传感器的基本知识

合集下载

传感器的基本知识

传感器的基本知识

传感器的基本知识导语:传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。

传感器的基本知识一、传感器的定义国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。

传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

它是实现自动检测和自动控制的首要环节。

二、传感器的分类目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器;2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器;3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和”0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。

三、传感器的静态特性传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。

因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。

表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。

四、传感器的动态特性所谓动态特性,是指传感器在输入变化时,它的输出的特性。

在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。

这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。

*常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。

五、传感器的线性度通常情况下,传感器的实际静态特性输出是条曲线而非直线。

第一章 传感器的基本知识

第一章 传感器的基本知识

第一章传感器的基本知识复习思考题1. 简述传感器的概念、作用及组成。

2. 传感器的分类有哪几种?各有什么优缺点?3. 传感器是如何命名的?其代号包括哪几部分?在各种文件中如何应用?4. 传感器的静态性能指标有哪些?其含义是什么?5. 传感器的动态特性主要从哪两方面来描述?采用什么样的激励信号?其含义是什么?1.1 传感器的作用与地位◆世界是由物质组成的,各种事物都是物质的不同形态。

人们为了从外界获得信息,必须借助于感觉器官。

◆人的“五官”——眼、耳、鼻、舌、皮肤分别具有视、听、嗅、味、触觉等直接感受周围事物变化的功能,人的大脑对“五官”感受到的信息进行加工、处理,从而调节人的行为活动。

◆人们在研究自然现象、规律以及生产活动中,有时需要对某一事物的存在与否作定性了解,有时需要进行大量的实验测量以确定对象的量值的确切数据,所以单靠人的自身感觉器官的功能是远远不够的,需要借助于某种仪器设备来完成,这种仪器设备就是传感器。

传感器是人类“五官”的延伸,是信息采集系统的首要部件。

电量和非电量◆表征物质特性及运动形式的参数很多,根据物质的电特性,可分为电量和非电量两类。

◆电量——一般是指物理学中的电学量,例如电压、电流、电阻、电容及电感等;◆非电量——则是指除电量之外的一些参数,例如压力、流量、尺寸、位移量、重量、力、速度、加速度、转速、温度、浓度及酸碱度等等。

◆人类为了认识物质及事物的本质,需要对物质特性进行测量,其中大多数是对非电量的测量。

传感器的作用◆非电量不能直接使用一般的电工仪表和电子仪器进行测量,因为一般的电工仪表和电子仪器只能测量电量,要求输入的信号为电信号。

◆非电量需要转化成与其有一定关系的电量,再进行测量,实现这种转换技术的器件就是传感器。

◆传感器是获取自然或生产中信息的关键器件,是现代信息系统和各种装备不可缺少的信息采集工具。

采用传感器技术的非电量电测方法,就是目前应用最广泛的测量技术。

传感器的地位◆随着科学技术的发展,传感器技术、通信技术和计算机技术构成了现代信息产业的三大支柱产业,分别充当信息系统的“感官”、“神经”和“大脑”,他们构成了一个完整的自动检测系统。

传感器基本原理和分类

传感器基本原理和分类

传感器基本原理和分类传感器是一种能够将外界物理量转化为电信号的器件,广泛应用于各个领域。

本文将从传感器的基本原理和分类两个方面来介绍传感器的相关知识。

一、传感器基本原理传感器的基本原理是根据特定物理效应的作用,将感知到的信息转化为电信号输出。

常见的传感器基本原理包括:电阻效应、电磁效应、热效应、光电效应等。

1. 电阻效应传感器电阻效应传感器是利用材料电阻值随物理量变化而发生变化的原理进行测量的传感器。

例如,热敏电阻传感器是根据温度对电阻值的影响来测量温度变化的。

2. 电磁效应传感器电磁效应传感器是利用电场或磁场的变化来感知物理量的传感器。

例如,霍尔效应传感器是通过感应磁场来测量磁场强度的。

3. 热效应传感器热效应传感器是利用物理量变化引起的温度变化来测量物理量的传感器。

例如,热电偶是通过测量不同温度下产生的电动势来测量温度变化的。

4. 光电效应传感器光电效应传感器是利用光的吸收、散射、反射、透射等效应进行测量的传感器。

例如,光电二极管是通过光的吸收产生电流来测量光强度的。

二、传感器分类传感器根据测量的物理量和应用领域的不同,可以分为多种分类。

下面介绍几种常见的传感器分类。

1. 按测量的物理量分类根据测量的物理量不同,传感器可以分为温度传感器、压力传感器、湿度传感器、流量传感器等。

温度传感器用于测量温度变化,压力传感器用于测量压力变化,湿度传感器用于测量湿度变化,流量传感器用于测量液体或气体的流量等。

2. 按工作原理分类根据传感器的工作原理不同,可以分为电阻传感器、电容传感器、电磁传感器、光学传感器等。

电阻传感器根据电阻值的变化进行测量,电容传感器根据电容值的变化进行测量,电磁传感器根据电磁场的变化进行测量,光学传感器根据光的吸收、反射等效应进行测量。

3. 按应用领域分类根据不同的应用领域,传感器可以分为工业传感器、生物传感器、环境传感器、汽车传感器等。

工业传感器广泛应用于工业自动化控制领域,生物传感器用于医疗、生物工程等领域,环境传感器用于环境监测、气象预测等领域,汽车传感器用于汽车电子系统等。

高二传感器知识点总结

高二传感器知识点总结

高二传感器知识点总结一、传感器的基本概念传感器是一种能够感知周围环境并将感知到的信息转化为电信号或其他形式信号的器件。

传感器在工业自动化、智能家居、医疗设备、汽车工业等领域都有广泛的应用,对于提高生产效率、改善生活质量有着重要的作用。

二、传感器的分类1. 按照测量物理量分类传感器根据其测量的物理量不同可以分为温度传感器、压力传感器、光敏传感器、湿度传感器、力传感器、位移传感器等多种类型。

2. 按照传感原理分类传感器还可以按照其传感原理不同进行分类,常见的传感原理包括电阻传感器、电容传感器、电感传感器、霍尔传感器、红外线传感器、激光传感器等。

3. 按照传感器的工作原理分类按照传感器的工作原理可以分为接触式传感器和非接触式传感器两种。

接触式传感器需要直接接触被测物体,而非接触式传感器可以通过无线、光学或者声波等方式进行测量。

三、传感器的特点1. 灵敏度高传感器能够感知到微小的变化,具有高的灵敏度。

2. 可靠性高传感器具有良好的稳定性和可靠性,能够长时间稳定工作。

3. 多功能性强传感器可以感知多种物理量,具有多功能性。

4. 体积小、重量轻传感器通常体积小、重量轻,便于安装和携带。

5. 自动化程度高传感器可以实现自动检测和自动控制,有助于提高生产效率。

四、传感器的应用1. 工业自动化传感器在工业自动化领域有着广泛的应用,可以用于测量温度、压力、液位、流量等参数,实现设备的自动化控制。

2. 智能家居在智能家居领域,传感器可以应用于智能灯光控制、温湿度监测、门窗开关检测等方面,提高生活的便利性和舒适性。

3. 医疗设备在医疗设备领域,传感器可以用于心率监测、血压监测、血糖监测等,为医疗人员提供重要的生理参数。

4. 汽车工业在汽车工业中,传感器可以用于车速测量、车重检测、发动机温度检测等,提高车辆的性能和安全性。

五、传感器的未来发展趋势1. 多功能集成传感器未来发展趋势是实现多功能集成,将多种传感功能整合在一个器件中,提高传感器的智能化和多功能性。

第一章传感器技术基础知识

第一章传感器技术基础知识
频带:传感器增益保持在一定值内的频率范围为传感器频带 或通频带,对应有上、下截止频率。
时间常数:用时间常数τ来表征一阶传感器的动态特性。τ越小, 频带越宽。
固有频率:二阶传感器的固有频率ωn表征了其动态特性。
传感器的选用原则
与测量条件有关的因素 (1)测量的目的 (2)被测试量的选择 (3)测量范围 (4)输入信号的幅值,频带宽度 (5)精度要求 (6)测量所需要的时间
相应的响应曲线 :
传感器存在惯性,它的输出不能立即复现输入信号,而是从零开 始,按指数规律上升,最终达到稳态值。 理论上传感器的响应只在t趋于无穷大时才达到稳态值,但实际上 当t=4τ时其输出达到稳态值的98.2%,可以认为已达到稳态。 τ越小,响应曲线越接近于输入阶跃曲线, 因此,τ值是一阶传感器重要的性能参数。
测量
测量是指人们用实验的方法,借助于一定的仪器或 设备,将被测量与同性质的单位标准量进行比较,
并确定被测量对标准量的倍数,从而获得关于被测
量的定量信息。
xnu或
x——被测量值;
n x u
u——标准量,即测量单位;
n——比值,含有测量误差。
测量过程
传感器从被测对象获取被测量的信息,建立起 测量信号,经过变换、传输、处理,从而获得 被测量量值的过程。
线性传感器
S y x
灵敏度是它的静态特性的斜率,即S为常数。
非线性传感器
它的灵敏度S为一变量,用下式表示。
S dy dx
传感器的灵敏度如图1-3所示。
Y
Y
S y - y0
Yo
x
X O
a)线形传感器
Байду номын сангаас
Y dy
dx S dy dx X

传感器培训资料

传感器培训资料

传感器培训资料第一部分:传感器的基本概念传感器是一种能够感知环境中的各种物理量并将其转化为电信号的装置。

通过测量物理量,传感器可以帮助我们获得环境中各种数据,从而实现自动化控制和监测。

传感器的种类繁多,常见的传感器包括温度传感器、湿度传感器、压力传感器、光电传感器等。

在不同的应用场景中,需要选择不同类型的传感器来完成具体的任务。

第二部分:传感器的工作原理传感器的工作原理通常通过物理效应来实现。

例如,温度传感器通常利用热敏电阻或热电偶来测量温度;压力传感器则利用压阻效应或压电效应来转换压力为电信号。

在传感器的内部,通常还会带有信号放大电路、模数转换器等元件,用来将感知到的物理量转化为标准的电信号输出。

第三部分:传感器的应用场景传感器广泛应用于工业控制、汽车领域、医疗设备等各个领域。

例如,温度传感器可以用于控制空调温度、汽车发动机的温度监测等;压力传感器可以用于测量液体或气体的压力、监测管道的泄漏等。

第四部分:传感器的选择和安装在选择传感器时,需要考虑其测量范围、精度、响应时间等指标,以及适用的工作环境,如温度、湿度等。

在安装传感器时,需要注意避免干扰源,保证传感器测量的准确性。

第五部分:传感器的维护和保养传感器作为自动化系统中的重要部件,需要进行定期的维护和保养。

对于一些易受环境影响的传感器,如湿度传感器、光电传感器等,需要保持其表面清洁,防止积灰或水汽影响测量精度。

第六部分:传感器的未来发展随着科技的不断进步,传感器的应用范围将会更加广泛,同时传感器本身的性能也将进一步提升。

例如,新型传感器可能会采用纳米技术制备,具有更高的灵敏度和更小的体积;同时,通过无线传输技术,传感器也有望实现无线监测和控制,大大提高其应用灵活性。

通过本次传感器培训,希望大家能够对传感器有更深入的了解,从而能够更好地应用传感器解决实际问题,提高工作效率和产品质量。

同时也希望大家能够关注传感器领域的最新发展,不断更新自己的知识,为行业的发展做出更大的贡献。

传感器的基本原理及其应用

传感器的基本原理及其应用

传感器的基本原理及其应用一、传感器的定义和分类1.1 传感器的定义传感器是一种能够将感知到的物理量转变为可测量或可使用的电信号的装置。

传感器可以用于测量温度、湿度、压力、光照强度、位移等各种物理量。

1.2 传感器的分类根据测量的物理量不同,传感器可以分为以下几类:•温度传感器•湿度传感器•压力传感器•光照传感器•位移传感器二、传感器的基本原理2.1 温度传感器的原理温度传感器是用于测量物体的温度的传感器。

常见的温度传感器有热电偶和热敏电阻。

热电偶是利用热电效应测量温度的,热敏电阻则是通过电阻值的变化来测量温度的。

2.2 湿度传感器的原理湿度传感器是用于测量物体的湿度的传感器。

常见的湿度传感器有湿度电容式传感器和湿敏电阻传感器。

湿度电容式传感器通过测量电容的变化来测量湿度,湿敏电阻传感器则是通过电阻值的变化来测量湿度的。

2.3 压力传感器的原理压力传感器是用于测量物体的压力的传感器。

常见的压力传感器有压阻式传感器和压电式传感器。

压阻式传感器是通过电阻值的变化来测量压力的,压电式传感器则是利用压电效应来测量压力的。

2.4 光照传感器的原理光照传感器是用于测量光照强度的传感器。

常见的光照传感器有光敏电阻和光电二极管传感器。

光敏电阻是通过电阻值的变化来测量光照强度的,光电二极管传感器则是利用光电效应来测量光照强度的。

2.5 位移传感器的原理位移传感器是用于测量物体的位移或位置的传感器。

常见的位移传感器有电感式位移传感器和光电式位移传感器。

电感式位移传感器是通过感应电磁场的变化来测量位移的,光电式位移传感器则是利用光电效应来测量位移的。

三、传感器的应用3.1 温度传感器的应用•家用电器中的恒温控制•工业生产过程中的温度监测和控制3.2 湿度传感器的应用•温室内的湿度检测和控制•空调设备中的湿度调节3.3 压力传感器的应用•工业生产中的压力监测和控制•汽车维修中对轮胎气压的检测3.4 光照传感器的应用•照明系统中的光照调节•环境监测中的光照强度检测3.5 位移传感器的应用•机械加工中的位置测量•自动化生产线中的物体定位和跟踪以上只是传感器应用的一部分,实际上,传感器在各个领域都有广泛的应用,如医疗设备、航空航天、能源管理等。

传感器的基本知识

传感器的基本知识



5.传感器的组成
传感器组成框图
被测量
敏感 元件
转换 元件
基本转 换电路
电量
包含敏感元件、转换元件、转换电路的传感器
包含敏感元件、转换元件、转换电路的传感器
包含敏感元件、转换元件的传感器
同样测加速度,与前图比较。
包含敏感元件的传感器
包含敏感元件的传感器
6.传感器的分类
按传感器的工作机理 按构成原理
按物理原理分类




电 参 量 式 传 感 器
磁 电 式 传 感 器
压 电 式 传 感 器
光 电 式 传 感 器
气 电 式 传 感 器
热 电 式 传 感 器
波 式 传 感 器
射 线 式 传 感 器
半 导 体 式 传 感 器
其 它 原 理 的 传 感 器
1.2 传感器的基本特性
1.1传感器的定义、组成、分类
1.传感技术的特点和地位 “传感技术”课程主要讲授把各种几何量、机械 量以及其它有关量转换成电量的各种传感器 (包括基本转换电路)。
“传感技术”课程是一门综合性、理论性和实践性 都很强的课程。
现代信息技术的基础有三个主要方面:
信息采集——传感技术 信息传输——通信技术 信息处理——计算机技术

结构型传感器
是利用物理学中场的定律构成的,包括动力场的运动定律, 电磁场的电磁定律等。物理学中的定律一般是以方程式给出的。 对于传感器来说,这些方程式也就是许多传感器在工作时的数 学模型。这类传感器的特点是传感器的工作原理是以传感器中 元件相对位置变化引起场的变化为基础,而不是以材料特性变 化为基础。
传感技术
第1单元 传感器的基本知识

传感器第2章基本特性

传感器第2章基本特性

(2 ~ 3)σ γ =± × 100% y FS
标准偏差的计算用贝赛尔公式计算, 标准偏差的计算用贝赛尔公式计算,即
σ=
∑(y
i =1
n
i
y)
n 1
第 1 章 传感器基础知识
8)分辨力与阈值 定义:指能检测最小输入变化量(增量)的能力. 定义:指能检测最小输入变化量(增量)的能力. 由于分辨力易受噪声影响,所以常用相对于噪声电平N 由于分辨力易受噪声影响,所以常用相对于噪声电平N若干 的被测量为最小检测量. 倍c的被测量为最小检测量. 定义式: 定义式: cN
M=
k
C取1~5 取
阈值:输入量在零点附近的分辨力(最小检测量). 阈值:输入量在零点附近的分辨力(最小检测量).
第 1 章 传感器基础知识
思考 题 1.何为传感器的静态特性? 1.何为传感器的静态特性? 何为传感器的静态特性 2.静态特性的主要技术指标为哪些? 2.静态特性的主要技术指标为哪些? 静态特性的主要技术指标为哪些 3.某位移传感器,在输入量变化5mm时, 3.某位移传感器,在输入量变化5mm时 某位移传感器 5mm 输出电压变化为300mV,求其灵敏度. 300mV,求其灵敏度 输出电压变化为300mV,求其灵敏度. 4.某测量系统由传感器,放大器和记录仪组成, 4.某测量系统由传感器,放大器和记录仪组成,各环节的 某测量系统由传感器 灵敏度为S1 0.2mV/℃ S2=2.0V/mV,S3=5.0mm/V,求系 S1= 灵敏度为S1=0.2mV/℃, S2=2.0V/mV,S3=5.0mm/V,求系 统总的灵敏度. 统总的灵敏度.
y (t ) = B(ω ) sin[ωt + φ (ω )]
第 1 章 传感器基础知识

传感器的基础知识

传感器的基础知识
Y a1X a2 X 2 an X n
理想的线性 关系
关于原点对称, 在输入X=0较大的范围
有较好的线性关系
线性差,一 般很少采用
一般情况
1.3传感器的类型和特性
传感器的静态特性指标
静态特性校准曲线
传感器静态校准曲线(实际曲线)是在静态标准条件下测定的。 利用一定精度等级的校准设备,对传感器进行往复循环测 试,即可得到输出-输入数据。将这些数据取平均,即为传 感器的静态校准曲线。
Y a0 a1X a2 X 2 an X n
讨论a0=0时的情形,即静态特性曲线通过原点的情形:
(1) 理想的线性特性 (2) 仅有奇次非线性项 (3) 仅有偶次非线性项 (4)同时有奇偶次非线性项
Y a1X
Y a1X a3 X 3 a5 X 5
Y a1X a2 X 2 a4 X 4
传感器的分类
•按被测对象的参数分类 位移传感器、力传感器、力矩传感器、压力传感器、振
动传感器、加速度传感器、流量传感器、流速传感器、液 位传感器、温度传感器、湿度传感器等 • 按变换原理分类
电阻式传感器、电容式传感器、电感式传感器、压电式 传感器、光电式传感器、热电式传感器、超声波传感器、 光栅传感器、红外传感器、光纤传感器、激光传感器等 • 按输出特性的线性与否分类
Y
0
X
1.3传感器的类型和特性
传感器的静态特性指标
(1)线性度 (2)灵敏度 (3)最小检测量和分辨力 (4)迟滞 (5)重复性 (6)零点漂移 (7)温漂
1.3传感器的类型和特性 y
传感器的静态特性指标
(1)线性度
YFS 实 际 特性 曲 线
在规定的条件下,传感器静态 校准曲线(实际曲线)与拟合直线 间最大偏差与满量程输出值的百 分比称为线性度。

传感器的一些基本概念与常识

传感器的一些基本概念与常识

2. 正确度
正确度说明测量结果偏离真值的程度,即示值有规则偏离真值的程 度。指所测值与真值的符合程度(对应系统误差)。
3. 精确度
它含有精密度与正确度两者之和的意思,即测量的综合优良程度。 在最简单的场合下可取两者的代数和。通常精确度是以测量误差的相对 值来表示的。
.
20
• •
• •


• •
••
度就是它的静态特性的斜率,
如图 (a) 所示。即
Sn
y y0 x
非线性传感器的灵敏度是 一个变量,如图 (b) 所示,即 用 d y / d x 表示传感器在某一 工作点的灵敏度。
.
15
L2
L1
L0
L2
L1
L0
.
16
y
dy
y
x
dx
x
(a) 传 感 器 的 输 入 —输 出 特 性 曲 线
k tg y x
如果敏感元件直接输出的是电量,它就同时兼为转换元件,因此, 敏感元件和转换元件两者合一的传感器是很多的。例如:压电晶体、 热电偶、热敏电阻、光电器件等都是这种形式的传感器。
.
7
1. 敏感元件(预变换器):是指传感器中能直接感受或响应被测量(非
电量)并输出与之成确定关系的其他量(非电量)的部分。
(在完成非电量到电量的变换时,并非所有的非电量都能利用现有 手段直接变换为电量,往往是将被测非电量预先变换为另一种易于变换 成电量的非电量,然后再变换为电量。能够完成预变换的器件称为敏感 元件)。
Δmax —— 输出最大偏差; ΔT —— 温度变化范围
.
25
5、传感器的基体材料
45号钢
202、204不锈钢(铬-镍-锰 奥氏体不锈 钢30)4不锈钢(0Cr18Ni9) 316L不锈钢 ( 00Cr17Ni14Mo2 )

传感器基础知识

传感器基础知识

第1章传感器的基本知识一、简述题1-1何谓结构型传感器?何谓物性型传感器?试述两者的应用特点。

1-2一个实用的传感器由哪几部分构成?各部分的功用是什么?用框图标示出你所理解的传感器系统。

1-3衡量传感器静态特性的主要指标有哪些?说明它们的含义。

1-4什么是传感器的静态特性和动态特性?差别何在?1-5怎么评价传感器的综合静态性能和动态性能?二、计算题1-6有一只压力传感器的校准数据如下表所列。

根据这些数据求最小二乘法线性化的拟合直线方程,并求其线性度。

1-7液体温度传感器是一阶传感器,现已知某玻璃水银温度计特性的微分方程为4dy/dx+2y = 2×103x。

式中y为汞柱高(m),x为被测温度(℃)。

试求:(1) 水银温度计的传递函数;(2) 温度计的时间常数及静态灵敏度;(3) 若被测物体的温度是频率为0.5 Hz的正弦信号,求此时传感器的输出信号振幅误差和相角误差。

1-8今有两加速度传感器均可作为二阶系统来处理,其中一只固有频率为25 kHz,另一只为35 kHz,阻尼比均为0.3。

若欲测量频率为10kHz 的正弦振动加速度,应选用哪一只传感器?试计算测量时将带来多大的振幅误差和相位误差。

第3章电感式传感器3-1简述变气隙式自感传感器的工作原理和输出特性,传感器的灵敏度与哪些因素有关?如何提高其灵敏度?3-2电源频率波动对自感式传感器的灵敏度有何影响?如何确定传感器的最佳电源频率?3-3差动变压器式传感器的等效电路包括哪些元件和参数?各自的含义是什么?3-4试分析差动变压器式电感传感器的相敏整流测量电路的工作过程。

带相敏整流的电桥电路具有哪些优点?3-5差动变压器式传感器的零点残余电压产生的原因是什么?怎样减小和消除它的影响?3-6图3.38所示为差动变压器式接近开关原理图,结构中使用H型铁芯,分析它的工作原理,并设计后续信号处理电路,使被测金属部件与探头距离达设定距离时,继电器吸合。

传感器的基本概念

传感器的基本概念

传感器的基本概念
传感器是一种用于检测和测量环境中的物理量或化学量的设备。

它能将所测量的量转化为电信号,以便于在电子系统中处理和分析。

传感器的基本概念包括以下几个方面:
1. 传感原理:传感器的工作基于某种物理或化学原理,例如光、压力、温度、湿度等。

传感器通过与环境中所测量量的相互作用,产生相应的电信号。

2. 检测和转换:传感器通过检测物理量或化学量的变化,并将其转换为电信号,一般是电压或电流信号。

这些信号可以是模拟信号或数字信号,根据传感器的类型和应用而有所不同。

3. 灵敏度和精确度:传感器的灵敏度是指它对所测量量变化的敏感程度。

精确度则表示传感器所提供的测量结果与真实值之间的接近程度。

这些都是评估传感器性能的重要指标。

4. 输出信号:传感器的输出信号可以直接用于控制、监测和测量目的。

一般情况下,传感器输出的信号需要经过信号处理和解码等过程,以获得有用的信息。

5. 应用领域:传感器广泛应用于各个领域,包括工业控制、环境监测、医疗诊断、交通运输、军事和航天等。

不同应用领域的传感器通常具有不同的特性和功能要求。

总之,传感器是一种能够将环境中物理或化学量转换为电信号的设备,它在现代科技和工程中扮演着重要的角色。

传感器基本知识上

传感器基本知识上

(五). 分辨率(△xmin )、阈值
分辨力:在规定的测量范围内,传感器所
能检测出输入量的最小Dx变min 值
.
分辨率:相对与输入的满量程的相对值表示
。即
Dxmin 100% X FS
xFS —— 输入量的满量程值
数字传感器的分辨力可用输出数字指示值最后一位所代表的输入量。
(五). 分辨率( △xmin )、阈值
说明:1、分辨力 --- 是绝对数值,如
重复性是体现传感器的精密程度 指标之一
反映误差分散的程度
传感器为何会产生重复性误差?
传感器机械部分的磨损、间隙、松动
敏感元件内摩擦、积尘
辅助电路老化和漂移 注意
不重复性误差一般属于随机误差性质,反映的是测量 结果偶然误差大小,而不表示与真值之间的差别,有时 重复性很好但可能偏离真值。不重复性误差可以通过校 准测得。
(三). 重复性 Ex
重复性 Ex 反映了传感器在输入量按同一方
向(增或减)做全量程多次测试时,所得到的
特性曲线的不一致程度。
Ex

Dmax yFS
100% (2.7)
Y
Δ max─ 最大不重复误差
Dmn Dmax {Dm1 ...Dmi ...Dmn }
YFS 满量程输出值
Dm2 Dm1
(四).迟滞现象(回差EH )
回差EH 反映了传感器的输入量在正向行程
和反向行程全量程多次测试时,所得到的
特性曲线的不重合程度。
y
EH

Emax


Dm yFS
100% (2.9)
y FS
Dm
迟滞是由于磁性材料的磁化 和材料受力变形,机械部分存在 (轴承)间隙、摩擦、(紧固件) 松动、材料内摩擦、积尘等造成 的。

传感器基础知识

传感器基础知识

• 温漂
–表示温度变化时,传感器输出值的偏离程度。一般以 温度变化1摄氏度,输出最大偏差与满量程的百分比来 表示。
可靠性 :是反映检测系统在规定的条件下,在规
定的时间内是否耐用的一种综合性的质量指标。
“老化”试验:在检测设备通电的情况下,将之放
置于高温环境 低温环境 高温环境……反复循环。 老化之后的系统在现场使用时,故障率大为降低 。
1 静态测量
对缓慢变化的对象进行 测量亦属于静态测量。 e.g. 温度计
2、动态测量
地震测量的振动波形
设备振动检测、故障 诊断
地震时间 ( 分)
便携式仪表
可以显示波 形的便携式 仪表
3、直接测量
电子卡尺
4、间接测量
对多个被测量进行测量,经过计 算求得被测量(阿基米德测量)。
5、接触式测量
(三)、传感器基本特性
传感器的特性一般指:输入、输出特性,包
括: 灵敏度、分辨力、线性度、重复性、零点漂 移、温漂、可靠性、稳定度、电磁兼容性等
灵敏度 :
灵敏度是指传感器在稳态下输出变化 值与输入变化值之比,用K 来表示:
dy y K dx x
作图法求灵敏度过程
y
Δy
切点
传感器 特性曲线
三、传感器的基本特性
(一)、传感器的组成 举例:测量压力的电位器式压力传感器
传感器 组成框图
1-弹簧管 2-电位器
弹性敏感元件(弹簧管) 敏感元件在传感器中直接感受被测量, 并转换成与被测量有确定关系、更易于转换 的非电量。
弹性敏感元件(弹簧管) 在下图中,弹簧管将压力转换为角位移α
弹簧管放大图 当被测压力p增大时,弹簧管撑直,通过齿 条带动齿轮转动,从而带动电位器的电刷产生 角位移。

传感器的基本知识

传感器的基本知识

(6)漂移(Drift)
漂移指在一定时间间隔内,传感器输出量存在着与被测输入量 无关的、不需要的变化。漂移包括零点漂移与灵敏度漂移。 零点漂移或灵敏度漂移又可分为时间漂移(时漂)和温度漂移(温 漂)。时漂是指在规定条件下,零点或灵敏度随时间的缓慢变化; 温漂为周围温度变化引起的零点或灵敏度漂移。
安徽工程大学电气工程学院
当输入量为常量,或变化极慢时,这一关系称为静 态特性; 当输入量随时间较快地变化时,这一关系称为动态 特性。 传感器输出与输入关系可用微分方程来描述。理论 上,将微分方程中的一阶及以上的微分项取为零时, 即得到静态特性。因此,传感器的静态特性只是动 态特性的一个特例。
安徽工程大学电气工程学院
第1章 传感器的基本知识
物性型传感器
能量转换型传感器 按能量关系分类 能量控制型传感器 按输出信号分类 模拟式传感器 数字式传感器
传感器依赖其敏感元件物理 特性的变化实现信息转换
传感器直接将被测量的能量 转换为输出量的能量 由外部供给传感器能量,而 由被测量来控制输出的能量 输出为模拟量 输出为数字量
安徽工程大学电气工程学院
y yFS ⊿Hmax
0
迟滞特性
x
式中△Hmax—正反行程间输出的最大差值。 迟滞误差的另一名称叫回程误差。回程误差常用绝对误差表示。 检测回程误差时,可选择几个测试点。对应于每一输入信号,传感 器正行程及反行程中输出信号差值的最大者即为回程误差。
安徽工程大学电气工程学院
第1章 传感器的基本知识 y
安徽工程大学电气工程学院
第1章 传感器的基本知识
(3)传感器的输出量是某种物理量,一般为便于传输、 转换、处理、显示的电量(电压、电流、电阻、电 感、、、); (4)传感器的输出输入有对应关系,且应有一定的精 确程度;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传感器的基本知识
一、传感器的定义
国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。

传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

它是实现自动检测和自动控制的首要环节。

二、传感器的分类
目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:
1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器
2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。

3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。

三、传感器的静态特性
传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。

因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。

表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。

四、传感器的动态特性
所谓动态特性,是指传感器在输入变化时,它的输出的特性。

在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。

这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。

最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。

五、传感器的线性度
通常情况下,传感器的实际静态特性输出是条曲线而非直线。

在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。

拟合直线的选取有多种方法。

如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。

六、传感器的灵敏度
灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x的比值。

它是输出一输入特性曲线的斜率。

如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。

否则,它将随输入量的变化而变化。

灵敏度的量纲是输出、输入量的量纲之比。

例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。

当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。

提高灵敏度,可得到较高的测量精度。

但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。

七、传感器的分辨力
分辨力是指传感器可能感受到的被测量的最小变化的能力。

也就是说,如果输入量从某一非零值缓慢地变化。

当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。

只有当输入量的变化超过分辨力时,其输出才会发生变化。

通常传感器在满量程范围内各点的分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨力的指标。

上述指标若用满量程的百分比表示,则称为分辨率。

八、电阻式传感器
电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。

主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。

九、电阻应变式传感器
传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。

电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。

半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。

十、压阻式传感器
压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。

其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。

当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。

用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。

十一、热电阻传感器
热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。

在温度检测精度要求比较高的场合,这种传感器比较适用。

目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。

用于测量-200℃~+500℃范围内的温度。

十二、传感器的迟滞特性
迟滞特性表征传感器在正向(输入量增大)和反向(输入量减小)行程间输出-一输入特性曲线不一致的程度,通常用这两条曲线之间的最大差值△MAX与满量程输出F·S的百分比表示。

迟滞可由传感器内部元件存在能量的吸收造成。

相关文档
最新文档