八年级下册列一元一次不等式(组)解应用题专项练习

合集下载

一元一次不等式组的应用题专项练习含详细答案

一元一次不等式组的应用题专项练习含详细答案

一元一次不等式〔组〕的应用题专项练习一元一次不等式〔组〕的应用题专项练习一.选择题〔共10小题〕1.〔2021•菏泽〕某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,那么至多可打〔〕A.6折B.7折C.8折D.9折2.〔2021•安顺〕不等式组的解集在数轴上表示为〔〕A.B.C.D.3.〔2021•柳州〕假设a<b,那么以下各式中一定成立的是〔〕A.a﹣1<b﹣1 B.>C.﹣a<﹣b D.a c<bc4.〔2021•荆门〕假设不等式组有解,那么a的取值范围是〔〕A.a>﹣1 B.a≥﹣1 C.a≤1 D.a<15.〔2021•河北〕把某不等式组中两个不等式的解集表示在数轴上,如下图,那么这个不等式组可能是〔〕A.B.C.D.6.〔2021•恩施州〕如果a<b<0,以下不等式中错误的选项是〔〕A.a b>0 B.a+b<0 C.<1D.a﹣b<07.〔2007•枣庄〕不等式2x﹣7<5﹣2x正整数解有〔〕A.1个B.2个C.3个D.4个8.〔2007•乐山〕某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是〔〕A.x<y B.x>y C.x≤y D.x≥y9.〔2006•镇江〕如果a<0,b>0,a+b<0,那么以下关系式中正确的选项是〔〕A.a>b>﹣b>﹣a B.a>﹣a>b>﹣b C.b>a>﹣b>﹣a D.﹣a>b>﹣b>a10.〔2005•绵阳〕如果关于x的不等式〔a+1〕x>a+1的解集为x<1,那么a的取值范围是〔〕A.a>0 B.a<0 C.a>﹣1 D.a<﹣1二.解答题〔共20小题〕11.〔2021•自贡〕暑期中,哥哥和弟弟二人分别编织28个中国结,弟弟单独编织一周〔7天〕不能完成,而哥哥单独编织不到一周就已完成.哥哥平均每天比弟弟多编2个.求:〔1〕哥哥和弟弟平均每天各编多少个中国结?〔答案取整数〕〔2〕假设弟弟先工作2天,哥哥才开场工作,那么哥哥工作几天,两人所编中国结数量一样?12.〔2021•资阳〕为了解决农民工子女就近入学问题,我市第一小学方案2021年秋季学期扩大办学规模.学校决定开支八万元全部用于购置课桌凳、办公桌椅和电脑,要求购置的课桌凳及办公桌椅的数量比为20:1,购置电脑的资金不低于16000元,但不超过24000元.一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.〔课桌凳和办公桌椅均成套购进〕〔1〕一套课桌凳和一套办公桌椅的价格分别为多少元?〔2〕求出课桌凳和办公桌椅的购置方案.13.〔2021•张家界〕某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购置“个人年票〞的售票活动〔从购置日起,可供持票者使用一年〕.年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购置门票;B类年票每张50元,持票者进入公园时需再购置每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购置A类年票最合算?14.〔2021•益阳〕为响应市政府“创立国家森林城市〞的号召,某小区方案购进A、B两种树苗共17棵,A种树苗每棵80元,B种树苗每棵60元.〔1〕假设购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?〔2〕假设购置B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.15.〔2021•潍坊〕为了援助失学儿童,初三学生李明从2021年1月份开场,每月一次将相等数额的零用钱存入已有局部存款的储蓄盒内,准备每6个月一次将储蓄盒内存款一并汇出〔汇款手续费不计〕.2月份存款后清点储蓄盒内有存款80元,5月份存款后清点储蓄盒内有存款125元.〔1〕在李明2021年1月份存款前,储蓄盒内已有存款多少元?〔2〕为了实现到2021 年6月份存款后存款总数超过1000元的目标,李明方案从2021年1月份开场,每月存款都比2021年每月存款多t元〔t为整数〕,求t的最小值.16.〔2021•铜仁地区〕为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.假设购进A 种纪念品8件,B种纪念品3件,需要950元;假设购进A种纪念品5件,B种纪念品6件,需要800元.〔1〕求购进A、B两种纪念品每件各需多少元?〔2〕假设该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购置这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?〔3〕假设销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第〔2〕问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?17.〔2021•铁岭〕为奖励在文艺汇演中表现突出的同学,班主任派生活委员小亮到文具店为获奖同学购置奖品.小亮发现,如果买1个笔记本和3支钢笔,那么需要18元;如果买2个笔记本和5支钢笔,那么需要31元.〔1〕求购置每个笔记本和每支钢笔各多少元?〔2〕班主任给小亮的班费是100元,需要奖励的同学是24名〔每人奖励一件奖品〕,假设购置的钢笔数不少于笔记本数,求小亮有哪几种购置方案?18.〔2021•宁波〕为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表〞生活用水及提示计费价格表的局部信息:生活用水单价污水处理单价每户每月用水量单价:元/吨单价:元/吨17吨以下 a超过17吨但不超过30吨的局部 b超过30吨的局部〔说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用〕小王家2021年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.〔1〕求a、b的值;〔2〕随着夏天的到来,用水量将增加.为了节省开支,小王方案把6月份的水费控制在不超过家庭月收入的2%.假设小王家的月收入为9200元,那么小王家6月份最多能用水多少吨?19.〔2021•南充〕学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.假设租用1辆大车2辆小车共需租车费1000元;假设租用2辆大车一辆小车共需租车费1100元.〔1〕求大、小车每辆的租车费各是多少元?〔2〕假设每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.20.〔2021•内江〕某市为创立省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答以下问题:造型花卉甲乙A 80 40B 50 70〔1〕符合题意的搭配方案有几种?〔2〕如果搭配一个A种造型的本钱为1000元,搭配一个B种造型的本钱为1500元,试说明选用那种方案本钱最低?最低本钱为多少元?21.〔2021•牡丹江〕某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答以下问题:〔1〕求出足球和篮球的单价;〔2〕假设学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购置方案?〔3〕在〔2〕的条件下,假设足球的进价为50元,篮球的进价为65元,那么在第二次购置方案中,哪种方案商家获利最多?22.〔2021•泸州〕某商店准备购进甲、乙两种商品.甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.〔1〕假设该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?〔2〕假设该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?〔利润=售价﹣进价〕23.〔2021•湖州〕为进一步建立秀美、宜居的生态环境,某村欲购置甲、乙、丙三种树美化村庄,甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现方案用210000元资金,购置这三种树共1000棵.〔1〕求乙、丙两种树每棵各多少元?〔2〕假设购置甲种树的棵树是乙种树的2倍,恰好用完方案资金,求这三种树各能购置多少棵?〔3〕假设又增加了10120元的购树款,在购置总棵树不变的前提下,求丙种树最多可以购置多少棵?24.〔2021•哈尔滨〕同庆中学为丰富学生的校园生活,准备参军跃体育用品商店一次性购置假设干个足球和篮球〔每个足球的价格一样,每个篮球的价格一样〕,假设购置3个足球和2个篮球共需310元,购置2个足球和5个篮球共需500元.〔1〕购置一个足球、一个篮球各需多少元?〔2〕根据同庆中学的实际情况,需参军跃体育用品商店一次性购置足球和篮球共96个,要求购置足球和篮球的总费用不超过5720元,这所中学最多可以购置多少个篮球?25.〔2021•广安〕某学校为了改善办学条件,方案购置一批电子白板和一批笔记本电脑,经投标,购置1块电子白板比买3台笔记本电脑多3000元,购置4块电子白板和5台笔记本电脑共需80000元.〔1〕求购置1块电子白板和一台笔记本电脑各需多少元?〔2〕根据该校实际情况,需购置电子白板和笔记本电脑的总数为396,要求购置的总费用不超过2700000元,并购置笔记本电脑的台数不超过购置电子白板数量的3倍,该校有哪几种购置方案?〔3〕上面的哪种购置方案最省钱?按最省钱方案购置需要多少钱?26.〔2021•朝阳〕为支持抗震救灾,我市A、B两地分别有赈灾物资100吨和180吨,需全部运往重灾区C、D两县,根据灾区的情况,这批赈灾物资运往C县的数量比运往D县的数量的2倍少80吨.〔1〕求这批赈灾物资运往C、D两县的数量各是多少吨?〔2〕设A地运往C县的赈灾物资数量为x吨〔x为整数〕.假设要B地运往C县的赈灾物资数量大于A地运往D 县赈灾物资数量的2倍,且要求B地运往D县的赈灾物资数量不超过63吨,那么A、B两地的赈灾物资运往C、D两县的方案有几种?27.〔2021•常德〕某工厂生产A、B两种产品共50件,其生产本钱及利润如下表:A种产品B种产品本钱〔万元/件〕利润〔万元/件〕假设该工厂方案投入资金不超过40万元,且希望获利超过16万元,问工厂有哪几种生产方案?哪种生产方案获利润最大?最大利润是多少?28.〔2021•北海〕某班有学生55人,其中男生及女生的人数之比为6:5.〔1〕求出该班男生及女生的人数;〔2〕学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上.请问男、女生人数有几种选择方案?29.〔2021•佛山〕解不等式组,注:不等式〔1〕要给出详细的解答过程.30.〔2021•黔南州〕为实现区域教育均衡开展,我市方案对某县A、B两类薄弱学校全部进展改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.〔1〕改造一所A类学校和一所B类学校所需的资金分别是多少万元?〔2〕假设该县的A类学校不超过5所,那么B类学校至少有多少所?〔3〕我市方案今年对该县A、B两类学校共6所进展改造,改造资金由国家财政和地方财政共同承当.假设今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?一元一次不等式〔组〕的应用题专项练习参考答案及试题解析一.选择题〔共10小题〕1.〔2021•菏泽〕某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,那么至多可打〔〕A.6折B.7折C.8折D.9折考点:一元一次不等式的应用.分析:此题可设打x折,根据保持利润率不低于5%,可列出不等式:1200x×0.1≥800〔1+0.05〕,解出x的值即可得出打的折数.解答:解:设可打x折,那么有1200x×0.1≥800〔1+0.05〕120x≥840x≥7应选B点评:此题考察的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时要注意要乘以0.1.2.〔2021•安顺〕不等式组的解集在数轴上表示为〔〕A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:此题应该先对不等式组进展化简,然后在数轴上分别表示出x的取值范围.解答:解:由〔1〕得,x>1,由〔2〕得,x≥2,故原不等式的解集为:x≥2,在数轴上可表示为:应选A.点评:此题考察的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,假设取得到那么x在该点是实心的.反之x在该点是空心的.3.〔2021•柳州〕假设a<b,那么以下各式中一定成立的是〔〕A.a﹣1<b﹣1 B.C.﹣a<﹣b D.a c<bc>考点:不等式的性质.分析:根据不等式的性质分析判断.解答:解:根据不等式的性质可得:不等式两边加〔或减〕同一个数〔或式子〕,不等号的方向不变.A、a﹣1<b﹣1;是正确的;B、C、D不正确.应选A.点评:主要考察不等式的性质:〔1〕不等式两边加〔或减〕同一个数〔或式子〕,不等号的方向不变;〔2〕不等式两边乘〔或除以〕同一个正数,不等号的方向不变;〔3〕不等式两边乘〔或除以〕同一个负数,不等号的方向改变.4.〔2021•荆门〕假设不等式组有解,那么a的取值范围是〔〕A.a>﹣1 B.a≥﹣1 C.a≤1 D.a<1考点:解一元一次不等式组.分析:先解出不等式组的解集,根据不等式组有解,即可求出a的取值范围.解答:解:由〔1〕得x≥﹣a,由〔2〕得x<1,∴其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1,应选A.点评:求不等式组的公共解,要遵循以下原那么:同大取较大,同小取较小,小大大小中间找,大大小小解不了.此题是不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作数处理,求出不等式组的解集并及解集比拟,进而求得另一个未知数的取值范围.5.〔2021•河北〕把某不等式组中两个不等式的解集表示在数轴上,如下图,那么这个不等式组可能是〔〕A.B.C.D.考点:在数轴上表示不等式的解集.分析:此题根据数轴可知x的取值为:﹣1≤x<4,将不等式变形,即可得出关于x的不等式组.把各个选项的解的集合写出,进展比拟就可以得到.解答:解:依题意得这个不等式组的解集是:﹣1≤x<4.A、无解;B、解集是:﹣1≤x<4;C、解集是:x>4;D、解集是:﹣1<x≤4;应选B.点评:考察不等式组解集的表示方法.实心圆点包括该点,空心圆圈不包括该点,>向右<向左.6.〔2021•恩施州〕如果a<b<0,以下不等式中错误的选项是〔〕D.a﹣b<0A.a b>0 B.a+b<0 C.<1考点:不等式的性质.分析:根据不等式的性质分析判断.解答:解:A、如果a<b<0,那么a,b同是负数,因而ab>0,正确;B、a+b<0一定正确;C、a<b<0那么|a|>|b|那么>1,也可以设a=﹣2,b=﹣1代入检验得到<1是错误的.故C不对;D、正确;应选C.点评:利用特殊值法验证一些式子错误是有效的方法.7.〔2007•枣庄〕不等式2x﹣7<5﹣2x正整数解有〔〕A.1个B.2个C.3个D.4个考点:一元一次不等式的整数解.专题:计算题.分析:先求出不等式的解集,在取值范围内可以找到正整数解.解答:解:不等式2x﹣7<5﹣2x的解集为x<3,正整数解为1,2,共两个.应选B.点评:解答此题要先求出不等式的解集,再确定正整数解.求不等式组的解集,应遵循以下原那么:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.〔2007•乐山〕某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是〔〕A.x<y B.x>y C.x≤y D.x≥y考点:一元一次不等式的应用.专题:应用题.分析:题目中的不等关系是:买黄瓜每斤平均价>卖黄瓜每斤平均价.解答:解:根据题意得,他买黄瓜每斤平均价是以每斤元的价格卖完后,结果发现自己赔了钱那么>解之得,x>y.所以赔钱的原因是x>y.应选B.点评:解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.9.〔2006•镇江〕如果a<0,b>0,a+b<0,那么以下关系式中正确的选项是〔〕A.a>b>﹣b>﹣a B.a>﹣a>b>﹣bC.b>a>﹣b>﹣aD.﹣a>b>﹣b>a考点:不等式的性质.分析:先确定a,b的符号及绝对值,进而放到数轴上判断4个数的大小即可.解答:解:∵a<0,b>0∴﹣a>0﹣b<0∵a+b<0∴负数a的绝对值较大∴﹣a>b>﹣b>a.应选D.点评:此题主要考察了异号两数相加的法那么,数的大小的比拟可以借助数轴来比拟,右面的数总是大于左边的数.10.〔2005•绵阳〕如果关于x的不等式〔a+1〕x>a+1的解集为x<1,那么a的取值范围是〔〕A.a>0 B.a<0 C.a>﹣1 D.a<﹣1考点:解一元一次不等式.分析:此题可对a>﹣1,及a<﹣1的情况进展讨论.不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变,据此可解此题.解答:解:〔1〕当a>﹣1时,原不等式变形为:x>1;〔2〕当a<﹣1时,原不等式变形为:x<1.应选D.点评:此题考察了解简单不等式的能力,解答这类题学生往往在解题时不注意同除a+1时是否要改变符号这一点而出错.解不等式要依据不等式的根本性质,在不等式的两边同时加上或减去同一个数或整式,不等号的方向不变.在不等式的两边同时乘以或除以同一个正数,不等号的方向不变;在不等式的两边同时乘以或除以同一个负数,不等号的方向改变.二.解答题〔共20小题〕11.〔2021•自贡〕暑期中,哥哥和弟弟二人分别编织28个中国结,弟弟单独编织一周〔7天〕不能完成,而哥哥单独编织不到一周就已完成.哥哥平均每天比弟弟多编2个.求:〔1〕哥哥和弟弟平均每天各编多少个中国结?〔答案取整数〕〔2〕假设弟弟先工作2天,哥哥才开场工作,那么哥哥工作几天,两人所编中国结数量一样?考点:一元一次不等式组的应用;一元一次方程的应用.专题:应用题.分析:〔1〕设弟弟每天编x个中国结,根据弟弟单独工作一周〔7天〕不能完成,得7x<28;根据哥哥单独工作不到一周就已完成,得7〔x+2〕>28,列不等式组进展求解;〔2〕设哥哥工作m天,两人所编中国结数量一样,结合〔1〕中求得的结果,列方程求解.解答:解:〔1〕设弟弟每天编x个中国结,那么哥哥每天编〔x+2〕个中国结.依题意得:,解得:2<x<4.∵x取正整数,∴x=3;〔2〕设哥哥工作m天,两人所编中国结数量一样,依题意得:3〔m+2〕=5m,解得:m=3.答:弟弟每天编3个中国结;假设弟弟先工作2天,哥哥才开场工作,那么哥哥工作3天,两人所编中国结数量一样.点评:此题考察一元一次不等式组和一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.12.〔2021•资阳〕为了解决农民工子女就近入学问题,我市第一小学方案2021年秋季学期扩大办学规模.学校决定开支八万元全部用于购置课桌凳、办公桌椅和电脑,要求购置的课桌凳及办公桌椅的数量比为20:1,购置电脑的资金不低于16000元,但不超过24000元.一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.〔课桌凳和办公桌椅均成套购进〕〔1〕一套课桌凳和一套办公桌椅的价格分别为多少元?〔2〕求出课桌凳和办公桌椅的购置方案.考点:一元一次不等式组的应用;二元一次方程组的应用.分析:〔1〕根据一套办公桌椅比一套课桌凳贵80元以及用2000元恰好可以买到10套课桌凳和4套办公桌椅,得出等式方程求出即可;〔2〕利用购置电脑的资金不低于16000元,但不超过24000元,得出16000≤80000﹣120×20m﹣200×m≤24000求出即可.解答:解:〔1〕设一套课桌凳和一套办公桌椅的价格分别为x元、y元,得:,…〔2分〕解得∴一套课桌凳和一套办公桌椅的价格分别为120元、200元…〔3分〕;〔2〕设购置办公桌椅m套,那么购置课桌凳20m套,由题意得:16000≤80000﹣120×20m﹣200×m≤24000…〔5分〕解得:…〔6分〕,∵m为整数,∴m=22、23、24,有三种购置方案:…〔7分〕方案一方案二方案三课桌凳〔套〕440 460 480办公桌椅〔套〕22 23 24…〔8分〕点评:此题主要考察了二元一次方程组的应用和不等式组的应用,根据得出不等式关系是解题关键.13.〔2021•张家界〕某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购置“个人年票〞的售票活动〔从购置日起,可供持票者使用一年〕.年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购置门票;B类年票每张50元,持票者进入公园时需再购置每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购置A类年票最合算?考点:一元一次不等式组的应用.分析:由于购置A年票首先要花100元,以后就不用再花钱了,那么可让另外三种购票方式所花的费用分别大于等于100,可得出不等式组,然后根据得到的自变量的取值范围,判断除至少超过多少次,购置A才合算.解答:解:设某游客一年中进入该公园x次,依题意得不等式组:,解①得:x≥10,解②得:x≥25,∴不等数组的解集是:x≥25.答:某游客一年进入该公园超过25次时,购置A类年票合算.点评:此题主要考察了不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.14.〔2021•益阳〕为响应市政府“创立国家森林城市〞的号召,某小区方案购进A、B两种树苗共17棵,A种树苗每棵80元,B种树苗每棵60元.〔1〕假设购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?〔2〕假设购置B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.考点:一元一次不等式的应用;一元一次方程的应用.分析:〔1〕假设购进A种树苗x棵,那么购进B种树苗〔17﹣x〕棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;〔2〕结合〔1〕的解和购置B种树苗的数量少于A种树苗的数量,可找出方案.解答:解:〔1〕设购进A种树苗x棵,那么购进B种树苗〔17﹣x〕棵,根据题意得:80x+60〔17﹣x 〕=1220,解得:x=10,∴17﹣x=7,答:购进A种树苗10棵,B种树苗7棵;〔2〕设购进A种树苗x棵,那么购进B种树苗〔17﹣x〕棵,根据题意得:17﹣x<x,解得:x>,购进A、B两种树苗所需费用为80x+60〔17﹣x〕=20x+1020,那么费用最省需x取最小整数9,此时17﹣x=8,这时所需费用为20×9+1020=1200〔元〕.答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1200元.点评:此题主要考察了一元一次不等式组的应用以及一元一次方程应用,根据一次函数的增减性得出费用最省方案是解决问题的关键.15.〔2021•潍坊〕为了援助失学儿童,初三学生李明从2021年1月份开场,每月一次将相等数额的零用钱存入已有局部存款的储蓄盒内,准备每6个月一次将储蓄盒内存款一并汇出〔汇款手续费不计〕.2月份存款后清点储蓄盒内有存款80元,5月份存款后清点储蓄盒内有存款125元.〔1〕在李明2021年1月份存款前,储蓄盒内已有存款多少元?〔2〕为了实现到2021 年6月份存款后存款总数超过1000元的目标,李明方案从2021年1月份开场,每月存款都比2021年每月存款多t元〔t为整数〕,求t的最小值.考点:一元一次不等式的应用;二元一次方程组的应用.分析:〔1〕设李明每月存款x元,储蓄盒内原有存款y元,根据题意得两个等量关系:①储蓄盒内原有存款+2个月的存款=80元;储蓄盒内原有存款+5个月的存款=125元,根据等量关系可列出方程组,解可得答案;〔2〕首先计算出2021年共有的存款数,再由题意可得从2021年1月份开场,每月存款为〔15+t〕元;从2021年1月到2021 年6月共有30个月,共存款30〔15+t〕,再加上2021年共有的存款数存款总数超过1000元,由此可得不等式230+30〔15+t〕>1000,解出不等式,取符合条件的最小的整数值即可.解答:解:〔1〕设李明每月存款x元,储蓄盒内原有存款y元,依题意得,,解得,答:储蓄盒内原有存款50元,即在李明2021年1月份存款前,储蓄盒内已有存款50元;〔2〕由〔1〕得,李明2021年共有存款12×15+50=230元,2021年1月份后每月存入〔15+t〕元,2021年1月到2021 年6月共有30个月,依題意得,230+30〔15+t〕>1000,解得t>10,所以t的最小值为11.答:t的最小值为11.点评:此题主要考察了二元一次方程组以及一元一次不等式的应用,关键是弄清题意,找出题目中的等量关系及不等关系,再设出未知数列出方程组及不等式.16.〔2021•铜仁地区〕为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.假设购进A 种纪念品8件,B种纪念品3件,需要950元;假设购进A种纪念品5件,B种纪念品6件,需要800元.〔1〕求购进A、B两种纪念品每件各需多少元?〔2〕假设该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购置这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?〔3〕假设销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第〔2〕问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?考点:一元一次不等式组的应用;二元一次方程组的应用.分析:〔1〕关系式为:A种纪念品8件需要钱数+B种纪念品3件钱数=950;A种纪念品5件需要钱数+B 种纪念品6件需要钱数=800;〔2〕关系式为:用于购置这100件纪念品的资金不少于7500元,但不超过7650元,得出不等式组求出即可;〔3〕计算出各种方案的利润,比拟即可.解答:解:〔1〕设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组得:,…2分解方程组得:,∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元…4分;〔2〕设该商店购进A种纪念品x个,那么购进B种纪念品有〔100﹣x〕个,∴,…6分解得:50≤x≤53,…7分∵x 为正整数,∴共有4种进货方案…8分;〔3〕因为B种纪念品利润较高,故B种数量越多总利润越高,因此选择购A种50件,B种50件.…10分总利润=50×20+50×30=2500〔元〕∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元.…12分点评:此题主要考察了二元一次方程组的应用以及一元一次方程的应用,找到相应的关系式是解决问题的。

强化训练北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含详细解析)

强化训练北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含详细解析)

第二章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、设m为整数,若方程组3131x y mx y m+=-⎧⎨-=+⎩的解x、y满足175x y+>-,则m的最大值是()A.4 B.5 C.6 D.72、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是()A.x≥2B.x≤2C.x≥3D.x≤33、如图,一次函数y=kx+b(k≠0)的图像经过点A(﹣1,﹣2)和点B(﹣2,0),一次函数y=2x 的图像过点A,则不等式2x<kx+b≤0的解集为()A .x ≤﹣2B .﹣2≤x <﹣1C .﹣2<x ≤﹣1D .﹣1<x ≤04x 的取值范围是( ) A .x ≥2 B .x >2 C .x ≠2D .x <2 5、下列四个说法:①若a =﹣b ,则a 2=b 2;②若|m |+m =0,则m <0;③若﹣1<m <0,则m 2<﹣m ;④两个四次多项式的和一定是四次多项式.其中正确说法的个数是( )A .4B .3C .2D .16、若a >b ,则( )A .a ﹣1≥bB .b +1≥aC .2a +1>2b +1D .a ﹣1>b +17、若不等式﹣3x <1,两边同时除以﹣3,得( )A .x >﹣13 B .x <﹣13 C .x >13 D .x <138、如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <9、把不等式组123x x >-⎧⎨+≤⎩的解集在数轴上表示,正确的是( ) A . B .C .D .10、如果点P (m ,1﹣2m )在第一象限,那么m 的取值范围是 ( )A .102m << B .102m -<< C .0m < D .12m > 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,关于x 的不等式组在数轴上所表示的的解集是:______.2、a 、b 、c 表示的数在数轴上如图所示,试填入适当的>”“<”或“=”.(1)3a +______3b +;(2)-a b ________0;(3)35a __________35b ;(4)2a -________2b -; (5)14a -________14b -;(6)ac ⋅_______b c ⋅;(7)a c -________b c -;(8)ab _______2b .3、在某校班级篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜___场.4、关于x 的正比例函数y =(m +2)x ,若y 随x 的增大而增大,则m 的取值范围是________.5、 “a 的25用不等式表示__________________.三、解答题(5小题,每小题10分,共计50分)1、(1)解不等式:3x ﹣2≤5x ,并把解集在数轴上表示出来.(2)解不等式组2(2)313123x x x x -≤-⎧⎪+-⎨>+⎪⎩,并写出它的最大整数解. 2、解不等式组并把它的解集在数轴上表示出来 ()1317225231x x x x ⎧-≤-⎪⎨⎪->+⎩3、春节将至,小明家亲友团准备去某地旅游,甲旅行社的优惠办法是:买4张全票其余人按半价优惠;乙旅行社的优惠办法是:一律按原价的七五折优惠;已知这两家旅行社的原价均为4000元每人.(1)若亲友团有6人,甲、乙旅行社各需多少费用?(2)亲友团为多少人时,甲、乙旅行社的费用相同?(3)当亲友团人数满足什么条件时,甲旅行社的收费更优惠?当亲友团人数满足什么条件时,乙旅行社的收费更优惠?(直接写出结果,不需说明理由)4、三角形的三边长分别是2,x ,10,且正偶数x 满足不等式11145x x +-<-,求该三角形的周长. 5、某公司销售A 、B 两种型号教学设备,每台的销售成本和售价如表:已知每月销售两种型号设备共20台,设销售A 种型号设备x 台,A 、B 两种型号设备全部售完后获得毛利润y 万元(毛利润=售价-成本)(1)求y 关于x 的函数关系式(不要求写自变量的取值范围);(2)若销售两种型号设备的总成本不超过80万元,那么公司如何安排销售A 、B 两种型号设备,售完后毛利润最大?并求出最大毛利润.-参考答案-一、单选题1、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=,把25mx-=代入①得6315my m-+=-,解得125my--=,∵175x y+>-,∴21217555m m---+>-,即131755m->-,解得6m<,∵m为整数,∴m的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.2、D【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.3、B【分析】根据图象知正比例函数y=2x和一次函数y=kx+b的图象的交点,即可得出不等式2x<kx+b的解集,根据一次函数y=kx+b的图象与x轴的交点坐标即可得出不等式kx+b≤0的解集是x≥-2,即可得出答案.【详解】解:∵由图象可知:正比例函数y=2x和一次函数y=kx+b的图象的交点是A(-1,-2),∴不等式2x<kx+b的解集是x<-1,∵一次函数y=kx+b的图象与x轴的交点坐标是B(-2,0),∴不等式kx+b≤0的解集是x≥-2,∴不等式2x<kx+b≤0的解集是-2≤x<-1,故选:B.【点睛】本题考查一次函数和一元一次不等式的应用,能利用数形结合,找到不等式与一次函数图像的关系是解答此题的关键.4、A【分析】根据二次根式有意义,被开方数为非负数,列一元一次不等式,解不等式即可得.【详解】x-≥,解:根据题意,得20x≥,∴2故选:A.【点睛】本题考查了二次根式有意义条件、一元一次不等式解法;解题的关键是熟练掌握二次根式有意义的条件是解题关键.5、C【分析】根据题意分别利用相反数的性质以及绝对值的代数意义和多项式的加法进行判断即可.【详解】解:①若a=﹣b,则a2=b2,说法正确;②若|m|+m=0,则m 0,说法错误;③若﹣1<m<0,则m2<﹣m,说法正确;④两个四次多项式的和不一定是四次多项式,说法错误;①③正确,共有2个.故选:C.【点睛】本题考查相反数的性质和不等式性质以及绝对值的代数意义和多项式的加法,熟练掌握相关的概念是解题的关键.6、C【分析】举出反例即可判断A、B、D,根据不等式的性质即可判断C.【详解】解:A、若a=0.5,b=0.4,a>b,但是a﹣1<b,不符合题意;B、若a=3,b=1,a>b,但是b+1<a,不符合题意;C、∵a>b,∴2a+1>2b+1,符合题意;D、若a=0.5,b=0.4,a>b,但是a﹣1<b+1,不符合题意.故选:C.【点睛】此题考查不等式的性质,对性质的理解是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.7、A【分析】根据题意直接利用不等式的性质进行计算即可得出答案.【详解】解:不等式﹣3x <1,两边同时除以﹣3,得x >﹣13.故选:A .【点睛】本题主要考查不等式的基本性质.解不等式依据不等式的性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.8、A【分析】根据图像的意义当x =-3时,kx +b =2,根据一次函数的性质求解即可.【详解】解:∵当x =-3时,kx +b =2,且y 随x 的增大而减小,∴不等式2kx b +<的解集3x >-,故选A .【点睛】本题考查了一次函数与不等式的关系,一次函数图像的性质,灵活运用数形结合思想确定不等式的解集是解题的关键.9、D【分析】先求出不等式组的解集,再把不等式组的解集在数轴上表示出来,即可求解.【详解】解:123x x >-⎧⎨+≤⎩①②, 解不等式②,得:1x ≤ ,所以不等式组的解集为11x -<≤把不等式组的解集在数轴上表示出来为:故选:D【点睛】本题主要考查了解一元一次不等组,熟练掌握解一元一次不等组的步骤是解题的关键.10、A【分析】根据第一象限的横坐标为正、纵坐标为负,列出关于m 的不等式组解答即可.【详解】解:∵P (m ,1﹣2m )在第一象限,∴0120m m ⎧⎨-⎩>> ,解得:102m << 故选A .【点睛】本题主要考查了解一元一次不等式组、平面直角坐标系等知识点,根据点在平面直角坐标系的象限列出关于m 的一元一次不等式组成为解答本题的关键.二、填空题1、21x -<≤【分析】根据图像特点向左是小于,向右是大于,即可得答案.【详解】∵从-2出发向右画出的折线中表示-2的点是空心,∴x >-2,∵从1出发向左画出的折线中表示1的点是实心,∴x ≤1,∴不等式的解集是:−2<x ≤1故答案为:−2<x ≤1.【点睛】本题考查了一元一次不等式的解法,做题的关键是掌握空心和实心的区别.2、> > > < < > > >【分析】本题主要是根据不等式的性质:(1)不等式的两边同时加上或减去同一个数或式子,不等式的方向不改变;(2)不等式的两边同时乘或除以一个大于零的数或式子,不等号的方向不变;(3)不等式的两边同时乘或除以一个小于零的数或式子,不等号的方向改变.据此可以对不等号的方向进行判断.【详解】解:由数轴的定义得:a>0,b>0,c <0,a >b >c ,(1)不等式a >b 的两边同加上3,不改变不等号的方向,则3a +>3b +;(2)不等式a >b 的两边同减去b ,不改变不等号的方向,则a -b >b -b ,即a -b >0;(3)不等式a >b 的两边同乘以35,不改变不等号的方向,则35a >35b ; (4)不等式a >b 的两边同乘以-2,改变不等号的方向,则2a -<2b -;(5)不等式a >b 的两边同乘以-4,改变不等号的方向,则-4a <-4b ;不等式-4a <-4b 的两边同加上1,不改变不等号的方向,则14a -<14b -;(6)不等式a >b 的两边同乘以正数c ,不改变不等号的方向,则a c ⋅ > b c ⋅;(7)不等式a >b 的两边同减去c ,不改变不等号的方向,则a c ->b c -;(8)不等式a >b 的两边同乘以正数b ,不改变不等号的方向,则ab >2b .【点睛】本题主要是考查不等式的基本性质,熟练掌握不等式的三个性质的应用是解本题的关键,同时不等式的性质(3)是类似题型中考查的重点及易错点.3、8【分析】设这个班要胜x 场,则负()28x -场,根据题意列出不等式求解,考虑场次为整数即可得出.【详解】解:设这个班要胜x 场,则负()28x -场,由题意得,()32843x x +-≥,解得:7.5x ≥,∵场次x 为正整数,∴8x ≥.答:这个班至少要胜8场.故答案为:8.【点睛】题目主要考查一元一次不等式的应用,理解题意,列出相应不等式求解是解题关键.4、m >-2【分析】先根据正比例函数的性质列出关于m 的不等式,求出m 的取值范围即可.【详解】解:∵正比例函数()2y m x =+中,y 随x 的增大而增大,∴2m +>0,解得-2m >.故答案为;-2m >.【点睛】本题考查的是正比例函数的性质,即正比例函数y =kx (k ≠0)中,当k >0时,y 随x 的增大而增大.5、25a【分析】根据题意表示出a 的25即可.【详解】解:由题意可得:a 的25可表示为25a .故填25-<a.【点睛】本题考查列一元一次不等式,掌握列一元一次不等式的基本方法成为解答本题的关键.三、解答题1、(1)x≥﹣1,数轴见解析;(2)733x-<≤,2【分析】(1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而即可求解.【详解】解:(1)移项,得:3x﹣5x≤2,合并同类项,得:﹣2x≤2,系数化为1,得:x≥﹣1,将不等式的解集表示在数轴上如下:(2)解不等式2(x﹣2)≤3﹣x,得:x≤73,解不等式13123+->+x x,得:x>﹣3,则不等式组的解集为﹣3<x≤73,∴其最大整数解为2.【点睛】本题主要考查解一元一次不等式以及不等式组,熟练掌握解不等式(组)的基本步骤是解题的关键.2、542x ≤<图见解析【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后在数轴上表示出不等式组的解集即可.【详解】 解:()1317225231x x x x ⎧-≤-⎪⎨⎪->+⎩①②解不等式①得:4x ≤, 解不等式②得:52>x , ∴不等式组的解集为:542x ≤<,数轴上表示解集为:【点睛】本题主要考查了解一元一次不等式组,并在数轴上表示不等式组的解集,解题的关键在于能够熟练掌握求不等式组的解集的方法.3、(1)甲旅行社费用20000元,乙旅行社费用18000元;(2)8人;(3)亲友团人数超过8人时,甲旅行社的收费更优惠,亲友团人数少于8人时,乙旅行社的收费更优惠.【分析】(1)由题意直接根据甲、乙旅行社的优惠办法列式进行计算即可;(2)根据题意设亲友团有x 人,进而依据甲、乙旅行社的费用相同建立方程求解即可;(3)由题意直接根据(2)的结论可知当亲友团人数满足什么条件时,甲、乙旅行社的收费更优惠.【详解】解:(1)甲旅行社费用=1400044000(64)200002⨯+⨯⨯-=元, 乙旅行社费用=0.754000618000⨯⨯=元;(2)设亲友团有x 人,甲旅行社费用=1400044000(4)200080002x x ⨯+⨯⨯-=+ 乙旅行社费用=0.7540003000x x ⨯=由20008000x +=3000x解得:x =8∴亲友团有8人,甲、乙旅行社的费用相同(3)由(2)可知当亲友团有8人,甲、乙旅行社的费用相同,则8x >,有200080003000x x +<,即亲友团人数超过8人时,甲旅行社的收费更优惠;则8x <,有200080003000x x +>,亲友团人数少于8人时,乙旅行社的收费更优惠.【点睛】本题考查一元一次方程的运用以及一元一次不等式的运用,读懂题意并根据题意列出方程和不等式求解是解题的关键.4、22【分析】先求出不等式的解集,再根据x 是符合条件的正整数判断出x 的可能值,再由三角形的三边关系求出x 的值即可.解:原不等式可化为5(x+1)<20-4(1-x),解得x<11,∵x是它的正整数解,∴根据三角形第三边的取值范围,得8<x<12,∵x是正偶数,∴x=10.∴第三边的长为10,∴这个三角形的周长为10+10+2=22.【点睛】本题综合考查了求不等式特殊解的方法及三角形的三边关系,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.5、(1)y=-2x+60;(2)公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【分析】(1)设销售A种品牌设备x台,B种品牌设备(20-x)台,算出每台的利润乘对应的台数,再合并在一起即可求出总利润;(2)由“生产两种品牌设备的总成本不超过80万元”,列出不等式,再由(1)中的函数的性质得出答案.【详解】解:(1)设销售A种型号设备x台,则销售B种型号设备(20-x)台,依题意得:y=(4-3)x+(8-5)×(20-x),即y=-2x+60;(2)3x+5×(20-x)≤80,解得x≥10.∴当x=10时,y最大=40万元.故公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【点睛】本题考查了一次函数的应用,一元一次不等式的应用,注意题目蕴含的数量关系,正确列式解决问题.。

一元一次不等式应用题专题

一元一次不等式应用题专题

一元一次不等式应用题专题(附答案)1、某校王校长暑假将带领该校市级三好学生去北京旅游。

甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元) ①设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式) ②当学生数是多少时,两家旅行社的收费一样? ③就学生数x讨论哪家旅行社更优惠。

解:设设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,根据题意,得①y甲=1200+1200×50%×x=1200+600xy乙=(x+1)×1200×60%=720(x+1)=720x+720②当学生数是多少时,两家旅行社的收费一样?当y甲=y乙时,即1200+600x=720x+720120x=480x=4所以,当学生数为4人时,两家旅行社的收费一样!③就学生数x讨论哪家旅行社更优惠。

若y甲>y乙,即1200+600x>720x+720120x<480x<4,此时乙旅行社便宜。

若y甲<y乙,即1200+600x<720x+720解得,x>4,此时甲旅行社便宜。

答:当学生人数少于4人时,乙旅行社更优惠;当学生人数多于4人时,甲旅行社更优惠;当学生人数等于4人时,两个旅行社一样优惠。

2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。

解:设到第x个月李明的存款超过王刚的存款,根据题意,得600+500x>2000+200x300x>1400x>14/3因为x为整数,所以x=5答:到第5个月李明的存款超过王刚的存款。

3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费。

(47)列不等式组解应用题专项练习60题(有答案)

(47)列不等式组解应用题专项练习60题(有答案)

列一元一次不等式组解应用题60题(有答案)1.某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:A种产品B种产品成本(万元∕件) 3 5利润(万元∕件) 1 2(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)条件下,哪种方案获利最大?并求最大利润.2.某校初三(5)班同学利用课余时间回收钦料瓶,用卖得的钱去购买5本大小不同的两种笔记本,要求总钱不超过28元,且购买的笔记本的总页数不低于340页,两种笔记本的价格和页数如下表:大笔记本小笔记本价格(元/本) 6 5页数(页/本) 100 60根据上述相关数据,请你设计一种节约资金的购买方案,并说明节约资金的理由.3.某校某年级秋游,若租用48座客车若干辆,则正好坐满;若租用64座客车,则能少租1辆,且有一辆车没有坐满,但超过一半.(1)需租用48座客车多少辆?解:设需租用48座客车x辆.则需租用64座客车___辆.当租用64座客车时,未坐满的那辆车还有___个空位(用含x的代数式表示).由题意,可得不等式组:_____解这个不等式组,得:______.因此,需租用48座客车_________辆.(2)若租用48座客车每辆250元,租用64座客车每辆300元,应租用哪种客车较合算?4.某班有学生55人,其中男生与女生的人数之比为6:5.(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上.请问男、女生人数有几种选择方案?5.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边长为x米,求x的整数解.6.2011年4月25日,全国人大常委会公布《中华人民共和国个人所得税法修正案(草案)》,向社会公开征集意见.草案规定,公民全月工薪不超过3000元的部分不必纳税,超过3000元的部分为全月应纳税所得额.此项税款按下表分段累进计算.级数全月应纳税所得额税率1 不超过1500元的部分5%2 超过1500元至4500元的部分10%3 超过4500元至9000元的部分20%………依据草案规定,解答下列问题:(1)李工程师的月工薪为8000元,则他每月应当纳税多少元?(2)若某纳税人的月工薪不超过10000元,他每月的纳税金额能超过月工薪的8%吗?若能,请给出该纳税人的月工薪范围;若不能,请说明理由.7.某电器城经销A型号彩电,今年四月份毎台彩电售价为2000元.与去年同期相比,结果卖出彩电的数量相同的,但去年销售额为5万元,今年销售额为4万元.(1)问去年四月份每台A型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?8.某企业为了改善污水处理条件,决定购买A、B两种型号的污水处理设备共8台,其中每台的价格、月处理污水量如下表:经预算,企业最多支出57万元购买污水处理设备,且要求设备月处理污水量不低于1490吨.(1)企业有哪几种购买方案?(2)哪种购买方案更省钱?A型B型8 6价格(万元/台)200 180月处理污水量(吨/月)9.在“五•一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?10.为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户六月份的水费支出不少于60元,但不超过90元,求该用户六月份的用水量x的取值范围.11.在眉山市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:A地B地C地22 20 20运往D地(元/立方米)20 22 21运往E地(元/立方米)在(2)的条件下,请说明哪种方案的总费用最少?12.小明家需要用钢管做防盗窗,按设计要求需要用同种规格、每根长6米的钢管切割成长0.8m的钢管及长2.5m 的钢管.﹙余料作废﹚(1)现切割一根长6m的钢管,且使余料最少.问能切出长0.8米及2.5米的钢管各多少根?(2)现需要切割出长0.8米的钢管89根,2.5米的钢管24根.你能用23根长6m的钢管完成切割吗?若能,请直接写出切割方案;若不能,请说明理由.13.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲乙两种票,已知甲乙两种票的单价比为4:3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?14.某工厂第一次购买甲种原料60盒和乙种原料120盒共用21 600元,第二次购买甲种原料20盒和乙种原料100盒共用16 800元.(1)求甲、乙两种原料每盒价钱各为多少元;(2)该工厂第三次购买时,要求甲种原料比乙种原料的2倍少200盒,且购买两种原料的总量不少于1 010盒,总金额不超过89 200元,请你通过计算写出本次购买甲、乙两种原料的所有方案.15.小明利用课余时间回收废品,将卖得的钱去购买5本大小不同的两种笔记本,要求共花钱不超过28元,且购买的笔记本的总页数不低于340页,两种笔记本的价格和页数如下表.为了节约资金,小明应选择哪一种购买方案?请说明理由.大笔记本小笔记本价格(元/本) 6 5页数(页/本)100 6016.整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?17.2010年的世界杯足球赛在南非举行.为了满足球迷的需要,某体育服装店老板计划到服装批发市场选购A、B 两种品牌的服装.据市场调查得知,销售一件A品牌服装可获利润25元,销售一件B品牌服装可获利润32元.根据市场需要,该店老板购进A种品牌服装的数量比购进B种品牌服装的数量的2倍还多4件,且A种品牌服装最多可购进48件.若服装全部售出后,老板可获得的利润不少于1740元.请你分析这位老板可能有哪些方案?18.某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服.(1)该店订购这两款运动服,共有哪几种方案?(2)若该店以甲款每套400元,乙款每套300元的价格全部出售,哪种方案获利最大?19.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元,根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金?20.为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?21.2010年1月1日,全球第三大自贸区﹣中国﹣东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代,广西某民营边贸公司要把240顿白砂糖运往东盟某国的A,B两地,现用大,小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种火车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往A地,其余货车前往B地,且运往A地的白砂糖不少于115吨,请你设计出使用总运费最少的货车调配方案,并求出最少总运费?22.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元)1000 2000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?23.某校为迎接县中学生篮球比赛,计划购买A、B两种篮球共20个供学生训练使用.若购买A种篮球6个,则购买两种篮球共需费用720元;若购买A种篮球12个,则购买两种篮球共需费用840元.(1)A、B两种篮球单价各多少元?(2)若购买A种篮球不少于8个,所需费用总额不超过800元.请你按要求设计出所有的购买方案供学校参考,并分别计算出每种方案购买A、B两种篮球的个数及所需费用.24.为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?25.师徒二人分别组装28辆摩托车,徒弟单独工作一周(7天)不能完成,而师傅单独工作不到一周就已完成,已知师傅平均每天比徒弟多组装2辆,求:(1)徒弟平均每天组装多少辆摩托车(答案取整数)?(2)若徒弟先工作2天,师傅才开始工作,师傅工作几天,师徒两人做组装的摩托车辆数相同?26.东艺中学初三(1)班学生到雁鸣湖春游,有一项活动是划船.游船有两种,甲种船每条船最多只能坐4个人,乙种船每条船最多只能坐6个人.已知初三(1)班学生的人数是5的倍数,若仅租甲种船,则不少于12条;若仅租乙种船,则不多于9条.(1)求初三(1)班学生的人数;(2)初三(1)班学生的人数是50人,如果甲种船的租金是每条船10元,乙种船的租金是每条船12元.应怎样租船,才能使每条船都坐满,且租金最少?说明理由.27.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少?28.君实机械厂为青扬公司生产A、B两种产品,该机械厂由甲车间生产A种产品,乙车间生产B种产品,两车间同时生产.甲车间每天生产的A种产品比乙车间每天生产的B种产品多2件,甲车间3天生产的A种产品与乙车间4天生产的B种产品数量相同.(1)求甲车间每天生产多少件A种产品?乙车间每天生产多少件B种产品?(2)君实机械厂生产的A种产品的出厂价为每件200元,B种产品的出厂价为每件180元.现青扬公司需一次性购买A、B两种产品共80件,君实机械厂甲、乙两车间在没有库存的情况下只生产8天,若青扬公司按出厂价购买A、B两种产品的费用超过15000元而不超过15080元.请你通过计算为青扬公司设计购买方案?29.为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球,已知篮球和排球的单价比为3:2.单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?30.某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.31.某地区果农收获草莓30吨,枇杷13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往省城,已知甲种货车可装草莓4吨和枇杷1吨,乙种货车可装草莓、枇杷各2吨.(1)该果农安排甲、乙两种货车时有几种方案请您帮助设计出来;(2)若甲种货车每辆要付运输费2 000元,乙种货车每辆要付运输费1 300元,则该果农应选择哪种运输方案才能使运费最少,最少运费是多少元?32.今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台,若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲、乙两种设备各多少台?33.初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分每份可得0.2元.(1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份.(2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内.34.开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.35.某公司计划生产甲、乙两种产品共20件,其总产值w(万元)满足:1150<w<1200,相关数据如下表.为此,公司应怎样设计这两种产品的生产方案?产品名称每件产品的产值(万元)甲45乙7536.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克37.某校校园超市老板到批发中心选购甲、乙两种品牌的书包,若购进甲品牌的书包9个,乙品牌的书包10个,需要905元;若购进甲品牌的书包12个,乙品牌的书包8个,需要940元.(1)求甲、乙两种品牌的书包每个多少元?(2)若销售1个甲品牌的书包可以获利3元,销售1个乙品牌的书包可以获利10元.根据学生需求,超市老板决定,购进甲种品牌书包的数量要比购进乙品牌的书包的数量的4倍还多8个,且甲种品牌书包最多可以购进56个,这样书包全部出售后,可以使总的获利不少于233元.问有几种进货方案?如何进货?38.某运动鞋专卖店,欲购进甲、乙两型号的运动鞋共100双,若购进5双甲型号运动鞋和3双乙型号运动鞋共需1350元,若购进4双甲型号运动鞋和2双乙型号运动鞋共需1020元.(1)求甲、乙两型号运动鞋的进价每双各是多少元?(2)甲型号运动鞋每双售价为260元,乙型号运动鞋每双售价为220元,要满足进鞋资金不超过17500元,当100双运动鞋全部售出后,利润不低于7800元,鞋店经理有几种进货方案?39.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:比赛项目票价(元/场)男篮1000足球800乒乓球500(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,问可以预订这三种球类门票各多少张?40.某学校科技活动小组制作了部分科技产品后,把剩余的甲乙两种原料制作100个A、B两种类型号的工艺品.已知每制作一个工艺品所需甲乙两种原料如右表,已知剩余的甲种原料29千克,乙种原料37.2千克,假设制作x个A型工艺品.型号A型B型千克/个原料甲0.5 0.2乙0.3 0.4(1)求出x应满足的不等式组的关系式;(2)请你设计A、B两种型号的工艺品的所有制作方案;(3)经市场了解,A型工艺品售价25元/个,B型工艺品售价15元/个,若这两种型号的销售总额为y元,请写出y与x之间的函数关系式,并指出哪种制作方案,使销售总额最大,求出最大销售总额.41.商场正在销售“福娃”玩具和徽章两种奥运商品,已知购买1盒“福娃”玩具和2盒徽章共需145元;购买2盒“福娃”玩具和3盒徽章共需280元.(1)一盒“福娃”玩具和一盒徽章的价格各是多少元?(2)某公司准备购买这两种奥运商品共20盒送给幼儿园(要求每种商品都要购买),且购买总金额不能超过450元,请你帮公司设计购买方案.42.“六•一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物.如果每班分10套,那么余5套;如果前面的班级每个班分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套?43. 红旺商店同时购进A、B两种商品共用人民币36 000元,全部售完后共获利6 000元,两种商品的进价、售价如下表:A 商品B 商品进价120元/件100元/件售价138元/件120元/件(1)求本次红旺商店购进A、B两种商品的件数;(2)第二次进货:A、B件数皆为第一次的2倍,销售时,A商品按原售价销售,B商品打折出售,全部售完后为使利润不少于11 040元,则B商品每件的最低售价应为多少?44. 我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:脐橙品种 A B C每辆汽车运载量(吨) 6 5 4每吨脐橙获得(百元)12 16 10(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.45.为迎接市运动会,某单位准备用800元订购10套下表中的运动服.运动服价格(元/套)男装甲100男装乙80女装50。

2020-2021学年北师大版八年级下册 第2章《一元一次不等式与不等式组》实际应用常考题专练(二)

2020-2021学年北师大版八年级下册 第2章《一元一次不等式与不等式组》实际应用常考题专练(二)

八年级下册第2章《一元一次不等式与不等式组》实际应用常考题专练(二)1.今年中考期间,我县部分乡镇学校的九年级考生选择在一中、二中的学生宿舍住宿,某学校将若干间宿舍分配给该校九年级一班的女生住宿,已知该班女生少于25人,若每个房间住4人,则剩下3人没处住;若每个房间住6人,则空一间房,并且还有一间房有人住但住不满.问分配给该校九年级一班女生多少间宿舍,该班有多少名女生?2.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少人?3.某工厂现有甲种原料3600kg,乙种原料2410kg,计划利用这两种原料生产A,B两种产品共500件,产品每月均能全部售出.已知生产一件A产品需要甲原料9kg和乙原料3kg;生产一件B种产品需甲种原料4kg和乙种原料8kg.(1)设生产x件A种产品,写出x应满足的不等式组.(2)问一共有几种符合要求的生产方案?并列举出来.(3)若有两种销售定价方案,第一种定价方案可使A产品每件获得利润1.15万元,B 产品每件获得利润1.25万元;第二种定价方案可使A和B产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明)4.阅读以下材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{﹣1,2,3}=;min{﹣1,2,3}=﹣1;min{﹣1,2,a}=解决下列问题:(1)min{,,}=若min{2,2x+2,4﹣2x}=2,则x的范围为;(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x;②根据①,你发现了结论“如果M{a,b,c}=min{a,b,c},那么(填a,b,c的大小关系)”.证明你发现的结论;③运用②的结论,填空:若M{2x+y+2,x+2y,2x﹣y}=min{2x+y+2,x+2y,2x﹣y},则x+y=.5.某城市为开发旅游景点,需要对古运河重新设计,加以改造,现需要A、B两种花砖共50万块,全部由某砖瓦厂完成此项任务.该厂现有甲种原料180万千克,乙种原料145万千克,已知生产1万块A砖,用甲种原料4.5万千克,乙种原料1.5万千克,造价1.2万元;生产1万块B砖,用甲种原料2万千克,乙种原料5万千克,造价1.8万元.(1)利用现有原料,该厂能否按要求完成任务?若能,按A、B两种花砖的生产块数,有哪几种生产方案?请你设计出来(以万块为单位且取整数);(2)试分析你设计的哪种生产方案总造价最低,最低造价是多少?6.每年3月12日是植树节,某学校植树小组若干人植树,植树若干棵.若每人植4棵,则余20棵没人植,若每人植8棵,则有一人比其他人植的少(但有树植),问这个植树小组有多少人?共有多少棵树?7.某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A,B两种园艺造型共50个,摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.(1)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明哪种方案成本最低,最低成本是多少元?8.为举办蔬菜博览会,某地有关部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧,搭配每个造型所需花卉情况如下表所示:造型甲乙A90盆30盆B40盆100盆结合上述信息,解答下列问题(1)设需要搭配x个A种造型,则需要搭配个B种造型;(2)符合题意的搭配方案有哪几种?(3)若搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1200元,试说明选用(1)中哪种方案成本最低?9.某单位谋划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折优惠.该单位选择哪一家旅行社支付的费用较少?10.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨,水果169吨全部运到灾区已知一辆甲种货车同时可装蔬菜18吨,水果10吨:一辆乙种货车同时可装蔬菜16吨,水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1600元,乙种货车每辆需付燃油费1200元,应选(1)种的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?11.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两种型号的手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.12.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨,水果169吨全部运到灾区.已知一辆甲种货车同时可装蔬菜18吨,水果10吨;一辆乙种货车同时可装蔬菜16吨,水果11吨.(1)若将这批货物一次性运到灾区,请写出具体的租车方案?(2)若甲种货车每辆需付燃油费1400元,乙种货车每辆需付燃油费1000元,则应选(1)种的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?13.列不等式(组)解应用题:一工厂要将100吨货物运往外地,计划租用某运输公司甲、乙两种型号的汽车共6辆一次将货物全部运动,已知每辆甲型汽车最多能装该种货物16吨,租金800元,每辆乙型汽车最多能装该种货物18吨,租金850元,若此工厂计划此次租车费用不超过5000元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用.14.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A类玩具5套B玩具6套,则需950元,A类玩具3套B玩具2套,则需450元(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店购进B类玩具比A类玩具的2倍多4套,且B类玩具最多可购进40套,若玩具店将销售1套A类玩具获利30元,销售1套B类玩具获利20元,且全部售出后所获得利润不少于1200元,问有几种进货方案?如何进货?15.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?参考答案1.解:设分配给该校九年级一班女生x间宿舍,则该班有(4x+3)名女生,根据题意得:,解得:<x<,∵x为正整数,∴x=5,4x+3=23.答:分配给该校九年级一班女生5间宿舍,该班有23名女生.2.解:设有x个学生,那么共有(3x+8)本书,则:,解得5<x≤6.5,所以x=6,共有6×3+8=26本.答:有26本书,6个学生.3.解:(1)由题意.(2)解第一个不等式得:x≤320,解第二个不等式得:x≥318,∴318≤x≤320,∵x为正整数,∴x=318、319、320,500﹣318=182,500﹣319=181,500﹣320=180,∴符合的生产方案为①生产A产品318件,B产品182件;②生产A产品319件,B产品181件;③生产A产品320件,B产品180件;(3)第一种定价方案下:①的利润为318×1.15+182×1.25=593.2(万元),②的利润为:319×1.15+181×1.25=593.1(万元)③的利润为320×1.15+180×1.25=593(万元)第二种定价方案下:①②③的利润均为500×1.2=600(万元),综上所述,第二种定价方案的利润比较多.4.解:(1)min{,,}=;由min{2,2x+2,4﹣2x}=2,得,即0≤x≤1.(2)①∵M{2,x+1,2x}=min{2,x+1,2x},∴,即,∴x=1②证明:由M{a,b,c}=min{a,b,c},可令,即b+c=2a⑤;又∵,解之得:a+c≤2b⑥,a+b≤2c⑦;由⑤⑥可得c≤b;由⑤⑦可得b≤c;∴b=c;将b=c代入⑤得c=a;∴a=b=c.③据②可得,解之得y=﹣1,x=﹣3,∴x+y=﹣4.5.解:(1)设生产A种花砖数x万块,则生产B种花砖数50﹣x万块,由题意:,解得:30≤x≤32.∵x为正整数∴x可取30,31,32.∴该厂能按要求完成任务,有三种生产方案:甲:生产A种花砖30万块,则生产B种花砖20万块;乙:生产A种花砖31万块,则生产B种花砖19万块;丙:生产A种花砖32万块,则生产B种花砖18万块;(2)方法一:甲种方案总造价:1.2×30+1.8×20=72,同理,生产乙种方案总造价为71.4万元,生产丙种方案总造价70.8万元,故第三种方案总造价最低为70.8万元.方法二:由于生产1万块A砖的造价较B砖的低,故在生产总量一定的情况下,生产A 砖的数量越多总造价越低,故丙方案总造价最低为1.2×32+1.8×18=70.8万元.答:丙方案总造价最低为70.8万元.6.解:设个植树小组有x人去植树,共有y棵树.由“每人植4棵,则余20棵没人植”和“若每人植8棵,则有一人比其他人植的少(但有树植)”得:,将y=4x+20代入第二个式子得:0<4x+20﹣8(x﹣1)<8,5<x<7.答这个植树小组有6人去植树,共有4×6+20=44棵树.7.解:(1)设搭配A种造型x个,则B种造型为(50﹣x)个,依题意得,解这个不等式组得:31≤x≤33,∵x是整数,∴x可取31,32,33,∴可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.(2)设总成本为W元,则W=200x+360x(50﹣x)=﹣160x+18000,∵k=﹣160<0,∴W随x的增大而减小,则当x=33时,总成本W取得最小值,最小值为12720元.8.解:(1)设需要搭配x个A种造型,则需要搭配(50﹣x)个B种造型;故答案为:(50﹣x);(2)依题意有,解得30≤x≤32,所以x=30或31或32.第一方案:A种造型32个,B种造型18个;第二种方案:A种造型31个,B种造型19个;第三种方案:A种造型30个,B种造型20个.(3)总成本为:1000x+1200(50﹣x)=60000﹣200x,显然当x取最大值32时成本最低,为60000﹣200×32=53600.答:第一种方案成本最低,最低成本是53600.9.解:设甲旅行社有x人更优惠,0.75x<(x﹣1)•0.8,x>16.当人数超过16人小于等于25人时,甲优惠,等于16人花钱一样多,小于16人大于等于10人时,乙优惠.10.解:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,由①得x≥5,由②得x≤7,∴5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)方法一:由(1)知,租用甲种货车x辆,租用乙种货车为(16﹣x)辆,设两种货车燃油总费用为y元,由题意得y=1600x+1200(16﹣x),=400x+19200,∵400>0,∴y随x值增大而增大,当x=5时,y有最小值,∴y=400×5+19200=21200元;最小方法二:当x=5时,16﹣5=11辆,5×1600+11×1200=21200元;当x=6时,16﹣6=10辆,6×1600+10×1200=21600元;当x=7时,16﹣7=9辆,7×1600+9×1200=22000元.答:选择(1)中的方案一租车,才能使所付的费用最少,最少费用是21200元.11.解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,解得,答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,17400≤1000a+800(20﹣a)≤18000,解得7≤a≤10,共有四种方案,方案一:购进甲手机7部、乙手机13部;方案二:购进甲手机8部、乙手机12部;方案三:购进甲手机9部、乙手机11部;方案四:购进甲手机10部、乙手机10部.(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m当m=80时,w始终等于8000,取值与a无关.12.解:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,由①得x≥5,由②得x≤7,∴5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)由(1)知,租用甲种货车x辆,租用乙种货车为(16﹣x)辆,设两种货车燃油总费用为y元,由题意得y=1400x+1000(16﹣x),=400x+16000,∵400>0,∴y随x值增大而增大,当x=5时,y有最小值,=400×5+16000=18000元.∴y最小13.解:设租用甲型汽车x辆,则租用乙型汽车(6﹣x)辆,依题意得:,解得2≤x≤4,∵x的值是整数∴x的值是2,3,4.∴该公司有三种租车方案:①租用甲型汽车2辆,租用乙型汽车4辆,费用为5000元;②租用甲型汽车3辆,租用乙型汽车3辆,费用为4950元;③租用甲型汽车4辆,租用乙型汽车2辆,费用为4900元.∴最低的租车费用为4900元.14.解:(1)设A种玩具每套进价为x元,B种玩具每套进价为y元,根据题意得:,解得:.答:A种玩具每套进价为100元,B种玩具每套进价为75元.(2)设购进A种玩具m套,则购进B种玩具(2m+4)套,根据题意得:,解得:16≤m≤18,∴共有3种进货方案:①购进A种玩具16套,购进B种玩具36套;②购进A种玩具17套,购进B种玩具38套;③购进A种玩具18套,购进B种玩具40套.15.解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得,答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥130,解得a≤3∴2≤a≤3.∵a是正整数,∴a=2或a=3.共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车;。

北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含答案及详细解析)

北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含答案及详细解析)

第二章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果a <b ,c <0,那么下列不等式成立的是( )A .a +c <bB .a ﹣c >b ﹣cC .ac +1<bc +1D .a (c ﹣2)<b (c ﹣2)2、不等式270x -<的最大整数解为( )A .2B .3C .4D .53、一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),且y 的值随着x 的值的增大而减小,则m 的值为( )A .6-B .C .3D .3-4、已知关于x 的不等式组3x x a≤⎧⎨>⎩有解,则a 的取值不可能是( ) A .0 B .1 C .2 D .35、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n >C .1﹣m >1﹣nD .m 2<n 26、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( )A .n >1-B .n <1-C .n >2D .n <27、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣48、如果a >b ,下列各式中正确的是( )A .﹣2021a >﹣2021bB .2021a <2021bC .a ﹣2021>b ﹣2021D .2021﹣a >2021﹣b9、若整数a 使得关于x 的方程2(2)3x a -+=的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解.则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .2810、若a >b ,则下列不等式一定成立的是( )A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a +1<3b +1 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、任何一个以x 为未知数的一元一次不等式都可以变形为_____(a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数_____的值大于0或小于0时,求_____的取值范围.2、从2-,1-,0,13,1,2这六个数字中,随机抽取一个数记为a ,则使得关于x 的不等式组102321x a x ⎧->⎪⎨⎪-+≤⎩只有三个整数解的概率是 __. 3、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2ac _______2b c(3)c -a _______c -b(4)-a |c |_______-b |c |4、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为3:1:1第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨50%,洁柔超值装的价格是其促销价的53,而妮飘进口装的价格在其第一天的基础上增加了14,第二天洁柔体验装与妮飘进口装的销量之比为4:3,洁柔超值装的销量比第一天的销量减少了20%.超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_______元.5、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 三、解答题(5小题,每小题10分,共计50分)1、若(m -2)23m x --2≥7是关于x 的一元一次不等式,求m 的值. 2、(1)解方程组:2523517x y x y +=⎧⎨-=⎩ (2)解不等式组()20 2131x x x +>⎧⎨+≥-⎩ 3、关于x 的方程6422x a x a +-=+的解大于1,求a 的取值范围.4、解不等式3x ﹣1≤x +3,并把解在数轴上表示出来.5、某学校计划购买若干台电脑,现在从两家商场了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?-参考答案-一、单选题1、A【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2、B【分析】求出不等式的解集,然后找出其中最大的整数即可.【详解】x-<,解:270x<,277x<,2则符合条件的最大整数为:3,故选:B.【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键.3、D【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-2<0,解之即可得出m<2,进而可得出m=-3.【详解】解:∵一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),∴m2-3=6,即m2=9,解得:m=-3或m=3.又∵y的值随着x的值的增大而减小,∴m-2<0,∴m<2,∴m=-3.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键.4、D【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出a 的取值范围,然后根据a 的取值范围解答即可.【详解】解:∵关于x 的不等式组3x x a ≤⎧⎨>⎩有解, ∴a <3,∴a 的取值可能是0、1或2,不可能是3.故选D .【点睛】本题考查了由不等式组的解集情况求参数,不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.5、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.6、A【分析】先根据新运算的定义和3✬4=2将m 用n 表示出来,再代入5✬8>2可得一个关于n 的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n +=, 解得243n m -=, 由5✬8>2得:582m n +>, 将243n m -=代入582m n +>得:5(24)823n n -+>, 解得1n >-,故选:A .【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.7、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.8、C【分析】根据不等式的性质即可求出答案.【详解】解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B、∵a>b,∴2021a>2021b,故B错误;C、∵a>b,∴a﹣2021>b﹣2021,故C正确;D、∵a>b,∴2021﹣a<2021﹣b,故D错误;故选:D.【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.9、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:32222210y yy a--⎧+>⎪⎪⎨-⎪≤⎪⎩①②,解不等式①得:2y>-,解不等式②得:y a≤∴不等式组的解集为:1yy a>-⎧⎨≤⎩,∵由不等式组至少有3个整数解,∴2a≥,即整数a=2,3,4,5,…,∵()223x a -+=,∴243x a -+= 解得:72a x , ∵方程()223x a -+=的解为非负数,∴702a -≥, ∴7a ≤∴得到符合条件的整数a 为3,4,5,6,7,之和为25.故选B .【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b ,∴33a b >, ∴1133ab +>+,故本选项不符合题意;故选:A .【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.二、填空题1、ax +b >0或ax +b <0 y =ax +b 自变量【分析】根据一次函数图象与一元一次不等式的关系解答.【详解】解:任何一个以x 为未知数的一元一次不等式都可以变形为ax +b >0或ax +b <0 (a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数y =ax +b 的值大于0或小于0时,求自变量的取值范围. 故答案为:ax +b >0或ax +b <0;y =ax +b ;自变量.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =kx +b (k ≠0)的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b (k ≠0)在x 轴上(或下)方部分所有的点的横坐标所构成的集合.2、13【分析】解关于x 的不等式组,由不等式组整数解的个数求出a 的范围,再从6个数中找到同时满足以上两个条件的情况,从而利用概率公式求解可得.【详解】解:解不等式组12321x ax⎧->⎪⎨⎪-+≤⎩,得:12a<x≤2,∵不等式组只有3个整数解,∴不等式组的整数解为2、1、0,则-1≤12a<0,即-2≤a<0∴在所列的六个数字中,同时满足以上两个条件的只有-2,-1,∴只有三个整数解的概率是21 = 63故答案为:13.【点睛】题主要考查的是解一元一次不等式组的解集和概率的知识,解题的关键是熟练掌握解一元一次不等式组的能力及概率公式的应用.3、>><<【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b>,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >, ∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.4、14960【分析】设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,第二天,洁柔体验装的原价为: (150%)x +,销售量为1a 包,洁柔超值装的原价为: 53y ,销售量为1b 包,妮飘进口装的原价为: 1(1)4z +,销售量为 1c 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得()()175767x y c c +-=,进而可得 1755913x y c c +=⎧⎨-=⎩,x y 为整数,即可求得x y +,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 5135482828c <<,由 121753c c ,都是整数,则 5135482828c <<能被 3和5整除的数即能被15整除,即可求得c ,则这两天妮飘进口装的总销售额为11(1)4zc z c ++,即 ()()965x y c +-,代入数值求解即可. 【详解】解:设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,()44060::3:1:1z x y z a b c ⎧=+⎪<≤⎨⎪=⎩1015x y ∴<+≤,33a b c ==, 则35a b c c c c c ++=++=第二天,洁柔体验装的原价为:(150%)x +,销售量为1a 包,洁柔超值装的原价为:53y ,销售量为1b 包,妮飘进口装的原价为:1(1)4z +,销售量为1c 包, 11:=4:3a c ,即1143a c = ()1120%b b =-4=5b 4=5c 则11111144743535a b c c c c c c ++=++=+ 第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦()()3(344)75ax by cz c x y z c x y x y c x y ++=++=+++=+()111150%14x a z c ⎛⎫+++ ⎪⎝⎭ 1151.54()4xa x y c =+⨯+1111.555xa xc yc =++111345523x c xc yc =⨯++ 1175xc yc =+()175x y c =+∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦即1(75)(75)c x y c x y +-+767=即()()175767x y c c +-=7671359=⨯1755913x y c c +=⎧∴⎨-=⎩或 1751359x y c c +=⎧⎨-=⎩ 1015x y <+≤505575x y ∴<+≤7550x y ∴+>1755913x y c c +=⎧∴⎨-=⎩ 5975x y -∴=,x y 为整数,解得29x y =⎧⎨=⎩或 72x y =⎧⎨=⎩洁柔体验装的原价为:(150%)x + 1.5x =是整数,则7x ≠,洁柔超值装的原价为:53y 是整数则2y ≠ ∴ 29x y =⎧⎨=⎩4()44z x y ∴=+=第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,∴()()11196120a b c a b c ≤++-++≤113c c -=1c c ∴>()()111a b c a b c ++-++=117421753553c c c c c ⎛⎫-+=-⎪⎝⎭ ∴217633591(13)5315153c c c ⎛⎫--=-+ ⎪⎝⎭2891153c =+ 即289196120153c <+< 解得5135482828c <<121753c c ,都是整数,则5135482828c <<能被3和5整除的数即能被15整除 ∴45c =11(1)4zc z c ++=()()11554444zc zc x y c x y c +=+++ ()()145x y c c =++()()4513x y c c =++-⎡⎤⎣⎦()()965x y c =+-44=⨯()94565⨯-14960=故答案为:14960【点睛】本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键. 5、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.三、解答题1、m =-2【分析】由题意可知:m2-3=1,m-2≠0,即可解答.【详解】解∵不等式(m-2) 23mx- -2≥7是关于x的一元一次不等式,∴m2-3=1,m-2≠0,解得m=-2当m=-2时,不等式是关于x的一元一次不等式【点睛】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.2、(1)43xy=⎧⎨=⎩;(2)﹣2﹤x≤3.【分析】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)2523 517x yx y+=⎧⎨-=⎩①②①+②×5得:27x=23+17×5,解得:x=4,将x=4代入②中,得:20﹣y=17,解得:y=3,∴原方程组的解为43xy=⎧⎨=⎩.(2)202(1)31xx x+>⎧⎨+≥-⎩①②,解:解①得:x﹥﹣2,解②得:x≤3,∴不等式组的解集为:﹣2﹤x≤3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、a>0【分析】先解方程得出x=44a+,根据方程的解大于1得出关于a的不等式,解之即可.【详解】解:解不等式6x+a−4=2x+2a,得x=44a+,根据题意,得:44a+>1,解得a>0.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4、x≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.5、当购买少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买多于5台电脑时,学校选择甲商场购买更优惠.【分析】设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,根据题意可得甲乙两种购买方式得函数解析式,分三种情况讨论:当12y y >时;当12y y =时;当12y y <时;分别进行计算得出自变量的取值范围即可得出在什么情况下选择哪种方案更优惠.【详解】解:设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,则根据题意可得:()()1600016000125%45001500y x x =+⨯⨯=+--(x 为正整数);()2·6000120%4800y x x =⨯=-(x 为正整数);当12y y >时,学校选择乙商场购买更优惠,即450015004800x x +>,解得5x <,即15x <<;当12y y =时,学校选择甲、乙两商场购买一样优惠,即450015004800x x +=,解得5x =;当12y y <时,学校选择甲商场购买更优惠,即450015004800x x +<,解得5x >.∴当购买数量少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买数量多于5台电脑时,学校选择甲商场购买更优惠.【点睛】题目主要考查一次函数应用中的方案选择,理解题意,列出相应函数解析式,求解不等式是解题关键.。

一元一次不等式(组)应用题及练习(含答案)

一元一次不等式(组)应用题及练习(含答案)

一元一次不等式组的典型应用题类型一例1.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】本题的关键语句是:“若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人”.理解这句话,有两层不等关系.(1)租用36座客车x辆的座位数小于租用42座客车(x-1)辆的座位数.(2)租用36座客车x辆的座位数大于租用42座客车(x-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车x辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意x应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.2、某公司为了更好得节约能源,决定购买一批节省能源的10台新机器。

含详细解析答案初中数学一元一次不等式组解法练习40道.pdf

含详细解析答案初中数学一元一次不等式组解法练习40道.pdf

初中数学一元一次不等式组解法练习1.求不等式组的整数解.解不等式组:.2.求不等式组:的整数解.3.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).4.解不等式组,并将它的解集在数轴上表示出来.5.试确定实数a的取值范围,使不等式组恰有两个整数解.6.求不等式组的正整数解.7.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).8.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)9..10.解不等式组:,并在数轴上表示出不等式组的解集.11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.解不等式组:.13.解不等式组并把它的解集在数轴上表示出来.14.解不等式组:15.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.16.解不等式组.17.解不等式组,并写出该不等式组的整数解.18.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).19.解不等式组:,并把解集在数轴上表示出来.20.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.21.满足不等式-1≤3-2x<6的所有x的整数的和是多少?22.(1)解方程组:(2)解不等式组:23.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.24.解不等式组:.25.解下列不等式和不等式组(1)-1(2)26.解不等式组(注:必须通过画数轴求解集)27.解不等式组:并写出它的所有整数解.28.解不等式组,并把解集在数轴上表示出来.29.解不等式组:30.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)31.若不等式组的解集为,求a,b的值.32.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.33.解不等式组:34.解不等式组35.解不等式组:并写出它的所有的整数解.36.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.37.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.38.若关于x,y的方程组的解满足x<0且y<0,求m的范围.39.解不等式组:并写出它的所有整数解.40.解不等式组:并写出它的所有整数解.初中数学一元一次不等式组解法练习答案1.求不等式组的整数解.【答案】解:由①,解得:x≥-2;由②,解得:x<3,∴不等式组的解集为-2≤x<3,则不等式组的整数解为-2、-1、0、1、2.【解析】求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的整数解,熟练掌握不等式的解法是解本题的关键.2.解不等式组:.【答案】解:,由①得,x>-1,由②得,x≤2,所以,原不等式组的解集是-1<x≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.求不等式组:的整数解.【答案】解:由x-3(x-2)≤8得x≥-1由5-x>2x得x<2∴-1≤x<2∴不等式组的整数解是x=-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).【答案】解:(1),解①得x<1,解②得x≤-2,所以不等式组的解集为x≤-2,用数轴表示为:;(2),解①得x>-2,解②得x≤2,所以不等式组的解集为-2<x≤2,用数轴表示为:.【解析】(1)分别解两个不等式得到x<1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集;(2)分别解两个不等式得到x>-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.5.解不等式组,并将它的解集在数轴上表示出来.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.试确定实数a的取值范围,使不等式组恰有两个整数解.【答案】解:由>0,两边同乘以6得3x+2(x+1)>0,解得x>-,由x+>(x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,∴原不等式组的解集为-<x<2a.又∵原不等式组恰有2个整数解,即x=0,1;则2a的值在1(不含1)到2(含2)之间,∴1<2a≤2,∴0.5<a≤1.【解析】先求出不等式组的解集,再根据x的两个整数解求出a的取值范围即可.此题考查的是一元一次不等式的解法,得出x的整数解,再根据x的取值范围求出a的值即可.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.求不等式组的正整数解.【答案】解:由①得4x+4+3>x解得x>- ,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为- <x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.8.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).【答案】解:(1)移项得,2x-3x<2+1,合并同类项得,-x<3,系数化为1得,x>-3 (4分)在数轴上表示出来:(6分)(2),解①得,x<1,解②得,x≥-4.5在数轴上表示出来:不等式组的解集为-4.5≤x<1,【解析】本题考查了不等式与不等式组的解法,是基础知识要熟练掌握.(1)先移项,再合并同类项、系数化为1即可;(2)先求两个不等式的解集,再求公共部分即可.9.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)【答案】解:(1)去括号,得:2x+6>4x-x+3,移项,得:2x-4x+x>3-6,合并同类项,得:-x>-3,系数化为1,得:x<3;(2),解不等式①,得:x<2,解不等式②,得:x≥-1,则不等式组的解集为-1≤x<2.【解析】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.10. ..【答案】解:,由①得:x≥1,由②得:x<-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.解不等式组:,并在数轴上表示出不等式组的解集.【答案】解:解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:【解析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.若关于x的不等式组恰有三个整数解,求实数a的取值范围.【答案】解:,由①得:x>-,由②得:x<2a,则不等式组的解集为:-<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.解不等式组:.【答案】解:由(1)得:x>-2把(2)去分母得:4(x+2)≥5(x-1)去括号整理得:x≤13∴不等式组的解集为-2<x≤13.【解析】先解不等式组中的每一个不等式,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.解不等式组并把它的解集在数轴上表示出来.【答案】解:解不等式①得x>-2,解不等式②得x≤3,数轴表示解集为:所以不等式组的解集是-2<x≤3.【解析】分别解两个不等式得到x>-2和x≤3,再利用数轴表示解集,然后根据大小小大中间找确定不等式组的解集.本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.解不等式组:【答案】解:解不等式2x+9<5x+3,得:x>2,解不等式-≤0,得:x≤7,则不等式组的解集为2<x≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.【答案】解:(1),①+②,得:3x=6a+3,解得:x=2a+1,把x=2a+1代入②,得:y=a-2,所以方程组的解为;(2)∵x>y>0,∴,解得:a>2.【解析】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握消元法解二元一次方程和解一元一次不等式组的能力.(1)两方程相加求出x、两方程相减可求得y;(2)由(1)中所求x、y结合x>y>0可得关于k的不等式组,解之可得.17.解不等式组.【答案】解:解不等式①得x<1解不等式②得x>-3所以原不等式组的解集为-3<x<1.【解析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.此题考查解不等式的一般方法,移项、合并同类项、系数化为1等求解方法,较为简单.18.解不等式组,并写出该不等式组的整数解.【答案】解:由得x≤1,由1-3(x-1)<8-x得x>-2,所以-2<x≤1,则不等式组的整数解为-1,0,1.【解析】首先把两个不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,求得不等式的解集,再求其整数解.本题主要考查不等式组的解集,以及在这个范围内的整数解.同时,一元一次不等式(组)的解法及不等式(组)的应用是一直是各省市中考的考查重点.19.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).【答案】解:(1)15-3x≥14-2x,-3x+2x≥14-15,-x≥-1,解得:x≤1,数轴表示如下:(2)解不等式①得:x≥-1,解不等式②得:x<3,∴不等式组的解集为-1≤x<3,数轴表示如下:.【解析】这是一道考查一元一次不等式与不等式组的解法的题目,解题关键在于正确解出不等式,并在数轴上表示出解集.(1)先去分母,移项,合并同类项,注意要改变符号;(2)求出每个不等式的解集,再求出公共部分,即可求出答案.20.解不等式组:,并把解集在数轴上表示出来.【答案】解:,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.【答案】解:方程组解得:,根据题意得:且2m-1<m+8,解得:<m<9.【解析】将m看做已知数,表示出x与y,根据题意列出不等式,求出不等式的解集即可得到m的范围.此题考查了解一元一次不等式组,以及解二元一次方程组,弄清题意是解本题的关键.22.满足不等式-1≤3-2x<6的所有x的整数的和是多少?【答案】解:根据题意得:,解①得:x≤2,解②得:x>-,则不等式组的解:-<x≤2,则整数解是:-1,0,1,2.则整数和是:-1+0+1+2=2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解,然后求和即可.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1)解方程组:(2)解不等式组:【答案】解:(1),整理得,解得 .(2),解①得:,解②得:.则不等式组的解集为.【解析】本题考查了一元一次不等式的解法及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组整理后,利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.24.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.【答案】解:(1),①-②,得:4y=4-4a,解得:y=1-a,将y=1-a代入②,得:x-1+a=3a,解得:x=2a+1,则,∵a=-2,∴x=-4+1=-3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴-3≤a≤0,即1≤1-a≤4,则1≤y≤4.【解析】(1)先解关于x、y的方程组,再将a的值代入即可得;(2)由x≤1得出关于a≤0,结合-3≤a≤1知-3≤a≤0,从而得出1≤1-a≤4,据此可得答案.此题考查了解二元一次方程组与一元一次不等式组,解题的关键是根据题意得出用a表示的x、y.25.解不等式组:.【答案】解:解不等式2x+1≥x-1,得:x≥-2,解不等式<3-x,得:x<2,∴不等式组的解集为-2≤x<2.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.解下列不等式和不等式组(1)-1(2)【答案】解:(1)3(x+3)≤5(2x-5)-15,3x+9≤10x-25-15,3x-10x≤-25-15-9,-7x≤-49,x≥7;(2)解不等式1-2(x-1)≤5,得:x≥-1,解不等式<x+1,得:x<4,则不等式组的解集为-1≤x<4.【解析】(1)依据解一元一次不等式的步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.此题考查一元一次不等式解集的求法,切记同乘负数时变号;一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.27.解不等式组(注:必须通过画数轴求解集)【答案】解:解不等式①,得:x≥2,解不等式②,得:x<4,在数轴上表示两解集如下:所以,原不等式组的解集为2≤x<4.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.28.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得x<1,解不等式②,得x≥-2,所以不等式组的解集为-2≤x<1,所以它的所有整数解为-2,-1,0.【解析】本题主要考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.29.解不等式组,并把解集在数轴上表示出来.【答案】解:,解不等式①得,x≤2,解不等式②得,x>-1,∴不等式组的解集是-1<x≤2.用数轴表示如下:【解析】根据一元一次不等式组的解法,求出两个不等式的解集,然后求出公共解集即可.本题主要考查了一元一次不等式组的解法,注意在数轴上表示时,有等号的用实心圆点表示,没有等号的用空心圆圈表示.30.解不等式组:【答案】解:解不等式1-x>3,得:x<-2,解不等式<,得:x>12,所以不等式组无解.【解析】先分别求出各不等式的解集,再求出其公共解集即可.主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).31.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)【答案】解:(1),解不等式①,得x≤4,解不等式②,得x>-1,不等式①②的解集在数轴上表示如下:(2),解不等式①,得,解不等式②,得x>1,不等式①②的解集在数轴上表示如下:【解析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)分别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可;(2)别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可.32.若不等式组的解集为,求a,b的值.【答案】解:解第一个不等式,得:,解第二个不等式,得:,∵不等式组的解集为1≤x≤6,∴,2b=1,解得:a=12,b=.【解析】此题考查的是含有待定字母的一元一次不等式的解法,解决此题要先求出每个不等式的解集,再找出它们的公共部分,根据给出的解集转化为关于a和b的方程求解即可.33.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.【答案】解:(1)去分母,得:4(x+1)<5(x-1)-6,去括号,得:4x+4<5x-5-6,移项,得:4x-5x<-5-6-4,合并同类项,得:-x<-15,系数化为1,得:x>15;(2)解不等式2x-1≥x,得:x≥1,解不等式4-5(x-2)>8-2x,得:x<2,∴不等式组的解集为1≤x<2,将解集表示在数轴上如下:【解析】(1)根据解不等式的基本步骤求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.34.解不等式组:【答案】解:由(1)得,x>3由(2)得,x≤4故原不等式组的解集为3<x≤4.【解析】分别求出各不等式的解集,再求其公共解集即可.求不等式组的解集应遵循以下原则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.35.解不等式组【答案】解:解不等式-2x+1>-11,得:x<6,解不等式-1≥x,得:x≥1,则不等式组的解集为1≤x<6.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.36.解不等式组:并写出它的所有的整数解.【答案】解:,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解,然后写出整数解即可.37.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.【答案】解:,由①得:x≥-1,由②得:x<3,∴不等式组的解集为-1≤x<3,在数轴上表示,如图所示,则其非负整数解为0,1,2.【解析】求出不等式组的解集,表示在数轴上,确定出非负整数解即可.此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.38.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.【答案】解:(1),①+②,得:6x=18,解得:x=3,②-①,得:4y=4,解得:y=1,所以方程组的解为;(2)解不等式x-4≤(2x-1),得:x;解不等式2x-<1,得:x<3,则不等式组的解集为-≤x<3,将解集表示在数轴上如下:【解析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则及加减消元法解二元一次方程组是解答此题的关键.39.若关于x,y的方程组的解满足x<0且y<0,求m的范围.【答案】解:,①+②,得:6x=3m-18,解得:x=,②-①,得:10y=-m-18,解得:y=,∵x<0且y<0,∴,解得:-18<m<6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m的范围.本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.40.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得,解不等式②,得x<2,∴原不等式组的解集为,它的所有整数解为0,1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.第21页,共21页。

一元一次不等式组应用题及答案

一元一次不等式组应用题及答案

一元一次不等式应用题用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答。

一.分配问题:1.把假设干颗花生分给假设干只猴子。

如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但缺乏5颗。

问猴子有多少只,花生有多少颗?2 .把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

4.将缺乏40只鸡放入假设干个笼中,假设每个笼里放4只,那么有一只鸡无笼可放;假设每个笼里放5只,那么有一笼无鸡可放,且最后一笼缺乏3只。

问有笼多少个?有鸡多少只?5. 用假设干辆载重量为8吨的汽车运一批货物,假设每辆汽车只装4吨,那么剩下20吨货物;假设每辆汽车装满8吨,那么最后一辆汽车不满也不空。

请问:有多少辆汽车?6.一群女生住假设干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。

(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的平安地区,导火索至少需要多长?2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。

王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原方案至少提前两天完成,那么以后平均每天至少要比原方案多完成多少方土?2 .用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。

八年级数学下册《一元一次不等式组》典型例题2(含答案)

八年级数学下册《一元一次不等式组》典型例题2(含答案)

《一元一次不等式组》典型例题例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节BA,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果?例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔?例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间?例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友?例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.例题8一条铁路线上EA,,,各站之间的路程如图所示,单位为千,DCB米.一列火车7:30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D站、E站)的铁路线上.例题9某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题10某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分C,三A,B类:A类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题11有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分.问在第五次测验时,这两个学生的分数各是多少?(满分100分,得分都是整数)例题12大小盒子共装球99个,每个大盒装12个,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?参考答案例题1 分析 这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。

(完整版)《一元一次不等式组的应用》典型例题

(完整版)《一元一次不等式组的应用》典型例题

《一元一次不等式组的应用》典型例题例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节BA,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果?例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔?例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间?例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友?例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.例题7一条铁路线上E,,A,,各站之间的路程如图所示,单位为千米.一BDC列火车7:30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D站、E站)的铁路线上.例题8某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题9某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分C,三类:A,BA类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题10有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分.问在第五次测验时,这两个学生的分数各是多少?(满分100分,得分都是整数)例题11大小盒子共装球99个,每个大盒装12个,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?参考答案例题1 分析 这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。

初中数学一元一次不等式的应用专项练习题(解答题 附答案)

初中数学一元一次不等式的应用专项练习题(解答题  附答案)
(1)求:甲、乙玩具的进货单价各是多少元?
(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?
10.某地有甲、乙两家口罩厂,已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且乙厂单独完成60万只口罩的生产比甲厂单独完成多用5天.
13.某服装专卖店计划购进 两种型号的精品服装.已知2件A型服装和3件B型服装共需4600元;1件A型服装和2件B型服装共需2800元.
(1)求 型服装的单价;
(2)专卖店要购进 两种型号服装60件,其中A型件数不少于B型件数的2倍,如果B型打七五折,那么该专卖店至少需要准备多少货款?
14.在广深高速公路改建工程中,某路段长4000米,由甲、乙两个工程队拟在30天内(含30天)合作完成,已知甲工程队每天比乙工程队多完成50米,如果甲、乙两工程队一起合作完成1500米所用时间与甲工程队单独完成1000米所用时间相同.
560
650
720
770
800
810
810
3.某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.
(1)购买一个足球、一个篮球各需多少元?
(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?
4.冰封文教店用1200元购进了甲、乙两种钢笔,已知甲种钢笔进价为每支12元,乙种钢笔进价为每支10元.在销售时甲种钢笔售价为每支15元,乙种钢笔售价为每支12元,全部售完后共获利270元.
(1)求冰封文教店购进甲、乙两种钢笔各多少支?

列一元一次不等式(组)解决实际问题

列一元一次不等式(组)解决实际问题

所以 2x=64
3
(2)设3购买篮球的数量为n个,则购买排球
的由数题量意为,得(363-6n)-个n<11 96n+64(36-n)≤3200
解得25<n≤28
而n是正整数,所以其取值为26,27,28对
应36-n的值为10,9,8.所以共有三种购买
方案。
5某市中小学标准化建设工程中,某 学校计划购进一批电脑和电子白板, 经过市场考察得知,购买1台电脑和 2台电子白板需要3.5万元,购买2台 电脑和1台电子白板需要2.5万元。 (1)求每台电脑、每台电子白板各 多少万元?(2)根据学校实际,需购 进电脑和电子白板共30台,总共费 用不超过30万元,但不低于28万元, 请你通过计算求出有几种购买方案, 哪种方案费用最低。
(2014绥化)某商场用36万元购进A,B两种商
品,销售完后共获利6万元,其进价和售价如
下表:
A
B
进价(元/件) 1200 1000
售价(元/件) 1380 1200
(1)该商场购进A,B两种商品各多少件? (2)商场第二次以原进价购进A,B两种商品, 购进B种商品的件数不变,而购进A种商品的 件数是第一次的2倍,A种商品按原售价出售, 而B种商品打折销售.若两种商品销售完毕, 要使第二次经营活动获利不少于81600元,则 B种商品最低售价为每件多少元?
解:由题意得
第一种情况10a+b>10b+a解得a>b
第二种情况10a+b<10b+a解得a<b
第三种情况10a+b=10b+a解得a=b
答:
考试或比赛得分问题
1.小强在一次测试中,语 文与英语平均分数是76分, 但语文、英语、数学三科 的平均分不低于80分,则 数学分数x应满足的关系 为_____。

北师大版.八年级数学.下学期.一元一次不等式.两套专项练习

北师大版.八年级数学.下学期.一元一次不等式.两套专项练习

22.
4 1 x − 4(1 − x) < 32( x − 2) 3 6
26. 0
3 − 2x 5
1
23. 5x − 12
2(4x − 3)
27. −1 <
3x − 1 2
4
24. 5 −
x 3
1 2x + 1 3 − 2 4
28.
1 5 (2x + 3) + x > x + 4 3 3
−3 −
二 解下列不等式组,并将它的解集在数轴上表示 出来 2x − 1 x+6 < 2 3 29. 3x + 3 x−1 2+ >3− 8 4 33.
44. |3x − 1|
2
48. 方程
2x − 3 2 = x − 3 的解不大于与 3x − 1 = 5 3 3(x + n) − 2n 的解,求 (n − 3)2 的最小值。
45.
3x − 2 6
4 3
49. 代数式
2a − 1 a−2 与代数式 1 − 的和小于 3, 6 2 求 a 的值。
46.
14. 2y > 1 −
4−y 3
பைடு நூலகம்
21. y −
y−1 2
2−
y+2 5
15. 2x
1−
1 − 3x 2
22.
x − 3 5x − 4 − 4 3
1
1 2
16.
y y+2 > 3 2
23.
x+1 −1 4
2x − 1 6
2x + 3 5x − 1 17. − <0 3 6

一元一次不等式(组)培优专题训练

一元一次不等式(组)培优专题训练

一元一次不等式(基础练习)一. 解下列不等式,并在数轴上表示出它们的解集.1. 8223-<+x x2. x x 4923+≥-3. )1(5)32(2+<+x x4. 0)7(319≤+-x5. 31222+≥+x x6. 223125+<-+x x7. 5223-<+x x 8. 234->-x9. )1(281)2(3--≥-+y y 10. 1213<--m m11. )2(3)]2(2[3-->--x x x x 12. 215329323+≤---x x x 13. 41328)1(3--<++x x 14. )1(52)]1(21[21-≤+-x x x 15. 22416->--x x 16. x x x 212416-≤--17. 7)1(68)2(5+-<+-x x 18. 46)3(25->--x x19. 1215312≤+--x x 20. 31222-≥+x x二. 应用题1.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?3.已知李红比王丽大3岁,又知李红和王丽年龄之和大于30且小于33,求李红的年龄。

4.某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?5.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。

已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?6.某工程队计划在10天内修路6km,施工前2天修完1.2km后,计划发生变化,准备提前2天完成修路任务,以后几天内平均每天至少要修路多少千米?不等式与不等式组(提升练习)一、选择题1. 如果a 、b 表示两个负数,且a <b ,则( ).(A)1>ba (B)ba <1 (C)ba 11< (D)ab <12. a 、b 是有理数,下列各式中成立的是( ).(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 3. |a |+a 的值一定是( ).(A)大于零 (B)小于零 (C)不大于零 (D)不小于零 4. 若由x <y 可得到ax >ay ,应满足的条件是( ).(A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0 5. 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <16. 九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ). (A)2人 (B)3人 (C)4人 (D)5人 7. 某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ). (A)11 (B)8 (C)7 (D)5 8. 若不等式组⎩⎨⎧>≤<kx x ,21有解,则k 的取值范围是( ).(A)k <2(B)k ≥2(C)k <1(D)1≤k <29. 不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2 (C)m ≤1(D)m ≥110. 对于整数a ,b ,c ,d ,定义bd ac cdb a -=,已知3411<<db ,则b +d 的值为_________. 11. 如果a 2x >a 2y (a ≠0).那么x ______y . 12. 若x 是非负数,则5231x-≤-的解集是______. 13. 已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______. 14. 6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..应付给超市______元. 15. 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.16. 乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x 页,列出的不等式为______.17. k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.二、解下列不等式18. 2(2x -3)<5(x -1). 10-3(x +6)≤1. 19. ⋅-->+22531x x⋅-≥--+612131y y y20. 3[x -2(x -7)]≤4x . .17)10(2383+-≤--y y y 21..151)13(21+<--y y y.15)2(22537313-+≤--+x x x22. ).1(32)]1(21[21-<---x x x x⋅->+-+2503.0.02.003.05.09.04.0x x x三、解不等式组23. ⎩⎨⎧≥-≥-.04,012x x⎩⎨⎧>+≤-.074,03x x24. ⎪⎩⎪⎨⎧+>-<-.3342,121x x x x-5<6-2x <3.25. ⎪⎩⎪⎨⎧⋅>-<-322,352x x x x⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx26. ⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x.234512x x x -≤-≤-27. ⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x28. 解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x四、变式练习29. 若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .30. .已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.31. 已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0,求m 的取值范围.32. 适当选择a 的取值范围,使1.7<x <a 的整数解:(1) x 只有一个整数解; (2) x 一个整数解也没有. 33. 当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.34. 已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.35. (类型相同)当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.36. (类型相同)已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.37. 已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.38. 关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.39. (类型相同)k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?40. (类型相同)已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.41. 若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.五、解答题42. 某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车?43. 某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?44.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?45.某工人加工300个零件,若每小时加工50个就可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?46.一个工程队原定在10天内至少要挖掘600m3的土方.在前两天共完成了120m3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?47.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?48.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?49.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(1)若此车间每天所获利润为y(元),用x的代数式表示y.(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?50.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?51.2008年5月12日,汶川发生了里氏8.0级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:一班学生平均每人捐款的金额大于..51元...48元,小于请根据以上信息,帮助老师解决:(1)二班与三班的捐款金额各是多少元?(2)一班的学生人数是多少?52.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.53.在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B问:这。

一元一次不等式组的应用题专项练习含详细答案-22页文档资料

一元一次不等式组的应用题专项练习含详细答案-22页文档资料

一元一次不等式(组)的应用题专项练习一.选择题(共10小题)1.(2019•菏泽)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折2.(2019•安顺)不等式组的解集在数轴上表示为()A.B.C.D.3.(2009•柳州)若a <b,则下列各式中一定成立的是()A.a﹣1<b﹣1 B.>C.﹣a<﹣b D.a c<bc4.(2009•荆门)若不等式组有解,则a的取值范围是()A.a>﹣1 B.a≥﹣1 C.a≤1 D.a<15.(2019•河北)把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A.B.C.D.6.(2019•恩施州)如果a<b<0,下列不等式中错误的是()A.a b>0 B.a+b<0 C.<1D.a﹣b<07.(2019•枣庄)不等式2x﹣7<5﹣2x正整数解有()A.1个B.2个C.3个D.4个8.(2019•乐山)某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是()A.x<y B.x>y C.x≤y D.x≥y9.(2019•镇江)如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>﹣b>﹣a B.a>﹣a>b>﹣b C.b>a>﹣b>﹣a D.﹣a>b>﹣b>a10.(2019•绵阳)如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1二.解答题(共20小题)11.(2019•自贡)暑期中,哥哥和弟弟二人分别编织28个中国结,已知弟弟单独编织一周(7天)不能完成,而哥哥单独编织不到一周就已完成.哥哥平均每天比弟弟多编2个.求:(1)哥哥和弟弟平均每天各编多少个中国结?(答案取整数)一元一次不等式(组)的应用题专项练习(2)若弟弟先工作2天,哥哥才开始工作,那么哥哥工作几天,两人所编中国结数量相同?12.(2019•资阳)为了解决农民工子女就近入学问题,我市第一小学计划2019年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2019元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.13.(2019•张家界)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?14.(2019•益阳)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.15.(2019•潍坊)为了援助失学儿童,初三学生李明从2019年1月份开始,每月一次将相等数额的零用钱存入已有部分存款的储蓄盒内,准备每6个月一次将储蓄盒内存款一并汇出(汇款手续费不计).已知2月份存款后清点储蓄盒内有存款80元,5月份存款后清点储蓄盒内有存款125元.(1)在李明2019年1月份存款前,储蓄盒内已有存款多少元?(2)为了实现到2019年6月份存款后存款总数超过1000元的目标,李明计划从2019年1月份开始,每月存款都比2019年每月存款多t元(t为整数),求t的最小值.16.(2019•铜仁地区)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?17.(2019•铁岭)为奖励在文艺汇演中表现突出的同学,班主任派生活委员小亮到文具店为获奖同学购买奖品.小亮发现,如果买1个笔记本和3支钢笔,则需要18元;如果买2个笔记本和5支钢笔,则需要31元.(1)求购买每个笔记本和每支钢笔各多少元?(2)班主任给小亮的班费是100元,需要奖励的同学是24名(每人奖励一件奖品),若购买的钢笔数不少于笔记本数,求小亮有哪几种购买方案?18.(2019•宁波)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:生活用水单价污水处理单价每户每月用水量单价:元/吨单价:元/吨17吨以下 a 0.80超过17吨但不超过30吨的部分 b 0.80超过30吨的部分 6.00 0.80(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2019年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?19.(2019•南充)学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.20.(2019•内江)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:造型花卉甲乙A 80 40B 50 70(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?21.(2019•牡丹江)某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?22.(2019•泸州)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)23.(2019•湖州)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?24.(2019•哈尔滨)同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?25.(2019•广安)某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?26.(2019•朝阳)为支持抗震救灾,我市A、B两地分别有赈灾物资100吨和180吨,需全部运往重灾区C、D两县,根据灾区的情况,这批赈灾物资运往C县的数量比运往D县的数量的2倍少80吨.(1)求这批赈灾物资运往C、D两县的数量各是多少吨?(2)设A地运往C县的赈灾物资数量为x吨(x为整数).若要B地运往C县的赈灾物资数量大于A地运往D县赈灾物资数量的2倍,且要求B地运往D县的赈灾物资数量不超过63吨,则A、B两地的赈灾物资运往C、D两县的方案有几种?27.(2019•常德)某工厂生产A、B两种产品共50件,其生产成本与利润如下表:A种产品B种产品成本(万元/件)0.6 0.9利润(万元/件)0.2 0.4若该工厂计划投入资金不超过40万元,且希望获利超过16万元,问工厂有哪几种生产方案?哪种生产方案获利润最大?最大利润是多少?28.(2019•北海)某班有学生55人,其中男生与女生的人数之比为6:5.(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上.请问男、女生人数有几种选择方案?29.(2019•佛山)解不等式组,注:不等式(1)要给出详细的解答过程.30.(2019•黔南州)为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?一元一次不等式(组)的应用题专项练习参考答案与试题解析一.选择题(共10小题)1.(2019•菏泽)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折考点:一元一次不等式的应用.分析:本题可设打x折,根据保持利润率不低于5%,可列出不等式:1200x×0.1≥800(1+0.05),解出x的值即可得出打的折数.解答:解:设可打x折,则有1200x×0.1≥800(1+0.05)120x≥840x≥7故选B点评:本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时要注意要乘以0.1.2.(2019•安顺)不等式组的解集在数轴上表示为()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围.解答:解:由(1)得,x>1,由(2)得,x≥2,故原不等式的解集为:x≥2,在数轴上可表示为:故选A.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.3.(2009•柳州)若a<b,则下列各式中一定成立的是()A.a﹣1<b﹣1 B.C.﹣a<﹣b D.a c<bc>考点:不等式的性质.分析:根据不等式的性质分析判断.解答:解:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方向不变.A、a﹣1<b﹣1;是正确的;B、C、D不正确.故选A.点评:主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.(2009•荆门)若不等式组有解,则a的取值范围是()A.a>﹣1 B.a≥﹣1 C.a≤1 D.a<1考点:解一元一次不等式组.分析:先解出不等式组的解集,根据已知不等式组有解,即可求出a的取值范围.解答:解:由(1)得x≥﹣a,由(2)得x<1,∴其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1,故选A.点评:求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出不等式组的解集并与已知解集比较,进而求得另一个未知数的取值范围.5.(2019•河北)把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A.B.C.D.考点:在数轴上表示不等式的解集.分析:本题根据数轴可知x的取值为:﹣1≤x<4,将不等式变形,即可得出关于x的不等式组.把各个选项的解的集合写出,进行比较就可以得到.解答:解:依题意得这个不等式组的解集是:﹣1≤x<4.A、无解;B、解集是:﹣1≤x<4;C、解集是:x>4;D、解集是:﹣1<x≤4;故选B.点评:考查不等式组解集的表示方法.实心圆点包括该点,空心圆圈不包括该点,>向右<向左.6.(2019•恩施州)如果a<b<0,下列不等式中错误的是()A.a b>0 B.a+b<0 C.D.a﹣b<0<1考点:不等式的性质.分析:根据不等式的性质分析判断.解答:解:A、如果a<b<0,则a,b同是负数,因而ab>0,正确;B、a+b<0一定正确;C、a<b<0则|a|>|b|则>1,也可以设a=﹣2,b=﹣1代入检验得到<1是错误的.故C不对;D、正确;故选C.点评:利用特殊值法验证一些式子错误是有效的方法.7.(2019•枣庄)不等式2x﹣7<5﹣2x正整数解有()A.1个B.2个C.3个D.4个考点:一元一次不等式的整数解.专题:计算题.分析:先求出不等式的解集,在取值范围内可以找到正整数解.解答:解:不等式2x﹣7<5﹣2x的解集为x<3,正整数解为1,2,共两个.故选B.点评:解答此题要先求出不等式的解集,再确定正整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.(2019•乐山)某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是()A.x<y B.x>y C.x≤y D.x≥y考点:一元一次不等式的应用.专题:应用题.分析:题目中的不等关系是:买黄瓜每斤平均价>卖黄瓜每斤平均价.解答:解:根据题意得,他买黄瓜每斤平均价是以每斤元的价格卖完后,结果发现自己赔了钱则>解之得,x>y.所以赔钱的原因是x>y.故选B.点评:解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.9.(2019•镇江)如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>﹣b>﹣a B.a>﹣a>b>﹣bC.b>a>﹣b>﹣aD.﹣a>b>﹣b>a考点:不等式的性质.分析:先确定a,b的符号与绝对值,进而放到数轴上判断4个数的大小即可.解答:解:∵a<0,b>0∴﹣a>0﹣b<0∵a+b<0∴负数a的绝对值较大∴﹣a>b>﹣b>a.故选D.点评:本题主要考查了异号两数相加的法则,数的大小的比较可以借助数轴来比较,右面的数总是大于左边的数.10.(2019•绵阳)如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1考点:解一元一次不等式.分析:本题可对a>﹣1,与a<﹣1的情况进行讨论.不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变,据此可解本题.解答:解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.故选D.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意同除a+1时是否要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式,不等号的方向不变.在不等式的两边同时乘以或除以同一个正数,不等号的方向不变;在不等式的两边同时乘以或除以同一个负数,不等号的方向改变.二.解答题(共20小题)11.(2019•自贡)暑期中,哥哥和弟弟二人分别编织28个中国结,已知弟弟单独编织一周(7天)不能完成,而哥哥单独编织不到一周就已完成.哥哥平均每天比弟弟多编2个.求:(1)哥哥和弟弟平均每天各编多少个中国结?(答案取整数)(2)若弟弟先工作2天,哥哥才开始工作,那么哥哥工作几天,两人所编中国结数量相同?考点:一元一次不等式组的应用;一元一次方程的应用.专题:应用题.分析:(1)设弟弟每天编x个中国结,根据弟弟单独工作一周(7天)不能完成,得7x<28;根据哥哥单独工作不到一周就已完成,得7(x+2)>28,列不等式组进行求解;(2)设哥哥工作m天,两人所编中国结数量相同,结合(1)中求得的结果,列方程求解.解答:解:(1)设弟弟每天编x个中国结,则哥哥每天编(x+2)个中国结.依题意得:,解得:2<x<4.∵x取正整数,∴x=3;(2)设哥哥工作m天,两人所编中国结数量相同,依题意得:3(m+2)=5m,解得:m=3.答:弟弟每天编3个中国结;若弟弟先工作2天,哥哥才开始工作,那么哥哥工作3天,两人所编中国结数量相同.点评:本题考查一元一次不等式组和一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.12.(2019•资阳)为了解决农民工子女就近入学问题,我市第一小学计划2019年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2019元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)根据一套办公桌椅比一套课桌凳贵80元以及用2019元恰好可以买到10套课桌凳和4套办公桌椅,得出等式方程求出即可;(2)利用购买电脑的资金不低于16000元,但不超过24000元,得出16000≤80000﹣120×20m﹣200×m≤24000求出即可.解答:解:(1)设一套课桌凳和一套办公桌椅的价格分别为x元、y元,得:,…(2分)∴一套课桌凳和一套办公桌椅的价格分别为120元、200元…(3分);(2)设购买办公桌椅m套,则购买课桌凳20m套,由题意得:16000≤80000﹣120×20m﹣200×m≤24000…(5分)解得:…(6分),∵m为整数,∴m=22、23、24,有三种购买方案:…(7分)方案一方案二方案三课桌凳(套)440 460 480办公桌椅(套)22 23 24…(8分)点评:此题主要考查了二元一次方程组的应用和不等式组的应用,根据已知得出不等式关系是解题关键.13.(2019•张家界)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?考点:一元一次不等式组的应用.分析:由于购买A年票首先要花100元,以后就不用再花钱了,那么可让另外三种购票方式所花的费用分别大于等于100,可得出不等式组,然后根据得到的自变量的取值范围,判断除至少超过多少次,购买A才合算.解答:解:设某游客一年中进入该公园x次,依题意得不等式组:,解①得:x≥10,解②得:x≥25,∴不等数组的解集是:x≥25.答:某游客一年进入该公园超过25次时,购买A类年票合算.点评:此题主要考查了不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.14.(2019•益阳)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.考点:一元一次不等式的应用;一元一次方程的应用.分析:(1)假设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.解答:解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:80x+60(17﹣x )=1220,解得:x=10,∴17﹣x=7,答:购进A种树苗10棵,B种树苗7棵;(2)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:17﹣x<x,购进A、B两种树苗所需费用为80x+60(17﹣x)=20x+1020,则费用最省需x取最小整数9,此时17﹣x=8,这时所需费用为20×9+1020=1200(元).答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1200元.点评:此题主要考查了一元一次不等式组的应用以及一元一次方程应用,根据一次函数的增减性得出费用最省方案是解决问题的关键.15.(2019•潍坊)为了援助失学儿童,初三学生李明从2019年1月份开始,每月一次将相等数额的零用钱存入已有部分存款的储蓄盒内,准备每6个月一次将储蓄盒内存款一并汇出(汇款手续费不计).已知2月份存款后清点储蓄盒内有存款80元,5月份存款后清点储蓄盒内有存款125元.(1)在李明2019年1月份存款前,储蓄盒内已有存款多少元?(2)为了实现到2019年6月份存款后存款总数超过1000元的目标,李明计划从2019年1月份开始,每月存款都比2019年每月存款多t元(t为整数),求t的最小值.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设李明每月存款x元,储蓄盒内原有存款y元,根据题意得两个等量关系:①储蓄盒内原有存款+2个月的存款=80元;储蓄盒内原有存款+5个月的存款=125元,根据等量关系可列出方程组,解可得答案;(2)首先计算出2019年共有的存款数,再由题意可得从2019年1月份开始,每月存款为(15+t)元;从2019年1月到2019年6月共有30个月,共存款30(15+t),再加上2019年共有的存款数存款总数超过1000元,由此可得不等式230+30(15+t)>1000,解出不等式,取符合条件的最小的整数值即可.解答:解:(1)设李明每月存款x元,储蓄盒内原有存款y元,依题意得,,解得,答:储蓄盒内原有存款50元,即在李明2019年1月份存款前,储蓄盒内已有存款50元;(2)由(1)得,李明2019年共有存款12×15+50=230元,2019年1月份后每月存入(15+t)元,2019年1月到2019年6月共有30个月,依題意得,230+30(15+t)>1000,解得t>10,所以t的最小值为11.答:t的最小值为11.点评:此题主要考查了二元一次方程组以及一元一次不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,再设出未知数列出方程组与不等式.16.(2019•铜仁地区)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?考点:一元一次不等式组的应用;二元一次方程组的应用.。

列不等式组解应用题一

列不等式组解应用题一

练习九:列不等式组解应用题知识整理:一、下列情况列一元一次不等式解应用题1.应用题中只含有一个不等量关系,文中明显存在着不等关系的字眼,如“至少”、“至多”、“不超过”等.(例1)2.应用题仍含有一个不等量关系,但这个不等量关系不是用明显的不等字眼来表达的,而是用比较隐蔽的不等字眼来表达的,需要根据题意作出判断.(例2)二、下列情况列一元一次不等式组解应用题1.应用题中含有两个(或两个以上,下同)不等量的关系.它们是由两个明显的不等关系体现出来,一般是讲两件事或两种物品的制作、运输等.(例3)2.两个不等关系直接可从题中的字眼找到,这些字眼明显存在着上下限。

(例4.)三、列一元一次不等式(组)解决实际问题,掌握解不等式应用题的步骤:(1)审题,分析题目中已知什么,求什么,明确各数量之间的关系(2)设适当的未知数(3)找出题目中的所有不等关系(4)列不等式组(5)求出不等式组的解集(6)写出符合题意的答案例题讲解:例1、为了能有效地使用电力资源,宁波市电业局从1月起进行居民峰谷用电试点,每天8:00至22:00用电千瓦时0.56元(“峰电”价),22:00至次日8:00每千瓦时0.28元(“谷电”价),而目前不使用“峰谷”电的居民用电每千瓦时0.53元.当“峰电”用量不超过...每月总电量的百分之几时,使用“峰谷”电合算?分析:本题的一个不等量关系是由句子“当‘峰电’用量不超过...每月总电量的百分之几时,使用‘峰谷’电合算”得来的,文中带加点的字“不超过...”明显告诉我们该题是一道需用不等式来解的应用题.例2、周未某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一段路程所用的时间之比为2:3.⑴直接写出甲、乙两组行进速度之比;⑵当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2千米.试问山脚离山顶的路程有多远?⑶在题⑵所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B处与乙组相遇.请你先根据以上情景提出一个相应的问题,再给予解答(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有已知条件).例3、已知服装厂现有A种布料70米,B种布料52米,现计划用这两种面料生产M,N两种型号的时装共80套.已知做一套M型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元;做一套N型号的时装需用A种布料1.1米,B种布料0.4米,可获利润50元.若设生产N型号码的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.(1)用含x的代数式表示出y,并求出x的取值范围;(2)服装厂在生产这批时装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?分析:本题存在的两个不等量关系是:①合计生产M、N型号的服装所需A 种布料不大于70米;②合计生产M、N型号的服装所需B种布料不大于52米.例4、某校为了奖励在数学竞赛中获胜的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足..3.本..设该校买了m本课外读物,有x名学生获奖.请回答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.分析:不等字眼“不足..3.本.”即是说全部课外读物减去5(x-1)本后所余课外读物应在大于等于0而小于3这个范围内.例5、某城市的出租汽车起步价为10元(即行驶距离在5千米以内都需付10元车费),达到或超过5千米后,每行驶1千米加1.2元(不足1千米也按1千米计).现某人乘车从甲地到乙地,支付车费17.2元,问从甲地到乙地的路程大约是多少?分析:本题采用的是“进一法”,对于不等关系的字眼“不足1千米也按1千米计”,许多同学在解题时都视而不见,最终都列成了方程类的应用题,事实上,顾客所支付的17.2元车费是以上限11公里来计算的,即顾客乘车的范围在10公里至11公里之间.理论上收费是按式子10+1.2(x-5)来进行的,而实际收费是取上限值来进行的.练习1:1、某次数学测验,共16个选择题,评分标准为:对一题给6分,错一题扣2分,不答不给分。

一元一次不等式组应用题练习

一元一次不等式组应用题练习

一元一次不等式(组)应用题练习一、选择题(每题5分,共25分)1、亮亮准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.设x个月后他至少有300元,则可以用于计算所需要的月数x的不等式是()A、30x-45≥300B、30x+45≥300C、30x-45≤300D、30x+45≤3002、初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数()A、至多6人B、至少6人C、至多5人D、至少5人3、2x+1是不小于-3的负数,表示为()A、-3≤2x+1≤0B、-3<2x+1<0;C、-3≤2x+1<0D、-3<2x+1≤04、现用甲、乙两种运输车将46t搞旱物资运往灾区,甲种运输车载重5t,乙种运输车载重4t,安排车辆不超过10辆,则甲种运输车至少应安排()A、4辆B、5辆C、6辆D、7辆5、(2007年佛山市)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A、1B、2C、3D、4二、填空题(每题5分,共15分)6、某试卷共有20道题,每道题选对得10分,选错了或者不选扣5分,至少要选对_____道题,其得分才能不少于80分。

7、某人10∶10离家赶11∶00的火车,已知他家离车站10公里,他离家后先以3公里/时的速度走了5分钟,然后乘公共汽车去车站,公共汽车每小时至少走______公里才能不误当次火车。

8、(2007年潍坊市)幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 _____件.三、解答题(每题10分,共60分)9、一个工程队原定在10天内至少要挖土600立方米,在前两天一共完成了120立方米,由于整个工程调整工期,要求提前两天完成挖土任务。

列一元一次不等式或不等式组解应用题

列一元一次不等式或不等式组解应用题

列一元一次不等式组解应用题题型一:列关于x的不等式组a<x<b的形式(例如分物品,分房间等问题)关键是找出a和b的值例1 一堆玩具分给若干个小朋友,若每人分3件,则剩余3件,若每人分5件,则每人都分到玩具,但有一个小朋友的玩具不足3件,则共有多少个小朋友?练习:1为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?2、实验学校为初一寄宿学生安排宿舍,若每间4人,则有20人无法安排,若每间8人,则有一间不空也不满,求宿舍间数和寄宿学生人数。

3、小记者团有48人要在某招待所住宿,招待所一楼没住客的客房比二楼少5间,如果全部住一楼,每间住5人,则住不满;每间住4人,则不够住,如果全部住在二楼,每间住4人,则住不满;每间住3人,则不够住。

招待所一楼和二楼各有几间尚未住客的客房?题型二:与二元一次方程组知识结合的题目(一般需要加入x≥0的条件)例2 某公司为了扩大经营,决定购进6台机器用于生产某种活塞。

现有甲、乙两种机器供选择,其中每种机34万元。

(1(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?练习:1、某公司为了扩大经营,决定购进5台机器用于生产某种活塞。

现有甲、乙两种机器供选择,其中每经过预算,本次购买机器所耗资金不能超过22万元。

(1)按该公司要求可以有几种购买方案?(2)若该公司购进的5台机器的日生产能力不能低于280个,那么为了节约资金应选择哪种方案?2、某超市销售有甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.题型三:有A、B两种物品,列不等式组的依据:以A、B为依据列不等式组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册列一元一次不等式(组)解应用题专项练习
列不等式(组)解应用题专项练习
1.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.
(1)求该校八年级学生参加社会实践活动的人数;
(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.
2.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.
(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?
(2)若购买这批鱼苗的钱不超过4200元,
应如何选购鱼苗?
(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选
购鱼苗?
3.为支持玉树搞震救灾,某市A、B、C三地现分别有赈灾物资100吨、100吨、80吨,需全部运往玉树重灾地区D、E两县,根据灾区情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨。

(1)求这赈灾物资运往D、E两县的数量各是多少?
(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B 地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍,其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨,则A、B两地的赈灾物资运往D、E两县的方案有几种?
(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:
为即时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?
4.某花农培育甲种花木2株,乙种花木3株,共
需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.
(1)求甲、乙两种花木每株成本分别为多少元?
(2)据市场调研,1株甲种花木售价为760元,1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?
5.近期以来,大蒜和绿豆的市场价格离奇攀升,
网民戏称为“蒜你狠”、“豆你玩”.以绿豆
为例,5月上旬某市绿豆的市场价已达16
元/千克.市政府决定采取价格临时干预措
施,调进绿豆以平抑市场价格.经市场调研
预测,该市每调进100吨绿豆,市场价格就
下降1元/千克.为了即能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克).问调进绿豆的吨数应在什么范围内为宜?
6.郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包价格比每本词
典多8元.用124元恰好可以买到3个书包和2本词典.
(1)每个书包和每本词典的价格各是多少元?
(2)郑老师计划用l000元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后.余下不少于l OO元且不超过120元的钱购买体育用品.共有哪几种购买书包和词典的方案?
7.某企业在生产甲、乙两种节能产品时需用A、
B两种原料,生产每吨节能产品所需原料的
数量如下表所示:
)
销售甲、乙两种产品的利润m(万元)与销售量n (吨)之间的函数关系如图所示.已知该企业生
产了甲种产品x吨和乙种产品y吨,共用去A原料200吨.
(1)写出x与y满足的关系式;
(2)为保证生产的这批甲种、乙种产品售后的总利润不少于220万元,那么至少要
用B原料多少吨?
列不等式(组)解应用题专项练习参考答案
1.解:(1)设单独租用35座客车需x 辆,
由题意得:
3555(1)45x x =--,
解得:5x =.
∴35355175x =⨯=(人).
答:该校八年级参加社会实践活动
的人数为175人. ··········· 3分
(2)设租35座客车y 辆,则租55座
客车(4y -)辆,由题意得:
3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤,
··························································· 6分 解这个不等式组,得111244
y ≤≤. ∵y 取正整数,
∴y = 2.
∴4-y = 4-2 = 2.
∴320×2+400×2 = 1440(元).
所以本次社会实践活动所需车辆
的租金为1440元. ·········· 8分
2.解:(1)设购买甲种鱼苗x 尾,则购买乙种鱼
苗(6000)x -尾,由题意得:
0.50.8(6000)3600x x +-= ……………
…………………………(1分)
解这个方程,得:4000x =
∴60002000x -=
答:甲种鱼苗买4000尾,乙种鱼
苗买2000尾. …………………(2分)

2)由题意得:0.50.8(6000)4200x x +-≤ ……………………………(3分)
解这个不等式,得: 2000x ≥
即购买甲种鱼苗应不少于2000
尾. ………………………………(4分)
(3)设购买鱼苗的总费用为y ,则
0.50.8(6000)0.34800y x x x =+-=-+ (5分)
由题意,有
909593(6000)6000100100100
x x +-≥⨯………………………(6分) 解
得: 2400x ≤………………………………………………
…………(7分)
在0.34800y x =-+中
∵0.30-<,∴y 随x 的增大而减少
∴当2400x =时,4080y =最小

即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.………(9分)
3.【答案】(1)180,100 (2)五种
(3)当41=x 时,总费用有最大值为60390元
4.【答案】(1)解:(1)设甲、乙两种花木的成本价分别为x 元和y 元.
由题意得:⎩
⎨⎧=+=+15003170032y x y x 解得:⎩⎨⎧==300400y x
(2)设种植甲种花木为a 株,则种植乙种花木为(3a+10)株.
(3) 则有:400300(310)30000(760400)(540300)(310)21600a a a a ++≤⎧⎨-+-+≥⎩ 解得:13
2709160≤≤a 由于a 为整数,∴a 可取18或19或20, 所以有三种具体方案:
①种植甲种花木18株,种植乙种花木
3a+10=64株;
②种植甲种花木19株,种植乙种花木
3a+10=67株;
③种植甲种花木20株,种植乙种花木3a+10=70株.
5.【答案】设调进绿豆x 吨,根据题意,得
1681001610.100x x -≥-≤⎧⎪⎪⎨⎪⎪⎩, 解得 600≤x ≤800.
答:调进绿豆的吨数应不少于600吨,并且不超过800吨.
6.【答案】(1)解:设每个书包的价格为x
元,则每本词典的价格为(x -8)元.根据题意得: 3 x +2(x -8)=124
解得:x =28.
∴ x -8=20.
答:每个书包的价格为28元,每本词典的价格为20元.
(2)解:设昀买书包y 个,则购买词典(40-y )本.根据题意得:
1000[232040]1001000[282040]120y y y y -+-⎧⎨-+-⎩(),().≥≤
解得:10≤y ≤12.5.
因为y 取整数,所以y 的值为10或11或12.
所以有三种购买方案,分别是:
①书包10个,词典30本;
②书包11个,词典29本;
③书包12个,词典28本.
7.【答案】解:(1)3x+y=200.
(2)销售每吨甲种产品的利润为3万元,销售每吨乙种产品的利润为2万元,
由题意,得3x+2y≥220, 200-y+2y≥220,∴y≥20
∴B原料的用量为3x+5y=200-y+5y=200+4y≥280
答:至少要用B原料280吨.。

相关文档
最新文档