高中数学 第三章 概率 几何概型的类型及解法知识素材 北师大版必修3
高中数学北师大必修三 几何概型复习
3.3.1 几何概型
问题1(转盘游戏)
图中有两个转盘.甲乙两人玩转盘游戏,规定 当指针指向B区域时,甲获胜,否则乙获胜.在两 种情况下分别求甲获胜的概率是多少?
定义:如果每个事件发生的概率只与构成该事件 区域的长度(面积或体积)成比例,则称这样的概 率模型为几何概率模型(geometric models of probability),简称几何概型。
分析:如图所示,这是长度型几何概型问题,当硬币 中心落在阴影区域时,硬币不与任何一条平行线相 碰,故由几何概型的知识可知所求概率为:
P 1. 3
2.在单位圆⊙O的一条直径MN上随机地取一点 Q,过点Q作弦与MN垂直且弦的长度超过1的概率 是__________. 3
2
3.假设你家订了一份报纸,送报人可能在早上 6:30—7:30之间把报纸送到你家,你父亲离开家 去工作的时间在早上7:00—8:00之间,问你父亲 在离开家前能得到报纸(称为事件A)的概率是多 少?
求AM小于AC的概率.
2
2
变式1:在Rt△ABC中,∠A=30°,过直角顶点C作射
线CM交线段AB于M,求|AM|>|AC|的概率. 1 6
变式2: 在等腰直角△ABC中,在斜边AB上任取一
点M,求使△ACM为钝角三角形的概率. 1 2
能力提升
1.平面上有一组平行线,且相邻平行线间的距个平面上,求硬币不与任何一条平行线碰到的 概率。
面积为 ( ) B
3
A. 4 3
B. 8 3
C. 2 3
D.无法计算
3.体积问题
有一杯1升的水,其中含有1个细菌,用一个小杯从 这杯水中取出0.1升,求小杯水中含有这个细菌的概 率.
解:由题意可得
高中数学第三章概率本章整合课件北师大版必修3
=
1 , 45
所以 P(B)=P(B1+B2)=P(B1)+P(B2)=
方法二:设“至少有一个二级品”为事件 B, 则������指抽出的2 个产品中没有二级品,由(1)知,A= ������. 所以 P(B)=1-P(������ )=1-P(A)=1−
专题一
专题二
专题三
专题四
应用设点(p,q)在|p|≤3,|q|≤3所表示的区域D中均匀分布,试求关 于x的方程x2+2px-q2+1=0的两根都是实数的概率. 提示:根据一元二次方程有实数根的条件找出p,q满足的条件,进 而确定相应的区域. 解:所有基本事件构成的区域D的度量为正方形的面积,即D的度 量值为S正方形=6×6=36.
事件������包含的可能结果数 试验的所有可能结果数 事件������构成的区域范围 总的区域范围
事件
概率 概率模型 几何概型
定义:结果为无限个且等可能发生的概率模型 计算:������(������) =
区别:古典概型的结果有有限个,几何概型的结果有无限个 联系:所出现的结果都是等可能的 求法:随机模拟法和公式法 随机模拟→应用→估计概率、求图形面积等
所以点 P 落在圆 x +y =36
2
2
22 内的概率为 36
=
11 . 18
专题一
专题二
专题三
专题四
专题三 几何概型 高考中涉及的几何概型的概率求解问题,难度不会太大,题型可 能较灵活,涉及面可能较广.几何概型的三种常见类型为长度型、 面积型和体积型,在解题时要准确把握,要把实际问题做合理的转 化;要注意古典概型和几何概型的区别(基本事件的个数的有限性 与无限性),正确选用几何概型解题.
北师大版高中数学必修3第三章概率小结与复习
1 a 1 的概率P= (3)使四棱锥M-ACBD的体积小于 = 3 a 3 1 1 1 3
(2)点M距离ABCD及面A1B1C1D1的距离都大于
a 3
6
a
的概率P=
3 2 1 aaa 3
a
aa
1 2
(三)、课堂练习:1、某人进行打靶练习,共射击10次, 其中有2次中10环,有3次环中9环,有4次中8环,有1次未 中靶,试计算此人中靶的概率,假设此人射击1次,试问中 靶的概率约为多大?中10环的概率约为多大?
20
205109 Nhomakorabea(四)、课堂小结:1.初步理解必然现象和随机 现象的概念;2.理解不可能事件、必然世间、随 机事件,基本事件以及基本事件空间,并能够写 出基本事件空间 ;3.初步理解概率和频率的概 念,能理解概率的统计定义;4.了解互斥事件和 互为对立事件的概念,能熟练使用概率的加法公 式;5.理解古典概型的定义,理解古典概型的两 个特征;6.概率的一般加法公式;7.理解几何 概型的条件,会应用几何概型的定义解答相应问 题。 (五)、作业布置:复习题三中A组4、5、7 B 组3 五、教学反思:
4
(二)、 知识运用探析 例1、下列说法正确的是( ) A 不可能事件的概率为0 B 概率为0 的事件一定是不可能事件 C 事件A、B的和事件的概率等于事件A、B的概率的和 D 如果A与B是互斥事件,那么 A 与 B 也是互斥事件 简析:[A] 例2、在一次数学考试中,小明的成绩在80分以上的概率是 0.18,在70~79分的概率是0.45,在60~69分的概率是0.09, 则小明此次考试几个的概率是多少? 解析:设小明的成绩在80分以上,70~79分,60~69分分别 为事件A,B,C, 由公式可知, 即小明此次考试及格的概率是0.82
北师大版数学必修三第3章概率章末归纳总结课件
每批邮箱数
60 130 265 306 1 233 2 130 4 700 6 897
名称里有数字的邮箱数 36 78 165 187 728 1 300 2 820 4 131
频率
(1)填写上表中的频率(精确到0.01); (2)中国人的邮箱名称里使用数字的概率是多少?
[解析] (1)由频率公式可算出,表格中应填的频率从左到右依次为:0.60、 0.60、0.62、0.61、0.59、0.61、0.60、0.60.
2
『规律总结』 一般地,若一个随机事件需要用两个连续变量[如本例中的 (x,y)]来描述,用这两个变量的有序实数对来表示它的基本事件,利用坐标平 面能顺利地建立与面积有关的几何概型.
〔跟踪练习 3〕 如图,M 是半径为 R 的圆周上一个定点,在圆周上等可能 1
地任取一点 N,连接 MN,则弦 MN 的长度超过 2R 的概率是__2____.
将长为l的木棒随机折成3段,求3段长度能构成三角形的概率. [思路分析] 构成三角形要用三边长的度量,设出两边,再表示第三边. [解析] 如图所示,设A=“3段长度能构成三角形”,x,y分别表示其中两 段的长度,则第3段的长度为l-x-y.
数学北师大版必修3教案: 第三章概率§3 含解析 精品
§3 模拟方法——概率的应用整体设计教学分析这部分是新增加的内容.介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的.随机模拟部分是本节的重点内容.几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子.本节的教学需要一些实物模型为教具,教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精度会越来越高.几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.三维目标1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:P(A)=)(面积或体积的区域长度试验的全部结果所构成的区域长度构成事件A ,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识.重点难点教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.课时安排1课时教学过程导入新课思路1.复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?为此我们学习几何概型.思路2.图1中有两个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?图1为解决这个问题,我们学习几何概型.思路 3.在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型.推进新课新知探究提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m 的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色,金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭,假设射箭能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括.讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P(正,正)=P(正,反)=P(反,正)=P(反,反)=41.两次出现相同面的概率为41+41=21. (2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如图2,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的31,图2于是事件A 发生的概率为P(A)=31. 第二个问题,如图3,记“射中黄心”为事件B,由于中靶点随机地落在面积为41×π×1222 cm 2的大圆内,而当中靶点落在面积为41×π×12.22 cm 2的黄心内时,事件B 发生,于是事件B 发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.图3(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的,而剪断绳子的点和射中靶面的点是无限的,即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability),简称几何概型.几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.(5)几何概型的概率公式: P(A)=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.应用示例思路1例1 判断下列试验中事件发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如图4所示,有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.图4活动:学生紧紧抓住古典概型与几何概型的区别与联系,然后判断.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性,而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.例 2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.活动:学生分析,教师引导,假设他在0—60之间的任一时刻,打开收音机是等可能的,但0—60之间有无数个时刻,不能用古典概型的公式来计算随机事件发生的概率,因为他在0—60之间的任一时刻打开收音机是等可能的,所以他在哪个时间段打开收音机的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,所以可用几何概型的概率计算公式计算.图5解:记“等待的时间小于10分钟”为事件A,打开收音机的时刻位于[50,60]时间段内则事件A 发生.由几何概型的求概率公式得P(A)=6160)5060(=-,即“等待报时的时间不超过10分钟”的概率为61. 打开收音机的时刻X 是随机的,可以是0—60之间的任何时刻,且是等可能的.我们称X 服从[0,60]上的均匀分布,X 称为[0,60]上的均匀随机数.变式训练某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).解:可以认为人在任一时刻到站是等可能的.设上一班车离站时刻为a,则某人到站的一切可能时刻为Ω=(a,a+5),记A g ={等车时间少于3分钟},则他到站的时刻只能为g=(a+2,a+5)中的任一时刻,故P(A g )=53=Ω的长度的长度g . 点评:通过实例初步体会几何概型的意义.思路2例 1 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于20分钟的概率.活动:假设他在0—60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.解:设A={等待的时间不多于20分钟},我们所关心的事件A 恰好是到站等车的时刻位于[40,60]这一时间段内,因此由几何概型的概率公式,得P(A)=60)4060(-=31. 即此人等车时间不多于20分钟的概率为31. 点评:在本例中,到站等车的时刻X 是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X 服从[0,60]上的均匀分布,X 为[0,60]上的均匀随机数.变式训练在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率.解:记“钻到油层面”为事件A,则P(A)=0.004.答:钻到油层面的概率是0.004.例2 小明家的晚报在下午5:30—6:30之间任何一个时间随机地被送到,小明一家人在下午6:00—7:00之间的任何一个时间随机地开始晚餐,则晚报在晚餐开始之前被送到的概率是多少?活动:学生读题,设法利用几何概型公式求得概率.解:建立平面直角坐标系,如图5中x=6,x=7,y=5.5,y=6.5围成一个正方形区域G.设晚餐在x(6≤x≤7)时开始,晚报在y(5.5≤y≤6.5)时被送到,这个结果与平面上的点(x,y)对应.于是试验的所有可能结果就与G 中的所有点一一对应.图5由题意知,每一个试验结果出现的可能性是相同的,因此,试验属于几何概型.晚报在晚餐开始之前被送到,当且仅当y<x,因此图5中的阴影区域g 就表示“晚报在晚餐开始之前被送到”.容易求得g 的面积为87,G 的面积为1.由几何概型的概率公式,“晚报在晚餐开始之前被送到”的概率为P(A)=87=的面积的面积G g . 变式训练在1升高产小麦种子中混入了一种带麦锈病的种子,从中随机取出10毫升,则取出的种子中含有麦锈病的种子的概率是多少?分析:病种子在这1升中的分布可以看作是随机的,取得的10毫升种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率.解:取出10毫升种子,其中“含有病种子”这一事件记为A,则P(A)=0.01.答:取出的种子中含有麦锈病的种子的概率是0.01.知能训练1.已知地铁列车每10 min 一班,在车站停1 min,求乘客到达站台立即乘上车的概率. 答案:由几何概型知,所求事件A 的概率为P(A)=111. 2.两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2 m 的概率.答案:记“灯与两端距离都大于2 m”为事件A,则P(A)=62=31. 3.在500 mL 的水中有一个草履虫,现从中随机取出2 mL 水样放到显微镜下观察,则发现草履虫的概率是( )A.0.5B.0.4C.0.004D.不能确定 答案:C提示:由于取水样的随机性,所求事件A :“在取出2 mL 的水样中有草履虫”的概率等于水样的体积与总体积之比5002=0.004. 4.平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.图6答案:把“硬币不与任一条平行线相碰”的事件记为事件A,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM,垂足为M,如图6所示,这样线段OM 长度(记作OM)的取值范围就是[0,a ],只有当r <OM≤a 时硬币不与平行线相碰,所以所求事件A 的概率就是P(A)=ar a a a r -=的长度的长度],0[],(. 拓展提升1.约会问题两人相约8点到9点在某地会面,先到者等候另一人20分钟,过时就可离去,试求这两人能会面的概率.解:因为两人谁也没有讲好确切的时间,故样本点由两个数(甲、乙两人各自到达的时刻)组成.以8点钟作为计算时间的起点,设甲、乙各在第x 分钟和第y 分钟到达,则样本空间为Ω:{(x,y)|0≤x≤60,0≤y≤60},画成图为一正方形.以x,y 分别表示两人的到达时刻,则两人能会面的充要条件为|x-y|≤20.图7这是一个几何概型问题,可能的结果全体是边长为60的正方形里的点,能会面的点的区域用阴影标出(如图7).所求概率为P=95604060222=-=的面积的面积G g . 2.〔蒲丰(Buffon)投针问题〕平面上画很多平行线,间距为a.向此平面投掷长为l(l<a)的针,求此针与任一平行线相交的概率.解:以针的任一位置为样本点,它可以由两个数决定:针的中点与最接近的平行线之间的距离x,针与平行线的交角φ(见图8).样本空间为Ω:{(φ,x)|0≤φ≤π,0≤x≤2a }为一矩形.针与平行线相交的充要条件是g :x≤21sinφ(见图9). 所求概率是P=ππϕϕπa l a d l g 22sin )2(0=∙∙=Ω⎰的面积的面积.图8 图9注:因为概率P 可以用多次重复试验的频率来近似,由此可以得到π的近似值.方法是重复投针N 次(或一次投针若干枚,总计N 枚),统计与平行线相交的次数n,则P≈N n .又因a 与l 都可精确测量,故从N n a l ≈π2,可解得π≈anlN 2.历史上有不少人做过这个试验.做得最好的一位投掷了3 408次,算得π≈3.141 592 9,其精确度已经达到小数点后第六位.设计一个随机试验,通过大量重复试验得到某种结果,以确定我们感兴趣的某个量,由此而发展的蒙特卡洛(Monte-Carlo)方法为这种计算提供了一种途径.课堂小结几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例.作业习题3—3 A 组1、2.设计感想本节课首先对古典概型进行了复习,使学生掌握古典概型的适用条件,巩固了古典概型的概率计算公式,接着设计了多个试验,从课题的引入,到问题的提出都非常有针对性,引人入胜,接着从新的问题中引出几何概型这一不同于古典概型的又一概率模型,并通过探究,归纳出几何概型的概率计算公式,同时比较了古典概型和几何概型的区别和联系,通过思路1和思路2两种不同的例题类型和层次,加深理解和运用,由于它们与实际生活联系密切,所以要反复练习,达到为我们的工作与生活服务,然而这部分内容在高考中是新内容,因此同学们要高度重视,全面把握,争取获得好成绩.。
高中数学 第3章 概率课件 北师大版必修3
北师大版 ·必修(bìxiū)3
路漫漫其修远兮 吾将上下而求索
第一页,共5页。
概率
第三章
第二页,共5页。
古代有个王国世代沿袭着一条(yī tiáo)奇特的法规:凡是死 囚在临刑前都要抽一次“生死签”.如果抽到“死”字的签则 立即处刑;如果抽到“生”字ຫໍສະໝຸດ 签则被认为这是神的旨意应予 当场赦免.
第三页,共5页。
一次国王决定处死一个“犯上”的大臣,把“生死签”的 两张纸都写成“死”字,由于走漏了消息,执法官宣布抽签的 办法后,囚臣抽出一张签纸塞进嘴里,等到执法官反应过来, 嚼烂的纸早已吞下,执法官赶忙追问:“你抽到‘死’字签还 是‘生’字签?”囚臣说:“看剩下的签是什么字就清楚 了.”囚臣巧妙地利用了概率的知识救了自己一命.我们要认 真学习概率,正确(zhèngquè)地利用概率可以很好地服务于我 们.
第四页,共5页。
第五页,共5页。
高中数学第三章概率3.2.1古典概型的特征和概率计算公式2.2建立概率模型学案含解析北师大版必修3
2 古典概型2.1古典概型的特征和概率计算公式2.2建立概率模型考纲定位重难突破1.通过实例理解古典概型的两个特征及古典概型的定义.2.掌握古典概型的概率计算公式.3.理解概率模型的特点及应用.重点:古典概型的概念及其概率公式的应用条件.难点:古典概型的概率的计算.授课提示:对应学生用书第43页[自主梳理]1.古典概型2.古典概型的概率计算公式对于古典概型,通常试验中的某一事件A是由几个基本事件组成的.如果试验的所有可能结果为n,随机事件A包含的基本事件数为m,那么事件A的概率规定为P(A)=事件A包含的所有可能结果数试验的所有可能结果数=mn.3.建立古典概率模型的要求(1)在建立概率模型时,如果每次试验有且只有一个基本事件出现.(2)基本事件的个数是有限的.(3)并且它们的发生是等可能的.满足上述三个条件的概率模型就是一个古典概型.4.古典概率模型的解决方案从不同的角度去考虑一个实际问题,可以将问题转化为不同的古典概型来解决,而所得到的古典概型的所有可能结果越少,问题的解决就变得越简单.[双基自测]1.袋中有2个红球,2个白球,2个黑球,从里面任意摸2个小球,下列事件不是基本事件的是()A.{正好2个红球}B.{正好2个黑球}C.{正好2个白球} D.{至少1个红球}解析:至少1个红球包含:一红一白或一红一黑或2个红球.答案:D2.已知集合A={-9,-7,-5,-3,-1,0,2,4,6,8},从集合A中选取不相同的两个数,构成平面直角坐标系上的点,观察点的位置,则事件“点落在x轴上”包含的基本事件的个数共有()A.7个B.8个C.9个D.10个解析:符合要求的基本事件是(-9,0),(-7,0),(-5,0),(-3,0),(-1,0),(2,0),(4,0),(6,0),(8,0).答案:C3.下列概率模型:①在平面直角坐标系内,从横坐标和纵坐标都是整数的所有点中任取一点;②某射手射击一次,可能命中0环,1环,2环,…,10环;③某小组有男生5人,女生3人,从中任选1人做演讲;④一只使用中的灯泡的寿命长短;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.其中属于古典概型的是________.解析:①不属于,原因是所有横坐标和纵坐标都是整数的点有无限多个,不满足有限性;②不属于,原因是命中0环,1环,…,10环的概率不一定相同,不满足等可能性;③属于,原因是满足有限性,且任选1人与学生的性别无关,是等可能的;④不属于,原因是灯泡的寿命是任何一个非负实数,有无限多种可能,不满足有限性;⑤不属于,原因是该品牌月饼被评为“优”或“差”的概率不一定相同,不满足等可能性.答案:③授课提示:对应学生用书第44页探究一基本事件的计数问题[典例1]做投掷2颗骰子的试验,用(x,y)表示结果,其中x表示第一颗骰子出现的点数,y 表示第2颗骰子出现的点数.写出:(1)试验的基本事件;(2)事件“出现点数之和大于8”包含的基本事件.[解析](1)这个试验的基本事件共有36个,如下:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).(2)事件“出现点数之和大于8”包含以下10个基本事件:(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).基本事件的两个探求方法:(1)列表法:将基本事件用表格的方式表示出来,通过表格可以清楚地看出基本事件的总数,以及要求的事件所包含的基本事件数,列表法适合于较简单的试验的题目,基本事件较多的试验不适合用列表法.(2)树状图法:树状图法是用树状的图形把基本事件列举出来的一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段.树状图法适合于较复杂的试验的题目.1.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面:(1)写出这个试验的所有基本事件;(2)求这个试验的基本事件的总数;(3)记A=“恰有两枚正面向上”这一事件,则事件A包含哪几个基本事件?解析:(1)作树状图如图.故所有基本事件为(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反). (2)基本事件的总数是8.(3)“恰有两枚正面向上”包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).探究二 古典概型概率问题的求法[典例2] 袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)事件A :取出的两球都是白球;(2)事件B :取出的两球一个是白球,另一个是红球.[解析] 设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取2个球的取法有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.(1)从袋中的6个球中任取两个,所取的两球全是白球的取法总数,即是从4个白球中任取两个的取法总数,共有6种,为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).所以取出的两球都是白球的概率为P (A )=615=25.(2)从袋中的6个球中任取两个,其中一个是红球,而另一个是白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8种.所以取出的两个球一个是白球,一个是红球的概率为P (B )=815.求古典概型概率的计算步骤: (1)求出基本事件的总个数n .(2)求出事件A 包含的基本事件的个数m . (3)求出事件A 的概率P (A )=事件A 所包含的基本事件数试验的基本事件总数=m n .2.盒中有3只灯泡,其中2只是正品,1只是次品.(1)从中取出1只,然后放回,再取出1只,求连续2只取出的都是正品的概率; (2)从中一次任取2只,求2只都是正品的概率.解析:(1)将灯泡中2只正品记为a 1,a 2,1只次品记为b 1,画出树状图如图.基本事件总数为9,连续2次取得正品的基本事件数是4,9(2)“从中一次任取2只”得到的基本事件总数是3,即a 1a 2,a 1b 1,a 2b 1(a 1a 2表示一次取出正品a 1,a 2),“2只都是正品”的基本事件数是1,所以其概率是P =13.探究三 与古典概型有关的综合问题[典例3] 设关于x 的一元二次方程x 2+2ax +b 2=0.若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率. [解析] 设事件A 为“方程x 2+2ax +b 2=0有实根”. 当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的条件为a ≥b .基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 包含9个基本事件,为(0,0),(1,0),(1,1),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),故事件A 发生的概率为P (A )=912=34.(1)注意放回与不放回的区别.(2)在古典概型下,当基本事件总数为n 时,每个基本事件发生的概率均为1n ,要求事件A 的概率,关键是求出基本事件总数n 和事件A 所包含的基本事件数m ,再由古典概型概率公式P (A )=mn 求事件A 的概率.3.编号分别为A 1,A 2,…,A 16的16名篮球运动员在某次训练比赛中的得分记录如下:运动员编号 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 得分 15 35 21 28 25 36 18 34 运动员编号 A 9 A 10 A 11 A 12 A 13 A 14 A 15 A 16 得分1726253322123138(1)将得分在对应区间内的人数填入相应的空格:区间 10~20 20~30 30~40 人数(2)从得分在20~30①用运动员编号列出所有可能的抽取结果; ②求这2人得分之和大于50的概率.解析:(1)由得分记录表,从左到右应填4,6,6.(2)①得分在20~30内的运动员编号为A 3,A 4,A 5,A 10,A 11,A 13.从中随机抽取2人,所有可能的抽取结果有:(A 3,A 4),(A 3,A 5),(A 3,A 10),(A 3,A 11),(A 3,A 13),(A 4,A 5),(A 4,A 10),(A 4,A 11),(A 4,A 13),(A 5,A 10),(A 5,A 11),(A 5,A 13),(A 10,A 11),(A 10,A 13),(A 11,A 13),共15种.②从得分在20~30内的运动员中随机抽取2人,将“这2人得分之和大于50”记为事件B ,则事件B 的所有可能结果有:(A 4,A 5),(A 4,A 10),(A 4,A 11),(A 5,A 10),(A 10,A 11),共5种,153树形图的应用[典例]某盒子中有红、黄、蓝、黑色彩笔各1支,这4支笔除颜色外完全相同,4个人按顺序依次从盒中抽出1支,求基本事件总数.[解析]把这4支笔分别编号为1,2,3,4,则4个人按顺序依次从盒中抽取1支彩笔的所有可能结果用树状图直观地表示如图所示.由树状图知共有24个基本事件.[感悟提高]利用树形图(表格)寻找基本事件的个数形象直观且不易出错.[随堂训练]对应学生用书第45页1.下列有关古典概型的四种说法:①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④已知基本事件总数为n,若随机事件A包含k个基本事件,则事件A发生的概率P(A)=kn. 其中所有正确说法的序号是()A.①②④B.①③C.③④D.①③④解析:②中所说的事件不一定是基本事件,所以②不正确;根据古典概型的特点及计算公式可知①③④正确.故选D. 答案:D2.从甲、乙、丙三人中任选两名代表,甲被选中的概率是( ) A.12 B.13 C.23D .1 解析:列举基本事件,从甲、乙、丙三人中任选两名代表可能的结果是(甲,乙),(甲,丙),(乙,丙)共3种;甲被选中的可能结果是(甲,乙),(甲,丙),共2种,所以P (“甲被选中”)=23.答案:C3.从集合A ={2,3,-4}中随机选取一个数记为k ,从集合B ={-2,-3,4}中随机选取一个数记为b ,则直线y =kx +b 不经过第二象限的概率为________.解析:依题意k 和b 的所有可能的取法有(2,-2),(2,-3),(2,4),(3,-2),(3,-3),(3,4),(-4,-2),(-4,-3),(-4,4),共9种,当直线y =kx +b 不经过第二象限时,应有k >0,b <0,满足条件的取法有(2,-2),(2,-3),(3,-2),(3,-3),共4种,所以所求概率为49.答案:494.一个口袋内装有大小相等的1个白球和已有不同编号的3个黑球,从中任意摸出2个球. (1)共有多少个不同的基本事件,这样的基本事件是否为等可能的?该试验是古典概型吗? (2)摸出的两个球都是黑球记为事件A ,问事件A 包含几个基本事件? (3)计算事件A 的概率.解析:(1)任意摸出两球,共有{白球和黑球1},{白球和黑球2},{白球和黑球3},{黑球1和黑球2},{黑球1和黑球3},{黑球2和黑球3},6个基本事件.因为4个球的大小相同,所以摸出每个球是等可能的,故6个基本事件都是等可能事件.由古典概型定义知,这个试验是古典概型.(2)摸出2个黑球包含3个基本事件.故事件A 包含3个基本事件. (3)因为试验中基本事件总数n =6,而事件A 包含的基本事件数m =3.所以P (A )=m n =36=12.。
高中数学 第3章 概率课件 北师大版必修3
北师大版 ·必修3
路漫漫其修远兮 吾将上下而求索
概率 第三章
古代有个王国世代沿袭着一条奇特的法规:凡是死囚在临 刑前都要抽一次“生死签”.如果抽到“死”字的签则立即处 刑;如果抽到“生”字的签则被认为这是神的旨意应予当场赦 免.
一次国王决定处死一个“犯上”的大臣,把“生死签”的 两张纸都写成“死”字,由于走漏了消息,执反应过来, 嚼烂的纸早已吞下,执法官赶忙追问:“你抽到‘死’字签还 是‘生’字签?”囚臣说:“看剩下的签是什么字就清楚 了.”囚臣巧妙地利用了概率的知识救了自己一命.我们要认 真学习概率,正确地利用概率可以很好地服务于我们.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
高中数学 第三章 概率教案 北师大版必修3(2021年最新整理)
高中数学第三章概率教案北师大版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章概率教案北师大版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章概率教案北师大版必修3的全部内容。
高中数学第三章概率教案北师大版必修3错误!教学分析本节是对第三章知识和方法的归纳与总结,从总体上把握本章,使学生的基本知识系统化和网络化,基本方法条理化,本章共有三部分内容,是相互独立的,随机事件的概率是基础,在此基础上学习了古典概型和几何概型,要注意它们的区别和联系,了解人类认识随机现象的过程是逐步深入的,了解概率这门学科在实际中有着广泛的应用.三维目标通过总结和归纳本章的知识,使学生进一步了解随机事件,了解概率的意义,掌握各种概率的计算公式,能够用所学知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,让概率更好地为人类服务.重点难点概率的意义及求法,频率与概率的关系,概率的主要性质,古典概型的特征及概率公式的应用,几何概型意义的理解及会求简单的几何概型问题.课时安排1课时错误!导入新课思路1。
同样一张书桌有的整洁、有的凌乱,同样一支球队,在不同的教练带领下战斗力会有很大的不同,例如达拉斯小牛队在“小将军”约翰逊的带领下攻防俱佳所向披靡,为什么呢?因为书桌需要不断整理,球队需要系统的训练、清晰的战术、完整的攻防体系.我们学习也是一样需要不断归纳整理、系统总结、升华提高,现在我们就概率这一章进行归纳复习,引出课题.思路2。
为了系统掌握本章的知识,我们复习本章内容,教师直接点出课题.推进新课错误!错误!1.随机事件的概率包括几部分?2.古典概型包括几部分?3.几何概型包括几部分?4.本章涉及的主要数学思想是什么?5.画出本章的知识结构图.讨论结果:1.随机事件的概率随机事件是本章的主要研究对象,基本事件是试验中不能再分的最简单的随机事件.(1)概率的概念在大量重复进行的同一试验中,事件A发生的频率错误!总是接近于某一常数,且在它的附近摆动,这个常数就是事件A的概率P(A),概率是从数量上反映一个事件.求某一随机事件的概率的基本方法是:进行大量重复试验,用这个事件发生的频率近似地作为它的概率.(2)概率的意义与性质①概率是描述随机事件发生的可能性大小的度量,事件A的概率越大,其发生的可能性就越大;概率越小,事件A发生的可能性就越小.②由于事件的频数总是小于或等于试验的次数,所以频率在[0,1]之间,从而任何事件的概率在[0,1]之间,即0≤P(A)≤1.概率的加法公式:如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(3)频率与概率的关系与区别频率是概率的近似值.随着试验次数的增加,频率会越来越接近概率,频率本身也是随机的,两次同样的试验,会得到不同的结果;而概率是一个确定的数,与每次试验无关.2.古典概型(1)古典概型的概念①试验中所有可能出现的基本事件只有有限个;(有限性)②每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.(2)古典概型的概率计算公式为P(A)=错误!.在使用古典概型的概率公式时,应该注意:①要判断该概率模型是不是古典概型;②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.学习古典概型要通过实例理解古典概型的特点:试验结果的有限性和每一个试验结果出现的等可能性.要学会把一些实际问题化为古典概型,不要把重点放在“如何计数”上.3.几何概型(1)对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability),简称几何概型.(2)几何概型的基本特点:①试验中所有可能出现的结果(基本事件)有无限多个;②每个基本事件出现的可能性相等.(3)几何概型的概率公式:P(A)=错误!.几何概型研究的是随机事件的结果有无限多个,且事件的发生只与区域的长度(面积或体积)成比例的概率问题.(4)随机数是在一定范围内随机产生的数,可以利用计算器或计算机产生随机数来做模拟试验,估计概率,学习时应尽可能利用计算器、计算机来处理数据,进行模拟活动,从而更好地体会概率的意义.4.本章涉及的主要思想是化归与转化思想(1)古典概型要求我们从不同的背景材料中抽象出两个问题:一是所有基本事件的个数即总结果数n,二是事件A所包含的结果数m,最后化归为公式P(A)=错误!.(2)几何概型中,要首先求出试验的全部结果所构成的区域长度和构成事件的区域长度,最后化归为几何概型的概率公式求解.5.如图1。
高中数学必修3(北师版)第三章3.2 古典概型(与最新教材完全匹配)知识点总结含同步练习题及答案
名,各年级男、女生人数如下表:0.18例题: 一般地,如果事件 ,,, 两两互斥(彼此互斥),那么事件“ ”发生(是指事件 ,,, 中至少有一个发生)的概率,等于这 个事件发生的概率和,即(3)对立事件的概率:若事件 与事件 互为对立事件,则 为必然事件,.高考不提分,赔付1万元,关注快乐学了解详情。
A 1A 2⋯A n ∪∪⋯∪A 1A 2A n A 1A 2⋯A n n P (∪∪⋯∪)=P ()+P ()+⋯+P ().A 1A 2A n A 1A 2A n AB A ∪B P (A ∪B )=1 盒子里有 个红球, 个白球,现从中任取 个球,设事件 ,事件,事件 ,事件.(1)事件 与 、是什么样的运算关系?(2)事件 与的交事件是什么事件?解:(1)对于事件 ,可能的结果为 个红球 个白球,或 个红球 个白球,故 .(2)对于事件 ,可能的结果为 个红球 个白球, 个红球 个白球,个均为红球,故 .643A ={3个球中有1个红球,2个白球}B ={3个球中有2个红球,1个白球}C ={3个球中至少有1个红球}D ={3个球中既有红球又有白球}D A B C A D 1221D =A ∪B C 12213C ∩A =A 判断下列给出的每对事件是否为互斥事件,是否为对立事件,并说明理由.从 张扑克牌(红桃、黑桃、方块、梅花的牌面数字都是从 到 )中任意抽取 张.(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌的牌面数字为 的倍数”与“抽出的牌的牌面数字大于 ”.解:(1)是互斥事件,不是对立事件.从 张扑克牌中任意抽取 张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件.由于可能抽出方块或者梅花,因此不能保证其中必有一个发生,所以二者不是对立事件.(2)既是互斥事件,又是对立事件.从 张扑克牌中任意抽取 张,“抽取红色牌”与“抽取黑色牌”不可能同时发生,且其中必有一个发生,所以它们既是互斥事件,又是对立事件.(3)不是互斥事件,也不是对立事件.从 张扑克牌中任意抽取 张,“抽出的牌的牌面数字为 的倍数”与“抽出的牌的数字大于 ”这两个事件可能同时发生,如抽出的牌的牌面数字为 ,因此二者不是互斥事件,当然也不可能是对立事件.401101594014014015910某人去开会,他乘火车、轮船、汽车、飞机去的概率分别为 ,,,.(1)求他乘火车或乘飞机去的概率;(2)求他不乘轮船去的概率;(3)请问他可能乘何种交通工具去的概率为 ?解:(1)记“他乘火车去”为事件 ,“他乘轮船去”为事件 ,“他乘汽车去”为事件 ,“他乘飞机去”为事件 ,这四个事件不可能同时发生,故它们彼此互斥.所以(2)设他不乘轮船去的概率为 ,则(3)由于故他有可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去.0.30.20.10.40.5A 1A 2A 3A 4P (∪)=P ()+P ()=0.3+0.4=0.7.A 1A 4A 1A 4P P =1−P ()=1−0.2=0.8.A 20.3+0.2=0.5,0.1+0.4=0.5,。
高中数学 第三章 概率 例谈几何概型的计算知识素材 北师大版必修3
例谈几何概型的计算几何概型是将古典概型的有限性推广到无限性,而保留等可能性的一种求概率的方法.它是借助测度来表示样本区域与所考察的样本.几何概型的计算一般按下列步骤进行:(1)选取合适的模型,即样本区域D;(2)在坐标系中正确表示D与所求概率事件A 所在的区域d ;(3)计算D 与d 的测度D d μμ,;(4)计算概率()d DP A μμ=. 例1 在区间(01),中随机地取出两个数,求这两个数的和小于65的概率.分析:解决本题的关键是如何将其归结为一个几何概型,设x ,y 分别表示随机所取的两个数,则由题意知x ,y 均等可能地在(0,1)中取值,从而(x ,y )等可能地在平面区域{}()|0101D x y x y =<<<<,,中取值,将D作为样本区域,这就是一个几何概型问题. 解:如图1,设x 、y 分别表示从(0,1)中取出的两个数,则样本区域{}()|0101D x y x y =<<<<,,.记A 为事件“两个数的和小于”, 即6()|()5A x y x y x y D ⎧⎫=+<∈⎨⎬⎩⎭,,,, 因为D的面积1D S =,A 的面积21410.6825d S ⎛⎫=-⨯= ⎪⎝⎭. 于是由几何概型的概率公式得到()0.68d DS P A S ==. 例2 甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的,设在1:00~2:00之间有四班客车开出,开车时间分别是1:15,1:30,1:45,2:00,分别求他们在下述情况下同坐一班车的概率.(1)约定见车就乘;(2)约定最多等一班车.分析:本题是几何概型中的典型例题——约会问题的变形.分别作出表示事件的所在区域,利用构造思想及数形结合思想,结合几何概型知识加以解决.解:设甲、乙到站时间分别是x时,y时,则1≤x≤2,1≤y≤2,试验区域D为点(x,y)所形成的正方形,以16个小方格表示,如图2所示.(1)如图3,约定见车就乘的事件所表示的区域d为图中4个黑的小方格所示,所求概率为41 164=;(2)如图4,约定最多等一班车的事件所表示的区域d为图中10个黑的小方格所示,所求概率为105 168=.例3 随机地向半圆00)y a<<>内掷一点,点落在半圆内任何区域的概率均与该区域的面积成正比,求该点与原点连线与x轴的夹角小于π4的概率.分析:题目中“随机地”即表示试验结果的等可能性,“点落在半圆内任何区域的概率均与该区域的面积成正比”更强调试验的等可能性,因为试验结果是无限个,因此容易想到用几何概型来计算.解:如图5,设事件A表示“点与原点连线与x轴的夹角小于的概率”.于是样本区域{()|0D x y y=<,,即为图5中的半圆,其面积为21π2a ; 而{}()|()A x y x y D x y =∈>,,,,其面积为2211π42a a +. 由几何概型的概率公式有22211π1142()12ππ2a a P A a +==+.精美句子1、善思则能“从无字句处读书”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何概型的类型及解法
几何概型是一种特殊的概率模型,下面结合例题介绍它的类型及其解题方法。
一、与长度有关的几何概型
若一次试验中所有可能结果和某个事件A 包含的结果(基本事件)都对应一个长度,如线段长、时间区间、距离、路程等,那么需要求出各自相应的长度,然后运用几何概型的计算公式即可求出事件A 发生的概率。
例1 某人睡觉醒来,发现钟表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率。
分析 假设他在0~60分钟之间任何一个时刻打开收音机是等可能的。
因为电台每隔1小时报时一次,他在哪个时间段打开收音机的概率只与这时间段的长度有关,因此,需要求出各自相应的时间“长度”,然后用几何概型公式求解。
解 设事件A ={等待时间不超过10分钟},我们关心的事件A 恰好是打开收音机的时刻位于[50,60]之间,它的区间长度为10;电台每隔1小时报时一次,它的区间长度为60,由几何概型的计算公式得()P A =
605060-=16。
即“他等待的时间不多于10分钟的概率”为16。
评注 解决此类问题的关键是确定他在哪个时间段打开收音机的概率只与这时间段的长度有关,把它转化为与“长度”有关的几何概型。
二、与角有关的几何概型
若一次试验中所有可能结果和某个事件A 包含的结果(基本事件)都对应一个角,那么需要求出各自相应的角度,然后运用几何概型的计算公式即可求出事件A 发生的概率。
例 如图1所示,在直角坐标系内,射线OT 落在60的终边上,任作一条射线
OA ,求射线OA 落在xOT ∠内的概率。
分析 过O 作射线OA 是随机的,射线OA 落在任何位置都是等可能的,落在xOT ∠内的概率只与xOT ∠的大小有关,符合几何概型的条件。
解 设事件A ={射线OA 落在xOT ∠内},事件A 的“几何度量”是60,而坐标平面的“几何度量”为360,所以由几何概率公式,得()P A =60360=16。
评注 解此题的关键是找到事件A ={射线OA 落在xOT ∠内}的“几何度量”是60,以及坐标平面的“几何度量”为360。
三、与面积有关的几何概型
如果每个基本事件可以理解为从某个特定的几何区域内随机地取一点,某个随机事件的发生理解为恰好取到上述区域内的某个指定区域内的点,且该区域中每一个被取到的机会都一样,这样的概率模型就可以用几何模型来解。
并且,这里的区域可以用面积表示,然后利用几何概型的公式求解。
例3 两人约定在20:00到21:00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20:00到21:00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率。
分析 设两人分别在x 时和y 时到达约见地点,要使两人能在约定时间范围内相见,当且仅当x y -≤23。
两人到达约定地点的所有时刻(x ,y )的可能结果可用图2中的单位正方形内(包括边界)的点表示,而两人能在约定的时间内相见的所有可能结果可用图2中的阴影部分(包括边界)表示,因此可求出两人在约定时间内相见的概率。
解 设两人分别在x 时和y 时到达约见地点,要使两人在能在约定时间范围内相见,当且仅当x y -≤23。
如图2所示,根据题意,得两人在约定时间内相见的概
率为P=
S
S
阴影部分
单位正方形
=
2
2
1
1
3
1
⎛⎫
⎪
⎝⎭
-
=
8
9。
评注解决此题的关键是将已知的两个条件转化为线性的约束条件,转化成平面区域中的面积型几何概率问题。
四、与体积有关的几何概型
对于几何概型,如果图形与体积有关,只需把该试验的所有结果对应体积求出,就可以利用几何概型概率公式进行计算。
例4 在1L高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10mL,求含有麦锈病的种子的概率是多少?
分析病种子在这1L种子中的分布可以看做是随机的,取得的10mL种子可看做构成事件的区域,1L种子可看做试验的所有结果构成的区域,因此,可用“体积比”公式计算其概率。
解取出10mL种子,其中“含有病种子”这一事件记为A,则()
P A=
取出种子的体积所有种子的体积=
10
1000
=0.01.即含有麦锈病种子的概率为0.01.
评注解决此类实际问题,应先根据题意确定试验为与体积有关的几何概型,然后求出事件对应的“几何体”的“体积”,借助几何概型的计算公式求出概率。
几何概型是一种特殊的概率模型,它与古典概型的区别在于试验的结果不是有限个,它的特点是试验的结果在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关。