第4章刚体的运动学和动力学
运动学与动力学的联系与区别
运动学与动力学的联系与区别运动学和动力学是物理学中两个重要的分支,它们研究的是物体的运动和力的作用。
虽然它们有一定的联系,但在研究的角度和方法上存在一些区别。
一、运动学运动学是研究物体运动的学科,主要关注物体的位置、速度、加速度等运动状态的描述和分析。
运动学研究的是物体的运动规律,而不涉及物体的受力情况。
在运动学中,我们可以通过描述物体的位移、速度和加速度来了解物体的运动情况。
运动学的基本概念包括位移、速度和加速度。
位移是指物体从一个位置到另一个位置的变化量,可以用矢量来表示。
速度是指物体在单位时间内位移的变化量,可以用矢量表示。
加速度是指物体在单位时间内速度的变化量,也可以用矢量表示。
通过这些概念,我们可以描述物体的运动状态和轨迹。
二、动力学动力学是研究物体运动的原因和规律的学科,主要关注物体的受力情况和力的作用效果。
动力学研究的是物体的运动原因和力的作用,通过分析物体所受的力和力的作用效果,来推导物体的运动规律。
动力学的基本概念包括力、质量和加速度。
力是物体之间相互作用的结果,可以改变物体的运动状态。
质量是物体所具有的惯性和受力效果的度量,是物体对外力的反应程度。
加速度是物体在受力作用下速度的变化率,可以通过牛顿第二定律来描述。
三、联系与区别虽然运动学和动力学是物理学中两个不同的分支,但它们之间存在着一定的联系和区别。
首先,运动学和动力学都是研究物体运动的学科,它们都关注物体的运动状态和运动规律。
运动学描述物体的运动状态,而动力学研究物体的运动原因和力的作用效果。
其次,运动学和动力学在研究的角度上存在一定的区别。
运动学主要关注物体的位置、速度和加速度等运动状态的描述和分析,而不涉及物体的受力情况。
动力学则研究物体的受力情况和力的作用效果,通过分析物体所受的力和力的作用效果,来推导物体的运动规律。
最后,运动学和动力学在研究的方法上也有一定的区别。
运动学主要使用几何和代数的方法来描述和分析物体的运动状态,如位移、速度和加速度。
分析刚体的运动学和动力学问题
分析刚体的运动学和动力学问题摘要本文主要介绍了刚体的运动学和动力学问题。
首先,我们介绍了刚体的概念及其特点,解释了什么是刚体运动学和动力学。
其次,我们详细讨论了刚体的运动学问题,包括刚体的位移、速度和加速度的计算方法,以及刚体的角位移、角速度和角加速度的计算方法。
然后,我们深入探讨了刚体的动力学问题,包括刚体的受力分析、刚体平衡条件的推导,以及刚体的动量和动能的计算方法。
最后,我们还介绍了一些常见的刚体运动学和动力学问题,并给出了相应的实例分析。
关键词:刚体,运动学,动力学,位移,速度,加速度,角位移,角速度,角加速度,受力分析,平衡条件,动量,动能1. 引言刚体是物理学中一个重要的概念,广泛应用于力学、工程、机械等领域。
刚体的运动学和动力学问题是研究刚体运动规律的基础,对于理解和应用刚体的运动行为具有重要意义。
2. 刚体的概念及特点刚体是指在外力作用下始终保持形状不变的物体,其内部各个点间的相对位置和相对距离不会发生变化。
刚体的特点是分子之间的相对位置保持不变,相互作用力保持不变,因此刚体具有固定的外形和尺寸。
3. 刚体运动学问题刚体运动学是研究刚体的位置、速度和加速度随时间变化的规律。
对于刚体的位移、速度和加速度的计算,我们可以从两方面来考虑:3.1 刚体的直线运动对于刚体的直线运动,我们可以利用刚体的质心来进行计算。
刚体的质心是所有质点的质量之和与各质点质量的加权平均值。
通过计算刚体的质心的位移、速度和加速度,我们可以得到刚体的直线运动规律。
3.2 刚体的转动运动对于刚体的转动运动,我们需要引入刚体的转动轴和转动角。
刚体的转动轴是通过刚体上的一个点且与刚体的质心相距一定距离的直线。
刚体的转动角是刚体围绕转动轴旋转过的角度。
通过计算刚体的转动角、角速度和角加速度,我们可以得到刚体的转动运动规律。
4. 刚体动力学问题刚体动力学是研究刚体受力分析、平衡条件和动量、动能的变化规律。
对于刚体的受力分析,我们可以利用牛顿第二定律和刚体的转动惯量来进行计算。
刚体的运动学与动力学问题练习
刚体的运动学与动力学问题练习刚体的运动学与动力学问题练习1.如图14—14所示,一个圆盘半径为R ,各处厚度一样,在每个象限里,各处的密度也是均匀的,但不同象限里的密度则不同,它们的密度之比为1ρ:2ρ:3ρ:4ρ=1:2:3:4,求这圆盘的质心位置.2.如图14—15所示,质量为m 的均匀圆柱体,截面半径为R ,长为2R .试求圆柱体绕通过质心及两底面边缘的转轴(如图中的1Z 、2Z )的转动惯量J .3.如图14—16所示,匀质立方体的边长为a ,质量为m .试求该立方体绕对角线轴PQ 的转动惯量J .4.椭圆细环的半长轴为A ,半短轴为B ,质量为m (未必匀质),已知该环绕长轴的转动惯量为A J ,试求该环绕短轴的转动惯量B J .5.如图14—17所示矩形均匀薄片ABCD 绕固定轴AB 摆动,AB 轴与竖直方向成30α=°角,薄片宽度AD d =,试求薄片做微小振动时的周期.6.一个均匀的薄方板,质量为M ,边长为a ,固定它的一个角点,使板竖直悬挂,板在自身的重力作用下,在所在的竖直平面内摆动.在穿过板的固定点的对角线上的什么位置(除去转动轴处),贴上一个质量为m 的质点,板的运动不会发生变化?已知对穿过板中心而垂直于板的轴,方板的转动惯量为216J Ma =. 7.如图14—18所示,两根等质量的细杆BC 及AC ,在C 点用铰链连接,质量不计,放在光滑水平面上,设两杆由图示位置无初速地开始运动,求铰链C 着地时的速度.8.如图14—19所示,圆柱体A 的质量为m ,在其中部绕以细绳,绳的一端B 固定不动,圆柱体初速为零地下落,当其轴心降低h 时,求圆柱体轴心的速度及绳上的张力.图14-14图14-15 图14-16 图14-17图14-18图14-199.如图14—20所示,实心圆柱体从高度为h 的斜坡上从静止纯滚动地到达水平地面上,继续纯滚动,与光滑竖直墙做完全弹性碰撞后返回,经足够长的水平距离后重新做纯滚动,并纯滚动地爬上斜坡,设地面与圆柱体之间的摩擦系数为μ,试求圆柱体爬坡所能达到的高度'h .10.在一个固定的、竖直的螺杆上的一个螺帽,螺距为s ,螺帽的转动惯量为J ,质量为m .假定螺帽与螺杆间的摩擦系数为零,螺帽以初速度0v 向下移动,螺帽竖直移动的速度与时间有什么关系?这是什么样的运动?重力加速度为g .11.在水平地面上有两个完全相同的均匀实心球,其一做纯滚动,质心速度v ,另一静止不动,两球做完全弹性碰撞,因碰撞时间很短,碰撞过程中摩擦力的影响可以不计.试求:(1)碰后两球达到纯滚动时的质心速度; (2)全部过程中损失的机械髓的百分数. 12.如图14—21所示,光滑水平地面上静止地放着质量为M 、长为l 的均匀细杆.质量为m 的质点以垂直于杆的水平初速度0v 与杆一端做完全非弹性碰撞.求(1)碰后系统的速度及绕质心的角速度,(2)实际的转轴(即静止点)位于何处?13.如图14—22所示,实心匀质小球静止在圆柱面顶点,受到微扰而自由滚下,为了令小球在θ≤45°范围内做纯滚动,求柱面与球间摩擦因数μ至少多大?14.如图14—23所示,半径为R 的乒乓球,绕质心轴的转动惯量223J mR =,m 为乒乓球的质量,以一定的初始条件在粗糙的水平面上运动,开始时球的质心速度为0C v ,初角速度为0?,两者的方向如图.已知乒乓球与地面间的摩擦因数为μ.试求乒乓球开始做纯滚动所需的时间及纯滚动时的质心速度.15.如图14—24所示,一个刚性的固体正六角棱柱,形状就像通常的铅笔,棱柱的质量为M ,密度均匀.横截面六边形的边长为a .六角棱柱相对于它的中心轴的转动惯量2512J Ma =.相对于棱边的转动惯量是'2512J Ma =.现令棱柱开始不均匀地滚下斜面.假设摩擦力足以阻止任何滑动,并且一直接触斜面.某一棱刚碰上斜面之前的角速度为i ?,碰后瞬间角速度为f ?,在碰撞前后瞬间的动能记为ki E 和kf E .试证明f i s ??=,kf ki E rE =,并求出系数s 和r 的值.图14-20图14-21图14-23 图14-22 图14-24参考答案1.先确定一半径为R 的1/4圆的匀质薄板的质心,如图答14—1所示,在xOy 坐标中,若质心坐标为(x c ,y c ),由对称性知x c =yc ,则根据质心的等效意义,有231lim cos()cos()sin()lim[sin 3()sin()]42222822nc x x i R x RiR iR iR iinnnnnnnππππππππ→∞→∞===+∑,于是有313sin()sin ()1432222lim [sin 3()sin()]lim[3222234sin() 4c x x n n R R n n x i i n n n nnπππππππ→∞→∞+=+=??1sin ()sin ()442222]43sin()4n n R n n nnππππππ++=.针对本题中圆盘各象限密度不同有下列方程22123412344()()443c R R R x ππρρρρρρρρπ+++=--+, 22123412344()()443c R R R y ππρρρρρρρρπ+++=--+,解以上方程得0c x =,815c y R π=-.故质心坐标为(0,815R π-).2.如图答14—2所示,对图中所示的1Z 、2Z 、Z 坐标系与3Z 、4Z 、Z 坐标系运用正交轴定理,有1234J J J J J J ++=++,其中2312JmR =,24712J mR =,由对称等效可知 2121324J J mR ==. 3.如图答14—3所示,将立方体等分为边长为2a的八个小立方体,每个小立方体体对角线到大立方体体对角线距离d ==,依照本专题例3用量纲分析法求解有22222()()6()()(82828m a m a m kma k k ??=++,所以有 16k =,21 6J ma =.图答14-11Z R2ZZ4Z3Z图答14-2图答14-34.由正交轴定理22()A B i iiJ J m x y +=+∑及椭圆方程22221y x A B+=,得22222222()(1)A B i i i A A A J J m A y y mA J B B +=-+=+-∑,所以222B A A J mA J B=-.5.如图答14—4所示,设板质量为M ,则对AB 轴的转动惯量2211lim ()3nn i M d J i Md n n →∞===∑,对应于与竖直成α角的转轴,等效的重力是与轴垂直的分量sin Mg α,则24T =. 6.薄板上未贴m 时对悬点的转动惯量22023J J Md Ma =+=, 贴m后22123J Ma mx =+.振动周期相同,应有01'()J J Mgl M m gl =+,贴上m 后,质心相对悬点'mx Mll M m+=+,l =,解得x =.7.初始时,系统具有的重力势能P E mgh =,m 为一根杆的质量,铰链C 刚着地时,速度C v 竖直向下,各杆的瞬时转轴为()A B ,转动惯量2/3J ml =,l 表示每段杆长:由于铰链C 质量不计,则系统总动能22221112()233C k Cv E J ml mv l ?===,下落中机械能守恒,有 213Cmgh mv =,mgh:得C v =. 8.如图答14—5所示,圆柱体关于几何轴的转动惯量212J mR =,对过与绳相切点P 的平行轴的转动惯量232P J m R =;设轴心降低h 时速度为v ,由机械能守恒定律 2213()24v mgh J mv R ==,所以v 又由质心运动定律mg T m R β-=,由转动定律2mgR mR β=.则13T mg =.9.纯滚动时,无机械能损失,于是满足方程2222113()2224mR v mgh mv mv R =+?=,圆柱体与光滑墙碰撞,开始做非纯滚动,经时间t 达到纯滚动,质心速度由'C C v v →,角速度从'C C v v R R →,运用动量定理及动量矩定理'()C C ft m v v =-,'2()2C C v v mR fRt R R =-,解得'3C C v v =,此后机械能守恒,联系第一式可得''234mgh mv =,得'9h h =10.由机械能守恒定律,得22220011()()22t t mgs J m v v ??=-+-,又因2v sπ=,可得图答14-4图答14-522'022224t m v v gs g s J m s π-==+,即螺帽匀加速直线下降'0t v v g t =+,'224m g g Jm sπ=+. 11.(1)如图答14—6所示,两球225mv J =,刚完成弹性碰撞时,两球交换质心速度,角速度未变;设两球各经1t 、2t 达到纯滚动状态,质心速度为1v 、2v ,对球1有11ft mv =,2112()5v mR v fRt R R =-,所以127v v =;对球2有22()ft m v v =-,22225v mR fRt R =,257v v =.(2)系统原机械能222211127()22510k mR v E mv mv R =+?=;达到纯滚动后2222221125122529()()()()277257770k v v mR v v E m mv =++?+=,则2041%49η=≈. 12.(1)碰后系统质心位置从杆中点右移为2m lx m M ?=+.由质心的动量守恒0()C mv M m v =+,求得质心速度0C mv v M m=+. (2)由角动量守恒202122l Ml lmv m x ??=+,x 为瞬时轴距杆右端的距离,考虑质心速度与角速度关系022()2()C v mv Ml m M x Ml x M m ?==+--+,在23x l =处,有06(4)mv M m l ?=+. 13.圆柱半径与小球半径分别以R 、r 表示,小球滚到如图14—7位置时,质心速度设为C v ,角加速度β,转动惯量225J mr =,受到重力mg 、圆柱面支持力N 、静摩擦力f ,由质心运动定律,有 2cos Cmv mg N R rθ-=+,①sin mg f m r θβ-=,②自转动定律有 225fr mr β=,③ 又因小球做纯滚动,摩擦力为静摩擦力不做功,球的机械能守恒 22221127()(1cos )()22510C C Cv mr mg R r mv mv r θ+-=+?=,④ 将③式代入②式得5sin 2f mg f mr mr θ-=,于是2sin 7f mg θ=;将④式代人①式得10()(1cos )cos 7()mg R r mg N R r θθ+--=+,所以1710(cos )77N mg θ=-.图答14-6图答14-7C因做滚动,必定f ≤N μ,即μ≥2sin 17cos 10θθ-,在θ≤45°范围内μ≈0.7.14.乒乓球与地接触点O 既滚又滑且达到纯滚时,由角动量守恒,得 00C C mRv J mRv J ??-=+,即002()3C C v v R ??-=+.达到纯滚动时C v R ?=,由此可得纯滚动质心的速度002233C C v v R ?=-;其中,002233C v R ?>,纯滚后球向右顺时针纯滚,若002233C v R ?<,则纯滚后球向左逆时针纯滚.质心匀加速滚动,达到纯滚时间设为t ,由0C C v v gt μ=-,可得002()5C v R t gμ+=. 15.设以某棱为轴转动历时t ?,角速度i f ??→,时间短,忽略重力冲量及冲量矩,矢量关系如图答14—8所示,对质心由动量定理 ()sin 6i f N t Ma π=+,()cos6f i f t Ma π-?=-.对刚体动量矩定理25cossin()6612f i f ta N ta Ma ππ-?=-.解得1117f i ??=,1117s =,2121 289r s ==.图答14-8。
刚体动力学
刚体动力学
刚体动力学是指研究力和质量对刚体运动的影响,它涉及物理
和数学,主要研究力对物体运动的影响。
它广泛应用于工程和物理领域,用于描述物体在局部或全局中的运动状态。
如何利用运动学理论
来分析和解释物理世界中物体的运动轨迹,最终揭示物体运动的物理
原理至关重要。
在刚体动力学的概念中,物体的运动被建模为一种力对对对象的
瞬时影响。
通过应用力,物体的运动可以得到估计。
瞬时力是指在特
定时空会给物体造成瞬时影响的力。
可以从特征定律出发,将其用于
物体运动分析。
这些定律涉及到物理力学,牛顿力学和拉普拉斯力学,上述定律可将物体的运动状态的分类。
与此同时,通过测量物体的加
速度、速度和位移,有可能解释其运动轨迹,解析物体的运动和定义
有关的物理参数,这些物理参数的累积可以描述物体的运动状态,从
而揭示物体运动的原理。
刚体动力学的原理也可以用来处理运动学中更加抽象的问题,例
如变换,尤其是物体受力时联合受力的问题。
此外,它还可以用于研
究物理系统中某些复杂的力的运动模式,包括动量、角动量、能量和
声学等。
可以说,它是物理上最基本的模型,用于解释物体的局部或
全局运动。
利用刚体动力学的原理,可以研究物体运动在各种复杂条
件下的变化,从而揭示物体运动的物理原理。
大学刚体知识点总结
大学刚体知识点总结一、刚体的概念和基本性质1. 刚体的基本概念刚体是指在运动或受力作用时,其内部各个部分之间的相对位置保持不变的物体。
刚体的定义包括两个方面:一是刚体的形状和大小在所讨论的现象中不发生改变;二是刚体内各点的相对位置在所讨论的现象中也不发生改变。
这意味着刚体是刚性的,并且不会发生形变。
2. 刚体的基本性质(1)刚性:刚体的所有部分在相互作用下保持相对位置不变,不发生相对位移或形变,这就是刚体的基本性质之一。
(2)刚体的自由度:刚体的自由度是指刚体可以自由运动的最少独立坐标数。
刚体的自由度可以通过不同类型的运动来描述,包括平动、转动和复合运动。
(3)刚体的质心:刚体的质心是指一个质点,它等效于整个刚体对于外力的作用。
在某些情况下,刚体可以看作是一个质点,其运动和受力可以通过质心来描述。
二、刚体的平动1. 刚体的平动运动在刚体的平动运动中,刚体上的各个点都以相同的速度和方向移动。
平动运动可以通过刚体的速度和加速度来描述,它是刚体运动的一种常见形式。
2. 刚体的平动运动描述(1)刚体的平动速度:刚体上的各个点的速度大小和方向相同,这就是刚体的平动速度。
刚体的平动速度可以通过质点运动方程或者质心运动方程来描述。
(2)刚体的平动加速度:刚体上的各个点的加速度大小和方向相同,这就是刚体的平动加速度。
刚体的平动加速度可以通过质点加速度方程或者质心加速度方程来描述。
(3)刚体的平动运动学问题:刚体的平动运动学问题包括刚体的位移、速度、加速度等相关内容,它们可以通过运动学方法来解决。
三、刚体的转动1. 刚体的转动运动在刚体的转动运动中,刚体围绕固定轴旋转。
转动运动是刚体运动的另一种常见形式,它可以通过角度和角速度来描述。
2. 刚体的转动运动描述(1)刚体的角度和角速度:刚体围绕固定轴旋转时,可以通过角度和角速度来描述。
角度是指刚体围绕轴线旋转的角度,角速度是指刚体围绕轴线旋转的角度变化率。
(2)刚体的转动惯量:刚体围绕轴线旋转时,需要通过转动惯量来描述其转动惯性。
高等教育:刚体19952
注意:对同轴的转动惯量 才具有可加减性。
J
R
dJ
0
2mr 4dr R3
2 5
mR2
30
一些均匀刚体的转动惯量表
31
四:平行轴定理
J D JC md 2
d
m
D
C
32
练习 求长 L、质量 m 的均匀杆对 z 轴的转动惯量
z
A
mB
L4 o C
L
Jz
l 2dm 3L 4 m l 2dl 7 mL2
L 4 L
48
解二:
Jz
J oA
J oB
1 3
m 4
L 4
2
1 3
3m 4
3L 4
2
7 48
mL2
解三:
Jz
JC
m
L 4
2
1 12
mL2
m
L 4
2
7 48
mL2
33
§4-3 角动量 角动量守恒定律
一、质点的角动量定理和角动量守恒定律
数为 ,求 m1 下落的加速度和两段绳中的张力。
m2
ro m
m1
解:在地面参考系中,选取 m1 、m2 和滑轮为研究对
象,分别运用牛顿定律和刚体定轴转动定律得:
19
T1
m1
a
m1g
a
N
m2 g m2
T2
m2 g
T2
向里+
Ny
o
Nx
T1
列方程如下: 可求解
刚体力学概要
d
dt
r
dr dt
(4.9)
其中: a A —基点A平动加速度;
d r
dt
—P点绕转动瞬轴转动的加速度(沿切向);
( r ) —P点绕转动瞬轴转动的向轴加速度。
(4.8)和(4.9)式是刚体一般运动时刚体上任意点的速度和加速度 公式,是处理刚体运动学问题的基础。
xc2
•
xc
/
R
mg
s in
•
R
xc
2 3
g sin
(4) 用质心运动定理和对质心的角动量定理求约束力
mxc mg sin F
0 mg cos FN Ic RF
xc R
由以上四式,可得法向约束反力 FN 和切向约束反力 F :
FN mg cos
F
1 mg s in
·瞬时转轴法
p rop
式中 是刚体(动系)绕瞬时转轴转动角速度,rop 为P点相对于瞬时转轴
的⊥位矢。
[例1]半径为R的轮子在直线轨道上匀速只滚不滑(纯滚动),质心C
的速度为 ,0求轮子边缘上任一点P的速度和加速度。
解:(1)用基点法 求 p
c 0 R, rcp R
由图知,
p 20 cos 20 sin
刚体是个特殊的质点系,因此质点系的动量定理、角动量定理和动
能定理对刚体也适用。刚体的一般运动可视为质心C(基点)的平动与绕
质心的转动的合成。质心的运动服从质心系的质心运动规律
m d c
dt
Fi(e )
i
(4.15)
绕质心的转动由角动量定理决定:
dL dt
ri
i
Fi( e )
(4.16)
刚体力学刚体动力学举例
2
2
1 M zdt 1 M zd
T
1 2
x
y
z
I xx
I yx
I
zx
I xy I yy Izy
I xz x I yz y I zz z
T
1 2
I z
2
刚体的动能定理可表示为:A
Jo
1 4
mR2( 2k
21k')
(六) 动能定理
五、 刚体动力学—动能定理
对于刚体来说,由于内力功的代数和为零,故动能
定理可表为: W e T T2 T1
①刚体动能的一般表示 — 柯尼希定理
T
i
1 2
mi ri
ri
1 2
mrc
rc
2 1
M zd
1 2
I
2
z2
1 2
I
2
z1
机械能守恒:
1 2
I zz 2
V
E
(5) 刚体的重力势能
刚体的定轴转动
对于一个不太大的质量为 m 的物体,它的重
力势能应是组成刚体的各个质点的重力势能之和
即:
质心高度为:
hc
mihi
m
Ep mghc
若只有保守力做功
E
mghc
刚体的定轴转动
刚体的定轴转动
(4) 定轴转动的动能定理
对定轴转动的情况,假设 k ,则:
W e
2 2 F dr F vdt
刚体动力学 有限元
刚体动力学是研究刚体运动的力学学科。
刚体是指形状和大小在运动过程中保持不变的物体,刚体动力学研究刚体在受力作用下的运动规律和动力学特性。
刚体动力学主要包括以下几个方面:
运动学:研究刚体的位移、速度和加速度等与时间的关系,描述刚体的运动状态。
动力学方程:根据牛顿第二定律,建立刚体的动力学方程,描述刚体受到的力和加速度之间的关系。
转动运动:研究刚体绕固定轴进行转动的规律,包括转动惯量、角速度、角加速度等的计算和分析。
能量与动量守恒:研究刚体运动过程中的能量守恒和动量守恒定律,用于分析刚体的碰撞、旋转和平移等情况。
有限元方法(Finite Element Method,简称FEM)是一种数值计算方法,广泛应用于工程和科学领域,包括力学、结构分析、流体力学等。
有限元方法将连续的物体或结构分割成有限数量的小单元,通过求解这些小单元的力学方程,得到整个物体或结构的力学行为。
在刚体动力学中,有限元方法可以用于建立刚体的数学模型,通过将刚体分割成有限数量的单元,利用数值计算方法求解刚体的运动和力学响应。
这种方法可以有效地模拟复杂的刚体运动和受力情况,帮助分析和优化刚体系统的设计和性能。
有限元方法在刚体动力学中的应用包括刚体结构的动力学分析、碰撞和撞击的模拟、机械系统的优化等。
它提供了一种灵活、高效的数值计算工具,用于解决刚体动力学问题和工程实践中的设计和分析任务。
刚体动力学运动学问题专题讲解
Ml s lS mM
lS
ml S mM
例2质心运动定律来讨论以下问题
一长为l、密度均匀的柔软链条,其单位长度 的质量为λ.将其卷成一堆放在地面.若手提 链条的一端,以匀速v 将其上提.当一端被提 离地面高度为 y 时,求手的提力.
y y yC o
F
c
解:建立图示坐标系
i 竖直方向作用于链条的合外力为
例3
设有一质量为2m的弹丸,从地面斜抛出去,它飞行在
最高点处爆炸成质量相等的两个碎片,其中一个竖直自由下落,另 一个水平抛出,它们同时落地.问第二个碎片落地点在何处?
解:选弹丸为一系统,爆炸前、 后质心运动轨迹不变.建立 图示坐标系.
2m O
m
m1 m2 m x1 0
xC为弹丸碎片落地时质心 离原点的距离. xC
xC
C
xC
m x
x2
m1 x1 m2 x2 m1 m2
x2 2 xC
7
/12
2. 质心运动定理 dri mi miv i drc d t • 质心的速度 vc dt m m
P mvc —— 质点系的总动量
Pi m
•
质心的加速度和动力学规律
v R
4m gh 2m M R
例题3 一质量为m、半径为R的均质圆柱,在水 平外力作用下,在粗糙的水平面上作纯滚动,力 的作用线与圆柱中心轴线的垂直距离为l,如图所 示。求质心的加速度和圆柱所受的静摩擦力。 解:设静摩擦力 f 的方向如 图所示,则由质心运动方程
l ac
F
圆柱对质心的转动定律:
二、质心
1. 质心
质心运动定理
刚体的转动知识点总结
一、刚体的基本概念1. 刚体的定义:刚体是一个质点系列,这些质点之间的相对位置在任意时刻都是固定的,不会改变。
2. 刚体的运动方式:除了平动外,刚体还可以进行转动运动。
3. 刚体的主要特征:刚体在转动运动中的主要特征是角位移、角速度和角加速度。
二、刚体的转动定律1. 牛顿第一定律在转动中的应用:刚体静止或匀速转动时,对固定轴的力矩为零。
2. 牛顿第二定律在转动中的应用:刚体转动的加速度和力矩之间的关系。
3. 牛顿第三定律在转动中的应用:力矩的作用对应地产生反作用力矩。
三、刚体的转动运动学1. 角度和弧度的关系:1弧度对应角度2pi,即1弧度=180°/π。
2. 角速度和角位移的关系:角位移是角速度随时间的积分。
3. 角加速度和角速度的关系:角加速度是角速度随时间的导数。
4. 刚体的角度运动学方程:θ=θ0+ω0t+1/2αt²,ω=ω0+αt,ω²=ω0²+2α(θ-θ0)。
四、刚体的转动动力学1. 转动惯量的概念:刚体对任意轴的转动惯量是对角速度与角动量之间关系的比较重要的物理量。
2. 转动惯量与质量的关系:转动惯量与质量和物体形状有关,质量越大,转动惯量越大。
3. 转动惯量的计算方法:在一个轴上转动的刚体对该轴的转动惯量的计算方法是对每个质点的质量进行求和。
4. 牛顿第二定律在转动中的适用条件:转动惯量与角加速度的关系。
五、刚体的转动运动与平动的转换1. 垂直平动和转动的关系:刚体在平动运动中的质心对其转动惯量有影响。
2. 能量守恒在转动中的应用:刚体在转动运动中的动能和势能之间的转换过程与保守力的性质有关。
1. 刚体的转动平衡条件:刚体在平衡时,合外力和合力矩均为零。
2. 刚体的稳定条件:刚体在平衡时,摆子有稳定和不稳定平衡之分。
以上便是刚体的转动知识点总结,这些知识点涵盖了刚体的基本概念、转动定律、转动运动学、转动动力学、转动运动与平动的转换以及转动稳定性等内容。
4第四章 刚体的定轴转动
第 1 讲 刚体的定轴转动
预习要点 1. 理解刚体的运动; 2. 掌握描述刚体定轴转动的运动学方法; 3. 理解力矩的概念及力矩的功;
式中 mi ri2 表示第i个质点对转轴的转动惯量;
对质量连续分布的刚体,任取质量元 dm ,其到轴的
距离为 r ,则转动惯量:
J r2dm 单位:kg ·m2
若系统由多个刚体组成,则系统对转轴的总转动惯量, 等于各部分对同一转轴的转动惯量之和
一个长为4L的轻杆,连有两个质量都是m的小球(大小可 忽略),此系统可绕垂直于杆的轴转动,求下列转动惯量;
在转动平面内,O为转动平面与转轴的焦点,r 为从O 点指向
M 力的作用点 A 的位矢,两矢量的夹角为 ;
力 F 对定轴 OZ 的力矩 :
(力臂:力的作用线到转轴的距离)
z
M Z Fd Fr sin
通常,从OZ轴正向俯视,有 逆时针转动(趋势)力矩为正, 反之为负;
单位:牛·米(N ·m)
F
Or
例:一轻绳跨过一轴承光滑的定滑轮,绳的两端分别悬
有质量为m1和m2的物体,滑轮可视为均质圆盘, 质量 为m,半径为r,绳子不可伸长而且与滑轮之间无相对 滑动.求物体加速度、滑轮转动的角加速度和绳子的张
力. 设 m2 m1
解: 受力分析如图:
FT1 m1g m1a m2g FT2 m2a
FT2R FT1R J a r
m2
)
gl
sin
α
刚体运动学、转动惯量、定轴转动
02
转动惯量
转动惯量的定义与计算
转动惯量的定义
转动惯量是描述刚体绕某轴转动惯性的物理量,其大小与刚体的质量分布和转 轴的位置有关。
转动惯量的计算
对于给定的刚体,可以计算出其绕不同轴的转动惯量。常用的计算方法有平行 轴定理、垂直轴定理和惯性积定理等。
角速度
描述刚体转动快慢的物理量,方向与转动轴线一致,单位为 弧度/秒。
角加速度
描述刚体转动角速度变化快慢的物理量,单位为弧度/秒²。
定轴转动的动力学方程
动力学方程
刚体的转动惯量与所受外 力矩之间的关系,表示刚 体转动状态变化的规律。
转动惯量
描述刚体转动惯性的物理 量,与刚体的质量分布和 转轴位置有关。
HANKS
感谢观看
刚体的运动形式
平动
刚体的整体相对于某参考系作平行于 某一直线的运动。
转动
刚体绕某一直线或某一固定点作圆周 运动。
刚体运动学的基本定理
牛顿第一定律
任何物体都保持其静止或匀速直线运动的状态, 除非有外力作用于它迫使它改变这种状态。
牛顿第二定律
物体的加速度与作用力成正比,与物体的质量成 反比。
牛顿第三定律
转动惯量的性质
01
02
03
转动惯量是标量
转动惯量只有大小,没有 方向,是一个标量。
转动惯量的正定性
转动惯量总是大于等于零, 即 J ≥ 0。
转动惯量的对称性
对于质量均匀分布的刚体, 其绕主轴的转动惯量最小。
转动惯量在动力学中的应用
1 2
刚体定轴转动的角动量守恒
对于不受外力矩作用的刚体,其绕定轴转动的角 动量是守恒的,即 L = Jω = 常数。
《刚体运动学》课件
理解定轴转动的定义和性质是掌握刚体运动学的基础。
详细描述
定轴转动是指刚体绕某一固定轴线旋转的刚体运动,具有角速度和角加速度两个重要的物理量。刚体在定轴转动 时,其上任意一点都以相同的角速度和角加速度绕轴线旋转。
定轴转动的合成与分解
总结词
掌握定轴转动的合成与分解是解决刚体动力学问题的关键。
详细描述
合成与分解的方法
通过选择合适的参考系和坐标系,利用矢量合成 和分解的方法进行计算。
刚体的定点平面运动
定义:刚体绕某一固定点在平 面内作圆周运动或椭圆运动。
描述参数:刚体的位置、速度 和加速度可以用定点、角位移 、角速度和角加速度等参数描
述。
动力学方程:根据牛顿第二定 律和刚体的转动定理,建立定 点平面运动的动力学方程。
在物理学中的应用
01
力学
刚体运动学是力学的一个重要分支,用于研究刚体的运动规律和力学性
质。通过刚体运动学分析,可以了解物体在不同力场作用下的运动状态
和变化规律。
02
天体物理学
在天体物理学中,刚体运动学用于研究天体的运动和演化。通过对天体
的刚体运动进行分析,可以了解天体的轨道、速度和加速度等运动参数
要点二
分解
空间运动的分解是指将一个复杂的运动分解为若干个简单 的运动。
刚体的定点空间运动
定义
刚体的定点空间运动是指刚体绕一个固定点在空间中的 旋转运动。
性质
定点空间运动具有旋转轴、旋转角速度和旋转中心等物 理量,其运动状态可以通过这些物理量来描述。
06
刚体运动学的应用
在工程中的应用
机械工程
刚体运动学在机械工程中广泛应用于机构分析和设计,如连杆机构、凸轮机构和齿轮机构等。通过刚体运动学分析, 可以确定机构的运动轨迹、速度和加速度,优化机构设计。
刚体物理知识点总结
刚体物理知识点总结一、刚体的定义及特性1. 刚体的定义刚体是指在外力作用下,形状和尺寸不发生变化的物体。
一般来说,刚体是指没有内部相对运动的物体。
2. 刚体的特性刚体有以下几个特性:a. 物体的形状和尺寸在运动过程中不发生变化;b. 物体的不同部分之间不发生相对位移;c. 在极端条件下,刚体也会发生形变,但可以看作是不可压缩的。
二、刚体的平动和转动1. 刚体的平动刚体的平动是指刚体作直线运动的情况。
在平动的过程中,刚体上各点的速度都是相同的,这是因为刚体的各点不能相对位移,所以只能做整体平移运动。
2. 刚体的转动刚体的转动是指刚体作圆周运动的情况。
在转动的过程中,刚体各点的速度和加速度都不相同,这是因为刚体的各点在转动时会有相对位移,出现了圆周运动。
三、刚体的运动学1. 刚体的位移刚体的位移是指刚体某一点经过一定时间后的位置变化,可以用矢量来表示。
2. 刚体的速度刚体的速度是指刚体某一点的位移随时间的变化率,通常表示为瞬时速度或平均速度。
3. 刚体的加速度刚体的加速度是指刚体某一点的速度随时间的变化率,可以用矢量来表示。
4. 刚体的角位移、角速度和角加速度在刚体的转动运动中,还涉及到角位移、角速度和角加速度的概念。
角位移是指刚体某一点的角度随时间的变化量,角速度是指刚体某一点的角位移随时间的变化率,而角加速度是指刚体某一点的角速度随时间的变化率。
四、刚体的动力学1. 牛顿定律在刚体运动中的应用刚体的运动过程中会受到外力的影响,根据牛顿定律可以得到刚体的运动规律。
在刚体的运动过程中,如果受到的合外力不为零,刚体将发生加速度,根据牛顿第二定律可以得到加速度的大小和方向。
2. 刚体的转动惯量和角动量在刚体的转动运动中,需要引入转动惯量和角动量的概念。
转动惯量是衡量刚体抵抗转动的能力大小,它是刚体的质量分布和转动轴的位置决定的。
角动量是刚体的转动运动的物理量,它是刚体的转动惯量和角速度的乘积。
3. 常见刚体的运动条件在刚体的运动过程中,还需要考虑摩擦力、滚动摩擦力、空气阻力等对刚体运动的影响。
分析刚体的运动学和动力学问题
分析刚体的运动学和动力学问题下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!刚体是物理学中的一个重要概念,它在运动学和动力学中起着重要的作用。
刚体的运动学与动力学问题
刚体的运动学与动力学问题文/沈晨编者按中国物理学会全国中学生物理竞赛委员会2000年第十九次会议对《全国中学生物理竞赛内容提要》作了一些调整和补充,并决定从2002年起在复赛题与决赛题中使用提要中增补的内容.为了给准备参赛的学生提供有关信息,帮助选手们尽快熟悉与掌握《竞赛提要》增补部分的物理知识,给辅导学生参赛的教师提供方便,本刊编辑部特约请特级教师沈晨老师拟对相对集中的几块新补内容划分成“刚体的运动与动力学问题”、“狭义相对论浅涉”、“波的描述和波现象”、“热力学定律”四个专题,分别介绍竞赛涉及的知识内容,例说典型问题与方法技巧,推介竞赛训练精题、名题和趣题.本刊将从本期开始连载四期,供老师们参考.《中学物理教学参考》编辑部约请笔者就复赛和决赛中新增补的内容作专题讲座,如何进行教学,笔者自身也正在探索之中,整个资料还只是一个雏形,呈献给大家是希望与广大同行交流切磋,以及能为更多的物理人才的脱颖而出作一点微薄的努力.一、竞赛涉及有关刚体的知识概要1.刚体在无论多大的外力作用下,总保持其形状和大小不变的物体称为刚体.刚体是一种理想化模型,实际物体在外力作用下发生的形变效应不显著可被忽略时,即可将其视为刚体,刚体内各质点之间的距离保持不变是其重要的模型特征.2.刚体的平动和转动刚体运动时,其上各质点的运动状态(速度、加速度、位移)总是相同的,这种运动叫做平动.研究刚体的平动时,可选取刚体上任意一个质点为研究对象.刚体运动时,如果刚体的各个质点在运动中都绕同一直线做圆周运动,这种运动叫做转动,而所绕的直线叫做转轴.若转轴是固定不动的,刚体的运动就是定轴转动.刚体的任何一个复杂运动总可看做平动与转动的叠加,刚体的运动同样遵从运动独立性原理.3.质心质心运动定律质心这是一个等效意义的概念,即对于任何一个刚体(或质点系),总可以找到一点C,它的运动就代表整个刚体(或质点系)的平动,它的运动规律就等效于将刚体(或质点系)的质量集中在点C,刚体(或质点系)所受外力也全部作用在点C时,这个点叫做质心.当外力的作用线通过刚体的质心时,刚体仅做平动;当外力作用线不通过质心时,整个物体的运动是随质心的平动及绕质心的转动的合成.质心运动定律物体受外力F作用时,其质心的加速度为aC,则必有F=maC,这就是质心运动定律,该定律表明:不管物体的质量如何分布,也不管外力作用点在物体的哪个位置,质心的运动总等效于物体的质量全部集中在此、外力亦作用于此点时应有的运动.4.刚体的转动惯量J刚体的转动惯量是刚体在转动中惯性大小的量度,它等于刚体中每个质点的质量mi与该质点到转轴的距离ri的平方的乘积的总和,即J=miri2.从转动惯量的定义式可知,刚体的转动惯量取决于刚体各部分的质量及对给定转轴的分布情况.我们可以利用微元法求一些质量均匀分布的几何体的转动惯量.5.描述转动状态的物理量对应于平动状态参量的速度v、加速度a、动量p=mv、动能Ek=(1/2)mv2;描述刚体定轴转动状态的物理量有:角速度ω角速度的定义为ω=Δθ/Δt.在垂直于转轴、离转轴距离r处的线速度与角速度之间的关系为v=rω.角加速度角加速度的定义为α=Δω/Δt.在垂直于转轴、离转轴距离r处的线加速度与角加速度的关系为at=rα.角动量L角动量也叫做动量矩,物体对定轴转动时,在垂直于转轴、离转轴距离r处某质量为m的质点的角动量大小是mvr=mr2ω,各质点角动量的总和即为物体的角动量,即L=miviri=(miri2)ω=Jω.转动动能Ek当刚体做转动时,各质点具有共同的角速度ω及不同的线速度v,若第i个质点质量为mi,离转轴垂直距离为ri,则其转动动能为(1/2)mivi2=(1/2)miri2ω2,整个刚体因转动而具有的动能为所有质点的转动动能的总和,即Ek=(1/2)(miri2)ω2=(1/2)Jω2.6.力矩M力矩的功W冲量矩I如同力的作用是使质点运动状态改变、产生加速度的原因一样,力矩是改变刚体转动状态、使刚体获得角加速度的原因.力的大小与力臂的乘积称为力对转轴的力矩,即M=Fd.类似于力的作用对位移的累积叫做功,力矩的作用对角位移的累积叫做力矩的功.恒力矩M的作用使刚体转过θ角时,力矩所做的功为力矩和角位移的乘积,即A=Mθ.与冲量是力的作用对时间的累积相似,力矩的作用对时间的累积叫做冲量矩,冲量矩定义为力矩乘以力矩作用的时间,即I=MΔt.7.刚体绕定轴转动的基本规律转动定理刚体在合外力矩M的作用下,所获得的角加速度与合外力矩大小成正比,与转动惯量J成反比,即M=Jα.如同质点运动的牛顿第二定律可表述为动量形式,转动定理的角动量表述形式是M=ΔL/Δt.转动动能定理合外力矩对刚体所做的功等于刚体转动动能的增量,即W=(1/2)Jω12-(1/2)Jω02.该定理揭示了力矩作用对角位移的积累效应是改变刚体的转动动能.角动量定理转动物体所受的冲量矩等于该物体在这段时间内角动量的增量,即MΔt=L1-L0=Jωt-Jω0.该定理体现了力矩作用的时间积累效应是改变刚体转动中的动量矩.角动量守恒定律当物体所受合外力矩等于零时,物体的角动量保持不变,此即角动量守恒定律.该定律适用于物体、物体组或质点系当不受外力矩或所受合外力矩为零的情况.在运用角动量守恒定律时,要注意确定满足守恒条件的参照系.如果将上述描述刚体的物理量及刚体的运动学与动力学规律与质点相对照(如表1所示),可以发现它们极具平移对称性,依据我们对后者的熟巧,一定可以很快把握刚体转动问题的规律.表1速度v v=Δs/Δt 角速度ω ω=Δθ/Δt加速度a a=Δv/Δt 角加速度α α=Δω/Δt匀速直线运动 s=vt匀角速转动 θ=ωt匀变速直线运动 v1=v0+at s=v0t+(1/2)at2vt2-v02=2as 匀变速转动 ω1=ω0+αt θ=ω0t+(1/2)αt2ωt2-ω02=2αθ牛顿第二定律 F=ma 转动定理 M=Jα 动量定理Ft=mvt-mv0(恒力)角动量定理 Mt=Jωt-Jω0 动能定理Fs=(1/2)mvt2-(1/2)mv02转动动能定理Mθ=(1/2)Jωt2-(1/2)Jω02动量守恒定律 mv=常量角动量守恒定律Jω=常量二、确定物体转动惯量的方法 物体的转动惯量是刚体转动状态改变的内因,求解转动刚体的动力学问题,离不开转动惯量的确定.确定刚体的转动惯量的途径通常有:1.从转动惯量的定义来确定对于一些质量均匀分布、形状规则的几何体,计算它们关于对称轴的转动惯量,往往从定义出发,运用微元集合法,只需要初等数学即可求得.例1 如图1所示,正六角棱柱形状的刚体的质量为M,密度均匀,其横截面六边形边长为a.试求该棱柱体相对于它的中心对称轴的转动惯量.图1分析与解 这里求的是规则形状的几何体关于它的中心对称轴的转动惯量.从转动惯量的定义出发,我们可将棱柱沿截面的径向均匀分割成n(n→∞)个厚度均为(/2)·(a/n)、棱长为l的六棱柱薄壳,确定任意一个这样的薄壳对中心轴的元转动惯量Ji,然后求和即可,有J=Ji.图2现在,先给出一矩形薄板关于与板的一条边平行的轴OO′的转动惯量.板的尺寸标注如图2所示,质量为m且均匀分布,轴OO′与板的距离为h,沿长为b的边将板无限切分成n条长为l、宽为b/n的窄条,则有J板=lim(m/bl)·(b/n)·l[h2+(ib/n)2]=m[(h2/n)+(i2/n3)b2]=m(h2+(b2/3)).回到先前的六棱柱薄壳元上,如图1所示,由对称性可知其中第i个薄壳元的hi=ia/2n,b=ia/2n.薄壳元对轴OO′的转动惯量是12J板,即Ji=12ρl(a/2n)(ia/2n)[(ia/2n)2+(1/3)(ia/2n)2].式中,ρ是六棱柱体的密度,即ρ=M/6×(1/2)·a2·(/2)l=2M/3a2l.则六棱柱体对中心对称轴OO′的转动惯量为J=12ρl·(a/n)·(/2)·(ia/2n)[((ia/n)·(/2))2+(1/3)(ia/2n)]=12ρl·(a4/4)·(i3/n4)·[3/4+1/12]=(5Ma2/3)i3/n4=(5Ma2/3)(1/n4)(13+23+…+n3)=(5Ma2/3)(1/n4)·(n2(n+1)2/4)=5Ma2/12.2.借助于平行轴定理在刚体绕某点转动时,需对过该点的轴求转动惯量,借助于平行轴定理,可以解决这样的问题:已知刚体对过质心的轴的转动惯量,如何求对不通过质心但平行于过质心转轴的轴的转动惯量.平行轴定理:设任意物体绕某固定轴O的转动惯量为J,绕过质心而平行于轴O的转动惯量为JC,则有J=JC+Md2,式中d为两轴之间的距离,M为物体的质量.图3证明:如图3所示,C为过刚体质心并与纸面垂直的轴,O为与它平行的另一轴,两轴相距为d,在与轴垂直的平面内以质心C为原点,过CO的直线为x轴,建立xCy坐标系.Mi代表刚体上任一微元的质量,它与轴C及轴O的距离依次为Ri和ri,微元与质心连线与x轴方向的夹角为θi,由转动惯量的定义知,刚体对轴O的转动惯量应为J=miri2=mi(Ri2+d2-2dRicosθ)=miRi2+mid2-2dmiRicosθi.上式中第一项即为刚体对质心C的转动惯量JC;第二项J=mid2=d2mi=Md2,M是刚体的总质量;而第三项中miRicosθi=mixi,xi是质量元在xCy平面坐标系内的x坐标,按质心的定义,有mixi=0,所以J=JC+Md2.在上述例1中,我们已求得正六棱柱关于其中心轴的转动惯量,利用平行轴定理,我们还可求得六棱柱相对于棱边的转动惯量为J′=(5/12)Ma2+Ma2=(17/12)Ma2.3.运用垂直轴定理对任意的刚体,任取直角三维坐标系Oxyz,刚体对x、y、z轴的转动惯量分别为Jx、Jy、Jz,可以证明Jx+Jy+Jz=2miri2,ri是质元到坐标原点的距离.图4证明:如图4所示,质元mi的坐标是xi、yi、zi,显然,ri2=xi2+yi2+zi2.而刚体对x、y、z轴的转动惯量依次为Jx=mi(yi2+zi2),Jy=(xi2+zi2),Jz=mi(xi2+yi2).则Jx+Jy+Jz=2mi(xi2+yi2+zi2)=2miri2.这个结论就是转动惯量的垂直轴定理,或称正交轴定理.这个定理本身及其推导方法对转动惯量求解很有指导意义.例2从一个均匀薄片剪出一个如图5所示的对称的等臂星.此星对C轴的转动惯量为J.求该星对C1轴的转动惯量.C和C1轴都位于图示的平面中,R和r都可看做是已知量.图5分析与解设星形薄片上任意一质元到过中心O而与星平面垂直的轴O距离为ri,则星对该轴的转动惯量为miri2=JO,由于对称性,星对C轴及同平面内与C轴垂直的D轴的转动惯量相等,均为已知量J;同样,星对C1轴及同平面内与C1轴垂直的D1轴的转动惯量亦相等,设为J1,等同于垂直轴定理的推导,则JC+JD=2J=JO,JC1+JD1=2J1=JO,于是有2J=2J1,即J1=J.4.巧用量纲分析法根据转动惯量的定义J=miri2,其量纲应为[ML2],转动惯量的表达式常表现为kma2形式,m是刚体的质量,a是刚体相应的几何长度,只要确定待定系数k,转动惯量问题便迎刃而解.例3如图6甲所示,求均匀薄方板对过其中心O且与x轴形成α角的轴C的转动惯量.图6分析与解如图6(甲所示为待求其转动惯量的正方形薄板,设其边长为l,总质量为M,对C轴的转动惯量为J=kMl2,过中心O将板对称分割成四个相同的小正方形,各小正方形对过各自质心且平行于C的轴的转动惯量为(kM/4)·(l/2)2=kMl2/16.如图6乙所示,小正方形的轴与C轴距离为D或d,由平行轴定理,它们对C轴的转动惯量应分别为(kMl2/16)+(M/4)D2(两个质心与C轴距离为D的小正方形)或(kMl2/16)+(M/4)d2(两个质心与C轴距离为d的小正方形),则有下列等式成立,即kMl2=2((kMl2/16)+(M/4)D2)+2((kMl2/16)+(M/4)D2).整理可得(3/2)kl2=(D2+d2).而由几何关系,可得D=(l/2)·(/2)sin(π/4+α),d=(l/2)·(/2)sin(π/4-α),故有(3/2)kl2=(l2/8)[sin2(π/4+α)+sin2(π/4-α)],则k=1/12.于是求得正方形木板对过其中心O的轴的转动惯量为J=(1/12)Ml2,且与角α无关.5.一些规则几何体的转动惯量一些规则几何体的转动惯量如表2所示.表2三、刚体运动问题例析根据今年将实行的CPhO新提要,刚体运动问题应该要求运用质心运动定理、角动量定理及角动量守恒定律等刚体基本运动规律来求解刚体转动的动力学与运动学问题.下面就此展示四个例题.例4在平行的水平轨道上有一个缠着绳子且质量均匀的滚轮,绳子的末端固定着一个重锤.开始时,滚轮被按住,滚轮与重锤系统保持静止.在某一瞬间,放开滚轮.过一定的时间后,滚轮轴得到了固定的加速度a,如图7甲所示.假定滚轮没有滑动,绳子的质量可以忽略.试确定:(1)重锤的质量m和滚轮的质量M之比;(2)滚轮对平面的最小动摩擦因数.图7分析与解与处理质点的动力学问题一样,处理刚体转动的力学问题,要清楚了解力矩与转动惯量对刚体运动的制约关系.(1)当滚轮轴亦即滚轮质心纯滚动而达到恒定的加速度a时,其角加速度为α=a/R,R为滚轮的半径.滚轮可看做质量均匀的圆盘,其关于质心的转动惯量为(1/2)MR2,分析滚轮受力情况如图7乙所示,可知以轮与水平轨道的接触点C为瞬时转动轴考察将比较方便,因为接触点处的力对刚体的这种转动不产生影响.关于C轴,对滚轮形成转动力矩的只有绳子上的张力T,张力T可以通过重锤的运动来确定:相对于接触点C,滚轮的质心的水平加速度为a,重锤相对滚轮质心的线加速度也为a,且方向应沿绳子向下,这两个加速度是由重锤所受到的重力与绳子拉力提供的,重锤的加速度为这两个加速度的矢量和.由牛顿第二定理,有mgtanθ=ma,(mg/cosθ)-T′=ma,则T=T′=m-ma.再研究滚轮,注意到C点到张力T的作用线之距离的几何尺寸,滚轮对C轴的转动惯量可用平行轴定理转换为(3/2)MR2,对滚轮运用转动定律,有(m-ma)(1-(a/))R=(3/2)MR2·(a/R).解之得m/M=3a/2(-a)2.(2)对滚轮应用质心运动定理,滚轮质心加速度为a,方向水平,则应有f-Tsinθ=Ma,N-Tcosθ=Mg,其中sinθ=a/,cosθ=g/,那么,动摩擦因数满足μ≥f/N=a/g.在上面解答中,确定滚轮与重锤的相关加速度是本题的“题眼”所在.例5如图8甲所示,在光滑地面上静止地放置着两根质量均为m,长度均为l的均匀细杆,其中一杆由相等的两段构成,中间用光滑的铰链连接起来,两段在连接点可以弯折但不能分离.在两杆的一端,各施以相同的垂直于杆的水平冲量I.试求两细杆所获得的动能之比.图8分析与解本题的求解方向是通过质心的动量定理与刚体的角动量定理,求得杆的质心速度及绕质心的角速度,进而求出杆由于这两个速度所具有的动能.如图8乙所示,设杆1在冲量I作用下,质心获得的速度为vC,杆的角速度为ω,由质心的动量定理,得I=mvC,由刚体的角动量定理,得I·l/2=Jω=(1/12)ml2ω.则杆1的动能为Ek1=(1/2)mvc2+(1/2)Jω2=(1/2)m(I/m)2+(1/2)J(Il/2J)2=(I2/2m)+(3I2/2m)=2I2/m.如图8丙所示为杆2的左、右两段受力情况,当在杆2左端作用冲量I时,在两段连接处,有一对相互作用的冲量I1与I1′,它们大小相等,方向相反.由于两段受力情况不同,各段的质心速度及角速度均不同,但在连接处,注意到“不分离”的条件,左段的右端与右段的左端具有相同的速度.现对两段分别运用动量定理和角动量定理,对杆2左段,有I-I1=(m/2)vC1,(I+I1)·(l/4)=(ml2/96)ω1,对杆2右段,有I1′=(m/2)vC2,I1′·l/4=(ml2/96)ω2.由连接处“不分离”条件得左、右两段的速度与角速度的关系是vC1-ω1·(l/4)=ω2·(l/4)+vC2,由以上各式,可得ω1=18I/ml,ω2=-6I/ml,vC1=5I/2m,vC2=I/2m,于是可计算杆2的动能为Ek2=(1/2)·(m/2)(vC12+vC22)+(1/2)·(J/2)(ω12+ω22)=7I2/2m.易得1、2两杆的动能之比为E1∶E2=4∶7.本题求解中,抓住杆2左、右两段连接处速度相同的相关关系,全盘皆活.例6形状适宜的金属丝衣架能在如图9所示的平面里的几个平衡位置附近做小振幅摆动.在位置甲和位置乙里,长边是水平的,其它两边等长.三种情况下的振动周期都相等.试问衣架的质心位于何处?摆动周期是多少?(第13届IPhO试题)图9图10分析与解本题涉及刚体做简谐运动的问题,即复摆的运动规律.一个在重力作用下绕水平轴在竖直面内做小角度摆动的刚体称为复摆或物理摆.我们先来推导复摆的周期公式.如图10所示,设O为转轴(悬点),质心C与转轴距离(等效摆长)为l,质量为m,对转轴的转动惯量为J,最大偏角θ<5°.由机械能守恒定律,可得mgl(1-cosθ)=(1/2)Jω′2.①ω′是刚体的质心通过平衡位置时的角速度.对摆长l、质量m的理想单摆而言,有mgl(1-cosθ)=(1/2)mv2=(1/2)m(lω)2=(1/2)m(Aω0)2.②②式中ω0是摆球(质点)通过平衡位置时的角速度,A是振幅(A=l),ω0是摆球振动的圆频率.可知ω0=.将①式变形为mgl(1-cosθ)=(1/2)Jω′2=(1/2)m(l·ω′)2=(1/2)m(Aω0′)2,比较②式,即对复摆与单摆作等效变换,可得复摆小幅振动(亦为谐振)的圆频率为ω0′=ω0=,那么复摆的周期公式为T=2π.图11由题设条件确定衣架的质心位置及转动惯量,依据复摆周期公式,即可确定三种情况下相同的摆动周期T.如图11所示,质心O到转轴A、B、C的距离设为a、b、c,由图9甲所示衣架的平衡位置可知,质心O必在衣架长边的中垂线AB上,在三种情况下衣架对转轴A、B、C的转动惯量依次为JA=JO+ma2,JB=JO+mb2,JC=JO+mc2.式中JO为所设衣架对质心O的转动惯量,m是衣架总质量.因为三种情况下的周期相同,故有(JO+ma2)/mga=(JO+mc2)/mgc,即(JO-mac)(c-a)=0,显然c≠a,则可知JO=mac;又有(JO+ma2)/mga=(JO+mb2)/mgb,即(JO-mab)(b-a)=0,此式中因c>b,故(JO-mab)≠0,则必有a=b,即质心位于AB之中点.衣架周期为T=2π=2π.根据图9标注的尺寸可知a=5cm,c=cm≈21.6cm,代入后得T≈1.03s.本题是国际物理奥林匹克的一道赛题,题意简洁,解答方法也很多,笔者给出的这种解法应该说比较严密且巧妙.最后,我们再尝试解答另外一道比较繁难的国际物理奥林匹克竞赛试题,该题涉及动量矩守恒定律的运用.例7如图12所示,一个质量为m,半径为RA的均匀圆盘A在光滑水平面xOy内以速度v沿x轴方向平动,圆盘中心至x轴的垂直距离为b.圆盘A与另一静止的、其中心位于坐标原点O的均匀圆盘B相碰.圆盘B的质量与A相同,半径为RB.假定碰撞后两圆盘接触处的切向速度分量(垂直于连心线方向的速度)相等,并假设碰撞前后两圆盘沿连心线方向的相对速度大小不变.在发生碰撞的情况下,试求:(1)碰后两圆盘质心速度的x分量和y分量,结果要以给定的参量m、RA、RB、v和b表示;(2)碰后两圆盘的动能,结果要以给定的参量m、RA、RB、v和b表示.(第24届IPhO试题)分析与解(1)本题情景是质量相同的运动圆盘A与静止圆盘B在水平面上发生非弹性斜碰.碰撞前后,质心动量守恒——系统不受外力;对O点的角动量守恒——外力冲量矩为零;动能不守恒——碰撞后两圆盘接触处的切向速度分量相等,必有摩擦力存在,动能有损失.本题给出诸多的附加条件,除了根据动量守恒与角动量守恒列出基本方程外,还必须根据附加条件给出足够的补充方程,并适当选用速度分量,方可最终得解.图12 图13如图13所示,设碰撞时两盘质心连线与x轴成θ角,由几何关系可知b=(RA+RB)sinθ.对系统,在法向与切向动量均守恒,即mvsinθ=mvAt+mvBt,mvcosθ=mvAn+mvBn,式中,vAt、vBt、vAn、vBn是A、B盘碰撞后沿切向与径向的质心速度;系统对O点的角动量守恒即mvb=JAωA+mvAt(RA+RB)+JBωB,该式中,JA=(1/2)mRA2,JB=(1/2)mRB2,ωA、ωB为两盘碰撞后的角速度(待定).注意碰撞后A盘既有转动又有平动,对O点的角动量由两部分组成,而B盘质心在O点,故角动量仅为JBωB.上述三个方程涉及六个未知量,需列出补充方程.根据两盘接触处切向速度相同有vAt-ωARA=vBt+ωBRB,根据两盘法向相对速度不变有vcosθ=vBn-vAn.对B盘,由动量定理和角动量定理,摩擦力f的作用是f·Δt=mvBt,f·RB·Δt=JBωB,即mvBtRB=JBωB.由上述六个方程,解得ωA=vsinθ/3RA,ωB=vsinθ/3RB,vAt=(5/6)vsinθ,ωBt=(1/6)vsinθ,vAn=0,vBn=vcosθ.碰后两盘的质心速度的x分量分别为vAx=vAtsinθ+vAncosθ=(5/6)vsin2θ,vBx=vBtsinθ+vBncosθ=(1/6)vsin2θ+vcos2θ,碰后两盘的质心速度的y分量分别为vAy=vAtcosθ-vAnsinθ=(5/6)vsinθcosθ,vBy=vBtcosθ-vBnsinθ=-(5/6)vsinθcosθ,其中sinθ=b/(RA+RB),cosθ=/(RA+RB).(2)各圆盘的动能是各盘质心平动动能与圆盘转动动能之和,这里不再赘述,答案是EA=3mv2b2/8(RA+RB),EB=(1/2)mv2(1-(11b2/12(RA+RB)2)).四、CPhO竞赛训练题1.如图14所示,质量为m的均匀圆柱体的截面半径为R,长为2R.试求圆柱体绕通过质心及两底面边缘的转轴(如图中的Z1、Z2轴)的转动惯量J.图14 图152.如图15所示,匀质立方体的边长为a,质量为m.试求该立方体绕对角线轴PQ的转动惯量J.3.椭圆细环的半长轴为A,半短轴为B,质量为m(未必匀质),已知该环绕长轴的转动惯量为JA,试求该环绕短轴的转动惯量JB.4.在一根固定的、竖直的螺杆上有一个螺帽,螺距为s,螺帽的转动惯量为J,质量为m.假定螺帽与螺杆间的动摩擦因数为零,螺帽以初速度v0向下移动,螺帽竖直移动的速度与时间有什么关系?这是什么样的运动?重力加速度为g.5.如图16所示,两个质量和半径均相同的实心圆柱轮,它们的质心轴互相平行,并用一轻杆相连,轴与轴承间的摩擦忽略不计.两轮先以共同的初速度v0沿水平方向运动,两轮的初角速度为零,如图16甲所示.然后同时轻轻地与地面相接触,如图16乙所示,设两轮与地面之间的动摩擦因数分别为μ1和μ2(μ1>μ2).试求两轮均变为纯滚动所需的时间及纯滚动后的平动速度大小.图16 图176.如图17所示,光滑水平地面上静止地放着质量为M、长为l的均匀细杆.质量为m的质点以垂直于杆的水平初速度v0与杆的一端发生完全非弹性碰撞.试求:(1)碰后系统质心的速度及绕质心的角速度;(2)实际的转轴(即静止点)位于何处?7.如图18所示,实心圆柱体从高度为h的斜坡上由静止做纯滚动到达水平地面上,且继续做纯滚动,与光滑竖直墙发生完全弹性碰撞后返回,经足够长的水平距离后重新做纯滚动,并纯滚动地爬上斜坡.设地面与圆柱体之间的动摩擦因数为μ,试求圆柱体爬坡所能达到的高度h′.图18 图198.如图19所示,半径为R的乒乓球绕质心轴的转动惯量为J=(2/3)mR2,m为乒乓球的质量.乒乓球以一定的初始条件在粗糙的水平面上运动,开始时球的质心速度为vC0,初角速度为ω0,两者的方向如图18所示.已知乒乓球与地面间的动摩擦因数为μ.试求乒乓球开始做纯滚动所需的时间及纯滚动时的质心速度.9.一个均匀的薄方板的质量为M,边长为a,固定它的一个角点,使板竖直悬挂,板在自身的重力作用下,在方板所在的竖直平面内摆动.在通过板的固定点的对角线上距固定点的什么位置(除去转动轴处之外),粘上一个质量为m的质点,板的运动不会发生变化?已知对穿过板中心而垂直于板的轴,方板的转动惯量为J=(1/6)Ma2.图2010.如图20所示,一个刚性的固体正六角棱柱,形状就像通常的铅笔,棱柱的质量为M,密度均匀.横截面呈六边形且每边长为a.六角棱柱相对于它的中心轴的转动惯量为J=(5/12)Ma2,相对于棱边的转动惯量是J′=(17/12)Ma2.现令棱柱开始不均匀地滚下斜面.假设摩擦力足以阻止任何滑动,并且一直接触斜面.某一棱刚碰上斜面之前的角速度为ωi,碰后瞬间角速度为ωf,在碰撞前后瞬间的动能记为Eki和Ekf,试证明:ωf=sωi,Ekf=rEki,并求出系数s和r的值.(第29届IPhO试题)五、训练题简答图21 图221.解:如图21所示,对图所示的Z1、Z2、Z坐标系与Z3、Z4、Z坐标系运用正交轴定理,有J1+J2+J5=J3+J4+J5,J3=(1/2)mR2,J4=(7/12)mR2,J1=J2,则J1=J2=(13/24)mR2.2.解:将立方体等分为边长为a/2的八个小立方体,依照本文例3分析法用量纲求解,有kma2=2·k(m/8)(a/2)2+6·[k(m/8)(a/2)2+(m/8)(a/)2],则k=1/6,J=(1/6)ma2.3.解:由正交轴定理JA+JB=mi(xi2+yi2)及椭圆方程(x2/A2)+(y2/B2)=1,得JB=mA2-(A2/B2)JA.4.解:由机械能守恒,得mgs=(1/2)J(ωt2-ω02)+(1/2)m(vt2-v02),又ωt/vt=ω0/v0=2π/s,可得vt2-v02=2m/((4π2J/s2)+m)g=2g′s.故螺帽沿螺杆竖直向下做匀加速直线运动,有vt=v0+g′t,g′=m/((4π2J/s2)+m).5.解:两轮相对于地面动量守恒,因为μ1>μ2,轮1先做纯滚动,轮2做纯滚动所需时间为t,则系统从触地到均做纯滚动时对地面角动量守恒,得2mv0R=2mvtR+2·(1/2)mR2ω,又vt=ωR,解得vt=(2/3)v0,ω=2v0/3R,t=ω/α2=ωR/2μ2g=v0/3μ2g.6.解:碰后系统质心位置从杆中点右移为Δx=(m/(M+m))·(l/2).由质心的动量守恒,求得质心速度为vC=(m/(M+m))v0.由角动量守恒并考虑质心速度与角速度关系,求得瞬时轴在杆中心左侧x=l/6处,ω=6mv0/(M+4m)l.7.解:纯滚动时,无机械能损失,v=Rω.非纯滚动时,运用动量定理及角动量定理,求上坡前的质心速度及角速度,根据机械能守恒即可求得.h′=h/9.8.解:乒乓球与地接触点O即滚动又滑动且达到纯滚动时,由角动量守恒,得mRvC0-Jω0=mRvC+Jω,即vC0-vC=(2/3)R(ω0+ω),达到纯滚动时,有vC=Rω,可得到纯滚时质心速度为vC=(3/5)vC0-(2/3)Rω0.其中,若vC0>(2/3)Rω0,纯滚动后,球向右顺时针方向做纯滚动;vC0<(2/3)Rω0,则纯滚。
天津理工大学大学物理:刚体
17
质点的转动惯量: mr2
记住
质量为m,长为L的均匀细棒的转动惯量,假定
转轴通过棒的中心与棒垂直
I 1 mL2 12
Firi sini firi sini miri2
i
i
i
因为内力总是成对出现的,彼
此大小相等、方向相反,即内力的
作用和反作用是沿着同一直线等值
而反向,所以内力对转轴的力矩的
总和等于零,即
firi sini 0
i
因此上式变为 Firi sini miri2
所以上式可写成 M Frsin
F
0r
d
6
0
r
F2
F
d
F1
M Frsin
如果外力不在垂直于转轴的平面 内,可以把外力F分解成两个分力:一 个与转轴平行F2;另一个F1在转动平 面内, F2对刚体绕定轴转动不起作用, 只有F1能使物体转动。因此我们把F理
解为外力在转动平面内的分力。 7
m1 m2
m2g m1g
这就是质点动力学问题了。
22
2 如图所示,Q、R和S是附于刚性轻质细杆上的质量分别为 3m、2m和1m的三个质点,QR=RS=l,则系统对00’轴的转动 惯量为____________。
I mr2
I 3m(2l)2 2m(l)2
12ml2 2ml2 14ml2
其中 ait ri
等式两边分别乘上ri ,得到
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
II
M
d d 2 2 f " (t ) ቤተ መጻሕፍቲ ባይዱt dt
当 β c
0 t 1 2 ( ) t t 0 2 2 2 0 2 ( 0 )
z ω,
与质点的匀加速直线运动公式相象
二. 定轴转动刚体上各点的速度和加速度
端,试计算飞轮的角加速 解 (1) Fr J
(2) mg T ma
rO
T
Fr 98 0.2 39.2 rad/s 2 J 0.5
mgr J mr 2
两者区别
F
mg
Tr J a r
98 0.2 2 21 . 8 rad/s 0.5 10 0.22
例如 T' T
x dx
x
• 在定轴转动中,力矩可用代数值进行计算
T' T
M i TR T' R
M i TR T' r
二. 刚体对定轴的转动定律
实验证明 当 M 为零时,则刚体保持静止或匀速转动 当存在 M 时, 与 M 成正比,而与J 成反比
M J
刚体的转动定律
M kJ
例 一根长为 l ,质量为 m 的均匀细直棒,可绕轴 O 在竖直平 面内转动,初始时它在水平位置 m l x O 求 它由此下摆 角时的 解 取一质元
M xdm g g xdm
C
mg
dm
M mgxC
1 M mgl cos 2
xdm mxC
重力对整个棒的合力矩等于重力全部 集中于质心所产生的力矩
L x
J
1 x dx ML2 3
J
L/ 2
L / 2
x 2dx
1 ML2 12
z M
四. 平行轴定理及垂直轴定理
1. 平行轴定理
J z' J z ML2
z'
L
J z' :刚体绕任意轴的转动惯量 J z :刚体绕通过质心的轴
C
L :两轴间垂直距离
例 均匀细棒的转动惯量
第4章 刚体的运动学 和动力学
§ 刚体绕定轴转动 (运动学)
刚体内各点都绕同一直线(转轴)作圆周运动___刚体转动
转轴固定不动 — 定轴转动
刚体的平动和绕定轴转动是刚体的 两种最简单最基本运动
z
一. 描述 刚体绕定轴转动的角量
角坐标 角速度 角加速度
I
f (t )
d f ' (t ) dt
理论推证
取一质量元 Fi fi mi ai
O 切线方向
ri
fi
Fi
Fi fi mi ai
mi
2
对固定轴的力矩 Fi ri fi ri mi ai ri 对所有质元
mi ri
2
Fi r i fi r i ( mi ri
J x dx
2 0
L
L
0
M 1 2 x dx ML L 3
2
M O
L
J铁 J木
dx
x
(2) J 与质量分布有关
例如圆环绕中心轴旋转的转动惯量
dl R O m
J R dm
2 0
L
2π R
0
R 2dl
3
R
2
2π R
0
m dl 2π R mR 2 2π R
R m
例如圆盘绕中心轴旋转的转动惯量
ds 2π rdr m 2mr 2π rdr 2 dr dm ds 2 πR R
J r dm
0 m 2 R 0
dr
r O
2m 3 m 2 r dr R 2 R 2
(3) J 与转轴的位置有关 z
M O dx
L 2 0
z M L O dx x
力 F 对z 轴的力矩
z
r
F// F Fn
F
M z ( F ) Fτ r F h
•
h
力矩取决于力的大小、方 向和作用点
只有两个指向
A
F
• 在刚体的定轴转动中,力矩
力对定轴力矩的矢量形式
z
r
F// F Fn
F
M Z r F
力矩的方向由右螺旋法则确定
h
A
F
例 已知棒长 L ,质量 M ,在摩擦系数为 的桌面转动 (如图) 求 摩擦力对y轴的力矩 解
y
M L
M df dm g dm dx L O 根据力矩 dM M gxdx L L M 1 M gxdx MgL 0 L 2
任意点都绕同一轴作圆周运动, 且 , 都相同 O
刚体
v
r' P θ
v r' an r ' 2 dv a r' dt
r
×基点O
参 考 方 向 定轴
瞬时轴
§ 力矩 刚体绕定轴转动定律 ( 动力学 )
一. 力矩
• •
力
改变质点的运动状态 改变刚体的转动状态
质点获得加速度 刚体获得角加速度
M z J
在国际单位中 k = 1
作用在刚体上所有的外力对 定轴 z 轴的力矩的代数和
刚体对 z 轴 的转动惯量
讨论 (1) M 正比于 ,力矩越大,刚体的 越大 (2) 力矩相同,若转动惯量不同,产生的角加速度不同 (3) 与牛顿定律比较: M F , J m, a
•
合内力矩 = 0
)
合外力矩 M
刚体的转动惯量 J
三. 转动惯量
定义式
J mi ri
J r 2dm
2
质量不连续分布 质量连续分布
•
计算转动惯量的三个要素:(1)总质量 (2)质量分布 (3)转轴
的位置
(1) J 与刚体的总质量有关 例如两根等长的细木棒和细铁棒绕端点轴转动惯量 z
M 1 3 3g cos mgl cos 2 J 2 ml 2l
d d ω dt d
0 d 0
ω
θ
3gcos d 2l
3 gsin l
z
M
z
L
L 1 2 J Z J Z M ML 2 3
J z 1 / 12ML2
2
五. 转动定律的应用举例
例 一轻绳绕在半径 r =20 cm 的飞轮边缘,在绳端施以F=98 N 的拉力,飞轮的转动惯量 J=0.5 kg· m2,飞轮与转轴间的摩擦 不计, (见图) 求 (1) 飞轮的角加速度 (2) 如以重量P =98 N的物体挂在绳