1.414-1≈0.41【解析】.(1)由“AAS”可证△ABD≌△ECB;(2)由等腰三角形的性质可得AD=AB=1,由勾股定理可求BD的长,即可求DE的长.本题考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,熟练运用全等三角形的判定是本题的关键.23.【答案】张师傅到达小区后将快递投放到快递专柜 3 y=-30x+90.【解析】解:(1)AB段张师傅未有路程行驶,表示张师傅在原地未动,根据题意,AB段表示张师傅到达小区后将快递投放到快递专柜;故答案为:张师傅到达小区后将快递投放到快递专柜(2)根据题意,OA表示张师傅并快递公司出发骑电动车匀速前往幸福家园小区投送快递,其速度为:30÷1.5=20(km/h),BC段表示原路匀速返回快递公司,且返回时的速度是返回前速度的1.5倍,故其速度为:20×1.5=30(km/h),故时间为:30÷30=1h,故a=2+1=3h;直线BC的函数函数图象为直线,设y=kx+b,把B(2,30),C(3,0)代入y=kx+b,得,解得,∴直线BC的函数表达式为:y=-30x+90.故答案为:3,y=-30x+90.(3)分为两种情况:当出发至离公司10千米时,t=10÷20=0.5h,当回公司至离公司10千米时,10=-30x+90,解得x=.(1)AB段张师傅未有路程行驶,表示张师傅在原地未动,根据题意,AB段表示张师傅到达小区后将快递投放到快递专柜;(2)OA表示张师傅并快递公司出发骑电动车匀速前往幸福家园小区投送快递,BC段表示原路匀速返回快递公司,且返回时的速度是返回前速度的1.5倍,即可求出直线BC;(3)分为两种情况:当出发至离公司10千米时,当回公司至离公司10千米时,本题主要考查一次函数的图象和解析式,图象和函数函数结合的题目,看清图象是解题的关键.24.【答案】x<2【解析】解:(1)∵点A(m,3)在正比例函数y=x上,∴3=m,∴m=2,∴A(2,3),∴不等式kx+b>x的解为x<2,故答案为:x<2;(2)由(1)知,A(2,3),∵点B在x轴负半轴上,∴设B(n,0)(n<0),∵AB=5,∴(n-2)2+9=25,∴n=6(舍)或n=-2,∴B(-2,0),将点A(2,3),B(-2,0)代入y=kx+b中得,,∴,∴一次函数的表达式为y=x+;(3)如图,由(2)知,直线AB的解析式为y=x+,∴当OP⊥AB时,OP最小,由(1)知,A(2,3),由(2)知,B(-2,0),AB=5,∴S△AOC=OB•|y C|=AB•OP,最小∴×2×3=×5OP,最小∴OP=,最小故答案为.(1)将点A坐标代入正比例函数解析式中,求出m,即可得出结论;(2)设出点B坐标,利用AB=5,求出点B坐标,最后将点A,B坐标代入一次函数表达式中,即可求出k,b,即可得出结论;(3)点判断出OP⊥AB时,OP最小,利用三角形的面积建立方程求解即可得出结论.此题是一次函数综合题,主要考查了待定系数法,三角形的面积公式,两点间距离公式,求出直线AB的解析式是解本题的关键.25.【答案】2≤L≤10【解析】解:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC,∵点D是BC的中点,∴BD=CD=BC=AB,∵∠DEB=90°,∴∠BDE=90°-∠B=30°,在Rt△BDE中,BE=BD,∵∠EDF=120°,∠BDE=30°,∴∠CDF=180°-∠BDE-∠EDF=30°,∵∠C=60°,∴∠DFC=90°,在Rt△CFD中,CF=CD,∴BE+CF=BD+=BC=AB,∵BE+CF=nAB,∴n=,故答案为;(2)如图2,①过点D作DG⊥AB于G,DH⊥AC于H,∴∠DGB=∠AGD=∠CFD=∠AHF=90°,∵△ABC是等边三角形,∴∠A=60°,∴∠GDH=360°-∠AGD-∠AHD-∠A=120°,∵∠EDF=120°,∴∠EDG=∠FDH,∵△ABC是等边三角形,且D是BC的中点,∴∠BAD=∠CAD,∵DG⊥AB,DH⊥AC,∴DG=DH,在△EDG和△FDH中,,∴△EDG≌△FDH(ASA),∴DE=DF,即:DE始终等于DF;②同(1)的方法得,BG+CH=AB,由①知,△EDG≌△FDH(ASA),∴EG=FH,∴BE+CF=BG-EG+CH+FH=BG+CH=AB,∴BE与CF的和始终不变'(3)由(2)知,DE=DF,BE+CF=AB,∵AB=4,∴BE+CF=2,∴四边形DEAF的周长为L=DE+EA+AF+FD =DE+AB-BE+AC-CF+DF=DE+AB-BE+AB+DE=2DE+2AB-(BE+CF)=2DE+2×4-2=2DE+6,∴DE最大时,L最大,DE最小时,L最小,当DE⊥AB时,DE最小,由(1)知,BG=BD=1,∴DE=BG=,最小∴L=2+6,最小当点F和点C重合时,DE最大,此时,∠BDE=180°-∠EDF=120°=60°,∵∠B=60°,∴∠B=∠BDE=∠BED=60°,∴△BDE是等边三角形,∴DE=BD=AB=2,即:L最大=2×2+6=10,∴周长L的变化范围是2≤L≤10,故答案为2≤L≤10.(1)先利用等边三角形判断出BD=CD=AB,进而判断出BE=BD,再判断出∠DFC=90°,得出CF=CD,即可得出结论;(2)①构造出△EDG≌△FDH(ASA),得出DE=DF,即可得出结论;②由(1)知,BG+CH=AB,由①知,△EDG≌△FDH(ASA),得出EG=FH,即可得出结论;(3)由(1)(2)判断出L=2DE+6,再判断出DE⊥AB时,L最小,点F和点C重合时,DE最大,即可得出结论.此题是四边形综合题,主要考查了等边三角形的性质,含30度角的直角三角形的性质,角平分线定理,全等三角形的判定和性质,旋转的性质,构造出全等三角形是解本题的关键.26.【答案】(2,2)2+2【解析】解:(1)作PM⊥y轴于M,PN⊥OA于N.∵△OBC是等腰直角三角形,OB=2,∴BC=OB•cos45°=,∵∠PMN=∠PNA=∠PNO=∠MON=90°,∴∠MPN=∠BPA=90°,四边形PMON是矩形,∴∠MPB=∠NPA,∵PB=PA,∴△PMB≌△PNA(AAS),∴PM=PN,BM=AN,∴OB+OA=OM-BM+ON+AN=2OM=4,∴OM=ON=2,∴四边形PMON是正方形,∴P(2,2).故答案为:,(2,2).(2)①由(1)可知:PM=PN,∵PM⊥OB,PN⊥OA,∴OP平分∠AOB,∵∠BOC=45°,∴OC平分∠AOB,∴点P在射线OC上.②由(1)可知:2OM=OB+OA=2+t,∴OM=ON=,∴P(,).故答案为,.(3)如图,作PN⊥OA于N.第21页,共21页由(1)可知:△PQC ≌△PNA .△PQC ≌△PBC ,∴QC=BC=AN=, ∵四边形PNOQ 是正方形,∴ON=OQ=PN=PQ=2+, ∴OA=2++=2+2,∴t=2+2, 故答案为2+2. (1)作PM ⊥y 轴于M ,PN ⊥OA 于N .证明△PMB ≌△PNA 即可解决问题. (2)①利用角平分线的判定定理证明OP 平分∠AOB 即可.②利用全等三角形的性质即可解决问题.(3)如图,作PN ⊥OA 于N .利用全等三角形的判定和性质即可解决问题. 本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,正方形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.。

★试卷3套精选★漳州市2018届八年级上学期数学期末学业质量检查模拟试题

★试卷3套精选★漳州市2018届八年级上学期数学期末学业质量检查模拟试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列运算正确的是()A.a2+a3=2a5B.a6÷a2=a3C.a2•a3=a5D.(2ab2)3=6a3b6【答案】C【分析】原式各项计算得到结果,即可作出判断.【详解】A.原式不能合并,错误;B.原式=a4,错误;C.原式=a5,正确;D.原式=8a3b6,错误,故选C.2.如图,已知四边形ABCD,连接AC,若AB∥CD,则①∠BAD+∠D=180°,②∠BAC=∠DCA,③∠BAD+∠B =180°,④∠DAC=∠BCA,其中正确的有()A.①②③④B.①②C.②③D.①④【答案】B【分析】利用平行线的性质依次分析即可得出结果.【详解】解:∵AB∥CD,∴∠BAD+∠D=180°(两直线平行,同旁内角互补),∠BAC=∠DCA(两直线平行,内错角相等),故①、②正确;只有当AD∥BC时,根据两直线平行,同旁内角互补,得出∠BAD+∠B=180°,根据两直线平行,内错角相等,得出∠DAC=∠BCA,故③、④错误,故选:B.【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本性质,属于中考常考题型.3.下列运算中错误的是()=C D 4A=B【答案】C【分析】根据二次根式的运算法则和性质逐一判断可得答案.【详解】A==,正确,此选项不符合题意;BC不是同类二次根式,不能合并,此选项错误,符合题意;D4,正确,此选项不符合题意;故选C.【点睛】本题考查了二次根式的运算,二次根式的化简,熟练掌握相关的运算法则是解题的关键.4.下列各式中,是最简二次根式的是()A B C D【答案】A【分析】根据最简二次根式的定义判断即可.需要符合以下两个条件: 1.被开方数中不含能开得尽方的因数或因式;2.被开方数的因数是整数,因式是整式.【详解】解:A. 不能继续化简,故正确;B. 故错误;C. 故错误;D. .故选:A.【点睛】本题考查最简二次根式的定义,理解掌握定义是解答关键.5的叙述错误的是()A是无理数B.23<<C D.面积为8【答案】C【分析】根据无理数的定义、实数比较大小、实数与数轴的关系和正方形的面积公式逐一判断即可.【详解】解:A .8是无理数,故本选项不符合题意; B . 283<<,故本选项不符合题意;C .数轴上存在表示8的点,故本选项符合题意;D .面积为8的正方形的边长是8,故本选项不符合题意.故选C .【点睛】此题考查的是实数的相关性质,掌握无理数的定义、实数比较大小、实数与数轴的关系和正方形的面积公式是解决此题的关键.6.已知a 为整数,且221369324a a a a a a a +--+-÷-+-为正整数,求所有符合条件的a 的值的和( ) A .0B .12C .10D .8【答案】C 【分析】先把221369324a a a a a a a +--+-÷-+-化简,再根据要求带入符合要求的数,注意检查分母是否为零. 【详解】原式=1332a a a a +--⨯-+()()()2223a a a +-- =1233a a a a +---- =33a -. 因为a 为整数且33a -为整数, 所以分母31a -=±或33a -=±,解得a=4,2,6,0,.检验知a=2时原式无意义,应舍去,a 的值只能为4,6,0.所以所有符合条件的a 的值的和为4+6+0=10. 故选C.【点睛】本题考查了分式的计算和化简.解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.7.如图,△ABC 的外角∠ACD 的平分线CP 与∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP 的度数是( )A.30°;B.40°;C.50°;D.60°. 【答案】C【解析】过点P作PE⊥BD于点E,PF⊥BA于点F,PH⊥AC于点H,∵CP平分∠ACD,BP平分∠ABC,∴PE=PH,PE=PF,∠PCD=12∠ACD,∠PBC=12∠ABC,∴PH=PF,∴点P在∠CAF的角平分线上,∴AP平分∠FAC,∴∠CAP=12∠CAF.∵∠PCD=∠BPC+∠PBC,∴∠ACD=2∠BPC+2∠PBC,又∵∠ACD=∠ABC+∠BAC,∠ABC=2∠PBC,∠BPC=40°,∴∠ABC+∠BAC=∠ABC+80°,∴∠BAC=80°,∴∠CAF=180°-80°=100°,∴∠CAP=100°×12=50°.故选C.点睛:过点P向△ABC三边所在直线作出垂线段,这样综合应用“角平分线的性质与判定”及“三角形外角的性质”即可结合已知条件求得∠CAP的度数.8.若正多边形的一个外角是45°,则该正多边形从一个顶点出发的对角线的条数为()A.4 B.5 C.6 D.8【答案】B【分析】先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得.【详解】解:根据题意,此正多边形的边数为360°÷45°=8,则该正多边形从一个顶点出发的对角线的条数为:8﹣3=5(条).故选:B.【点睛】本题主要考查了多边形的对角线,多边形的外角和定理,n 边形从一个顶点出发可引出(n−3)条对角线. 9.若一个多边形的外角和与它的内角和相等,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形 【答案】B【分析】任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可.【详解】解:设多边形的边数为n .根据题意得:(n-2)×180°=360°,解得:n=1.故选:B .【点睛】本题主要考查的是多边形的内角和和外角和,掌握任意多边形的外角和为360°和多边形的内角和公式是解题的关键.10.若使分式3x x +有意义,则x 的取值范围是( ) A .3x ≠B .3x ≠-C .2x ≠-D .3x =【答案】B【解析】根据分式有意义的条件是分母不等于零求解.【详解】解:由题意得,30x +≠,解得,3x ≠-,故选:B.【点睛】本题主要考查的是分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.二、填空题11.已知实数x ,y 满足(x 2+y 2)2-9=0,则x 2+y 2=________.【答案】3【详解】由题意得(x 2+y 2)2=9,x 2+y 2=3±,因为x 2+y 20>,所以x 2+y 2=3.12.如图,点A 、B 的坐标分别为(0,2),(3,4),点P 为x 轴上的一点,若点B 关于直线AP 的对称点B′恰好落在x 轴上,则点P 的坐标为_______;【答案】4,0 3⎛⎫ ⎪⎝⎭【分析】利用对称的性质结合A,B点坐标得出AB的解析式,进而分别得出符合题意的答案【详解】设直线AB的解析式为:y=kx+b,把A(0,2),B(3,4)代入得:b23k b4=⎧⎨+=⎩,解得:2k=3,b=2,∴直线AB的解析式为:2y=x+23;∵点B与B′关于直线AP对称,∴AP⊥AB,设直线AP的解析式为:3y=x+c2﹣,把点A(0,2)代入得:c=2,∴直线AP的解析式为:3y=x+22﹣,当y=0时,3x+2=0 2﹣,解得:4x=3,∴点P的坐标为:4,03⎛⎫⎪⎝⎭;故答案为4,03⎛⎫⎪⎝⎭【点睛】此题主要考查了坐标与图形变化,利用分类讨论得出对应点位置进而求出其坐标是解题关键13.甲、乙二人做某种机械零件,己知甲每小时比乙多做6个,甲做90个零件所用的时间与乙做60个零件所用的时间相等.设甲每小时做x个零件,依题意列方程为_________.【答案】90x=606x-【分析】设甲每小时做x个零件,则乙每小时做(x-6)个零件,再根据题中的等量关系即可列出方程. 【详解】设甲每小时做x个零件,则乙每小时做(x-6)个零件,由甲做90个零件所用的时间与乙做60个零件所用的时间相等列出方程为90x=606x-.【点睛】此题主要考查分式方程的应用,解题的关键是找出等量关系进行列方程.14______.【解析】直接根据相反数的定义进行解答即可.-【点睛】本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数.15.若3,2,x,5的平均数是4,则x= _______.【答案】6【分析】利用平均数乘以数据的个数得到的和减去已知的几个数即可得到x的值.【详解】∵3,2,x,5的平均数是4,∴443256x=⨯---=,故答案为:6.【点睛】此题考查利用平均数求未知的数据,正确掌握平均数的计算方法,正确计算是解题的关键.16.如图:等腰三角形ABC的底边BC的长是4cm,面积是212cm,腰AB的垂直平分线EF交AC于点F,若D是BC边的中点,M为线段EF上的动点,则BDM∆的最小周长为________.【答案】1【分析】连接AM、AD,如图,根据等腰三角形的性质可得AD⊥BC,根据三角形的面积可求出AD的长,由线段垂直平分线的性质可得AM=BM,进而可推出BM+MD=AM+MD≥AD,于是AD的长为BM+MD的最小值,进一步即可求出结果.【详解】解:连接AM、AD,如图,∵△ABC是等腰三角形,D是BC边的中点,∴AD⊥BC,∴1141222ABCS BC AD AD=⋅=⨯⋅=,解得:AD=6,∵EF是AB的垂直平分线,∴AM=BM,∴BM+MD=AM+MD≥AD,∴AD的长为BM+MD的最小值,∴△BDM的最小周长=AD+BD=6+142=1.故答案为:1.【点睛】本题主要考查了等腰三角形的性质和线段垂直平分线的性质等知识,属于常考题型,熟练掌握上述知识、灵活应用对称的方法是解题的关键.17.纳米是一种长度单位,1纳米=-910米,已知某种植物花粉的直径约为46 000纳米,用科学记数法表示表示该种花粉的直径为____________米.【答案】4.6×10-1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:46000纳米×10-9=4.6×10-1米.故答案为:4.6×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题18.小明从家出发沿一条笔直的公路骑自行车前往图书馆看书,他与图书馆之间的距离y(km)与出发时间t(h)之间的函数关系如图1中线段AB所示,在小明出发的同时,小明的妈妈从图书馆借书结束,沿同一条公路骑电动车匀速回家,两人之间的距离s(km)与出发时间t(h)之间的函数关系式如图2中折线段CD﹣DE﹣EF所示.(1)小明骑自行车的速度为km/h、妈妈骑电动车的速度为km/h;(2)解释图中点E的实际意义,并求出点E的坐标;(3)求当t为多少时,两车之间的距离为18km.【答案】(1)16,20;(2)点E表示妈妈到了甲地,此时小明没到,E(95,1445);(3)12或32【分析】(1)由点A,点B,点D表示的实际意义,可求解;(2)理解点E表示的实际意义,则点E的横坐标为小明从家到图书馆的时间,点E纵坐标为小明这个时间段走的路程,即可求解;(3)根据题意列方程即可得到结论.【详解】解:(1)由题意可得:小明速度=362.25=16(km/h)设妈妈速度为xkm/h由题意得:1×(16+x)=36,∴x=20,答:小明的速度为16km/h,妈妈的速度为20km/h,故答案为:16,20;(2)由图象可得:点E表示妈妈到了家,此时小明没到,∴点E的横坐标为:369 205,点E的纵坐标为:95×16=1445∴点E(95,1445);(3)根据题意得,(16+20)t=(36﹣18)或(16+20)t=36+18,解得:t=12或t=32,答:当t为12或32时,两车之间的距离为18km.【点睛】本题考查一次函数的应用,解题的关键是读懂图象信息,掌握路程、速度、时间之间的关系,属于中考常考题型.19.如图1,等腰直角三角形ABP是由两块完全相同的小直角三角板ABC、EFP(含45°)拼成的,其中△ABC的边BC在直线l上,AC⊥BC且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP 且EF=FP.(1)将三角板△EFP 沿直线l 向左平移到图2的位置时,EP 交AC 于点Q ,连接AP 、BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,并证明你的猜想;(2)将三角板△EFP 沿直线l 向左平移到图3的位置时,EP 的延长线交AC 的延长线于点Q ,连接AP 、BQ .你认为(1)中猜想的关系还成立吗?请写出你的结论(不需证明)【答案】(1)BQ AP =,BQ AP ⊥;证明过程见解析(2)成立【分析】(1)要证BQ=AP ,可以转化为证明BCQ ACP ≅,要证明BQ ⊥AP ,可以证明∠QGA = 90︒,只要证出∠CBQ =∠CAP ,∠GAQ +∠AQG=90︒即可证出;(2)类比(1)的证明过程,就可以得到结论仍成立.【详解】(1)BQ =AP ,BQ ⊥AP ,理由:∵EF =FP ,EF ⊥FP ,∴∠EPF =45︒,又∵AC ⊥BC ,∴∠CQP =∠CPQ =45︒,∴CQ =CP ,在BCQ 和ACP 中,90BC AC BCQ ACP CQ CP =⎧⎪∠=∠=︒⎨⎪=⎩,∴BCQ ACP ≅(SAS ),∴BQ =AP .如下图,延长BQ 交AP 与点G ,∵BCQ ACP ≅,∴∠CBQ =∠CAP ,在Rt △BCQ 中,∠CBQ +∠CQB =90︒,又∠CQB =∠AQG ,∴∠GAQ +∠AQG =∠CBQ +∠CQB =90︒,∴∠QGA =90︒,∴BQ ⊥AP ,故BQ =AP ,BQ ⊥AP .(2)成立;理由:∵45EPF ∠=︒,∴45CPQ ∠=︒,又∵AC BC ⊥,∴45CQP CPQ ∠=∠=︒,∴CQ=CP ,在BCQ 和ACP 中,90BC AC BCQ ACP CQ CP =⎧⎪∠=∠=︒⎨⎪=⎩,∴BCQ ACP ≅(SAS ),∴BQ=AP ,延长QB 交AP 于点N ,如下图所示:则PBN CBQ ∠=∠,∵BCQ ACP ≅,∴BCQ APC ∠=∠,∵在Rt BCQ 中,90BQC CBQK ∠+∠=︒,又∵CBQ PBN ∠=∠,∴90APC PBN ∠+∠=︒,∴90PNB ∠=︒,∴QB AP ⊥,故QB AP =,QB AP ⊥.【点睛】本题考查等腰三角形的性质、全等三角形的性质和判定及三角形的内角和定理等知识,解题的关键是证明三角形全等.20.解下列分式方程(1)235x x =- (2)544101236x x x x -++=-- 【答案】(1)15x =;(2)无解【分析】(1)通过去分母,去括号,移项,合并同类项,未知数系数化为1,检验,即可得到答案; (2)通过去分母,去括号,移项,合并同类项,未知数系数化为1,检验,即可得到答案;【详解】(1)()352x x -=3152x x -=3215-=x x15x =,检验:当15x =时,()50x x -≠,∴原分式方程的解为:15x =;(2)()()225541232x x x x +-+=-- ()()35432410x x x -+-=+151236410x x x -+--=1428x =2x =,检验:当2x =时,()320x -=,∴原分式方程无解.【点睛】本题主要考查分式方程的解法,掌握解分式方程的基本步骤,是解题的关键.21.老师所留的作业中有这样一个分式的计算题:22511x x x +++-,甲、乙两位同学完成的过程分别如下: 甲同学: 22511x x x +++- ()()()()251111x x x x x +=++-+- 第一步()()2511x x x ++=+- 第二步()()711x x x +=+- 第三步 乙同学:22511x x x +++- ()()()()()2151111x x x x x x -+=++-+- 第一步 225x x =-++ 第二步33x =+ 第三步老师发现这两位同学的解答都有错误:(1)甲同学的解答从第______步开始出现错误;乙同学的解答从第_____步开始出现错误;(2)请重新写出完成此题的正确解答过程.22511x x x +++- 【答案】 (1)一、二;(2)31x -. 【分析】(1)观察解答过程,找出出错步骤,并写出原因即可;(2)写出正确的解答过程即可.【详解】(1)甲同学的解答从第一步开始出现错误,错误的原因是第一个分式的变形不符合分式的基本性质,分子漏乘()1x -;乙同学的解答从第二步开始出现错误,错误的原因是与等式性质混淆,丢掉了分母.故答案为:一、二,(2)原式=2(1)5 (1)(1)(1)(1)x xx x x x-+++-+-=225 (1)(1) x xx x-+++-=33 (1)(1)xx x++-=31 x-.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则及分式的基本性质.22.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,两个大正方形和两个小正方形的面积和为58cm2,试求m+n的值(3)②图中所有裁剪线(虚线部分)长之和为cm.(直接写出结果)【答案】(1)(2m+n)(m+2n);(2)1;(3)2【分析】(1)根据图象由长方形面积公式将代数式2m2+5mn+2n2因式分解即可;(2)根据正方形的面积得出正方形的边长,再利用每块小矩形的面积为10平方厘米,得出等式求出m+n,(3)根据m+n的值,进一步得到图中所有裁剪线(虚线部分)长之和即可.【详解】解:(1)由图形可知,2m2+5mn+2n2=(2m+n)(m+2n),故答案为(2m+n)(m+2n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∴(m+n)2=m2+n2+2mn=29+20=49,∴m+n=1,故答案为1.(3)图中所有裁剪线段之和为1×6=2(cm).故答案为2.【点睛】本题考查了因式分解的应用,正确用两种方法表示图形面积是解题的关键.23.如图,已知:AB∥CD.(1)在图中,用尺规作∠ACD 的平分线交 AB 于 E 点;(2)判断△ACE 的形状,并证明.【答案】(1)如图见解析;(2)△ACE 是等腰三角形,证明见解析.【分析】(1)根据角平分线的作法,用尺规作图;(2)根据平行线性质和角平分线定义,可得∠ACE=∠AEC.【详解】(1)解:如图即为所求.(2)△ACE 是等腰三角形.证明:CE ACD ACE ECD ∠∴∠=∠平分,, AB ∥CD ∴∠ECD=∠AEC ,∴∠ACE=∠AEC, △ACE 是等腰三角形.【点睛】本题考核知识点:角平分线,平行线. 解题关键点:理解角平分线定义和平行线性质.24.列方程解应用题:港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.开通后从香港到珠海的车程由原来的180千米缩短到50千米,港珠澳大桥的设计时速比按原来路程行驶的平均时速多40千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的16,求港珠澳大桥的设计时速是多少. 【答案】港珠澳大桥的设计时速是每小时100千米.【解析】设港珠澳大桥的设计时速是x 千米/时,按原来路程行驶的平均时速是(x ﹣40)米/时.根据“从香港到珠海的车程由原来的180千米缩短到50千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的16”列方程,求解即可.【详解】设港珠澳大桥的设计时速是x 千米/时,按原来路程行驶的平均时速是(x ﹣40)米/时.依题意得:501180·640x x =- 解得:100x =.经检验:100x =是原方程的解,且符合题意.答:港珠澳大桥的设计时速是每小时100千米.【点睛】本题考查了分式方程的应用.解题的关键是找出相等关系,根据相等关系列方程.25.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m 元收费;若每月用水量超过14吨,则超过部分每吨按市场价n 元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x 吨(x>14),应交水费为y 元,请写出y 与x 之间的函数关系式;【答案】(1)每吨水的政府补贴优惠价2元,市场调节价为3.5元;(2) 3.521y x【分析】(1)设每吨水的政府补贴优惠价为m 元,市场调节价为n 元,列出相应二元一次方程组,求解出m,n 的值即可.(2)根据用水量和水费的关系,写出y 与x 之间的函数关系式.【详解】解:(1)设每吨水的政府补贴优惠价为m 元,市场调节价为n 元.14(2014)494(1814)42m n m n +-=⎧⎨+-=⎩, 解得:23.5m n =⎧⎨=⎩, 答:每吨水的政府补贴优惠价2元,市场调节价为3.5元.(2)当14x >时,142(14) 3.5 3.521y x x =⨯+-⨯=-,【点睛】本题考查了二元一次方程组和一次函数的实际应用,掌握解二元一次方程组和一次函数的方法是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.方程组23x y a x y +=⎧⎨+=⎩的解为2x y b =⎧⎨=⎩则a ,b 的值分别为( ) A .1,2B .5,1C .2,1D .2,3【答案】B 【解析】把2x y b =⎧⎨=⎩代入方程组23x y a x y +=⎧⎨+=⎩得 423b a b +⎧⎨+⎩== 解得51a b ⎧⎨⎩==故选B.2.如图,已知△ABC ,AB=5,∠ABC=60°,D 为BC 边上的点,AD=AC ,BD=2,则DC=()A .0.5B .1C .1.5D .2【答案】B 【分析】过点A 作AE ⊥BC ,得到E 是CD 的中点,在Rt △ABE 中,AB=5,∠ABC=60°,求出BE=52,进而求出DE=52-2=12,即可求CD . 【详解】过点A 作AE ⊥BC .∵AD=AC ,∴E 是CD 的中点,在Rt △ABE 中,AB=5,∠ABC=60°,∴BE=52. ∵BD=2,∴DE=52﹣2=12, ∴CD=1.故选:B .【点睛】此题考查等腰三角形与直角三角形的性质;熟练掌握等腰三角形的性质和含30°角的直角三角形的性质是解题的关键.3.如图的ABC ∆中,AB AC BC >>,且D 为BC 上一点.今打算在AB 上找一点P ,在AC 上找一点Q ,使得APQ ∆与PDQ ∆全等,以下是甲、乙两人的作法:(甲)连接AD ,作AD 的中垂线分别交AB 、AC 于P 点、Q 点,则P 、Q 两点即为所求 (乙)过D 作与AC 平行的直线交AB 于P 点,过D 作与AB 平行的直线交AC 于Q 点,则P 、Q 两点即为所求对于甲、乙两人的作法,下列判断何者正确?( )A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误,乙正确【答案】A 【分析】如图1,根据线段垂直平分线的性质得到PA PD =,QA QD =,则根据“SSS ”可判断APQ DPQ ∆∆≌,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形APDQ 为平行四边形,则根据平行四边形的性质得到PA DQ =,PD AQ =,则根据“SSS ”可判断APQ DQP ∆∆≌,则可对乙进行判断.【详解】解:如图1,PQ ∵垂直平分AD ,PA PD ∴=,QA QD =,而PQ PQ =,()APQ DPQ SSS ∴∆∆≌,所以甲正确;如图2,//PD AQ ,//DQ AP ,∴四边形APDQ 为平行四边形,PA DQ ∴=,PD AQ =,而PQ QP =,()APQ DQP SSS ∴∆∆≌,所以乙正确.故选:A .【点睛】本题考查作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质、平行四边形的判定与性质和三角形全等的判定.4.下列交通标志中,是轴对称图形的是( )A .B .C .D .【答案】C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,分析即可.【详解】解:A 、不是轴对称图形,故选项A 不正确;B 、不是轴对称图形,故选项B 不正确;C 、是轴对称图形,故选项C 正确;D 、不是轴对称图形,故选项D 不正确;故选:C.【点睛】本题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两侧折叠后能够重叠.5.如图,在ABC ∆中,AB 的垂直平分线交AB 于点D ,交BC 于点E .ABC ∆的周长为19,ACE ∆的周长为13,则AB 的长为( )A .3B .6C .12D .16【答案】B 【分析】根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【详解】∵AB 的垂直平分线交AB 于点D ,∴AE=BE ,∵△ACE 的周长=AC+AE+CE=AC+BC=13,△ABC 的周长=AC+BC+AB=19,∴AB=△ABC 的周长-△ACE 的周长=19-13=6,故答案为:B .【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.6.如图,已知点A 、D 、C 、F 在同一条直线上,AB =DE ,∠A =∠EDF ,再添加一个条件,可使△ABC ≌ △DEF ,下列条件不符合...的是A.∠B=∠E B.BC∥EF C.AD=CF D.AD=DC【答案】D【分析】根据各个选项中的条件和全等三角形的判定可以解答本题.【详解】解:A. 添加的一个条件是∠B=∠E,可以根据ASA可以证明△ABC≌△DEF,故不符合题意;B. 添加的一个条件是BC∥EF,可以得到∠F=∠BCA根据AAS可以证明△ABC≌△DEF,故不符合题意;C. 添加的一个条件是AD=CF,可以得到AC=DF根据SAS可以证明△ABC≌△DEF,故不符合题意;D.添加的一个条件是AD=DC,不可以证明△ABC≌△DEF,故符合题意.故选D.【点睛】本题主要考查了全等三角形的判定,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.7.甲,乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后,结果如下。

2018-2019学年福建省漳州市漳浦县八年级(上)期末数学试卷(含答案解析)

2018-2019学年福建省漳州市漳浦县八年级(上)期末数学试卷(含答案解析)

2018-2019学年福建省漳州市漳浦县八年级(上)期末数学试卷姓名: 得分: 日期:一、选择题(本大题共 10 小题,共 40 分)1、(4分) 下列实数中,无理数是( )A.3.14B.2.12122C.√93D.2272、(4分) 下列四组数据,能作为直角三角形的三边长的是( )A.2、4、6B.2、3、4C.5、7、12D.8、15、173、(4分) 根据下列表述,能确定一个点位置的是( )A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°4、(4分) 下列代数式能作为二次根式被开方数的是( )A.3-πB.aC.a 2+1D.2x+45、(4分) 已知一次函数y=kx+3的图象经过点A ,且函数值y 随x 的增大而增大,则点A 的坐标不可能是( )A.(2,4)B.(-1,2)C.(5,1)D.(-1,-4)6、(4分) 老师随机抽查了学生读课外书册数的情况,绘制成两幅统计图,其中条形统计图被遮盖了一部分,则被遮盖的数是( )A.5B.9C.15D.227、(4分) 方程组{2x +y =a x +y =3的解为{x =2y =b ,则a 、b 的值分别为( ) A.1,2B.5,1C.2,1D.2,38、(4分) 下列四个命题中,真命题的是( )A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等9、(4分) 已知m=√8×√12+√3,则以下对m 的值估算正确的( )A.2<m <3B.3<m <4C.4<m <5D.5<m <610、(4分) 如图,直线y 1=ax (a≠0)与y 2=12x+b 交于点P ,有四个结论:①a <0;②b <0;③当x >0时,y 1>0;④当x <-2时,y 1>y 2,其中正确的是( )A.①②B.①③C.①④D.②③二、填空题(本大题共 6 小题,共 24 分)11、(4分) 16的平方根是______.12、(4分) 若y=3x n-1是正比例函数,则n=______.13、(4分) 若P(a-2,a+1)在x轴上,则a的值是______.14、(4分) 计算5个数据的方差时,得s2=15[(5-2+(8-)2+(7-)2+(4-)2+(6-)2],则的值为______.15、(4分) 如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为______.16、(4分) 双察下列等式:√12−14=12,√13−19=√23,√14−116=√34,…则第n个等式为______.(用含n的式子表示)三、计算题(本大题共 1 小题,共 8 分)17、(8分) 解二元一次方程组:{3x+y=6①2x−y=−1②四、解答题(本大题共 8 小题,共 78 分)18、(8分) 计算:−√10÷√2+(2−√5)(2+√5).519、(8分) 我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?20、(8分) 求证:三角形三个内角的和等于180°.21、(8分) 某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y(千克)与销售单价x(元/千克)之间符合一次函数关系,如图所示.(1)求y与x的函数关系式;(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.22、(10分) 如图,把△ABC放置在每个小正方形边长为1的网格中,点A,B,C均在格点上,建立适当的平面直角坐标系xOy,使点A(1,4),△ABC与△A'B'C'关于y轴对称.(1)画出该平面直角坐标系与△A'B'C';(2)在y轴上找点P,使PC+PB'的值最小,求点P的坐标与PC+PB'的最小值.23、(10分) 每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:整理数据:分析数据:请根据以上提供的信息,解答下列问题:(1)填空:a=______,b=______;m=______,n=______;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?24、(12分) 如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A 落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.25、(14分) 已知等边△AOB的边长为4,以O为坐标原点,OB所在直线为x轴建立如图所示的平面直角坐标系.(1)求点A的坐标;(2)若直线y=kx(k>0)与线段AB有交点,求k的取值范围;(3)若点C在x轴正半轴上,以线段AC为边在第一象限内作等边△ACD,求直线BD的解析式.2018-2019学年福建省漳州市漳浦县八年级(上)期末数学试卷【第 1 题】【答案】C【解析】3,解:无理数是√9故选:C.根据无理数的三种形式,结合选项找出无理数的选项.本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.【第 2 题】【答案】D【解析】解:22+42≠62,故A错误;22+32≠42,故B错误;52+72≠122,故C错误;82+152=172,故D正确;故选:D.分别求每个选项中数字的平方,根据其中两个数字的平方和等于第三个数字即可解题.本题考查了勾股数的计算,其中2个数字的平方和等于第三个数字的平方,则这3个数字为勾股数.【第 3 题】【答案】D【解析】解:根据题意可得,北偏东40°无法确定位置,故选项A错误;某地江滨路无法确定位置,故选项B错误;光明电影院6排无法确定位置,故选项C错误;东经116°,北纬42°可以确定一点的位置,故选项D正确,故选:D.根据各个选项中的语句可以判断哪个选项是正确的,本题得以解决.本题考查坐标位置的确定,解题的关键是明确题意,可以判断选项中的各个语句哪一个可以确定一点的位置.【第 4 题】【答案】C【解析】解:A、3-π<0,则3-a不能作为二次根式被开方数,故此选项错误;B、a的符号不能确定,则a不能作为二次根式被开方数,故此选项错误;C、a2+1一定大于0,能作为二次根式被开方数,故此选项正确;D、2x+4的符号不能确定,则a不能作为二次根式被开方数,故此选项错误;故选:C.直接利用二次根式的定义分别分析得出答案.此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.【第 5 题】【答案】C解:∵一次函数y=kx+2(k≠0)的函数值y 随x 的增大而增大,∴k >0.A 、∵当x=2,y=4时,2k+3=4,解得k=0.5>0,∴此点符合题意,故本选项错误;B 、∵当x=-1,y=2时,-k+3=2,解得k=1>0,∴此点符合题意,故本选项错误;C 、∵当x=5,y=1时,5k+3=1,解得k=-0.4<0,∴此点不符合题意,故本选项正确;D 、∵当x=-1,y=-4时,-k+3=-4,解得k=7>0,∴此点符合题意,故本选项错误.故选:C .先根据一次函数的增减性判断出k 的符号,再对各选项进行逐一分析即可.本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.【 第 6 题 】【 答 案 】B【 解析 】解:由题意,总人数=6÷25%=24(人),∴被遮盖的数=24-5-6-4=9(人),故选:B .求出确定总人数,再求出被遮盖的数即可.本题考查条形统计图,扇形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【 第 7 题 】【 答 案 】B【 解析 】解:把{x =2y =b 代入方程组{2x +y =a x +y =3得:{4+b =a 2+b =3 解得:{a =5b =1故选:B .把{x =2y =b 代入方程组{2x +y =a x +y =3,即可解答. 本题主要考查了二元一次方程组的解,解题的关键是用代入法进行求解.【答案】A【解析】解:同角的补角相等,A是真命题;相等的角不一定是对顶角,B是假命题;三角形的一个外角大于任何一个与它不相邻的内角,C是假命题;两条平行线被第三条直线所截.内错角相等,D是假命题;故选:A.根据补角的性质、对顶角的概念、三角形的外角的性质、平行线的性质判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.【第 9 题】【答案】B【解析】+√3=2+√3,解:m=√8×12∵1<3<4,∴1<√3<2,即3<2+√3<4,则m的范围为3<m<4,故选:B.估算确定出m的范围即可.此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.【第 10 题】【答案】C【解析】解:因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;x+b经过一、二、三象限,所以b>0,②错误;一次函数y2=12由图象可得:当x>0时,y1<0,③错误;当x<-2时,y1>y2,④正确;故选:C.根据正比例函数和一次函数的性质判断即可.此题考查一次函数与一元一次不等式,关键是根据正比例函数和一次函数的性质判断.【第 11 题】【答案】±4【解析】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【第 12 题】【答案】2【解析】解:∵y=3x n-1是正比例函数,∴n-1=1,∴n=2,故答案是:2.根据正比例函数的定义可以列出关于n是方程n-1=1,据此可以求得n的值.本题考查了正比例函数的定义.正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.【第 13 题】【答案】-1【解析】解:∵P(a-2,a+1)在x轴上,∴a+1=0,解得:a=-1.故答案为:-1.直接利用x轴上点的坐标特点得出a+1=0,进而得出答案.此题主要考查了点的坐标,正确掌握x轴上点的坐标特点是解题关键.【第 14 题】【答案】6【解析】=6解:=5+8+7+4+65故答案为6.根据平均数的定义计算即可.本题考查方差,平均数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【第 15 题】【答案】45°【解析】解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1,∠2=∠3,∴∠1+∠2=∠3+∠4=∠ABC,∵∠ABC=45°,∴∠1+∠2=45°.故答案为:45°.首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,可得出∠2=∠3,∠1=∠4,故∠1+∠2=∠3+∠4,由此即可得出结论.此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.【第 16 题】【答案】√1 n+1−1(n+1)2=√nn+1【解析】解:√12−14=12,√1 3−19=√23,√1 4−116=√34,…则第n个等式为√1n+1−1(n+1)=√nn+1.故答案为:√1n+1−1(n+1)2=√nn+1.探究规律后,写出第n个等式即可求解.本题考查算术平方根的定义,解题的关键是探究规律,利用规律解决问题,属于中考常考题型.【第 17 题】【答案】解:①+②,得:5x=5,解得:x=1,将x=1代入①,得:3+y=6,解得y=3,所以方程组的解为{x=1 y=3.【解析】利用加减消元法求解可得.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.【第 18 题】【答案】解:原式=√5-√10÷2+4-5=√5-√5-1=-1.【解析】先根据二次根式的除法法则运算,再利用平方差公式计算,然后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【第 19 题】【答案】解:设官有x人,兵有y人,依题意,得:{x+y=10004x+14y=1000,解得:{x=200 y=800.答:官有200人,兵有800人.【解析】设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【第 20 题】【答案】已知:△ABC ,如图:求证:∠A+∠B+∠C=180°证明:过点A 作直线MN∥BC ,∵MN∥BC ,∴∠MAB=∠B ,∠NAC=∠C (两直线平行,同位角相等),∵∠MAB+∠BAC+∠NAC=180°(平角的定义),∴∠B+∠BAC+∠C=180°(等量代换),即:三角形三个内角的和等于180°.【 解析 】画出图形,写出已知,求证,过点A 作直线MN∥BC ,根据平行线性质得出∠MAB=∠B ,∠NAC=∠C ,代入∠MAB+∠BAC+∠NAC=180°即可求出答案.本题考查了平行线性质的应用,主要考查学生的推理能力,关键是正确作出辅助线.【 第 21 题 】【 答 案 】解:(1)设y 与x 的函数关系式为y=kx+b ,{10k +b =20015k +b =150,得{k =−10b =300, 即y 与x 的函数关系式为y=-10x+300;(2)能在保质期内销售完这批蜜柚,理由:将x=18代入y=-10x+300,得y=-10×18+300=120,∵120×40=4800>4500,∴能在保质期内销售完这批蜜柚.【 解析 】(1)根据题意和函数图象中的数据,可以求得y 与x 的函数关系式;(2)将x=18代入(1)的函数解析式,求出相应的y 的值,从而可以求得40天的销售量,然后与4500比较大小即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.【第 22 题】【答案】解:(1)如图所示:△A'B'C',即为所求;(2)如图所示:点P,即为所求,点P的坐标为:(0,1),PC+PB'的最小值为:√22+42=2√5.【解析】(1)直接利用A点坐标画出平面直角坐标系进而利用关于y轴对称点的性质得出答案;(2)直接利用轴对称求最短路线的方法以及勾股定理得出答案.此题主要考查了轴对称变换以及勾股定理,正确得出对应点位置是解题关键.【第 23 题】【答案】解:(1) 5 4 81 81由统计表收集数据可知a=5,b=4,m=81,n=81;=300(人).(2)500×8+420答:估计达标的学生有300人;(3)80×52÷260=16(本).答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.【解析】(1)根据统计表收集数据可求a ,b ,再根据中位数、众数的定义可求m ,n ;(2)达标的学生人数=总人数×达标率,依此即可求解;(3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果. 此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.【 第 24 题 】【 答 案 】解:(1)由折叠可得,∠ACE=∠DCE=12∠ACD ,∠BCF=∠B'CF=12∠BCB', 又∵∠ACB=90°,∴∠ACD+∠BCB'=90°,∴∠ECD+∠FCD=12×90°=45°,即∠ECF=45°; (2)由折叠可得,∠DEC=∠AEC=90°,BF=B'F=1,∴∠EFC=45°=∠ECF ,∴CE=EF=4,∴BE=4+1=5,∴Rt△BCE 中,BC=√BE 2+CE 2=√41,设AE=x ,则AB=x+5,∵Rt△ACE 中,AC 2=AE 2+CE 2,Rt△ABC 中,AC 2=AB 2-BC 2,∴AE 2+CE 2=AB 2-BC 2,即x 2+42=(x+5)2-41,解得x=165,∴S △ABC =12AB×CE=12(165+5)×4=825.【 解析 】(1)由折叠可得,∠ACE=∠DCE=12∠ACD ,∠BCF=∠B'CF=12∠BCB',再根据∠ACB=90°,即可得出∠ECF=45°;(2)在Rt△BCE 中,根据勾股定理可得BC=√BE 2+CE 2=√41,设AE=x ,则AB=x+5,根据勾股定理可得AE 2+CE 2=AB 2-BC 2,即x 2+42=(x+5)2-41,求得x=165,即可得出S △ABC =12AB×CE=825.本题主要考查了折叠问题,解题时常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.【 第 25 题 】【 答 案 】解:(1)如下图所示,过点A 作AD⊥x 轴于点D ,则AD=OAsin∠AOB=4sin60°=2√3, 同理OA=2,故点A 的坐标为(2,2√3);(2)若直线y=kx (k >0)与线段AB 有交点,当直线过点A 时,将点A 坐标代入直线的表达式得:2√3k=2,解得:k=√3,直线OB 的表达式为:y=0,而k >0,故:k 的取值范围为:0<k≤√3;(3)如下图所示,连接BD ,∵△OAB 是等边三角形,∴AO=AB ,∵△ADC 为等边三角形,∴AD=AC ,∠OAC=∠OAB+∠CAB=60°+∠CAB=∠DAC+∠CAB=∠DAB ,∴△ACO≌△ADB(SAS),∴OB=BD=4,∴∠AOB=∠ABD=60°,∴∠DBC=180°-∠ABO-∠ABD=180°-60°-60°=60°,故直线BD表达式的k值为tan60∘=√3,设直线BD的表达式为:y=√3x+b,将点B(4,0)代入上式并解得:b=-4√3,故:直线BD的表达式为:y=√3x-4√3.【解析】(1)如图,过点A作AD⊥x轴于点D,则AD=OAsin∠AOB=4sin60°=2√3,同理OA=2,即可求解;(2)若直线y=kx(k>0)与线段AB有交点,当直线过点A时,将点A坐标代入直线的表达式得:2√3k=2,解得:k=√3,即可求解;(3)证明△ACO≌△ADB(SAS),则OB=BD=4,而∠DBC=180°-∠ABO-∠ABD=180°-60°-60°=60°,即可求解.本题考查的是一次函数的综合运用,涉及到三角形全等、解直角三角形等知识,其中(3)利用三角形全等,确定直线BD的倾斜角本题的难点.。

福建省漳州市八年级期末考试数学试卷

福建省漳州市八年级期末考试数学试卷

福建省漳州市八年级期末考试数学试卷姓名:________ 班级:________ 成绩:________一、选择題(共10小题,每小题3分,共30分) (共10题;共20分)1. (2分)(2017·东丽模拟) 下列图案中,既是轴对称图形又是中心对称图形的个数为()A . 1个B . 2个C . 3个D . 4个2. (2分)已知一个三角形的两边长分别是4和10,那么它的第三边长可能是下列值中的()A . 5B . 6C . 11D . 163. (2分) 0.000000375与下列数不等的是()A .B .C .D .4. (2分) (2019七上·沛县期末) 如图,从边长为的大正方形纸片中剪去一个边长为的小正方形,剩余部分沿虚线剪开,拼成一个矩形(不重叠无缝隙),则矩形的面积为()A .B .C .D .5. (2分)如图,下列说法正确的是()A . 若AB∥DC,则∠1=∠2B . 若AD∥BC,则∠3=∠4C . 若∠1=∠2,则AB∥DCD . 若∠2+∠3+∠A=180°,则AB∥DC6. (2分) AD是△ABC的角平分线且交BC于D,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论不一定正确的是()A . DE=DFB . BD =CDC . AE=AFD . ∠ADE=∠ADF7. (2分) (2019八上·海安期中) 如图,OP平分∠AOB,PA⊥OA、PB⊥OB,垂足分别为A、B,下列结论成立的是()①PA=PB;②PO平分∠APB;③OA=OB;④AB垂直平分OPA . ①③B . ①②③C . ②③D . ①②③④8. (2分)下列四个多项式,哪一个是33X+7的倍式?A . 33x2-49B . 332x2+49C . 33x2+7xD . 33x2+14x9. (2分)在一个不透明的口袋中装有若干个质地相同而颜色可能不全相同的球,如果口袋中只装有3个黄球,且摸出黄球的概率为,那么袋中共有球()个A . 6个B . 7个C . 9个D . 12个10. (2分) (2019八下·辽阳月考) 已知等腰三角形的两边长分別为、,且、满足,则此等腰三角形的周长为()A . 或B . 或C . 或D . 或二、填空題(共10小题,每小題3分,共30分) (共10题;共10分)11. (1分)(2018·遵义模拟) 分解因式:4a2-b2=________.12. (1分) (2018八上·自贡期末) 已知P(2a+b,b)与Q(8,-2)关于y轴对称,则a+b=________.13. (1分)如果分式的值为0,那么x的值为________ .14. (1分) (2019九上·武汉月考) 如图,AE是正八边形ABCDEFGH的一条对角线,则∠BAE=________°.15. (1分) (2017八上·东台期末) 如图,AC⊥CB,AD⊥DB,要使△ABC≌△ABD,可补充的一个条件是________.16. (1分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为________.17. (1分)(2013·无锡) 如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=________°.18. (1分)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2 ,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3 ,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是________19. (1分)(2017·莱芜) 如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE=________.20. (1分)(2018·福田模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D 点,E,F分别是AD,AC上的动点,则CE+EF的最小值为________三、综合题 (共6题;共70分)21. (15分)(2016·义乌模拟) 解方程(1)解方程:(2)解不等式组:.22. (7分) (2016八上·卢龙期中) 如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为 A(﹣3,0),B(﹣3,﹣3),C(﹣1,﹣3)(1)求Rt△ABC的面积;(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F的坐标.23. (10分) (2019八上·江岸期中) 如图,在△ABC中,CE为三角形的角平分线,AD⊥CE于点F交BC于点D(1)若∠BAC=96°,∠B=28°,直接写出∠BAD=________°(2)若∠ACB=2∠B① 求证:AB=2CF________② 若EF=2,CF=5,直接写出=________24. (10分) (2017八下·山西期末) 综合题。

《试卷3份集锦》漳州市2018-2019年八年级上学期数学期末联考试题

《试卷3份集锦》漳州市2018-2019年八年级上学期数学期末联考试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下面四个手机APP 图标中,可看作轴对称图形的是( )A .B .C .D .【答案】A【分析】根据轴对称图形的概念结合所给图形即可得出答案.【详解】第一个图形是轴对称图形;第二是中心对称图形;第三、四个不是轴对称图形小也不是中心对称图形.故选A.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2.现有如图所示的卡片若干张,其中A 类、B 类为正方形卡片,C 类为长方形卡片,若用此三类卡片拼成一个长为2+a b ,宽为+a b 的大长方形,则需要C 类卡片张数为( )A .1B .2C .3D .4【答案】C 【分析】拼成的大长方形的面积是(a+2b )(a+b )=a 2+3ab+2b 2,即需要一个边长为a 的正方形,2个边长为b 的正方形和3个C 类卡片的面积是3ab .【详解】(a+2b)(a+b)=a 2+3ab+2b 2.则需要C 类卡片张数为3张.故选C.【点睛】此题考查多项式乘多项式,解题关键在于掌握运算法则.3.如图,ABC ∆中,AB AC =,AB 的垂直平分线交AB 于D ,交AC 于E ,BE 平分ABC ∠,则A ∠的度数为( )A .30°B .32°C .34°D .36°【答案】D 【分析】根据AB AC =,则∠ABC=∠C ,由垂直平分线和角平分线的性质,得到∠ABC=∠C=2∠A ,根据三角形内角和定理,即可得到答案.【详解】解:∵AB AC =,∴∠ABC=∠C ,∵BE 平分ABC ∠,∴2ABC ABE ∠=∠,∵DE 垂直平分AB ,∴A ABE ∠=∠,∴∠ABC=∠C=2∠A ,∵∠ABC+∠C+∠A=180°,∴5180A ∠=︒,∴36A ∠=︒.故选:D .【点睛】本题考查了三角形内角和定理和等腰三角形性质、线段垂直平分线性质的应用,以及角平分线的性质.注意:线段垂直平分线上的点到线段两个端点的距离相等.4.如图,AB AF ⊥,EF AF ⊥,BE 与AF 交于点C ,点D 是BC 的中点,2AEB B ∠=∠.若8BC =,7EF =,则AF 的长是( )A 6B 7C .3D .5【答案】C 【分析】根据直角三角形的性质和等腰三角形的判定和性质即可得到结论.【详解】∵AB ⊥AF ,∴∠FAB=90°,∵点D 是BC 的中点,∴AD=BD=12BC=4, ∴∠DAB=∠B ,∴∠ADE=∠B+∠BAD=2∠B ,∵∠AEB=2∠B ,∴∠AED=∠ADE ,∴AE=AD ,∴AE=AD=4,∵,EF ⊥AF ,∴==3,故选:C .【点睛】本题考查了直角三角形斜边中线的性质,三角形的外角性质,等腰三角形的判定和性质,勾股定理,正确的识别图形是解题的关键.5.已知()1,2x -,()2,3x -,()3,1x 是直线5y x b =-+(b 为常数)上的三个点,则1x ,2x ,3x 的大小关系是( )A .123x x x >>B .213x x x >>C .312x x x >>D .321x x x >>【答案】B【分析】根据k=-5知y 随x 的增大而减小,从而判断大小.【详解】∵一次函数5y x b =-+中,k=-5,∴y 随x 的增大而减小,∵-3<-2<1,∴213x x x >>,故选B.【点睛】本题是对一次函数知识的考查,熟练掌握一次函数k 与函数增减的关系是解决本题的关键.6.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t(h)之间的函数图象如图所示,则下列说法中:①甲、乙两地之间的距离为560km ;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km ;④相遇时,快车距甲地320km ;正确的是( )A.①②B.①③C.①④D.①③④【答案】B【分析】根据函数图象直接得出甲乙两地之间的距离;根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;设慢车速度为3xkm/h,快车速度为4xkm/h,由(3x+4x)×4=560,可得x=20,从而得出快车的速度是80km/h,慢车的速度是60km/h.由题意可得出:快车和慢车相遇地离甲地的距离,当慢车行驶了7小时后,快车已到达甲地,可求出此时两车之间的距离即可.【详解】由题意可得出:甲乙两地之间的距离为560千米,故①正确;由题意可得出:慢车和快车经过4个小时后相遇,出发后两车之间的距离开始增大直到快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,故②错误;∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20∴快车的速度是80km/h,慢车的速度是60km/h.由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,故④错误,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240-3×60=60km,故③正确.故选B.【点睛】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,读懂图,获取正确信息是解题关键.7.若(x+a)(x2﹣x﹣b)的乘积中不含x的二次项和一次项,则常数a、b的值为()A.a=1,b=﹣1 B.a=﹣1,b=1 C.a=1,b=1 D.a=﹣1,b=﹣1【答案】A【分析】根据多项式乘以多项式法则展开,即可得出﹣1+a=1,﹣b﹣a=1,求出即可.【详解】解:(x+a)(x2﹣x﹣b)=x3﹣x2﹣bx+ax2﹣ax﹣ab=x3+(﹣1+a)x2+(﹣b﹣a)x﹣ab,∵(x+a)(x2﹣x﹣b)的乘积中不含x的二次项和一次项,∴﹣1+a=1,﹣b﹣a=1,∴a=1,b=﹣1,故选:A.【点睛】本题考查了多项式乘以多项式法则的应用,关键根据(x+a )(x 2﹣x ﹣b )的乘积中不含x 的二次项和一次项,得出方程-1+a=1, -b-a=1. 8.某同学统计了他家今年10月份打电话的次数及地时间,并列出了频数分布表:通话区时间x (分钟)05x <≤ 510x <≤ 1015x <≤ 1520x <≤ 20x > 通话频数(次数) 21 14 8 5 2通话时间超过10分钟的频率是( )A .0.28B .0.3C .0.5D .0.7 【答案】B【分析】根据频率计算公式,频率等于频数与数据总数的比即可求解.【详解】通话时间超过10分钟的频率为:852150.3211485250++==++++ 故选:B【点睛】本题主要掌握观察频数分布表,考查了频率计算公式,频率等于频数与数据总数的比.9.下列尺规作图分别表示:①作一个角的平分线;②作一个角等于已知角;③作一条线段的垂直平分线.其中作法正确的是( )① ② ③A .①②B .①③C .②③D .①②③【答案】A【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线的作法进而判断即可得出答案.【详解】解:①作一个角的平分线的作法正确;②作一个角等于已知角的方法正确;③作一条线段的垂直平分线,缺少另一个交点,故作法错误;故选:A .【点睛】本题主要考查了基本作图,正确把握作图方法是解题关键.10.下列算式中,结果与93x x ÷相等的是( )A .33x x +B .23x x ⋅C .()23xD .122x x ÷【答案】C 【分析】已知936x x x ÷=,然后对A 、B 、C 、D 四个选项进行运算,A 根据合并同类项的法则进行计算即可;B 根据同底数幂的乘法法则进行计算即可;C 根据幂的乘方法则进行计算即可;D 根据同底数幂除法法则进行计算即可.【详解】∵936x x x ÷=A .3332x x x +=,不符合题意B .235x x x ,不符合题意 C .()236x x =,符合题意D .12210x x x ÷=,不符合题意故C 正确故选:C【点睛】本题考查了合并同类项的法则、同底数幂的乘法法则、幂的乘方法则、同底数幂除法法则.二、填空题11.若分式12020x x --有意义,则x 的取值范围是__________. 【答案】2020x ≠【分析】根据分式的概念,分式有意义则分母不为零,由此即得答案.【详解】要使12020x x --有意义,则2020x ≠, 故答案为:2020x ≠.【点睛】考查了分式概念,注意分式有意义则分母不能为零,这是解题的关键内容,需要记住.12.如图,一只蚂蚁从长为7cm 、宽为5cm ,高是9cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所走的最短路线的长是__cm .【答案】1【解析】根据题意,过A 点和B 点的平面展开图分三种情况,再根据两点之间线段最短和勾股定理可以分别求得三种情况下的最短路线,然后比较大小,即可得到A 点到B 点的最短路线,本题得以解决.【详解】解:由题意可得,15(cm)=====1575<<∴一只蚂蚁从长为7cm 、宽为5cm ,高是9cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所走的最短路线的长是1cm ,故答案为:1.【点睛】本题主要考查的就是长方体的展开图和勾股定理的实际应用问题.解决这个问题的关键就是如何将长方体进行展开.在解答这种问题的时候我们需要根据不同的方式来对长方体进行展开,然后根据两点之间线段最短的性质通过勾股定理来求出距离.有的题目是在圆锥中求最短距离,我们也需要将圆锥进行展开得出扇形,然后根据三角形的性质进行求值.13.甲、乙两地相距1000km ,如果乘高铁列车从甲地到乙地比乘特快列车少用3h ,已知高铁列车的平均速度是特快列车的1.6倍,设特快列车的平均速度为xkm/h ,根据题意可列方程为__.【答案】100010003 1.6x x-=. 【分析】根据题意可以列出相应的分式方程,本题得以解决. 【详解】由题意可得,100010003 1.6x x -=,故答案为:100010003 1.6x x -=. 【点睛】此题考查由实际问题抽象出分式方程,解题关键在于根据题意找到等量关系列出方程.14.已知一组数据1,7,10,8,x ,6,0,3,若5x =,则x 应等于___________. 【答案】5【分析】根据平均数公式求解即可.【详解】由题意,得1710860358x x +++++++== ∴5x =故答案为:5.【点睛】此题主要考查对平均数的理解,熟练掌握,即可解题.15.把多项式29am a -分解因式的结果是___________________ .【答案】(3)(3)a m m +-【分析】先提取公因式,然后按照平方差公式22()()a b a b a b -=+- 分解因式即可.【详解】原式=2(9)(3)(3)a m a m m -=+- 故答案为:(3)(3)a m m +-.【点睛】本题主要考查因式分解,掌握提取公因式法和平方差公式是解题的关键.16.如图,∠ACD 是△ABC 的外角.若∠ACD=125°,∠A=75°,则∠B=__________°.【答案】50【解析】分析:根据三角形外角的性质进行计算即可.详解:∠ACD 是△ABC 的外角.若∠ACD =125°,∠A =75°,ACD A B ∠=∠+∠,50.B ACD A ∴∠=∠-∠=︒故答案为50.点睛:考查三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.17.点(2,9)P -与点Q 关于x 轴对称,则点Q 的坐标是__________.【答案】(2,9)--【分析】已知点()2,9P -,根据两点关于x 轴的对称,横坐标不变,纵坐标互为相反数,即可得出Q 的坐标.【详解】∵点(2,9P -)与点Q 关于x 轴对称,∴点Q 的坐标是:()2,9--.故答案为()2,9--【点睛】考查关于x 轴对称的点的坐标特征,横坐标不变,纵坐标互为相反数.三、解答题18.计算:﹣(2020﹣π)0+(12)﹣233627- 【答案】1.【分析】分别根据零指数幂的意义、负整数指数幂的运算法则、算术平方根和立方根的定义计算每一项,再合并即可.【详解】解:﹣(2121﹣π)1+(12)﹣2﹣33627-- =﹣1+4﹣6﹣(﹣3)=1.【点睛】 本题考查了零指数幂的意义、负整数指数幂的运算法则、算术平方根和立方根的定义等知识,属于基本题型,熟练掌握基本知识是解题关键.19.已知:如图,△ABC 和△ECD 都是等腰直角三角形,∠ACB=∠DCE=90°,D 为AB 边上的一点. 求证:△ACE ≌△BCD .【答案】详见解析.【分析】首先根据△ABC 和△ECD 都是等腰直角三角形,可知EC=DC ,AC=CB ,再根据同角的余角相等可证出∠1=∠1,再根据全等三角形的判定方法SAS 即可证出△ACE ≌△BCD .【详解】解:∵△ABC 和△ECD 都是等腰直角三角形,∴EC=DC ,AC=CB .∵∠ACB=∠DCE=90°,∴∠ACB ﹣∠3=∠ECD ﹣∠3,即:∠1=∠1.在△ACE 和△BCD 中,∵12AC BC EC DC =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ).【点睛】本题考查了全等三角形的判定方法,关键是熟练掌握全等三角形的5种判定方法:SSS 、SAS 、AAS 、ASA 、HL ,选用哪一种方法,取决于题目中的已知条件.20.某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元;(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x ()0x >件甲种玩具需要花费y 元,请你写出y 与x 的函数表达式.【答案】(1)每件甲种玩具的进价是30元,每件乙种玩具的进价是27元;(2)当0<x ≤20时,y =30x ;当x>20时,y =21x +1.【分析】(1)设每件甲种玩具的进价是m元,每件乙种玩具的进价是n元,根据“5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元”列出方程组求解即可;(2)分不大于20件和大于20件两种情况,分别列出函数关系式即可.【详解】解:(1)设每件甲种玩具的进价是m元,每件乙种玩具的进价是n元.由题意得53231, 23141. m nm n⎧⎨⎩+=+=解得3027 mn=⎧⎨=⎩答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元.(2)当0<x≤20时,y=30x;当x>20时,y=20×30+(x-20)×30×0.7=21x+1.【点睛】本题考查二元一次方程组的应用,一次函数的应用.(1)中能抓住题目中的一些关键性词语,找出等量关系是解题关键;(2)中需注意要分段讨论.21.如图,直线EF与x轴、y轴分别相交于点E、F,点E的坐标为(-8,0),点F的坐标为(0,6),点A的坐标为(-6,0),点P(x,y)是直线EF上的一个动点,且P点在第二象限内;(1)求直线EF的解析式;(2)在点P的运动过程中,写出△OPA的面积S与x的函数表达式,并写出自变量x的取值范围;(3)探究,当点P运动到什么位置(求P的坐标)时,△OPA的面积是274?【答案】(1)y=34x+1;(2)S=94x+18(﹣8<x<0);(3)点P的坐标为(﹣5,94)时,△OPA的面积是274.【分析】(1)用待定系数法直接求出;(2)先求出OA,表示出PD,根据三角形的面积公式,可得函数解析式;再根据P(x,y)在第二象限内的直线上,可得自变量的取值范围;(3)利用(2)中得到的函数关系式直接代入S值,求出x即可.【详解】解:(1)设直线EF的解析式为y=kx+b,由题意得:-8k b0 b6+=⎧⎨=⎩解得,k=34;∴直线EF的解析式为y=34x+1.(2)如图,作PD⊥x轴于点D,∵点P(x,y)是直线y=34x+1上的一个动点,点A的坐标为(﹣1,0)∴OA=1,PD=34x+1∴S=12OA•PD=12×1×(34x+1)=94x+18(﹣8<x<0);(3)由题意得,94x+18=274,解得,x=﹣5,则y=34×(﹣5)+1=94,∴点P的坐标为(﹣5,94)时,△OPA的面积是274.【点睛】本题是一次函数综合题,主要考查了待定系数法,三角形的面积公式,解题的关键是求出直线EF解析式.22.综合与探究(1)操作发现:如图1,点D是等边△ABC边BA上一动点(点D与点B不重合),连结DC,以DC为边在CD上方作等边△DCF,连结AF,你能发现线段AF与BD之间的数量关系吗?证明你发现的结论.(2)类比猜想:如图2,当动点D运动至等边△ABC边BA的延长线上时,其余条件不变,猜想:(1)中的结论是否成立,并说明理由.(3)拓展探究:如图3.当动点D在等边△ABC边BA上运动时(点D与点B不重合),连结DC,以DC为边在CD上方和下方分别作等边△DCF和等边△DCF′,连结AF,BF′,探究:AF、BF′与AB有何数量关系?并说明理由.【答案】(1)AF=BD,证明见解析;(2)AF=BD,理由见解析;(3)AF+BF′=AB,理由见解析.【分析】(1)如图①中中,结论:AF=BD.证明△BCD≌△ACF(SAS)可得结论.(2)如图②中,结论:AF=BD.证明△BCD≌△ACF(SAS)可得结论.(3)如图③中.结论:AF+BF′=AB.利用全等三角形的性质解决问题即可.【详解】解:(1)如图①中中,结论:AF=BD.理由:∵△ABC,△DCF都是等边三角形,∴CB=CA,CD=CF,∠BCA=∠DCF=60°,∴∠BCD=∠ACF,∴△BCD≌△ACF(SAS),∴BD=CF.(2)如图②中,结论:AF=BD.理由:∵△ABC,△DCF都是等边三角形,∴CB=CA,CD=CF,∠BCA=∠DCF=60°,∴∠BCD=∠ACF,∴△BCD≌△ACF(SAS),∴BD=CF.(3)如图③中.结论:AF+BF′=AB.理由:∵△ABC,△DCF都是等边三角形,∴CB=CA,CD=CF,∠BCA=∠DCF=60°,∴∠BCD=∠ACF,∴△BCD≌△ACF(SAS),∴BD=CF.同法可证:△ACD≌△BCF′(SAS),∴AD=BF′,∴AF+BF′=BD+AD =AB.【点睛】此题考查全等三角形的判定与性质、等边三角形的性质.等边三角形的三条边都相等,三个内角都是60°.解题关键在于掌握各性质定义和判定定理.23.求证:三角形三个内角的和是180°【答案】见解析【解析】分析:根据题目写出已知,求证,证明即可.详解:已知:ABC △的三个内角分别为A B C ∠∠∠,,;求证:180A B C ∠+∠+∠=︒.证明:过点A 作直线MN ,使MN ∥BC .∵MN ∥BC ,∴∠B=∠MAB ,∠C=∠NAC (两直线平行,内错角相等)∵∠MAB+∠NAC+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(等量代换)即∠A+∠B+∠C=180°.点睛:考查平行线的性质,过点A 作直线MN ,使MN ∥BC .是解题的关键.24.如图,已知BAD CAE ∠=∠,AB AD =,AC AE =.求证:B D ∠=∠.【答案】证明见解析.【分析】根据题意证明BAC DAE ∆≅∆即可求解.【详解】证明:∵BAD CAE ∠=∠∴BAD DAC CAE DAC ∠+∠=∠+∠,即:BAC DAE ∠=∠在ABC ∆和DAE ∆中AB AD BAC ADE AC AE =⎧⎪∠=∠⎨⎪=⎩∴()BAC DAE SAS ∆≅∆∴B D ∠=∠【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定方法.25.观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c.根据你发现的规律,请写出:(1)当a=19时,求b,c 的值;(2)当a=2n+1时,求b,c 的值;(3)用(2)的结论判断15,111,112,是否为一组勾股数,并说明理由.【答案】 (1) b=180.c=181;(2) b=2n 2+2n,c=2n 2+2n+1;(3) 不是,理由见解析【解析】试题分析:(1)仔细观察可发现给出的勾股数中,斜边与较大的直角边的差是1,根据此规律及勾股定理公式不难求得b ,c 的值.(2)根据第一问发现的规律,代入勾股定理公式中即可求得b 、c 的值.(3)将第二问得出的结论代入第三问中看是否符合规律,符合则说明是一组勾股数,否则不是. 试题解析:解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c ﹣b=1.∵a=19,a 2+b 2=c 2,∴192+b 2=(b+1)2,∴b=180,∴c=181;(2)通过观察知c ﹣b=1,∵(2n+1)2+b 2=c 2,∴c 2﹣b 2=(2n+1)2,(b+c )(c ﹣b )=(2n+1)2,∴b+c=(2n+1)2,又c=b+1,∴2b+1=(2n+1)2,∴b=2n 2+2n ,c=2n 2+2n+1;(3)由(2)知,2n+1,2n 2+2n ,2n 2+2n+1为一组勾股数,当n=7时,2n+1=15,112﹣111=1,但2n 2+2n=112≠111,∴15,111,112不是一组勾股数.点睛:此题主要考查学生对勾股数及规律题的综合运用能力.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.设(2a+3b)2=(2a ﹣3b)2+A ,则A =( )A .6abB .12abC .0D .24ab【答案】D【解析】∵(2a+3b)2=4a 2+12ab+9b 2, (2a-3b)2+A =4a 2-12ab+9b 2+A, (2a+3b)2 =(2a-3b)2+A∴4a 2+12ab+9b 2=4a 2-12ab+9b 2+A,∴A=24ab ;故选D .2.如图,一个梯形分成-一个正方形(阴影部分)和一个三角形(空白部分),已知三角形的两条边分别是12cm 和13cm ,那么阴影部分的面积是( )2cmA .16B .25C .36D .49【答案】B 【分析】根据勾股定理解答即可. 【详解】解: 根据勾股定理得出:222213125=-=-=AB AC BC∴阴影部分面积是25,故选:B .【点睛】 此题考查勾股定理,关键是根据如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2解答.3.如图,90ACB ∠=︒,以Rt ABC ∆的三边为边向外作正方形,其面积分别为1S ,2S ,3S ,且11S =,23S =,则3S 为( )A .3B .4C .5D .9【答案】B 【分析】先利用正方形的面积公式分别求出正方形S 1、S 2的边长即BC 、AC 的长,再利用勾股定理求斜边AB ,即可得出S 3.【详解】∵S 1=1,∴BC 2=1,∵S 2=3,∴AC 2=3,∴在Rt △ABC 中,BC 2+AC 2=AB 2,∴S 3= AB 2=1+3=4;故选:B.【点睛】此题主要考查正方形的面积公式及勾股定理的应用,熟练掌握,即可解题.4.如图,Rt ABC ∆中,90C ∠=︒,AC BC =,60ADC ∠=︒,则BAD ∠的度数等于()A .10︒B .15︒C .30D .45︒【答案】B【分析】先根据等腰三角形的性质可求出B 的度数,再根据三角形的外角性质即可得.【详解】90,C AC BC ∠=︒=1(18090)452B BAC ∠=∠=︒-︒=∴︒60,ADC ADC B BAD ∠=︒∠=∠+∠604515BAD ADC B ∴∠=∠-∠=︒-︒=︒故选:B .【点睛】本题考查了等腰三角形的性质、三角形的外角性质,熟记各性质是解题关键.5.在Rt △ABC 中,已知AB=5,AC=4,BC=3,∠ACB=90°,若△ABC 内有一点P 到△ABC 的三边距离相等,则这个距离是( )A .1B .125C .32D .2 【答案】A【分析】连接PC 、PB 、PA ,作PD ⊥AB 于D ,PE ⊥AC 于E ,PF ⊥BC 于F ,根据S △APC +S △APB +S △BPC =S △ACB , 列出方程,即可求解.【详解】连接PC 、PB 、PA ,作PD ⊥AB 于D ,PE ⊥AC 于E ,PF ⊥BC 于F ,由题意得:PE=PD=PF ,S △APC +S △APB +S △BPC =S △ACB ,∴11112222AB PD AB PD AB PD AC BC ⋅+⋅+⋅=⋅,即1111543342222PD PD PD ⨯⋅+⨯⋅+⨯⋅=⨯⨯,解得:PD=1. 故选:A .【点睛】本题主要考查三角形的面积公式,添加合适的辅助线,构造方程,是解题的关键.6.若把分式x yy x +中的x 和y 都扩大3倍,那么分式的值 ( ) A .缩小3倍B .不变C .扩大3倍D .缩小6倍 【答案】A【分析】把分式x yy x +中的x 和y 都扩大3倍后的分式进行化简,观察变形后的分式可得答案. 【详解】解:把分式x y y x +中的x 和y 都扩大3倍后的分式为: 333()1.3393x y x y x y x y xy xy+++==•• 变形后的分式的值是原分式的值的13. 故选A .【点睛】本题考查的是利用分式的基本性质,掌握分式的基本性质是解题的关键.7.若分式22943x x x --+的值为零,则x 的值为( ) A .3B .3或-3C .-3D .0【答案】C【分析】分式值为零的条件:分子为0且分母不为0时,分式值为零. 【详解】解:由题意得2290430x x x ⎧-=⎨-+≠⎩,解得31 3x x x =±⎧⎨≠≠⎩,,则x=-3 故选C .【点睛】本题考查分式值为零的条件,本题属于基础应用题,只需学生熟练掌握分式值为零的条件,即可完成. 8.如图所示,AO CO 分别平分BAC ∠和,100ACB B ∠∠=︒,则AOC ∠的度数为( )A .120︒B .90︒C .140︒D .135︒【答案】C 【分析】首先根据三角形的内角和求出∠BAC 、∠BCA 的度数和,然后根据三角形的角平分线的定义,用∠BAC 、∠BCA 的度数和除以2,求出∠OAC ,∠OCA 的度数和,最后根据三角形的内角和可求出∠AOC 的度数.【详解】解:∵∠B=100°,∴∠BAC+∠BCA =180°-∠B=180°-100°=80°,又∵AO 平分∠BAC ,CO 平分∠BCA ,∴∠OAC+∠OCA =12(∠BAC+∠BCA )=40°, ∴∠AOC=180°-(∠OAC+∠OCA )=180°-40°=140°.故答案为:C .【点睛】此题主要考查了三角形内角和定理,以及三角形角平分线的定义,解答此题的关键是求出∠OAC ,∠OCA 的度数和.9.下列各数中,能化为无限不循环小数的是( )A .13B .15C .17D .2π【答案】D【解析】根据无理数的概念进行选择判断.【详解】解:A.13属于无限循环小数; B.10.25= 属于有限小数; C.17 属于无限循环小数; D.2π属于无限不循环小数. 故选D .【点睛】本题考查无理数的概念,比较简单.10.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形 【答案】B【解析】n 边形的内角和是(n ﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】根据n 边形的内角和公式,得(n ﹣2)•180=1080,解得n=8,∴这个多边形的边数是8,故选B .【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.二、填空题11.若关于x 的方程1044m x x x --=--无解,则m 的值是____. 【答案】3【分析】先去分母求出x 的解,由增根x=4即可求出m 的值. 【详解】解方程1044m x x x--=-- m+1-x=0,解得x=m+1,∵增根x=4,即m+1=4∴m=3.【点睛】此题主要考查分式方程的增根,解题的关键是熟知解分式方程的方法.12.已知a 2+b 2=18,ab=﹣1,则a+b=____.【答案】±1.【分析】根据题意,计算(a+b)2的值,从而求出a+b 的值即可.【详解】(a+b)2=a 2+2ab+b 2= (a 2+b 2)+2ab=18﹣2=16,则a+b=±1.故答案为:±1.【点睛】本题考查了代数式的运算问题,掌握完全平方公式和代入法是解题的关键.13.如图,在△ABA 1中,∠B=20°,AB=A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ;在A 2C上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,∠A n 的度数为 .【答案】0n 1802-. 【解析】试题解析:∵在△ABA 1中,∠B=20°,AB=A 1B ,∴∠BA 1A=1801802022B ︒-∠︒-︒==80°, ∵A 1A 2=A 1C ,∠BA 1A 是△A 1A 2C 的外角, ∴∠CA 2A 1=18022BA A ∠︒==40°; 同理可得,∠DA 3A 2=20°,∠EA 4A 3=10°,∴∠A n =1802n -︒. 考点:1.等腰三角形的性质;2.三角形外角的性质. 14.已知a+ 1a = 10,则a-1a =__________ 【答案】6【解析】通过完全平方公式即可解答.【详解】解:已知a+ 1a = 10,则21(a a +)= 2212a a ⎛⎫++ ⎪⎝⎭=10, 则21a a ⎛⎫- ⎪⎝⎭= 2212a a ⎛⎫+- ⎪⎝⎭=6,故a-1a =. 【点睛】本题考查完全平方公式的运用,熟悉掌握是解题关键.15.用“如果…,那么…”的形式,写出“对顶角相等”的逆命题:_____________________________.【答案】如果两个角相等,那么这两个角是对顶角.【分析】先找到命题的题设和结论,再写成“如果…那么…”的形式,再利用把一个命题的题设和结论互换即可得到其逆命题.【详解】解:∵原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,∴命题“对顶角相等”的逆命题写成“如果…那么…”的形式为:“如果两个角相等,那么它们是对顶角”.故答案为:如果两个角相等,那么这两个角是对顶角.【点睛】本题考查了命题的条件和结论的叙述以及互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.16.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律.已知21i =-,那么(1)(1)i i +⋅-=________.【答案】2【分析】根据定义即可求出答案.【详解】由题意可知:原式=1-i 2=1-(-1)=2故答案为2【点睛】本题考查新定义型运算,解题的关键是正确理解新定义.17.一个三角形的三边为2、5、x ,另一个三角形的三边为y 、2、6,若这两个三角形全等,则x + y =________.【答案】11【分析】根据全等三角形的性质求出x 和y 即可.【详解】解:∵这两个三角形全等∴x=6,y=5∴x + y =11故答案为11.【点睛】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解决此题的关键.三、解答题18.如图,已知∠B+∠CDE=180°,AC=CE.求证:AB=DE.【答案】证明见解析.【解析】如图,过E点作EH∥AB交BD的延长线于H.可证明△ABC≌△EHC(ASA),则由全等三角形的性质得到AB=HE;然后结合已知条件得到DE=HE,所以AB=HE,由等量代换证得AB=DE.【详解】证明:如图,过E点作EH∥AB交BD的延长线于H,∵EH∥AB,∴∠A=∠CEH,∠B=∠H在△ABC与△EHC中,A CEHAC ECACB ECH∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△EHC(ASA),∴AB=HE,∵∠B+∠CDE=180°,∠HDE+∠CDE=180°.∴∠HDE=∠B=∠H,∴DE=HE.∵AB=HE,∴AB=DE.【点睛】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,正确添加适当辅助线构造全等三角形是解题关键.19.按要求作图并填空:(1)作出ABC 关于x 轴对称的A B C ''';(2)作出过点()1,0-且平行于y 轴的直线l ,则点(),P a b 关于直线l 的对称点P '的坐标为______. (3)在x 轴上画出点Q ,使QA QC +最小.【答案】(1)见解析;(2)图见解析,()2,a b --;(3)见解析【分析】(1)按照轴对称的性质,分别对称A 、B 、C 三点,再顺次连接即可;(2)先画出直线l ,再结合轴对称的性质求出坐标即可;(3)结合(1),连接A C ',与x 轴的交点即为Q ,此时QA QC +最小.【详解】(1)如图所示;(2)设点P '的横坐标为m ,则12+=-m a ,∴2m a =--, ∴()2,'--P a b ;(3)如图所示.【点睛】本题考查轴对称作图与坐标变换,熟练掌握掌握轴对称作图的方法是解题关键.20.如图,在△ABC中,AB=AC,∠BAC=36°,BD是∠ABC的平分线,交AC于点D,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF.求证:(1)EF⊥AB;(2)△ACF为等腰三角形.【答案】(1)见解析;(2)见解析.【分析】(1)依据AB=AC,∠BAC=36°,可得∠ABC=72°,再根据BD是∠ABC的平分线,即可得到∠ABD=36°,由∠BAD=∠ABD,可得AD=BD,依据E是AB的中点,即可得到FE⊥AB;(2)依据FE⊥AB,AE=BE,可得FE垂直平分AB,进而得出∠BAF=∠ABF,依据∠ABD=∠BAD,即可得到∠FAD=∠FBD=36°,再根据∠AFC=∠ACB−∠CAF=36°,可得∠CAF=∠AFC=36°,进而得到AC=CF.【详解】证明:(1)∵AB=AC,∠BAC=36°,∴∠ABC=∠ABC =72°.又∵BD是∠ABC的平分线,∴∠ABD=36°.∴∠BAD=∠ABD.∴AD=BD.又∵E是AB的中点,∴DE ⊥AB ,即EF ⊥AB .(2)∵EF ⊥AB ,AE =BE ,∴EF 垂直平分AB .∴AF =BF .∴∠BAF =∠ABF .又∵∠ABD =∠BAD ,∴∠FAD =∠FBD =36°.又∵∠ACB =72°,∴∠AFC =∠ACB−∠CAF =36°.∴∠CAF =∠AFC =36°.∴AC =CF ,即△ACF 为等腰三角形.【点睛】本题考查了等腰三角形的判定与性质,解决问题的关键是熟练掌握并能综合运用等腰三角形的判定与性质,线段垂直平分线的判定与性质,三角形外角的性质.21.如图,“丰收1号”小麦的试验田是边长为a 米(2)a >的正方形去掉一个边长为2米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(2)a -米的正方形,两块试验田的小麦都收获了500kg .(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?【答案】(1) 丰收2号;(2)22a a +-. 【分析】(1)根据题意可以求得两块试验田的面积,从而可以求得哪种小麦的单位面积产量高; (2)根据“高的单位面积产量除以低的单位面积产量”进行计算求解即可.【详解】(1)“丰收1号”小麦的试验田面积是22(4)a m -, 单位面积产量是22500/4kg m a -。

福建省漳州市八年级上学期期末数学试卷

福建省漳州市八年级上学期期末数学试卷

福建省漳州市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019九上·道里期末) 下列四个图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)(2016·德州) 下列运算错误的是()A . a+2a=3aB . =C . =D .3. (2分)如图,∠B=∠C,补充下列条件后,仍无法判定△ABE≌△ACD的是()A . AD=AEB . ∠AEB=∠ADCC . BE=CDD . AB=AC4. (2分) (2017八下·临洮期中) 给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;③三角形的三边a、b、c满足a2+c2=b2 ,则△ABC是∠C为直角的直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A . 1个B . 2个C . 3个D . 4个5. (2分)在下列分解因式的过程中,分解因式正确的是()A . ﹣xz+yz=﹣z(x+y)B . 3a2b﹣2ab2+ab=ab(3a﹣2b)C . 6xy2﹣8y3=2y2(3x﹣4y)D . x2+3x﹣4=(x+2)(x﹣2)+3x6. (2分)(2018·灌云模拟) 若式子有意义,在实数范围内有意义,则x的取值范围是A .B .C .D .7. (2分)如图所示,把一个长方形纸片沿EF折叠后,点D , C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于A . 70°B . 65°C . 50°D . 25°8. (2分)如图,等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠DBC=30°,AD=5,则BC=A . 5B . 7.5C .D . 109. (2分)等腰三角形的两个内角的比是1:2,则这个等腰三角形是()A . 锐角三角形B . 直角三角形C . 锐角三角形或直角三角形D . 以上结论都不对10. (2分) (2019八上·景县月考) 已知下图中的两个三角形全等,则∠α度数是()A . 72°B . 60°C . 58°D . 50°二、填空题 (共8题;共8分)11. (1分) (2016九上·顺义期末) 分解因式:mn2+6mn+9m=________.12. (1分)(2016·雅安) 已知a+b=8,a2b2=4,则﹣ab=________.13. (1分)(2020·黄石) 匈牙利著名数学家爱尔特希(P. Erdos,1913-1996)曾提出:在平面内有n个点,其中每三个点都能构成等腰三角形,人们将具有这样性质的n个点构成的点集称为爱尔特希点集.如图,是由五个点A、B、C、D、O构成的爱尔特希点集(它们为正五边形的任意四个顶点及正五边形的中心构成),则的度数是________.14. (1分)(2017·绥化) 计算:( + )• =________.15. (1分) (2019九上·孟津月考) 一个等腰三角形的三边均满足方程x2 -9x+18=0,那么这个三角形的周长为________.16. (1分)(2017·长春模拟) 化简: =________.17. (1分) (2020七下·莲湖期末) 如图,在中,点D在边上,垂直平分边,垂足为E,若,且,则的度数为________.18. (1分) (2015九上·揭西期末) 如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF;EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为________.三、解答题 (共7题;共60分)19. (10分) (2017八下·西华期中) 计算下列各式:(1) +(﹣1)0;(2) a2 +3a .20. (5分) (2015九下·南昌期中) 先化简再求值:,其中a=2,b=﹣1.21. (5分)如图.AB=AC,MB=MC.求证:直线AM是线段BC的垂直平分线.22. (10分)下列为边长为1的小正方形组成的网格图.(1)请画出△ABC关于直线a对称的图形(不要求写作法);(2)求△ABC的面积(直接写出即可).23. (10分)(2017·静安模拟) 有两种包装盒,大盒比小盒可多装20克某一物品.已知120克这一物品单独装满小盒比单独装满大盒多1盒.(1)问小盒每个可装这一物品多少克?(2)现有装满这一物品两种盒子共50个.设小盒有n个,所有盒子所装物品的总量为w克.①求w关于n的函数解析式,并写出定义域;②如果小盒所装物品总量与大盒所装物品总量相同,求所有盒子所装物品的总量.24. (10分) (2016七上·龙口期末) 在△ABC中,AB=AC,点D是BC的中点,点E是AD上任意一点.(1)如图1,连接BE、CE,问:BE=CE成立吗?并说明理由;(2)如图2,若∠BAC=45°,BE的延长线与AC垂直相交于点F时,问:EF=CF成立吗?并说明理由.25. (10分) (2016九上·长清开学考) 解方程(1)﹣ =1;(2) 2x2﹣3x﹣2=0.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、答案:略7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、答案:略16-1、17-1、18-1、三、解答题 (共7题;共60分)19-1、答案:略19-2、答案:略20-1、21-1、22-1、22-2、23-1、答案:略23-2、24-1、答案:略24-2、答案:略25-1、答案:略25-2、答案:略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年福建省漳州市漳浦县八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂1.下列实数中,无理数是()A.3.14B.2.12122C.D.2.下列四组数据,能作为直角三角形的三边长的是()A.2、4、6B.2、3、4C.5、7、12D.8、15、173.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°4.下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1D.2x+45.已知一次函数y=kx+3的图象经过点A,且函数值y随x的增大而增大,则点A的坐标不可能是()A.(2,4)B.(﹣1,2)C.(5,1)D.(﹣1,﹣4)6.老师随机抽查了学生读课外书册数的情况,绘制成两幅统计图,其中条形统计图被遮盖了一部分,则被遮盖的数是()A.5B.9C.15D.227.方程组的解为,则a、b的值分别为()A.1,2B.5,1C.2,1D.2,38.下列四个命题中,真命题的是()A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等9.已知m=,则以下对m的值估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<610.如图,直线y1=ax(a≠0)与y2=x+b交于点P,有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2,其中正确的是()A.①②B.①③C.①④D..②③二、填空题(本大题共6小题,每小题4分,共24分,请将答案填入答题卡的相应位置11.16的平方根是.12.若y=3x n﹣1是正比例函数,则n=.13.若P(a﹣2,a+1)在x轴上,则a的值是.14.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为.15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为.16.双察下列等式:,,,…则第n个等式为.(用含n的式子表示)三、解答题[本大题共9小题,共86分.请在答题卡的相应位置解答17.(8分)解二元一次方程组:18.(8分)计算:.19.(8分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?20.(8分)求证:三角形三个内角的和等于180°.21.(8分)某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y(千克)与销售单价x (元/千克)之间符合一次函数关系,如图所示.(1)求y与x的函数关系式;(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.22.(10分)如图,把△ABC放置在每个小正方形边长为1的网格中,点A,B,C均在格点上,建立适当的平面直角坐标系xOy,使点A(1,4),△ABC与△A'B'C'关于y轴对称.(1)画出该平面直角坐标系与△A'B'C';(2)在y轴上找点P,使PC+PB'的值最小,求点P的坐标与PC+PB'的最小值.23.(10分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:整理数据:分析数据:请根据以上提供的信息,解答下列问题:(1)填空:a=,b=;m=,n=;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?24.(12分)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.25.(14分)已知等边△AOB的边长为4,以O为坐标原点,OB所在直线为x轴建立如图所示的平面直角坐标系.(1)求点A的坐标;(2)若直线y=kx(k>0)与线段AB有交点,求k的取值范围;(3)若点C在x轴正半轴上,以线段AC为边在第一象限内作等边△ACD,求直线BD的解析式.2018-2019学年福建省漳州市漳浦县八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂1.下列实数中,无理数是()A.3.14B.2.12122C.D.【分析】根据无理数的三种形式,结合选项找出无理数的选项.【解答】解:无理数是,故选:C.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.下列四组数据,能作为直角三角形的三边长的是()A.2、4、6B.2、3、4C.5、7、12D.8、15、17【分析】分别求每个选项中数字的平方,根据其中两个数字的平方和等于第三个数字即可解题.【解答】解:22+42≠62,故A错误;22+32≠42,故B错误;52+72≠122,故C错误;82+152=172,故D正确;故选:D.【点评】本题考查了勾股数的计算,其中2个数字的平方和等于第三个数字的平方,则这3个数字为勾股数.3.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°【分析】根据各个选项中的语句可以判断哪个选项是正确的,本题得以解决.【解答】解:根据题意可得,北偏东40°无法确定位置,故选项A错误;某地江滨路无法确定位置,故选项B错误;光明电影院6排无法确定位置,故选项C错误;东经116°,北纬42°可以确定一点的位置,故选项D正确,故选:D.【点评】本题考查坐标位置的确定,解题的关键是明确题意,可以判断选项中的各个语句哪一个可以确定一点的位置.4.下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1D.2x+4【分析】直接利用二次根式的定义分别分析得出答案.【解答】解:A、3﹣π<0,则3﹣a不能作为二次根式被开方数,故此选项错误;B、a的符号不能确定,则a不能作为二次根式被开方数,故此选项错误;C、a2+1一定大于0,能作为二次根式被开方数,故此选项正确;D、2x+4的符号不能确定,则a不能作为二次根式被开方数,故此选项错误;故选:C.【点评】此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.5.已知一次函数y=kx+3的图象经过点A,且函数值y随x的增大而增大,则点A的坐标不可能是()A.(2,4)B.(﹣1,2)C.(5,1)D.(﹣1,﹣4)【分析】先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【解答】解:∵一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,∴k>0.A、∵当x=2,y=4时,2k+3=4,解得k=0.5>0,∴此点符合题意,故本选项错误;B、∵当x=﹣1,y=2时,﹣k+3=2,解得k=1>0,∴此点符合题意,故本选项错误;C、∵当x=5,y=1时,5k+3=1,解得k=﹣0.4<0,∴此点不符合题意,故本选项正确;D、∵当x=﹣1,y=﹣4时,﹣k+3=﹣4,解得k=7>0,∴此点符合题意,故本选项错误.故选:C.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.6.老师随机抽查了学生读课外书册数的情况,绘制成两幅统计图,其中条形统计图被遮盖了一部分,则被遮盖的数是()A.5B.9C.15D.22【分析】求出确定总人数,再求出被遮盖的数即可.【解答】解:由题意,总人数=6÷25%=24(人),∴被遮盖的数=24﹣5﹣6﹣4=9(人),故选:B.【点评】本题考查条形统计图,扇形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.方程组的解为,则a、b的值分别为()A.1,2B.5,1C.2,1D.2,3【分析】把代入方程组,即可解答.【解答】解:把代入方程组得:解得:故选:B.【点评】本题主要考查了二元一次方程组的解,解题的关键是用代入法进行求解.8.下列四个命题中,真命题的是()A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等【分析】根据补角的性质、对顶角的概念、三角形的外角的性质、平行线的性质判断即可.【解答】解:同角的补角相等,A是真命题;相等的角不一定是对顶角,B是假命题;三角形的一个外角大于任何一个与它不相邻的内角,C是假命题;两条平行线被第三条直线所截.内错角相等,D是假命题;故选:A.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.已知m=,则以下对m的值估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<6【分析】估算确定出m的范围即可.【解答】解:m=+=2+,∵1<3<4,∴1<<2,即3<2+<4,则m的范围为3<m<4,故选:B.【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.10.如图,直线y1=ax(a≠0)与y2=x+b交于点P,有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2,其中正确的是()A.①②B.①③C.①④D..②③【分析】根据正比例函数和一次函数的性质判断即可.【解答】解:因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数y2=x+b经过一、二、三象限,所以b>0,②错误;由图象可得:当x>0时,y1<0,③错误;当x<﹣2时,y1>y2,④正确;故选:C.【点评】此题考查一次函数与一元一次不等式,关键是根据正比例函数和一次函数的性质判断.二、填空题(本大题共6小题,每小题4分,共24分,请将答案填入答题卡的相应位置11.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.若y=3x n﹣1是正比例函数,则n=2.【分析】根据正比例函数的定义可以列出关于n是方程n﹣1=1,据此可以求得n的值.【解答】解:∵y=3x n﹣1是正比例函数,∴n﹣1=1,∴n=2,故答案是:2.【点评】本题考查了正比例函数的定义.正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.13.若P(a﹣2,a+1)在x轴上,则a的值是﹣1.【分析】直接利用x轴上点的坐标特点得出a+1=0,进而得出答案.【解答】解:∵P(a﹣2,a+1)在x轴上,∴a+1=0,解得:a=﹣1.故答案为:﹣1.【点评】此题主要考查了点的坐标,正确掌握x轴上点的坐标特点是解题关键.14.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为6.【分析】根据平均数的定义计算即可.【解答】解:==6故答案为6.【点评】本题考查方差,平均数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为45°.【分析】首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,可得出∠2=∠3,∠1=∠4,故∠1+∠2=∠3+∠4,由此即可得出结论.【解答】解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1,∠2=∠3,∴∠1+∠2=∠3+∠4=∠ABC,∵∠ABC=45°,∴∠1+∠2=45°.故答案为:45°.【点评】此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.16.双察下列等式:,,,…则第n个等式为=.(用含n的式子表示)【分析】探究规律后,写出第n个等式即可求解.【解答】解:,,,…则第n个等式为=.故答案为:=.【点评】本题考查算术平方根的定义,解题的关键是探究规律,利用规律解决问题,属于中考常考题型.三、解答题[本大题共9小题,共86分.请在答题卡的相应位置解答17.(8分)解二元一次方程组:【分析】利用加减消元法求解可得.【解答】解:①+②,得:5x=5,解得:x=1,将x=1代入①,得:3+y=6,解得y=3,所以方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8分)计算:.【分析】先根据二次根式的除法法则运算,再利用平方差公式计算,然后合并即可.【解答】解:原式=﹣+4﹣5=﹣﹣1=﹣1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.(8分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?【分析】设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设官有x人,兵有y人,依题意,得:,解得:.答:官有200人,兵有800人.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(8分)求证:三角形三个内角的和等于180°.【分析】画出图形,写出已知,求证,过点A作直线MN∥BC,根据平行线性质得出∠MAB=∠B,∠NAC=∠C,代入∠MAB+∠BAC+∠NAC=180°即可求出答案.【解答】已知:△ABC,如图:求证:∠A+∠B+∠C=180°证明:过点A作直线MN∥BC,∵MN∥BC,∴∠MAB=∠B,∠NAC=∠C(两直线平行,同位角相等),∵∠MAB+∠BAC+∠NAC=180°(平角的定义),∴∠B+∠BAC+∠C=180°(等量代换),即:三角形三个内角的和等于180°.【点评】本题考查了平行线性质的应用,主要考查学生的推理能力,关键是正确作出辅助线.21.(8分)某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y(千克)与销售单价x (元/千克)之间符合一次函数关系,如图所示.(1)求y与x的函数关系式;(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.【分析】(1)根据题意和函数图象中的数据,可以求得y 与x 的函数关系式;(2)将x =18代入(1)的函数解析式,求出相应的y 的值,从而可以求得40天的销售量,然后与4500比较大小即可解答本题.【解答】解:(1)设y 与x 的函数关系式为y =kx +b ,,得,即y 与x 的函数关系式为y =﹣10x +300; (2)能在保质期内销售完这批蜜柚, 理由:将x =18代入y =﹣10x +300,得 y =﹣10×18+300=120, ∵120×40=4800>4500, ∴能在保质期内销售完这批蜜柚.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.(10分)如图,把△ABC 放置在每个小正方形边长为1的网格中,点A ,B ,C 均在格点上,建立适当的平面直角坐标系xOy ,使点A (1,4),△ABC 与△A 'B 'C '关于y 轴对称. (1)画出该平面直角坐标系与△A 'B 'C ';(2)在y 轴上找点P ,使PC +PB '的值最小,求点P 的坐标与PC +PB '的最小值.【分析】(1)直接利用A 点坐标画出平面直角坐标系进而利用关于y 轴对称点的性质得出答案; (2)直接利用轴对称求最短路线的方法以及勾股定理得出答案. 【解答】解:(1)如图所示:△A 'B 'C ',即为所求;(2)如图所示:点P ,即为所求,点P 的坐标为:(0,1), PC +PB '的最小值为:=2.【点评】此题主要考查了轴对称变换以及勾股定理,正确得出对应点位置是解题关键. 23.(10分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min )进行调查,过程如下: 收集数据:整理数据:分析数据:请根据以上提供的信息,解答下列问题:(1)填空:a=5,b=4;m=81,n=81;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?【分析】(1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;(2)达标的学生人数=总人数×达标率,依此即可求解;(3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.【解答】解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;(2)500×=300(人).答:估计达标的学生有300人;(3)80×52÷260=16(本).答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.【点评】此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.24.(12分)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.【分析】(1)由折叠可得,∠ACE=∠DCE=∠ACD,∠BCF=∠B'CF=∠BCB',再根据∠ACB=90°,即可得出∠ECF=45°;(2)在Rt△BCE中,根据勾股定理可得BC==,设AE=x,则AB=x+5,根据勾股定理可得AE2+CE2=AB2﹣BC2,即x2+42=(x+5)2﹣41,求得x=,即可得出S△ABC=AB×CE=.【解答】解:(1)由折叠可得,∠ACE=∠DCE=∠ACD,∠BCF=∠B'CF=∠BCB',又∵∠ACB=90°,∴∠ACD+∠BCB'=90°,∴∠ECD+∠FCD=×90°=45°,即∠ECF=45°;(2)由折叠可得,∠DEC=∠AEC=90°,BF=B'F=1,∴∠EFC=45°=∠ECF,∴CE=EF=4,∴BE=4+1=5,∴Rt△BCE中,BC==,设AE=x,则AB=x+5,∵Rt△ACE中,AC2=AE2+CE2,Rt△ABC中,AC2=AB2﹣BC2,∴AE2+CE2=AB2﹣BC2,即x2+42=(x+5)2﹣41,解得x=,=AB×CE=(+5)×4=.∴S△ABC【点评】本题主要考查了折叠问题,解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.25.(14分)已知等边△AOB的边长为4,以O为坐标原点,OB所在直线为x轴建立如图所示的平面直角坐标系.(1)求点A的坐标;(2)若直线y=kx(k>0)与线段AB有交点,求k的取值范围;(3)若点C在x轴正半轴上,以线段AC为边在第一象限内作等边△ACD,求直线BD的解析式.【分析】(1)如下图所示,过点A作AD⊥x轴于点D,则AD=OA sin∠AOB=4sin60°=2,同理OA=2,即可求解;(2)若直线y=kx(k>0)与线段AB有交点,当直线过点A时,将点A坐标代入直线的表达式得:2k=2,解得:k=,即可求解;(3)证明△ACO≌△ADB(SAS),则OB=BD=4,而∠DBC=180°﹣∠ABO﹣∠ABD=180°﹣60°﹣60°=60°,即可求解.【解答】解:(1)如下图所示,过点A作AD⊥x轴于点D,则AD=OA sin∠AOB=4sin60°=2,同理OA=2,故点A的坐标为(2,2);(2)若直线y=kx(k>0)与线段AB有交点,当直线过点A时,将点A坐标代入直线的表达式得:2k=2,解得:k=,直线OB的表达式为:y=0,而k>0,故:k的取值范围为:0<k≤;(3)如下图所示,连接BD,∵△OAB是等边三角形,∴AO=AB,∵△ADC为等边三角形,∴AD=AC,∠OAC=∠OAB+∠CAB=60°+∠CAB=∠DAC+∠CAB=∠DAB,∴△ACO≌△ADB(SAS),∴OB=BD=4,∴∠AOB=∠ABD=60°,∴∠DBC=180°﹣∠ABO﹣∠ABD=180°﹣60°﹣60°=60°,故直线BD表达式的k值为tan60,设直线BD的表达式为:y=x+b,将点B(4,0)代入上式并解得:b=﹣4,故:直线BD的表达式为:y=x﹣4.【点评】本题考查的是一次函数的综合运用,涉及到三角形全等、解直角三角形等知识,其中(3)利用三角形全等,确定直线BD的倾斜角本题的难点.。

相关文档
最新文档