数轴及绝对值相反数提高练习试题
数轴、相反数、绝对值专题练习(含答案)
数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。
人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案
人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案满分:100分时间:90分钟一、选择题(每小题3分共36分)1.(2022春•沙依巴克区校级期中)下列各数中是负数的为()A.﹣1B.0C.0.2D.【答案】A【解答】解:﹣1是负数;0既不是正数也不是负数;0.2是正数;是正数.故选:A.2.(2022春•明水县期末)一种食品包装袋上标着:净含量200g(±3g)表示这种食品的标准质量是200g这种食品净含量最少()g为合格.A.200B.198C.197D.196【答案】C【解答】解:∵200﹣3=197(g)∴这种食品净含量最少197g为合格故选:C.3.(2022•牡丹区三模)中国人很早开始使用负数中国古代数学著作《九章算术》的“方程”一章在世界数学史上首次正式引入负数用正、负数来表示具有相反意义的量.一次数学测试以80分为基准简记90分记作+10分那么70分应记作()A.+10分B.0分C.﹣10分D.﹣20分【答案】C【解答】解:以80分为基准简记90分记作+10分那么70分应记作:70﹣80=﹣10分故选:C.4.(2022春•朝阳区期中)某机器零件的实物图如图所示在数轴上表示该零件长度(L)合格尺寸正确的是()A.B.C.D.【答案】C【解答】解:已知图可知L的取值范围是9.8≤L≤10.2A选项表示的是L≤9.8 不正确;B选项表示的是L≥10.2 不正确;C选项表示的是9.8≤L≤10.2 正确;D选项表示的是L≥10.2或L≤9.8 不正确;故选:C.5.(2022春•杨浦区校级期中)下列说法正确的是()A.有理数都可以化成有限小数B.若a+b=0 则a与b互为相反数C.在数轴上表示数的点离原点越远这个数越大D.两个数中较大的那个数的绝对值较大【答案】B【解答】解:A、有理数是有限小数和无限循环小数所以此选项错误;B、a+b=0 两个数的和为零则这两个数互为相反数此选项正确;C、在数轴上右边的数离原点越远这个数越大左边的数离原点越远这个数越小此选项错误;D、特殊值法2>﹣3 但|2|<|﹣3| 此选项错误.故选:B.6.(2021秋•荷塘区期末)有理数a在数轴上的位置如图所示则|a﹣5|=()A.a﹣5B.5﹣a C.a+5D.﹣a﹣5【答案】B【解答】解:∵a<5∴|a﹣5|=﹣(a﹣5)=5﹣a.故选:B.7.(2022•玉屏县二模)数轴上表示数m和m+2的点到原点的距离相等则m为()A.﹣2B.2C.1D.﹣1【答案】D【解答】解:由题意得:|m|=|m+2|∴m=m+2或m=﹣(m+2)∴m=﹣1.故选:D.8.(2021秋•渑池县期末)若|a﹣1|与|b﹣2|互为相反数则a+b的值为()A.3B.﹣3C.0D.3或﹣3【答案】A【解答】解:∵|a﹣1|与|b﹣2|互为相反数∴|a﹣1|+|b﹣2|=0又∵|a﹣1|≥0 |b﹣2|≥0∴a﹣1=0 b﹣2=0解得a=1 b=2a+b=1+2=3.故选:A.9.(2021秋•房县期末)已知:有理数a b满足ab≠0 则的值为()A.±2B.±1C.±2或0D.±1或0【答案】C【解答】解:∵ab≠0∴a>0 b<0 此时原式=1﹣1=0;a>0 b>0 此时原式=1+1=2;a<0 b<0 此时原式=﹣1﹣1=﹣2;a<0 b>0 此时原式=﹣1+1=0故选:C.10.(2021秋•镇平县校级期末)若|a|=8 |b|=5 且a>0 b<0 a﹣b的值是()A.3B.﹣3C.13D.﹣13【答案】C【解答】解:∵|a|=8 |b|=5 且a>0 b<0∴a=8 b=﹣5∴a﹣b=13故选:C.11.有理数a b在数轴上的对应点的位置如图所示.把﹣a b0按照从小到大的顺序排列正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<0【答案】A【解答】解:由数轴可知a<0<b|a|<|b|∴0<﹣a<b故选:A.12.(2021秋•勃利县期末)有理数a b在数轴上的对应点如图所示则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【答案】B【解答】解:∵从数轴可知:b<0<a|b|>|a|∴①正确;②错误∵a>0 b<0∴ab<0 ∴③错误;∵b<0<a|b|>|a|∴a﹣b>0 a+b<0∴a﹣b>a+b∴④正确;即正确的有①④故选:B.二、填空题(每小题2分共10分)13.(2022春•南岗区校级期中)如果向东走6米记作+6米那么向西走5米记作米.【答案】-5【解答】解:向东走6米记作+6米则向西走5米记作﹣5米故答案为:﹣5.14.(2022春•崇明区校级期中)小明在小卖部买了一袋洗衣粉发现包装袋上标有这样一段字样:“净重800±5克”请说明这段字样的含义.【答案】一袋洗衣粉的重量在795克与805克之间.【解答】解:“净重800±5克”意思是标准为800克最多为800+5=805克最少为800﹣5=795克.故答案为一袋洗衣粉的重量在795克与805克之间.15.(2022春•嘉定区校级期中)数轴上的A点与表示﹣2的点距离3个单位长度则A点表示的数为.【答案】﹣5或1【解答】解:设A点表示的数为x则|x﹣(﹣2)|=3∴x+2=±3∴x=﹣5或x=1.故答案为:﹣5或1.16.(2021秋•许昌期末)如果a的相反数是2 那么(a+1)2022的值为.【答案】1【解答】解:∵a的相反数是2∴a=﹣2∴(a+1)2022=(﹣2+1)2022=1.故答案为:1.17.(2022•宽城县一模)如图在数轴原点O的右侧一质点P从距原点10个单位的点A处向原点方向跳动第一次跳动到OA的中点A1处则点A1表示的数为;第二次从A1点跳动到OA1的中点A2处第三次从A2点跳动到OA2的中点A3处如此跳动下去则第四次跳动后该质点到原点O的距离为.【答案】5;.【解答】解:根据题意A1是OA的中点而OA=10所以A1表示的数是10×=5;A2表示的数是10××=10×;A3表示的数是10×;A4表示的数是10×=10×=;故答案为:5;.三.解答题(共54分)18.(8分)(2021秋•荣成市期中)把下列各数填在相应的集合中:15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 π﹣1..正数集合{…};负分数集合{…};非负整数集合{…};有理数集合{…}.【解答】解:正数集合{15 0.81 171 3.14 π…};负分数集合{﹣﹣3.1 ﹣1.…};非负整数集合{15 171 0…};有理数集合{15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1.…}.故答案为:15 0.81 171 3.14 π;﹣﹣3.1 ﹣1.;15 171 0;15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1..19.(8分)(昌平区校级期中)画出数轴并把这四个数﹣2 4 0 在数轴上表示出来.【解答】解:在数轴上表示出来如下:20.(8分)(2021秋•太康县期末)已知|x|=3 |y|=7.(1)若x<y求x+y的值;(2)若xy<0 求x﹣y的值.【解答】解:由题意知:x=±3 y=±7(1)∵x<y∴x=±3 y=7∴x+y=10或4(2)∵xy<0∴x=3 y=﹣7或x=﹣3 y=7∴x﹣y=±1021.(10分)(2021秋•安居区期末)小虫从某点O出发在一直线上来回爬行假定向右爬行路程记为正向左爬行的路程记为负爬过的路程依次为(单位:厘米):+5 ﹣3 +10 ﹣8 ﹣6 +12 ﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中如果每爬行1厘米奖励一粒芝麻则小虫共可得到多少粒芝麻?【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0所以小虫最后能回到出发点O;(2)根据记录小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm所以小虫离开出发点的O最远为12cm;(3)根据记录小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm)所以小虫共可得到54粒芝麻.22.(10分)(2021秋•常宁市期末)超市购进8筐白菜以每筐25kg为准超过的千克数记作正数不足的千克数记作负数称后的记录如下:1.5 ﹣3 2 ﹣0.5 1 ﹣2 ﹣2 ﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售为促销超市决定打九折销售求这8筐白菜现价比原价便宜了多少钱?【解答】解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)答:以每筐25千克为标准这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)25×8﹣5.5=194.5(千克)答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元)583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.23.(10分)(2021秋•高新区校级期末)新华文具用品店最近购进了一批钢笔进价为每支6元为了合理定价在销售前五天试行机动价格卖出时每支以10元为标准超过10元的部分记为正不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况如表所示:第1天第2天第3天第4天第5天每支价格相对标准价格(元)+3+2+1﹣1﹣2售出支数(支)712153234(1)这五天中赚钱最多的是第天这天赚钱元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?【解答】解:(1)第1天到第5天的每支钢笔的相对标准价格(元)分别为+3 +2 +1﹣1 ﹣2则每支钢笔的实际价格(元)分别为13 12 11 9 8第1天的利润为:(13﹣6)×7=49(元);第2天的利润为:(12﹣6)×12=72(元);第3天的利润为:(11﹣6)×15=75(元);第4天的利润为:(9﹣6)×32=96(元);第5天的利润为:(8﹣6)×34=68(元);49<68<72<75<96故这五天中赚钱最多的是第4天这天赚钱96元.(2)49+72+75+96+68=360(元)故新华文具用品店这五天出售这种钢笔一共赚了360元钱.。
数轴、相反数、绝对值及综合练习
数轴、相反数和绝对值的综合练习一、选择题(每小题3分, 共24分)1.如图, 数轴上点A表示数a, 则-a表示的数是( )A. -1B. 0C. 1D. 22. 在0, 1, -, -1四个数中, 最小的数是( )A. 0B. 1C. -D. -13. 如图, 若|a|=|b|, 则该数轴的原点可能为( )A. A点B. B点C. C点D. D点4. 下列各对数中, 相等的是( )A. -(-)和-0.75B. +(-0.2)和-(+)C. -(+)和-(-0.01)D. -(-)和-(+)5. 一个数的相反数比它的本身小, 则这个数是( )A. 正数B. 负数C. 正数和零D. 负数和零6. 下列说法正确的是( )A. 绝对值等于3的数是-3B. 绝对值小于2的数有±2, ±1, 0C.若|a|=-a, 则a≤0D. 一个数的绝对值一定大于这个数的相反数7. 有理数m, n在数轴上的对应点如图所示, 则下列各式子正确的是( )A. m>nB. -n>|m|C. -m>|n|D. |m|<|n|8. 若a, b是两个有理数, 则下列结论: ①如果a=b, 那么|a|=|b|;②如果|a|=|b|, 那么a=b;③如果a≠b, 那么|a|≠|b|;④如果|a|≠|b|, 那么a≠b.其中一定正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(每小题4分, 共32分)9. 计算: |-20|=.10. 若a+=0, 则a=.11. 数轴上点A表示-1, 点B表示2, 则A.B两点间的距离是.12. 将-3, -|+2|, -, -1按从小到大的顺序, 用“<”连接应当是.13. 一只小虫在数轴上先向右爬3个单位, 再向左爬7个单位, 正好停在-2的位置, 则小虫的起始位置所表示的数是.14.如图, 在数轴上点B表示的数是, 那么点A表示的数是.15. 当a=时, |a-1|+5的值最小, 最小值为.16.在数轴上点A对应的数为-2, 点B是数轴上的一个动点, 当动点B到原点的距离与到点A的距离之和为6时, 则点B对应的数为.三、解答题(共44分)17. (6分)根据如图所示的数轴, 解答下面的问题:(1)请你根据图中A, B两点的位置, 分别写出它们所表示的有理数A: ,B: ;(2分)(2)观察数轴, 与点A的距离为4的点表示的数是;(4分)(3)若将数轴折叠, 使得A点与-3对应的点重合, 则B点与数对应的点重合.(6分)18. (8分)把下列各数表示在数轴上, 并用“<”连接起来:, -(-5), -0.5, 0, -|-3|, , -(+2).19. (8分)如图, 图中数轴的单位长度为1.请回答下列问题:(1)如果点A.B表示的数是互为相反数, 那么点C.D表示的数是多少?(2)如果点D.B表示的数是互为相反数, 那么点C.D表示的数分别是多少?20. (10分)(1)已知|a|=8, |b|=5, 且a<b, 试求a, b的值;(2)已知|a-3|+|2b-6|=0, 试求a-b的值.21. (12分)随着网购的快速发展, 相关的快递送达范围也越来越广泛, 惠及乡村. 某快递公司快递员骑摩托车从某快递点出发, 先向东骑行2 km到达A村, 继续向东骑行3 km到达B村, 然后向西骑行9 km到C村, 最后回到快递点.(1)以该快递点为原点, 以向东方向为正方向, 用1个单位长度表示1 km画数轴, 并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)已知摩托车行驶100 km耗油2.5升, 完成此次任务, 摩托车耗油多少升?数轴、相反数和绝对值的六种常见题型1. 在-1, , 0.618, 0, -5%, 2 021, 0.5中, 整数有________个, 分数有________个.2.有五个有理数(不能重复), 同时满足下列三个条件:(1)其中三个数是非正数;(2)其中三个数是非负数;(3)必须有质数和分数.请写出这五个数.3. 下列说法正确的是()A. 有理数是指整数、分数、正有理数、零、负有理数这五类数B. 有理数不是正数就是负数C. 有理数不是整数就是分数D. 有理数不是正数就是分数4. 把下列各数填在相应的大括号里:15, -, 0.81, -3, , -3.1, -2 022, 171, 0, 3.14.正数: { …};负数: { …};正整数: { …};负整数: { …};有理数: {…}.5. 下列说法正确的是()A. 所有的有理数都可以用数轴上的点来表示B. 数轴上的点都用来表示有理数C.正数可用原点右边的点表示, 负数可用原点左边的点表示, 零不能在数轴上表示D. 数轴上一个点可以表示不止一个有理数6. 根据如图所示的数轴, 解答下面的问题:(1)请你根据图中A, B两点的位置, 分别写出它们所表示的有理数: ____________;(2)观察数轴, 写出与点A的距离为4的点表示的数:______________;(3)若将数轴折叠, 使得点A与数-3对应的点重合, 则点B与数________对应的点重合;(4)若数轴上M, N两点间的距离为2 022(M在N的左侧), 且M, N两点经过(3)中折叠后互相重合, 求M, N两点表示的数.7. 如图, 已知A, B, C, D四个点在一条没有标明原点的数轴上.(1)若点A和点C表示的数互为相反数, 则原点为点________;(2)若点B和点D表示的数互为相反数, 则原点为点________;(3)若点A和点D表示的数互为相反数, 请在数轴上标出原点O的位置.8. 如图, 一个单位长度表示2, 观察图形, 回答问题:(1)若B与D所表示的数互为相反数, 则点D所表示的数为多少?(2)若A与D所表示的数互为相反数, 则点D所表示的数为多少?(3)若B与F所表示的数互为相反数, 则点D所表示的数的相反数为多少?9. 下列说法不正确的有()①互为相反数的两个数一定不相等;②如果两个数的绝对值相等, 那么这两个数必定相等;③有理数的绝对值一定大于0;④有理数的绝对值不是负数.A. 1个B. 2个C. 3个D. 4个10. 如图, 数轴的单位长度为1, 请回答下列问题:(1)如果点A, B表示的数互为相反数, 那么点C表示的数是多少?(2)如果点D, B表示的数互为相反数, 那么点C表示的数是正数还是负数?图中所示的5个点中, 哪一个点表示的数的绝对值最小, 最小的绝对值是多少?11. 如图, A, B为数轴上的两个点, A点表示的数为-10, B点表示的数为90.(1)请写出与A, B两点距离相等的M点表示的数;(2)电子蚂蚁P从B点出发, 以3个单位长度/s的速度向左运动, 同时另一只电子蚂蚁Q从A点出发, 以2个单位长度/s的速度向右运动, 经过多长时间这两只电子蚂蚁在数轴上相距35个单位长度?12. 情境问题某工厂负责生产一批螺帽, 根据产品质量要求, 螺帽的内径可以有0.02 mm的误差.抽查5个螺帽, 超过规定内径的毫米数记作正数, 不足规定内径的毫米数记作负数, 检查结果如下表:螺帽编号①②③④⑤内径/mm +0.030 -0.018 +0.026 -0.025 +0.015(1)指出哪些产品是合乎要求的(即在误差范围内);(2)指出合乎要求的产品中哪个质量好一些(即最接近标准);拓展延伸:(3)如果对两个螺帽进行上述检查, 检查的结果分别为a和b, 请利用学过的绝对值知识指出哪个螺帽的质量好一些.。
数轴、相反数、绝对值易错点训练
专题01数轴、相反数、绝对值易错题型训练考点一数轴1.如图,数轴的单位长度为1,如果点B表示的数是4,那么点A表示的数是()A.1B.0C.﹣2D.﹣42.已知三个数a+b+c=0,则这三个数在数轴上表示的位置不可能是()A.B.C.D.3.如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=10,则点A表示的数为()A.﹣5B.0C.5D.﹣104.如图,有一个直径为1个单位长度的圆片,把圆片上的点放在数轴上﹣1处,然后将圆片沿数轴向右滚动一周,点A到达点A'位置,则点A'表示的数是()A.﹣π+1B.C.π+1D.π﹣15.在数轴上,与表示﹣2的点的距离是4个单位的点所对应的数是.6.一条数轴上有点A、B,点C在线段AB上,其中点A、B表示的数分别是﹣8,6,现以点C为折点,将数轴向右对折,若点A'落在射线CB上,并且A'B=4,则C点表示的数是()A.1B.﹣1C.1或﹣2D.1或﹣37.在数轴上,点A、B表示的数分别为,,则A、B间的距离为.8.如图1,点A,B,C是数轴上从左到右排列的三点,分别对应的数为﹣4,b,5.某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对齐刻度尺1.5cm处,点C对齐刻度尺4.5cm处.(1)在图1的数轴上,AC=个单位长度;(2)求数轴上点B所对应的数b为.9.一天,某出租车被安排以A地为出发地,只在东西方向道路上营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣8、+6、﹣7、﹣6、﹣4、+10.假设该出租车每次乘客下车后,都在停车地等待下一个乘客,直到下一个乘客上车再出发.(1)将最后一名乘客送到目的地,出租车在A地何处?(2)若每千米的价格为3元,司机当天的营业额是多少?10.点M,N是数轴上的两点(点M在点N的左侧),当数轴上的点P满足PM=2PN时,称点P为线段MN的“和谐点”.已知,点O,A,B在数轴上表示的数分别为0,a,b,回答下面的问题:(1)当a=﹣1,b=5时,线段AB的“和谐点”所表示的数为;(2)当b=a+6且a<0时,如果O,A,B三个点中恰有一个点为其余两个点组成的线段的“和谐点”,此时a的值为.11.数轴上有A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“关联点”.(1)若点A表示数﹣2,点B表示数1,下列各数﹣1,2,4,6所对应的点分别是C1,C2,C3,C4,其中是点A,B的“关联点”的是;(2)点A表示数﹣10,点B表示数15,P为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“关联点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“关联点”,请写出此时点P表示的数.考点二相反数1.﹣2022的相反数是()A.2022B.﹣2020C.﹣D.2.﹣(﹣5)的相反数是()A.﹣5B.﹣C.D.53.下列说法正确的有()①a的相反数是﹣a②所有的有理数都能用数轴上的点表示③若有理数a+b=0,则a、b互为相反数④﹣1的绝对值等于它的相反数A.1个B.2个C.3个D.4个4.若m与互为相反数,则m的值为()A.﹣3B.C.D.35.若式子3x与7x﹣10互为相反数,则x=.6.如果x的相反数是﹣2021,那么2﹣x的值是.7.已知a、b互为相反数,c是绝对值最小的数,d是负整数中最大的数,则a+b+c﹣d=.8.在数轴上表示下列各数:0,﹣2.5,﹣3,+5,,4.5及它们的相反数.9.数轴上A点表示+8,B、C两点表示的数为互为相反数,且C到A的距离为3,求点B和点C各对应什么数?10.已知表示数a的点在数轴上的位置如图所示.(1)在数轴上表示出a的相反数的位置.(2)若数a与其相反数相距20个单位长度,则a表示的数是多少?(3)在(2)的条件下,若数b表示的数与数a的相反数表示的点相距5个单位长度,求b表示的数是多少?考点三绝对值1.下列各数中,绝对值最小的是()A.﹣3B.﹣2C.0D.32.已知﹣3<x<3,下列四个结论中,正确的是()A.|x|>3B.|x|<3C.0≤|x|<3D.0<|x|<33.下列各组数中,互为相反数的是()A.|+1|与|﹣1|B.﹣(﹣1)与1C.|﹣(﹣3)|与﹣|﹣3|D.﹣|+2|与+(﹣2)4.如图,检测排球的质量,其中质量超过标准的克数记为正数,不足的克数记为负数,下面已检测的四个排球中其中质量最接近标准的是()A.B.C.D.5.下列各式的结论成立的是()A.若|m|=|n|,则m=n B.若|m|>|n|,则m>nC.若m>n,则|m|>|n|D.若m<n<0,则|m|>|n|6.若a为有理数,且满足|a|=﹣a,则()A.a>0B.a≥0C.a<0D.a≤07.在数轴上有A、B两点,点A在原点左侧,点B在原点右侧,点A对应整数a,点B对应整数b,若|a﹣b|=2022,当a取最大值时,b值是()A.2023B.2021C.1011D.18.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣39.下列说法中正确的是()A.两个负数中,绝对值大的数就大B.两个数中,绝对值较小的数就小C.0没有绝对值D.绝对值相等的两个数不一定相等10.有理数m、n在数轴上的位置如图所示,则|m﹣n|+|m+n|的值为()A.2n B.2m C.﹣2n D.﹣2m11.设abc≠0,且a+b+c=0,则+++的值可能是()A.0B.±1C.±2D.0或±212.下列说法正确的是()①已知a>0,b<0,则=1;②若|a+4|=﹣4﹣a,|b﹣3|=b﹣3,则化简|b+3|﹣|a﹣4|=a﹣b﹣7;③如果定义{a,b}=,当ab<0,a+b>0,|a|>|b|时,则{a,b}的值为a+b.A.①②B.①③C.②③D.①②③13.已知|a﹣1|+|b﹣2|=0.求(1)a+b的值;(2)|a|﹣|b|的值14.对于有理数a,b,n,若|a﹣n|+|b﹣n|=1,则称b是a关于n的“相关数”,例如,|2﹣2|+|3﹣2|=1,则3是2关于2的“相关数”.若x1是x关于1的“相关数”,x2是x1关于2的“相关数”,…,x4是x3关于4的“相关数”.则x1+x2+x3=.(用含x的式子表示)15.对于式子|x﹣1|+|x﹣5|在下列范围内讨论它的结果.(1)当x<1时;(2)当1≤x≤5时;(3)当x>5时.16.综合应用题:|m﹣n|的几何意义是数轴上表示m的点与表示n的点之间的距离.(1)|x|的几何意义是数轴上表示的点与之间的距离,|x||x﹣0|;(选填“>”“<”或“=”)(2)|2﹣1|几何意义是数轴上表示2的点与表示1的点之间的距离,则|2﹣1|=;(3)|x﹣3|的几何意义是数轴上表示的点与表示的点之间的距离,若|x﹣3|=1,则x=;(4)|x﹣(﹣2)|的几何意义是数轴上表示的点与表示的点之间的距离,若|x﹣(﹣2)|=2,则x=;(5)找出所有符合条件的整数x,使得|x﹣(﹣5)|+|x﹣2|=7这样的整数是.。
《数轴、相反数、绝对值》专题练习(含答案)
《数轴、相反数、绝对值》专题练习一、选择题(每小题3分,共30分)1.-5的绝对值为 ( )A .-5B .5C .-15D .152.-18的相反数是 ( )A .-8B .18 C .0。
8 D .83.在下面所画的数轴中,你认为正确的数轴是 ( )4.下列说法正确的是 ( )A .正数与负数互为相反数B .符号不同的两个数互为相反数C .数轴上原点两旁的两个点所表示的数互为相反数D .任何一个有理数都有它的相反数5.数轴上的点A ,B 位置如图所示,则线段AB 的长度为 ( )A .-3B .5C .6D .76.若a =7,b =5,则a -b 的值为 ( )A .2B .12C .2或12D .2或12或-12或-27.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A . a +b =0B . b <aC . a b >0D . |b |<|a |8.下列式子不正确的是 ( )A .44-=B .1122= C .00= D . 1.5 1.5-=-9.如果有理数a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 是倒数等于它本身的数,那么式子a-b+c2-d的值是()A.-2 B.-1 C.0 D.110.如果abcd<0,a+b=0,cd〉0,那么这四个数中的负因数至少有() A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-112的相反数是______;-2是______的相反数;_______与110互为倒数.13.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A,B表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x的值,使1x =x-1成立,你写出的x的值是______.17.若x,y是两个负数,且x〈y,那么x_______y.18.如图,数轴上的A,B,C三点所表示的数分别是a,b,c,其中AB=BC,若a〉b>c,则该数轴的原点O的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-135,-(+6。
正负数相反数数轴绝对值练习题
正数与负数、数轴、相反数、绝对值一.选择题:1.若规定收入为“+”,那么支出-50元表示()A.收入了50元; B.支出了50元;C.没有收入也没有支出; D.收入了100元2.下列说法正确的是()A.一个数前面加上“-”号,这个数就是负数; B.零既是正数也是负数;C.零既不是正数也不是负数 D.若a是正数,则—a不一定就是负数3.把向东走记作“—”,向西走记作“+”,下列说法正确的是()A.—10米表示向西走10米 B. +10米表示向东走10米C.向东走10米可以记作 +10米 D.向西走 10米表示向东行—10米4. —[+(—6)]的相反数是( ) A.—6 C. 1 6D.—165. 一个数的相反数小于原数,这个数是( ) A.正数 B.负数 C.零 D.正分数6. 一个数在数轴上所对应的点向右移到5个单位长度后,得到它的相反数的对应点,则这个数是( ) C.52D. -52点在数轴上表示4-,N点离M的距离是3,那么N点表示()。
A 1-B 7-C 1-或7-D 1-或18.下列说法不正确的是()A有理数的绝对值一定是正数 B一个有理数的绝对值一定不是负数C数轴上的两个有理数,绝对值大的离原点远 D两个互为相反数的绝对值相等9.已知a为有理数,下列式子一定正确的是()A.︱a︱=a B.︱a︱≥a C.︱a︱=-a D.︱a︱>a 10.绝对值最小的数是()A.1 B.-1 C.0 D.没有二.填空题1.如果节约用水30吨记为+30吨,那么浪费20吨记为_______吨.如果运出货物7吨记作-7吨,那么+100吨表示______________.2.在一种零件的直径在图纸上是±(单位:mm),表示这种零件的标准尺寸是 mm ,加工要求最大不能超过 mm,最小不能超过 mm3.一个数的倒数是它本身,这个数是________;一个数的相反数是它本身,这个数是__________;一个数的绝对值是它本身,这个数是__________________的相反数是______,103的相反数是_______-3的倒数的相反数是________,12-13的相反数的倒数是_______,5.—(+7)=_____ ,[(2)]---=.—︱4︱= _____ ,︱—(+23)︱=_____ ,1|()|2---=____6若a+b=0,则a和b .若︱X —3︱+︱Y —5︱互为相反数,则X= _____ ,Y= _____ , 7.若︱X ︱=3,则 X= .若︱—Y ︱= 4,则 Y= . 8.比较大小3《绝对值》十个易错点常见的错误有:1. 一个数的绝对值等于本身,则这个数一定是正数。
数轴练习题(含答案)
数轴练习题(含答案)篇一:《数轴、相反数、绝对值》专题练习《数轴、相反数、绝对值》专题练习一、选择题(每小题3分,共30分)1.5的绝对值为A.5B.5c.15D.152.的相反数是A.8B.1818c..83.在下面所画的数轴中,你认为正确的数轴是4.下列说法正确的是A.正数与负数互为相反数B.符号不同的两个数互为相反数c.数轴上原点两旁的两个点所表示的数互为相反数D.任何一个有理数都有它的相反数5.数轴上的点A,B位置如图所示,则线段AB的长度为A.3B.5c.6D.76.若a=7,b=5,则ab的值为A.2c.2或12B.12D.2或12或12或27.实数a,b在数轴上的位置如图所示,以下说法正确的是()8.下列式子不正确的是A.?4?4B.11?22c.0?0D.???9.如果有理数a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的数,那么式子ab+c2d的值是A.2B.1c.0D.110.如果abcd0,那么这四个数中的负因数至少有A.4个B.3个c.2个D.1个二、填空题(每小题3分,共24分)11.数轴上最靠近2且比2大的负整数是______.12.111的相反数是______;2是______的相反数;_______与互为倒数.21013.数轴上表示2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A,B表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x的值,使x?1=x1成立,你写出的x的值是______.17.若x,y是两个负数,且xb>c,则该数轴的原点o的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:120.(5分)如图,根据数轴上各点的位置,写出它们所表示的数:31,,+(32),12,3.52用数轴上的点表示下列各数,并用“<”号把下列各数连接起来.311,?4,,0,1,,5,1.2221.(6分)七班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:50分;B队:150分;c队:300分;D队:0分;E队:100分.将5个队按由低分到高分的顺序排序;把每个队的得分标在数轴上,并标上代表该队的字母;从数轴上看A队与B队相差多少分?c队与E队呢?22.(6分)如图是一个长方体纸盒的展开图,请把5,3,5,1,3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x的点与表示数1的点的距离等于1,其几何意义可表示为:x?=1,这样的数x可以是0或2.等式x?2=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.等式x?3=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.在数轴上,表示数x的点与表示数5的点的距离等于6,其中x 的值可以是_______,其几何意义可以表示为_______.24.(8分)5的相反数是5,5的相反数是5,那么x的相反数是_______,m+的相反数是_______.数轴上到点2和点6距离相等的点表示的数是4,有这样的关系4=1n21,那么2到点100和到点999距离相等的点表示的数是_______;到点m 和点n距离相等的点表示的数是_______.数轴上点4和点9之间的距离为5个单位,有这样的关系5=94,那么点10和点3之间的距离是_______;点m和点n之间的距离是_______.25.(6分)设a?b?c?0,abc?0,求b?cc?aa?b的值。
数轴、相反数、绝对值提高试题(完整资料).doc
【最新整理,下载后即可编辑】数轴、相反数、绝对值提高试题1、设a是最小的自然数,b是最大的负整数。
c是绝对值最小的有理数,则a b c++的值为() A -1 B 0 C 1D 22、下列说法正确的是()A整数就是正整数和负整数B负整数的相反数就是非负整数C有理数中不是负数就是正数D零是自然数,但不是正整数3、a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<b D -b<b<-a<a4、若m n n m-=-,且4m=,3n=,则2()m n+=.5、绝对值大于1而小于4的整数有个;6、已知有理数a,b在数轴上的位置如图所示,那么a,b,-a,-b的大小关系是。
(用“>”连结)三、解答题1、已知1,5==ba,且abba-=-,求a和b的值?2、求|110-111|+|111-112|+…|149-150|的值.3、化简│1-a │+│2 a +1│+│a │ (2-<a ).4、3m —4的相反数是—11,则求m 2-3m+1的值。
5、已知a 是最小的正整数,b 、c 是有理数,并且有|2+b |+(3a +2c )2=0.求式子4422++-+c a c ab 的值.6、若3+-y x 与1999-+y x 互为相反数,求y x y x -+的值。
7、若x>0,y<0,求32---+-x y y x 的值。
8、如果规定符号“@”的意义是a @b =ab a b +, (1) 求2@(3)-的值。
(2) 求2@(3)-@4的值。
9、计算:1+2-3—4+5+6—7—8+9+10—11—12+…+2005+2006-2007—200810、有若干个数,第一个数记为a 1,第二个数记为a 2,…,第n 个数记为a n 。
若a 1=21,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”。
专项一_有理数_数轴_相反数_绝对值提高题
专项一 有理数提高训练:1.6,2005,212,0,—3,+1,41-,—6.8中,正整数和负分数共有( ) A .3个 B .4个 C .5个 D .6个2.1- 不是( ) A.自然数. B.负数. C.整数. D.有理数.3.下列说法正确的是( )A.0是表示没有. B。
非负有理数就是正有理数.C。
整数和分数统称为有理数. D.正整数和负整数统称为整数.4.下列说法错误的是( )A.零是整数 B.零是非负数. C.零是最小的整数.D.零是偶数.5.最小的整数是( ) A.1- B.0 C。
1 D。
不存在.6.下列说法不正确的是( ) A.有理数可分为正整数.正分数.0。
负整数.负分数. B.一个有理数不是分数就是整数.C.一个有理数不是正数就是负数. D.若一个数是整数,则这个数一定是有理数.7.在数2005,1.10,32,6.0,,4.6--π中 ( ) A.有理数有6个 B。
π-是负数 C.非正数有3个 D.以上都不对.8。
下列各数中一定是有理数的是( ) A 。
π B 。
a C 。
13D.a-3 9.最小的有理数是( )A 。
0 B 。
1 C.0,1 D.没有10.下列说法正确的是( )A 。
有最大的负数,没有最小的正数;B 。
没有最大的有理数,也没有最小的有理数C.有最大的非负数,没有最小的非负数; D 。
有最大的负整数,没有最小的正整数11.某年度某国家有外债10亿美元,有内债10亿美元,应用数学知识来解释说明,下列说法合理的是( )A.如果记外债为—10亿美元,则内债为+10亿美元B.这个国家的内债。
外债互相抵消C 。
这个国家欠债共20亿美元 D.这个国家没有钱12. 在 —3 ,+ 3,21—,—4。
7,—0.1,0,2中,最大的数是( ) A 、—0。
1 B 、0 C 、—4。
7 D 、313。
下列互为相反数的有( )对 ①-1与+(—1), ②+(+1)与-1, ③—(-2)与+(-2), ④+[-(+1)与—[+(—1)],⑤—(—2)与-(+2) ⑥(A)6 (B )5 (C )4 (D )314。
数轴与绝对值练习
2.-|-76|=_______,-(-76)=_______,-|+31|=_______,-(+31)=_______,+|-(21)|=_______,+(-21)=_______.3._______的倒数是它本身,_______的绝对值是它本身. 4.a+b=0,则a 与b_______. 5.若|x|=51,则x 的相反数是_______. 6.若|m -1|=m -1,则m_______1.若|m -1|>m -1,则m_______1. 若|x|=|-4|,则x=_______. 若|-x|=|21|,则x=_______.二、选择题1.|x|=2,则这个数是( ) A .2B .2和-2C .-2D .以上都错2.|21a|=-21a ,则a 一定是( ) A .负数B .正数C .非正数D .非负数3.一个数在数轴上对应点到原点的距离为m ,则这个数为( ) A .-m B .m C .±mD .2m4.如果一个数的绝对值等于这个数的相反数,那么这个数是( ) A .正数B .负数C .正数、零D .负数、零5.下列说法中,正确的是( ) A .一个有理数的绝对值不小于它自身B .若两个有理数的绝对值相等,则这两个数相等C .若两个有理数的绝对值相等,则这两个数互为相反数D .-a 的绝对值等于a三、判断题绝对值1、(绝对值的意义)1°绝对值的几何定义:在数轴上表示数a 的点与__________的距离叫做数a 的绝对值,记作__________.2°绝对值的代数定义:一个正数的绝对值是_________;一个负数的绝对值是________;0的绝对值是_________.(2006年贵阳)(1)2-的绝对值等于( )A 、21- B 、2 C 、2- D 、21(2006年连云港)(2)3-等于 ( ) A 、3 B 、-3 C 、31 D 、31-(2005年梅州)(3)设a 是实数,则|a|-a 的值( )A 、可以是负数B 、不可能是负数C 、必是正数D 、可以是正数也可以是负数 2、(绝对值的性质)(1)任何数都有绝对值,且只有________个.(2)由绝对值的几何意义可知:距离不可能为负数,因此,任何一个数的绝对值都是_____数,绝对值最小的数是______.(3)绝对值是正数的数有_____个,它们互为_________.(4)两个互为相反数的绝对值________;反之,绝对值相等的两个数______或________. (2006年资阳)(4)绝对值为3的数为____________3、(有理数的大小比较)正数_________0,负数________0,正数________负数;两个负数比较大小的时候,__________大的反而小.(2005年无锡)(5)比较41,31,21--的大小,结果正确的是( ) A 、413121<-<- B 、314121-<<- C 、213141-<-< D 、412131<-<-[典型例题]1、(教材变型题)若4x -=,则x =__________;若30x -=,则x =__________;若31x -=,则x =__________.2、(易错题)化简(4)--+的结果为___________3、(教材变型题)如果22a a -=-,则a 的取值范围是 ( ) A 、0a > B 、0a ≥ C 、0a ≤ D 、0a <4、(创新题)代数式23x -+的最小值是 ( ) A 、0 B 、2 C 、3 D 、55、(章节内知识点综合题)已知a b 、为有理数,且0a <,0b >,a b >,则 ( ) A 、a b b a <-<<- B 、b a b a -<<<- C 、a b b a -<<-< D 、b b a a -<<-<[自主练习题] 一、选择题1、有理数的绝对值一定是 ( )A 、正数B 、整数C 、正数或零D 、自然数 2、下列说法中正确的个数有 ( )①互为相反数的两个数的绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数的绝对值不相等;④绝对值相等的两个数一定相等 A 、1个 B 、2个 C 、3个 D 、4个3、如果甲数的绝对值大于乙数的绝对值,那么 ( ) A 、甲数必定大于乙数 B 、甲数必定小于乙数C 、甲、乙两数一定异号D 、甲、乙两数的大小,要根据具体值确定 4、绝对值等于它本身的数有 ( ) A 、0个 B 、1个 C 、2个 D 、无数个 5、下列说法正确的是( )A 、a -一定是负数B 、只有两个数相等时它们的绝对值才相等C 、若a b =,则a 与b 互为相反数D 、若一个数小于它的绝对值,则这个数为负数 二、填空题6、数轴上,绝对值为4,且在原点左边的点表示的有理数为___________.7、绝对值小于π的整数有______________________8、当0a >时,a =_________,当0a <时,a =_________,9、如果3a >,则3a -=__________,3a -=___________.10、若1x x=,则x 是_______(选填“正”或“负”)数;若1x x=-,则x 是_______(选填“正”或“负”)数;11、已知3x =,4y =,且x y <,则x y +=________ 三、解答题12、已知420x y -++=,求x ,y 的值13、比较下列各组数的大小 (1)35-,34- (2)56-,45-,115-一、掌握命题动态1、(2006年成都)2--的倒数是( )A 、2B 、12 C 、12- D 、-2 2、(2005年济南)若a 与2互为相反数,则|a +2|等于( )A 、0B 、-2C 、2D 、43、(2005年广东深圳)实数a 、b 在数轴上的位置如图所示,那么化简|a-b|-a 的结果是A 、2a-bB 、bC 、-bD 、-2a+b二、把握命题趋势1、(信息处理题)已知a b 、互为相反数,c d 、互为倒数,m 的绝对值等于2,求2a bm cda b c++-++的值.b O a2、(章节内知识点综合题)有理数a b c 、、在数轴上的位置如图所示,化简0a b c -+--0b a c3、(科学探究题)已知3a =,2b =,1c =且a b c <<,求a b c ++的值4、(学科综合题)不相等的有理数a 、b 、c 在数轴上的对应点分别是A 、B 、C ,如果||||||a b b c a c -+-=-,那么点B ( ). A .在A 、C 点的右边 B .在A 、C 点的左边C .在A 、C 点之间 D .上述三种均可能5、(课标创新题)已知a b c 、、都是有理数,且满足a b c a b c ++=1,求代数式:6abc abc-的值.6、(实际应用题)检查5袋水泥的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查结果如表格所示:(1)最接近标准质量的是几号水泥(2)质量最多的水泥比质量最少的水泥多多少千克。
数轴、相反数和绝对值综合训练
2018年秋季学期七年级数学之数轴、相反数、绝对值综合能力提高专项练习1、代数式10 - | x + y |的最大值是(),当取最大值时,x与y的关系是()A. 10 ;互为相反数B. 10 ;相等C. 20 ;相等D. 20 ;互为相反数解析:代数式10 - | x + y |中,被减数10是常数,只有当减数| x + y |的值最小时,整个多项式的值才最大。
而| x + y |的最小值是0 ,因为根据绝对值的几何意义:“一个数的绝对值就是表示这个数的点到原点的距离”。
既然是距离,那么绝对值的值一只能是0或正数。
0的绝对值是0 ,因此x + y = 0 ,即x与y互为相反数。
答案是A。
1.有理数a、b、c在数轴上的对应点如图所示,化简|b-a|+|a+c|+|c -b|=().A. 2b - 2cB. 2c - 2bC. 2bD. -2c解析:3.(本小题8分)已知x<-3,化简:|x+|2-|1+x|||=().∙ A. -x∙ B. 1∙ C. 3∙ D. x核心考点:绝对值4.(本小题8分)当式子|x+1|+|x-2|取最小值时,相应的x的取值范围是().∙ A. x>2∙ B. -1≤x≤2∙ C. -1<x<2∙ D. x<-1核心考点:绝对值分类讨论思想5.(本小题8分)方程|x-2|+|x+3|=6的解的个数是().∙ A. 无数个∙ B. 3∙ C. 2.5或-3.5∙ D. 2核心考点:绝对值分类讨论思想6.(本小题8分)a是最小的正整数,b的相反数还是它本身,c比最大的负整数大3,计算(2a+3c)b的值为()∙ A. 0∙ B. 1∙ C. 2∙ D. 3核心考点:正数和负数相反数有理数的混合运算7.(本小题8分)|x-1|+|x-2|+|x-3|的最小值为()∙ A. 1∙ B. 2∙ C. 3∙ D. 4核心考点:绝对值8.(本小题8分)若a、b互为相反数,c、d互为倒数,且m的绝对值为2,求为()∙ A. 1∙ B. -1∙ C. 2∙ D. -2核心考点:有理数的混合运算9.(本小题8分)若|a|=4,|b|=2,则|a+b|的值是()∙ A. 2∙ B. 6∙ C. -6或-2∙ D. 6或2核心考点:绝对值分类讨论思想10.(本小题8分)如果a>0,b<0,,判断a,b,—a,—b这4个数从小到大的顺序是()∙ A. a<b<-a<-b∙ B. b<-a<-b<a∙ C. b<-a<a<-b∙ D. -a<-b<b<a核心考点:数轴有理数大小比较11.(本小题8分)若|x|=3,|y|=2,且|x-y|=y-x,则x+y=()∙ A. -1∙ B. 1∙ C. 1或-1∙ D. -1或-5核心考点:绝对值12.(本小题8分)一个数大于另一个数的绝对值,则这两个数的和一定()0.∙ A. >∙ B. <∙ C. =∙ D.核心考点:有理数大小比较分类讨论思想13.(本小题8分)若abc≠0,求的值是()∙ A. -1∙ B. 3∙ C. 3或-3∙ D. 3或-3 或-1或1核心考点:绝对值分类讨论思想14.(本小题8分)若abc≠0,则的值是()∙ A. 0∙ B. 4∙ C. 4或-4∙ D. 0或4 或-4核心考点:绝对值分类讨论思想15.(本小题8分)如果,那么x的取值范围是( ) .∙ A.∙ B.∙ C.∙ D. x>2核心考点:绝对值。
人教版初一数学上册数轴与相反数(提高)巩固练习
【巩固练习】一、选择题1.如图所示,在数轴上点A 表示的数可能是( )A .1.5 B.-1.5 C.-2.6 D.2.6 2.从原点开始向右移动3个单位,再向左移动1个单位后到达A 点,则A 点表示的数是( ). A.3 B.4 C.2 D.-23.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这条数轴上任意画出一条长为2004厘米的线段AB ,则线段AB 盖住的整点的个数是( ) A .2002或2003 B .2003或2004 C .2004或2005 D .2005或20064.北京、纽约等5个城市的国际标准时间(单位:小时)可在数轴上表示如图若将两地国际标准时间的差简称为时差,则( ) A .首尔与纽约的时差为13小时 B .首尔与多伦多的时差为13小时 C .北京与纽约的时差为14小时 D .北京与多伦多的时差为14小时5.一个数的相反数是非负数,则这个数一定是( ) A.正数 B.负数 C.非正数 D.非负数6.在①+(+1)与-(-1);②-(+1)与+(-1);③+(+1)与-(+1);④+(-1)与-(-1)中,互为相反数的是( )A. ①②B. ②③C. ③④D. ②④ 7.-(-2)=( ) A.-2B. 2C.±2D.4二、填空题1.(2016春•新泰市校级月考)不大于4的正整数的个数为 .2.(2015春•岳池县期中)已知数轴上有A ,B 两点,A ,B 之间的距离为1,点A 与原点O 的距离为3,那么点B 对应的数是 .3. 若a 为有理数,在-a 与a 之间(不含-a 与a)有21个整数,则a 的取值范围是 .4.如图所示,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为 .5.数轴上离原点的距离小于3.5的整数点的个数为m , 距离原点等于3.5的点的个数为n , 则3____m n -=.6.已知x 与y 互为相反数,y 与z 互为相反数,又2z =,则z x y -+= . 【高清课堂:数轴和相反数 例4(5)】7. 已知-1<a <0<1<b ,请按从小到大的顺序排列-1,-a ,0,1,-b 为 . 【高清课堂:数轴和相反数 例5】8. 若a 为正有理数,在-a 与a 之间(不含-a 与a)有1997个整数,则a 的取值范围是 .若a 为有理数,在-a 与a 之间(不含-a 与a)有1997个整数,则a 的取值范围是 ___________.三、解答题1.小敏的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A 、B 、C 、D ,学校位于小敏家西150米,邮局位于小敏家东100米,图书馆位于小敏家西400米. (1)用数轴表示A 、B 、C 、D 的位置(建议以小敏家为原点).(2)一天小敏从家里先去邮局寄信后.以每分钟50米的速度往图书馆方向走了约8分钟.试问这时小敏约在什么位置?距图书馆和学校各约多少米? 2.(2016春•北京校级模拟)化简:﹣{+[﹣(﹣|﹣6.5|)]}. 3.化简下列各数,再用“<”连接.(1)-(-54) (2)-(+3.6) (3)53⎛⎫-+ ⎪⎝⎭ (4)245⎛⎫-- ⎪⎝⎭4.若a 与b 互为相反数,c 与d 互为倒数,m 是最大的负整数.求代数式的值.【答案与解析】 一、选择题 1.【答案】C【解析】∵点A 位于﹣3和﹣2之间,∴点A 表示的实数大于﹣3,小于﹣2. 2.【答案】C 3.【答案】C【解析】若线段AB 的端点与整数重合,则线段AB 盖住2005个整点;若线段AB 的端点不与整点重合,则线段AB 盖住2004个整点.可以先从最基础的问题入手.如AB =2为基础进行分析,找规律.所以答案:C4.【答案】B【解析】本题以“北京等5个城市的国际标准时间”为材料,编拟了一道与数轴有关的实际问题.从选项上分析可得:两个城市之间相距几个单位长度,两个点之间的距离即为时差.所以首尔与纽约的时差为14小时,首尔与多伦多的时差为13小时,北京与纽约的时差为13小时,北京与多伦多的时差为12小时.因此答案:B.5.【答案】C【解析】 负数的相反数是正数,0的相反数是0,而非负数就是正数和0,所以负数和0的相反数是非负数,即非正数的相反数是非负数. 6.【答案】C【解析】先化简在判断,①+(+1)=1,-(-1)=1,不是相反数的关系;②-(+1)=-1,+(-1)=-1,不是相反数的关系;③+(+1)=1,-(+1)=-1,是相反数的关系;④+(-1)=-1,-(-1)=1,是相反数的关系,所以③④中的两个数是相反数的关系,所以答案为:C7. 【答案】B. 二、填空题 1.【答案】4.【解析】解:如图所示:由数轴上4的位置可知:不大于4的正整数有1、2、3、4共4个. 故答案为:4个. 2.【答案】±2,±4【解析】解:∵点A 和原点O 的距离为3,∴点A 对应的数是±3.当点A 对应的数是+3时,则点B 对应的数是1+3=4或3﹣1=2;当点A 对应的数是﹣3时,则点B 对应的数是﹣3+1=﹣2或﹣3﹣1=﹣4. 3. 【答案】1011-1110a a <≤≤<-或4. 【答案】5【解析】CD =AB =6,即A 、B 两点间距离是6,故点B 对应的数为5. 5. 【答案】1【解析】由题意可知:7,2m n ==,所以27321m n -=-⨯= 6. 【答案】-2【解析】因为,x z 均为y 的相反数,而一个数的相反数是唯一的,所以z x =,2z =,而y 为z 的相反数,所以y 为-2,综上可得:原式等于-2. 7. 【答案】-b <-1<0<-a <18. 【答案】998999a <≤;998999a <≤或999998a -<≤-三、解答题 1. 【解析】(1)如图所示(2)小敏从邮局出发,以每分钟50米的速度往图书馆方向走了约8分钟,其路程为50×8=400(米),由上图知,此时小敏位于家西300米处,所以小敏在学校与图书馆之间,且距图书馆100米,距学校150米. 2.【解析】解:﹣{+[﹣(﹣|﹣6.5|)]}=﹣[|﹣6.5|]=﹣6.5. 3.【解析】(1)-(-54)=54 (2)-(+3.6)=-3.6 (3)5533⎛⎫-+=- ⎪⎝⎭ (4)224455⎛⎫--= ⎪⎝⎭画出数轴即得:52-(+3.6)<-(+)<4(54)35<--4. 【解析】根据题意:a+b=0,cd=1,m=﹣1,则代数式=2(a+b)﹣+m2=0﹣+1=.附录资料:【巩固练习】一、选择题1.从左边看图1中的物体,得到的是图2中的( ).2.如图所示是正方体的一种平面展开图,各面都标有数,则标有数“-4”的面与其对面上的数之积是( ).A.4 B.12 C.-4 D.03.(2016•宜昌)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短4.如图所示,点O在直线AB上,∠COB=∠DOE=90°,那么图中相等的角的对数是( ).A.3 B.4 C.5 D.75.如图所示的图中有射线( ).A.3条 B.4条 C.2条 D.8条6.(2015•宝应县校级模拟)在地理课堂上,老师组织学生进行寻找北极星的探究活动时,李佳同学使用了如图所示的半圆仪,则下列四个角中,最可能和∠AOB互补的角为()A.B.C.D.7.十点一刻时,时针与分针所成的角是( ).A.112°30′ B.127°30′ C.127°50′ D.142°30′8.在海面上有A和B两个小岛,若从A岛看B岛是北偏西42°,则从B岛看A岛应是( ). A.南偏东42° B.南偏东48° C.北偏西48° D.北偏西42°二、填空题9.把一条弯曲的公路改为直道,可以缩短路程,其理由是________.10.已知∠α=30°18′,∠β=30.18°,∠γ=30.3°,则相等的两角是________.11.用平面去截一个几何体,如果得出的横截面是圆形,那么被截的几何体是________(填一个答案即可).12.(2015秋•泾阳县期中)如图是一个正方体的展开图,和C面的对面是面.13.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3,其根据是________.14.若∠α是它的余角的2倍,∠β是∠α的2倍,那么把∠α和∠β拼在一起(有一条边重合)组成的角是________度.15.一副三角板如图摆放,若∠BAE=135 °17′,则∠CAD的度数是 .16.如下图,点A 、B 、C 、D 代表四所村庄,要在AC 与BD 的交点M 处建一所“希望小学”,请你说明选择校址依据的数学道理 .三、解答题17.(2015春•淄博校级期中)如图,已知点C 为AB 上一点,AC=12cm ,CB=AC ,D 、E 分别为AC 、AB 的中点,求DE 的长.18.(2016春•启东市月考)如图,∠AOB=90°,∠AOC 是锐角,OD 平分∠BOC ,OE 平分∠AOC .求∠DOE 的度数.19.在一张城市地图上,如图所示,有学校、医院、图书馆三地,图书馆被墨水染黑,具体位置看不清,但知道图书馆在学校的北偏东45°方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?20.如图所示,线段AB =4,点O 是线段AB 上一点,C 、D 分别是线段OA 、OB 的中点,小明据此很轻松地求得CD =2.在反思过程中突发奇想:若点O 运动到AB 的延长线上,原来的结论“CD =2”是否仍然成立?请帮小明画出图形并说明理由.MB CDA【答案与解析】 一、选择题1.【答案】B【解析】从左边看,圆台被遮住一部分,故选B . 2.【答案】B【解析】由正方体的平面展开图可知,标有数-4的面的对面是标有数-3的面,故两个数之积为12.3.【答案】D ;【解析】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB 的长小于点A 绕点C 到B 的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短, 故选D .4.【答案】C 【解析】因为∠COB =90°,所以∠BOD+∠COD =90°,即∠BOD =90°-∠COD .因为∠DOE=90°,所以∠EOC+∠COD =90°,即∠EOC =90°-∠COD ,所以∠BOD =∠EOC .同理∠AOE =∠COD .又因为∠AOC =∠COB =∠DOE =90°(∠AOC =∠COB ,∠AOC =∠DOE ,∠COB =∠DOE),所以图中相等的角有5对,故选C .5.【答案】D 6.【答案】D .【解析】根据图形可得∠AOB 大约为135°,∴与∠AOB 互补的角大约为45°, 综合各选项D 符合. 7.【答案】D【解析】一刻是15分钟,十点一刻,即10点15分时,时针与分针所成的角为:34304⎛⎫+⨯ ⎪⎝⎭°=142.5°=142°30′,故选D .8.【答案】A【解析】方位角存在这样的规律:甲、乙两地之间的方位角,方向相反,角度相等.由此可知从B 岛看A 岛的方向为南偏东42°,故选A .二、填空题9. 【答案】两点之间,线段最短【解析】本题是应用线段的性质解释生活中的现象,由于这是两点之间连线长度的比较,符合“两点之间,线段最短”.10.【答案】∠α和∠γ【解析】30.3601810︒''=⨯=,于是∠α=∠γ.11.【答案】圆柱(圆锥、圆台、球体等)【解析】答案不唯一,例如用平面横截圆锥即可得到圆形.12.【答案】F.【解析】这是一个正方体的平面展开图,共有六个面,其中面“B”与面“D”相对,面“A”与面“E”相对,“C”与面“F”相对.13.【答案】同角的余角相等【解析】根据余角的性质解答问题.14.【答案】60度或180【解析】先求出∠α=60°,∠β=120°;再分∠α在∠β内部和外部两种情况来讨论.15.【答案】44°43′;【解析】∠BAD+∠CAE=180°,即∠BAE+∠CAD=180°,所以∠CAD=180°-135°17′=44°43′.16.【答案】两点之间,线段最短.三、解答题17.【解析】解:∵AC=12cm,CB=AC,∴CB=6cm,∴AB=AC+BC=12+6=18cm,∵E为AB的中点,∴AE=BE=9cm,∵D为AC的中点,∴DC=AD=6cm,所以DE=AE﹣AD=3cm.18.【解析】解:如图,∵OD平分∠BOC,OE平分∠AOC,∠AOB=90°,∴∠COD=∠BOC=(∠AOB+∠AOC)=45°+∠AOC,∠COE=∠AOE=∠AOC,∴∠DOE=∠COD﹣∠AOE=45°+∠AOC﹣∠AOC=45°即:∠DOE=45°.19.【解析】解:如图所示.在医院A处,以正南方向为始边,逆时针转60°角,得角的终边射线AC.在学校B处,以正北方向为始边,顺时针旋转45°角,得角的终边射线BD.AC与BD的交点为点O,则点O就是图书馆的位置.20.【解析】解:原有的结论仍然成立,理由如下:当点O在AB的延长线上时,如图所示,CD=OC-OD=12(OA-OB)=12AB=1422⨯=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0. ④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5.求字母a 的绝对值:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩ ②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若0a b c ++=,则0a =,0b =,0c = 绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a ab b=(0)b ≠; (4)222||||a a a ==;(5)a b a b a b -≤+≤+,例题精讲【例1】 ⑴ 下列各组判断中,正确的是( )A .若a b =,则一定有a b =B .若a b >,则一定有a b >C. 若a b >,则一定有a b > D .若a b =,则一定有()22a b =- ⑵ 如果2a >2b ,则( )A .a b >B .a >bC .a b <D a <b ⑶ 下列式子中正确的是( )A .a a >-B .a a <-C .a a ≤-D .a a ≥- ⑷ 对于1m -,下列结论正确的是( )A .1||m m -≥B .1||m m -≤C .1||1m m --≥D .1||1m m --≤ ⑸若220x x -+-=,求x 的取值围.【例2】 已知:⑴52a b ==,,且a b <;⑵()2120a b ++-=,分别求a b ,的值【例3】 已知2332x x -=-,求x 的取值围_______________________【例4】 abcde 是一个五位自然数,其中a 、b 、c 、d 、e 为阿拉伯数码,且a b c d <<<,则a b b c c d d e -+-+-+-的最大值是 .【例5】 已知2020y x b x x b =-+-+--,其中02020b b x <<,≤≤,那么y 的最小值为【例6】 设a b c ,,为整数,且1a b c a -+-=,求c a a b b c -+-+-的值【例7】 已知有理数a 、b 的和a b +及差a b -在数轴上如图所示,化简227a b a b +---a-ba+b【补充】若0.239x =-,求131********x x x x x x -+-++-------的值.【例8】 若24513a a a +-+-的值是一个定值,求a 的取值围.【例9】 数,a b 在数轴上对应的点如右图所示,试化简a b b a b a a ++-+--【例10】 设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a bc b a c -+--+-.【例11】 如果010m <<并且10m x ≤≤,化简1010x m x x m -+-+--.实战练习1.若a b >且a b <,则下列说确的是( )A .a 一定是正数B .a 一定是负数C .b 一定是正数D .b 一定是负数 2.如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.3.已知00x z xy y z x <<>>>,,,那么x z y z x y +++--= 4.已知123a b c ===,,,且a b c >>,那么a b c +-=5.若a b <-且0ab>,化简a b a b ab -+++ 课后作业1.如上图所示化简:⑴3x -; ⑵12x x +++2.若a b <,求15b a a b -+---的值.3.若0a <,0ab <,那么15b a a b -+---等于 .4.已知15x <≤,化简15x x -+-5.已知3x <-,化简321x +-+.6.已知112x x ++-=,化简421x -+-.7.若0x <,化简23x x x x---.8.已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++--.b ca1数轴和绝对值练习题 1.如果100<<m ,并且10≤≤x m ,那么代数式1010--+-+-m x x m x 化简后得到的最后结果是( )A .-10B .10C .20x -D .20x -5.有理数a,b,c 在数轴上的位置如图所示:试化简:│a+b │-│b-1│-│a-c │-│1-c │=___________.6.如果a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是1,求代数式x2+(a+b)x-•cd 的值. 3,7.设c b a ,,是非零有理数(1)求cc b b a a ++的值; (2)求acac cb cb ab ab c c b b a a +++++的值8.若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.9.已知-a<b<-c<0<-d,且│d│<│c│,试将a,b,c,d,0•这五个数由大到小用“>”依次排列出来.10.若3+-yx与1999-+yx互为相反数,求yxyx-+的值。
数轴,相反数,绝对值提高训练练习一:1、若4x-=,则x=_______;若30x-=,则x=_______;若31x-=,则x=__________.2、化简(4)--+的结果为___________3、如果22a a-=-,则a的取值围是()A、0a>B、0a≥C、0a≤D、0a<4、代数式23x -+的最小值是 ( ) A 、0 B 、2 C 、3 D 、55、已知a b 、为有理数,且0a <,0b >,a b >,则 ( )A 、a b b a <-<<-B 、b a b a -<<<-C 、a b b a -<<-<D 、b b a a -<<-<巩固练习:1、下列说法:①7的绝对值是7②-7的绝对值是7③绝对值等于7的数是7或-7④绝对值最小的有理数是0。
其中正确说法有( )A 、1个B 、2个C 、3个D 、4个 2、(1)绝对值等于4的数有____个,它们是__ _; (2)绝对值小于4的整数有___个,它们是___(3)绝对值大于1且小于5的整数有_个,它们是___; (4)绝对值不大于4的负整数有_个,它们是___ 3、计算:4、求下列各式中的x 的值(1)|x|-3=0 (2)2|x|+3=65、正式乒乓球比赛对所使用乒乓球的重量是有严格规定的。
检查5只乒乓球的重量,超过规定重量的毫克数记作正数,不足规定重量的毫克数记作负数,检查结果如下:请指出哪只乒乓球的质量好一些你能用绝对值的知识进行说明吗练习二:1、有理数的绝对值一定是 ( )A 、正数B 、整数C 、正数或零D 、自然数2、下列说法中正确的个数有 ( ) ①互为相反数的两个数的绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数的绝对值不相等;④绝对值相等的两个数一定相等A 、1个B 、2个C 、3个D 、4个3、如果甲数的绝对值大于乙数的绝对值,那么 ( )A 、甲数必定大于乙数B 、甲数必定小于乙数C 、甲、乙两数一定异号D 、甲、乙两数的大小,要根据具体值确定4、绝对值等于它本身的数有 ( )A 、0个B 、1个C 、2个D 、无数个 5、下列说确的是( )A 、a -一定是负数B 、只有两个数相等时它们的绝对值才相等C 、若a b =,则a 与b 互为相反数D 、若一个数小于它的绝对值,则这个数为负数6、数轴上,绝对值为4,且在原点左边的点表示的有理数为___________.7、绝对值小于π的整数有______________________第1只 第2只 第3只 第4只 第5只 +25 -15 +40 -5 -208、当0a >时,a =_________,当0a <时,a =_________, 9、如果3a >,则3a -=__________,3a -=___________.10、若1x x=,则x 是___(选填“正”或“负”)数;若1xx=-,则x 是____(选填“正”或“负”)数;11、已知3x =,4y =,且x y <,则x y +=________ 12、已知420x y -++=,求x ,y 的值13、比较下列各组数的大小 (1)35-,34- (2)56-,45-,115-练习三1、2--的倒数是( ) A 、2B 、12C 、12-D 、-22、若a 与2互为相反数,则|a +2|等于( ) A 、0 B 、-2 C 、2 D 、43、实数a 、b 在数轴上的位置如图所示,那么化简|a-b|-a 的结果是A 、2a-bB 、bC 、-bD 、-2a+b4、已知a b 、互为相反数,c d 、互为倒数,m 的绝对值等于2,求2a b m cda b c ++-++的值.5、有理数a b c 、、在数轴上的位置如图所示,化简0a b c -+--b ac6、已知3a =,2b =,1c =且a b c <<,求a b c ++的值提高篇1. 若3-x 与5+y 互为相反数,求yx yx -+的值。
2. a +b <0,化简|a+b-1|-|3-a-b |3. 若y x -+3-y =0 ,求2x+y 的值.4. 若|x |=3,|y |=2,且|x-y |=y-x ,求x+y 的值.5. 已知2-ab 与1-b 互为相反数,设法求代数式.)1999)(1999(1)2)(2(1)1)(1(11的值++++++++++b a b a b a ab 6. 化简100211003120021200312003120041-++-+-7..设c b a ,,是非零有理数求ccb b a a ++的值;8.已知a 、b 、c 是非零有理数,且a +b +c=0,求abcabcc c b b a a +++的值。