《推理与证明测试题》

合集下载

2020届人教B版(文科数学) 推理与证明、算法、复数 (8) 单元测试

2020届人教B版(文科数学)  推理与证明、算法、复数  (8)  单元测试

2020届人教B版(文科数学)推理与证明、算法、复数 (8) 单元测试1.若a,b,c是不全相等的实数,求证:a2+b2+c2>ab+bc+ca.证明过程如下:因为a,b,c∈R,所以a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,又因为a,b,c不全相等,所以以上三式至少有一个“=”不成立,所以将以上三式相加得2(a2+b2+c2)>2(ab+bc+ac),所以a2+b2+c2>ab+bc+ca.此证法是(B)(A)分析法 (B)综合法(C)分析法与综合法并用(D)反证法解析:由已知条件入手证明结论成立,满足综合法的定义.故选B.2.用数学归纳法证明“2n>2n+1对于n≥n的正整数n都成立”时,第一步证明中的应取(B)起始值n(A)2 (B)3 (C)5 (D)6解析:因为n=1时,21=2,2×1+1=3,2n>2n+1不成立;n=2时,22=4,2×2+1=5,2n>2n+1不成立;n=3时,23=8,2×3+1=7,2n>2n+1成立.=3.故选B.所以n的第一个取值n3.按照图1~图3的规律,第10个图中圆点的个数为(B)(A)36 (B)40 (C)44 (D)52解析:因为根据图形,第一个图有4个点,第二个图有8个点,第三个图有12个点,…,所以第10个图有10×4=40个点,故选B.4.在△ABC中,不等式++≥成立;在四边形ABCD中,不等式+++≥成立;在五边形ABCDE中,++++≥成立.猜想在n边形中,成立的不等式为(C)(A)++…+≥(B)++…+≥(C)++…+≥(D)++…+≥解析:通过观察发现不等式左边为多边形的各个内角的倒数之和,右边的分子为边数的平方,分母为多边形的内角和,而n边形的内角和为(n-2)π,故猜想在n边形中成立的不等式为++…+≥,故选C.5.如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为(C)(A)6 (B)7 (C)8 (D)9解析:由题意知,第1层的点数为1,第2层的点数为6,第3层的点数为2×6,第4层的点数为3×6,第5层的点数为4×6,…,第n(n≥2,n∈N+)层的点数为6(n-1).设一个点阵有n(n≥2,n∈N+)层,则共有的点数为1+6+6×2+…+6(n-1)=1+×(n-1)=3n2-3n+1,由题意得3n2-3n+1=169,即(n+7)·(n-8)=0,所以n=8,故共有8层.6.函数y=x+在(0,1]上是减函数,在[1,+∞)上是增函数,函数y=x+在(0,]上是减函数,在[,+∞)上是增函数,函数y=x+在(0,]上是减函数,在[,+∞)上是增函数,……利用上述所提供的信息解决下列问题:若函数y=x+(x>0)的值域是[6,+∞),则实数m的值为(B)(A)1 (B)2 (C)3 (D)4解析:由归纳和类比推理知,函数y=x+(x>0)在(0,]上是减函数,在[,+∞)上为增函数,所以当x=时,y有最小值,即+=6,解得m=2,故选B.7.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”,当第二步假设n=2k-1(k∈N*)命题为真时,进而需证n=时,命题亦真.解析:n为正奇数,假设n=2k-1成立后,需证明的应为n=2k+1时成立.答案:2k+18.若下列两个方程x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实根,则实数a的取值范围是.解析:假设两个一元二次方程均无实根,则有即解得{a|-2<a<-1},所以其补集{a|a≤-2或a≥-1}即为所求的a的取值范围.答案:{a|a≤-2或a≥-1}9.(2018·渭南一模)观察下列不等式:①<1;②+<;③++<;…则第5个不等式为.解析:由①<1;②+<;③++<;归纳可知第4个不等式应为+++<2;第5个不等式应为++++<.答案:++++<能力提升练(时间:15分钟)10.导学号 18702625将1,,,按如图所示的方式排列,若规定(m,n)表示第m排从左往右第n个数,则(7,5)表示的数是(B)1第1排第2排1第3排1第4排1第5排…………(A)1 (B)(C)(D)解析:所给数字4个数一循环,且每排的个数与排数相等.因为前6排的个数为1+2+3+4+5+6==21,所以(7,5)表示第21+5=26个数,因为26÷4=6……2,所以(7,5)表示的数为.选B.11.导学号 18702626从1开始的自然数按如图所示的规则排列,现有一个三角形框架在图中上下或左右移动,使每次恰有九个数在此三角形内,则这九个数的和可以为(C)(A)2 097 (B)1 553 (C)1 517 (D)2 111解析:根据如题图所示的规则排列,设最上层的一个数为a,则第二层的三个数为a+7,a+8,a+9,第三层的五个数为a+14,a+15,a+16,a+17,a+18,这9个数之和为a+3a+24+5a+80=9a+104.由9a+104=1 517,得a=157,是自然数.且a为表中第20行第5个数,符合,若9a+104=2 097,a≈221.4不合题意;若9a+104=1 553,a=161,a为表中第21行第一个数不合题意;若9a+104=2 111,a=223,a为表中第28行第7个数,不合题意.12.已知命题:在平面直角坐标系xOy中,椭圆+=1(a>b>0),△ABC的顶点B在椭圆上,顶点A,C分别为椭圆的左、右焦点,椭圆的离心率为e,则=,现将该命题类比到双曲线中,△ABC的顶点B在双曲线上,顶点A,C分别为双曲线的左、右焦点,设双曲线的方程为-=1(a>0,b>0).双曲线的离心率为e,则有.解析:根据题意,由类比推理知,命题的前提已经给出,需要计算研究命题的结论, 在双曲线中===,在△ABC中,由正弦定理得=,所以=.答案:=好题天天练1.导学号 18702627运用合情推理知识可以得到:当n≥2时,(1-)(1-)(1-)…(1-)=.解题关键:根据n=2,3时的关系式寻找规律,利用归纳推理求解.解析:n=2时,1-==,n=3时, (1-)(1-)=×==,…从而可得当n≥2时, (1-)(1-)(1-)…(1-)=.答案:2.导学号 18702628在计算“1×2+2×3+…+n(n+1)”时,某同学学到了如下一种方法:先改写第k项:k(k+1)=[k(k+1)(k+2)-(k-1)k(k+1)],由此得1×2=(1×2×3-0×1×2),2×3=(2×3×4-1×2×3),…n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)],相加,得1×2+2×3+…+n(n+1)=n(n+1)(n+2),类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其结果为.解题关键:根据已知条件及类比推理将n(n+1)(n+2)表示为某相邻两式的差.解析:因为k(k+1)=[k(k+1)(k+2)-(k-1)k(k+1)]=k(k+1)[(k+2)-(k-1)],所以k(k+1)(k+2)=k(k+1)(k+2)[(k+3)-(k-1)]=[k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)].因为n(n+1)(n+2)=[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)],所以1×2×3=(1×2×3×4-0×1×2×3),2×3×4=(2×3×4×5-1×2×3×4),…n(n+1)(n+2)=[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)].所以1×2×3+2×3×4+…+n(n+1)(n+2)=[(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n(n+1)×(n+2)×(n+3)-(n-1)×n×(n+1)×(n+2)]=n(n+1)(n+2)(n+3).答案:n(n+1)(n+2)(n+3)。

无锡市民办辅仁高中数学选修2-2第一章《推理与证明》测试题(含答案解析)

无锡市民办辅仁高中数学选修2-2第一章《推理与证明》测试题(含答案解析)

一、选择题1.在数学归纳法的递推性证明中,由假设n k =时成立推导1n k =+时成立时,()f n =1+1112321n ++⋅⋅⋅+-增加的项数是( ) A .1B .21k +C .2kD .21k -2.某个命题与正整数n 有关,如果当()n k k N +=∈时命题成立,那么可推得当1n k =+时命题也成立. 现已知当8n =时该命题不成立,那么可推得 ( ) A .当7n =时该命题不成立 B .当7n =时该命题成立 C .当9n =时该命题不成立D .当9n =时该命题成立3.某单位实行职工值夜班制度,已知,,,,5A B C D E 共名职工每星期一到星期五都要值一次夜班,且没有两人同时值夜班,星期六和星期日不值夜班,若A 昨天值夜班,从今天起,B C 至少连续4天不值夜班,D 星期四值夜班,则今天是星期几( )A .五B .四C .三D .二4.设函数()nf x '是()n f x 的导函数,0()(cos sin )xf x e x x =+,1()f x '=,2()f x '=,*1())n f x n N '+=∈,则2018()f x =( ) A .(cos sin )x e x x + B .(cos sin )x e x x - C .(cos sin )x e x x -+ D .(cos sin )x e x x --5.给出下面四个推理:①由“若a b 、是实数,则+≤+a b a b ”推广到复数中,则有“若12z z 、是复数,则1212z z z z +≤+”;②由“在半径为R 的圆内接矩形中,正方形的面积最大”类比推出“在半径为R 的球内接长方体中,正方体的体积最大”;③以半径R 为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;④由“直角坐标系中两点11(,)A x y 、22(,)B x y 的中点坐标为1212(,)22x x y y ++”类比推出“极坐标系中两点11(,)C ρθ、22(,)D ρθ的中点坐标为1212(,)22ρρθθ++”.其中,推理得到的结论是正确的个数有( )个 A .1B .2C .3D .46.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n);如果n 是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:l 可以多次出现),则n 的所有不同值的个数为 A .4B .6C .8D .327.在等差数列{}n a 中,如果,,,m n p r N *∈,且3m n p r ++=,那么必有3m n p r a a a a ++=,类比该结论,在等比数列{}n b 中, 如果,,,m n p r N *∈,且3m n p r ++=,那么必有( )A .3++=m n p r b b b bB .3++=m n p r b b b b C .3=m n p r b b b bD .3m n p r b b b b =8.袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号. 甲说:“我无法确定.” 乙说:“我也无法确定.”甲听完乙的回答以后,甲又说:“我可以确定了.” 根据以上信息, 你可以推断出抽取的两球中 A .一定有3号球B .一定没有3号球C .可能有5号球D .可能有6号球9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( ) A .甲 B .乙C .丙D .丁10.用反证法证明“平面四边形中至少有一个内角不超过90︒”,下列假设中正确的是( )A .假设有两个内角超过90︒B .假设有三个内角超过90︒C .假设至多有两个内角超过90︒D .假设四个内角均超过90︒11.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中需要负主要责任的人是( ) A .丁B .乙C .丙D .甲12.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( ) A .乙B .甲C .丁D .丙二、填空题13.已知f (x )=21xx +(x >0),若f 1(x )=f (x ),f n +1=f (f n (x )),n ∈N *,则猜想f 2020(x )=_____.14.数表的第1行只有两个数字3,7,从第2行开始,先按序照搬上一行的数再在相邻两数之间插入这两个数的和,如下图所示,那么第10行的各个数之和等于__________.15.“开心辞典”中有这样一个问题:给出一组数,要你根据规律填出后面的第几个数.现给出一组数:11315,,,,228432---,…,则第8个数可以是__________.16.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下: 甲说:“我们四人都没考好.” 乙说:“我们四人中有人考的好.” 丙说:“乙和丁至少有一人没考好.” 丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的______________两人说对了. 17.研究cos n α的公式,可以得到以下结论:2cos )22cos )32cos )42cos )22cos )52cos )32cos )62cos )42cos )22cos )72cos )52cos )32cos 2(2,2cos3(3(2cos ),2cos 4(4(2,2cos5(5(5(2cos ),2cos 6(6(9(2,2cos 7(7(14(7(2cos ααααααααααααααααααααα=-=-=-+=-+=-+-=-+-),以此类推:422cos8(2cos )(2cos )(2cos )16(2cos )m p n q r ααααα=++-+,则m n p q r ++++=__________.18.如图所示,在三棱锥S ﹣ABC 中,SA ⊥SB ,SB ⊥SC ,SC ⊥SA ,且SA ,SB ,SC 和底面ABC 所成的角分别为α1,α2,α3,△SBC ,△SAC ,△SAB 的面积分别为S 1,S 2,S 3,类比三角形中的正弦定理,给出空间图形的一个猜想是________.19.观察下列等式:……据此规律,第个等式可为____________________________________.20.用反证法证明“,a b N ∈,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,应假设_______.三、解答题21.设数列{}n x 各项均为正数,且满足()22221222,n x x x n n n N ++++=+∈,(1)求数列{}n x 的通项公式n x ; (2)已知122311113n n x x x x x x ++++=+++,求n ;(3)试用数学归纳法证明:2122312(1)1n n x x x x x x n +⎡⎤+++<+-⎣⎦.22.用数学归纳法证明:111111111234212122n n n n n-+-+⋯+-=++⋯+-++. 23.已知{}n a 是等差数列,{}n b 是等比数列,11331542,,a b a b a a b ===+=.设,n n n n c a b S =是数列{}n c 的前n 项和.(1)求,n n a b ;(2)试用数学归纳法证明:18(34)2n n S n +=+-⋅.24.已知数列{}n a 满足1a a =,112n na a +=-(*n N ∈); (1)求2a 、3a 、4a ; (2)猜想数列{}n a 的通项公式; (3)用数学归纳法证明你的猜想; 25.在数列{}n a 中,111,21nn n a a a a +==+,其中1,2,3,n =.(Ⅰ)计算234,,a a a 的值;(Ⅱ)猜想数列{}n a 的通项公式,并用数学归纳法加以证明.26.在数列{}n a 中,112a =,133n n n a a a +=+,求2a 、3a 、4a 的值,由此猜想数列{}n a 的通项公式,并用数学归纳法证明你的猜想.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:分别计算当n k =时,()1?f k = + 1112321k ++⋅⋅⋅+-,当1n k =+成立时, ()1?f k = + 1111123212221k k k k ++⋅⋅⋅+++⋅⋅⋅+-+-,观察计算即可得到答案 详解:假设n k =时成立,即()1?f k = + 1112321k ++⋅⋅⋅+- 当1n k =+成立时,()1?f k = + 1111123212221k k k k ++⋅⋅⋅+++⋅⋅⋅+-+- ∴增加的项数是()()221212k k k k +---=故选C点睛:本题主要考查的是数学归纳法。

数学一轮复习第15章推理与证明试题2理

数学一轮复习第15章推理与证明试题2理

第十五章推理与证明1.[2020安徽省示范高中名校联考]某校高一年级组织五个班的学生参加学农活动,每班从“农耕”“采摘”“酿酒”“野炊”“饲养”五项活动中选择一项进行实践,且各班的选择互不相同。

已知1班既不选“农耕",也不选“采摘”;2班既不选“农耕",也不选“酿酒”;3班既不选“野炊”,也不选“农耕”;5班选择“采摘"或“酿酒”;如果1班不选“酿酒",那么4班不选“农耕”。

则选择“饲养”的班级是()A。

2班 B.3班C。

4班D。

5班2。

[2020河南省实验中学模拟]在平面几何中有射影定理:在三角形ABC中,AB⊥AC,D是点A在BC上的射影,则AB2=BD·BC。

拓展到空间,在三棱锥A—BCD中,AD⊥平面ABC,点O是点A 在平面BCD内的射影,且O在△BCD内,类比平面三角形中的射影定理,得出的正确结论是()A.S△ABC2=S△BCD·S△BCOB。

S△ABD2=S△BCD·S△BCOC.S△ADC2=S△DOC·S△BOCD。

S△BDC2=S△ABD·S△ABC3。

[2020安徽模拟]观察图15-1中各正方形图案,记第n个图案中圆点的总数为S n.按此规律推出S n与n的关系式为()A.S n=2nB.S n=4nC。

S n=2n D.S n=4n—44.[2020江西模拟]用反证法证明命题“若关于x的方程ax2+bx+c=0(a≠0,a,b,c∈Z)有有理根,那么当a,b,c中至少有一个是偶数”时,下列假设正确的是()A。

假设a,b,c都是偶数B。

假设a,b,c都不是偶数C.假设a,b,c至多有一个偶数D.假设a,b,c至多有两个偶数5。

某市为了缓解交通压力,实行机动车辆限行政策,每辆机动车每周一到周五都要限行一天,周末(周六和周日)不限行.某公司有A,B,C,D,E五辆车,每天至少有四辆车可以上路行驶。

推理与证明测试题

推理与证明测试题

推理与证明测试题Newly compiled on November 23, 2020推理与证明测试题一、选择题(本题共20道小题,每小题0分,共0分)1.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理.A .②③④B .①③⑤C .②④⑤D .①⑤2.“所有金属都能导电,铁是金属,所以铁能导电,”此推理类型属于( ) A .演绎推理 B .类比推理 C .合情推理 D .归纳推理3.证明不等式(a≥2)所用的最适合的方法是( )A .综合法B .分析法C .间接证法D .合情推理法4.用反证法证明“三角形中最多只有一个内角是钝角”的结论的否定是( ) A .有两个内角是钝角 B .有三个内角是钝角 C .至少有两个内角是钝角D .没有一个内角是钝角5.已知21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,…,以此类推,第5个等式为( ) A .24×1×3×5×7=5×6×7×8B .25×1×3×5×7×9=5×6×7×8×9C .24×1×3×5×7×9=6×7×8×9×10D .25×1×3×5×7×9=6×7×8×9×106.下列三句话按“三段论”模式排列顺序正确的是( ) ①y=cosx(x ∈R )是三角函数; ②三角函数是周期函数; ③y=cosx(x ∈R )是周期函数. A .①②③B .②①③C .②③①D .③②①7.演绎推理“因为0'()0f x =时,x 是f(x)的极值点.而对于函数3(),'(0)0f x x f ==.所以0是函数3()f x x =的极值点. ”所得结论错误的原因是A.大前提错误B.小前提错误C.推理形式错误D.大前提和小前提都错误 8.下面几种推理过程是演绎推理的是( )A .在数列{}n a 中111111,()(2)2n n n a a a n a --==+≥,由此归纳数列{}n a 的通项公式;B .由平面三角形的性质,推测空间四面体性质;C .两条直线平行,同旁内角互补,如果A ∠和B ∠是两条平行直线的同旁内角,则180A B ∠+∠=D .某校高二共10个班,1班51人,2班53人,3班52人,由此推测各班都超过50人。

推理测试题及答案

推理测试题及答案

推理测试题及答案推理测试题1:题目:一个侦探正在调查一起谋杀案。

受害者被发现死在自家的书房里,书房的门是锁着的,窗户也是关闭的,但窗户上的锁是坏的。

侦探发现受害者身上有刀伤,旁边有一把带血的刀。

受害者的宠物猫在房间里,但并没有受伤。

侦探询问了三个人,他们都有不在场证明:- A说:“我整个晚上都在电影院。

”- B说:“我整个晚上都在图书馆。

”- C说:“我整个晚上都在健身房。

”问题:谁可能是凶手?答案:C可能是凶手。

因为猫通常对暴力行为有反应,但房间里的猫没有受伤,说明凶手在猫熟悉的环境中。

健身房是唯一一个可能让猫感到熟悉的地方,因为C经常去那里,猫可能习惯了C的气味。

推理测试题2:题目:在一个小镇上,有五个朋友:Alice, Bob, Charlie, David和Eve。

他们每个人都有不同的职业:医生、律师、教师、工程师和画家。

已知以下信息:- Alice不是医生。

- Bob和David不是同职业。

- Charlie不是工程师。

- 教师和律师住在相邻的房子里。

- Eve不是教师。

问题:每个人的职业是什么?答案:- Alice是律师,因为她不能是医生,且Eve不是教师,所以Alice只能是律师。

- Bob是工程师,因为Charlie不是工程师,且Bob和David不是同职业,所以Bob只能是工程师。

- Charlie是医生,因为Alice不是医生,且Bob是工程师,所以Charlie只能是医生。

- David是教师,因为Bob是工程师,且教师和律师住相邻的房子,Alice是律师,所以David是教师。

- Eve是画家,因为其他职业都已经被确定。

推理测试题3:题目:在一个晚宴上,有四位女士和四位男士坐在一起。

他们分别坐在桌子的两边,每边各四位。

女士们坐在一侧,男士们坐在另一侧。

已知以下信息:- 每位男士旁边都坐着一位女士。

- 穿红色衣服的女士坐在穿蓝色衣服的女士旁边。

- 穿绿色衣服的女士坐在穿黄色衣服的女士对面。

上海华东政法大学附属中学高中数学选修2-2第一章《推理与证明》测试题(答案解析)

上海华东政法大学附属中学高中数学选修2-2第一章《推理与证明》测试题(答案解析)

一、选择题1.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,,则此数列的前55项和为( )A .4072B .2026C .4096D .20482.观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= A .()f xB .()f x -C .()g xD .()g x -3.甲、乙、丙、丁四个孩子踢球打碎了玻璃.甲说:“是丙或丁打碎的.”乙说:“是丁打碎的.”丙说:“我没有打碎玻璃.”丁说:“不是我打碎的.”他们中只有一人说了谎,请问是( )打碎了玻璃. A .甲B .乙C .丙D .丁4.2018年暑假期间哈六中在第5届全国模拟联合国大会中获得最佳组织奖,其中甲、乙、丙、丁中有一人获个人杰出代表奖,记者采访时,甲说:我不是杰出个人;乙说:丁是杰出个人;丙说:乙获得了杰出个人;丁说:我不是杰出个人,若他们中只有一人说了假话,则获得杰出个人称号的是( ) A .甲B .乙C .丙D .丁5.某个命题与正整数n 有关,如果当()*,n k k N =∈ 时命题成立,那么可推得当1n k =+时命题也成立. 现已知当n=8时该命题不成立,那么可推得 ( )A .当n=7时该命题不成立B .当n=7时该命题成立C .当n=9时该命题不成立D .当n=9时该命题成立6.用反证法证明命题①:“已知332p q +=,求证:2p q +≤”时,可假设“2p q +>”;命题②:“若24x =,则2x =-或2x =”时,可假设“2x ≠-或2x ≠”.以下结论正确的是( ) A .①与②的假设都错误 B .①与②的假设都正确 C .①的假设正确,②的假设错误D .①的假设错误,②的假设正确7.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确8.设实数a,b,c满足a+b+c=1,则a,b,c中至少有一个数不小于()A.0 B.13C.12D.19.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅,…,癸酉,甲戌,乙亥,丙子,…,癸未,甲申、乙酉、丙戌,…,癸巳,…,共得到60个组成,周而复始,循环记录,2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的()A.乙亥年B.戊戌年C.庚子年D.辛丑年10.已知甲、乙、丙三人中,一人是数学老师、一人是英语老师、一人是语文老师.若丙的年龄比语文老师大;甲的年龄和英语老师不同;英语老师的年龄比乙小.根据以上情况,下列判断正确的是( )A.甲是数学老师、乙是语文老师、丙是英语老师B.甲是英语老师、乙是语文老师、丙是数学老师C.甲是语文老师、乙是数学老师、丙是英语老师D.甲是语文老师、乙是英语老师、丙是数学老师11.用反证法证明“平面四边形中至少有一个内角不超过90︒”,下列假设中正确的是()A.假设有两个内角超过90︒B.假设有三个内角超过90︒C.假设至多有两个内角超过90︒D.假设四个内角均超过90︒12.请观察这些数的排列规律,数字1位置在第一行第一列表示为(1,1),数字14位置在第四行第三列表示为(4,3),根据特点推算出数字2019的位置A.(45,44)B.(45,43)C.(45,42)D.该数不会出现二、填空题13.有甲、乙、丙、丁四位学生参加数学竞赛,其中只有一名学生获奖,有其他学生问这四个学生的获奖情况,甲说:“是乙或丙获奖”,乙说:“甲、丙都没有获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位学生的话有且只有两个人的话是对的,则获奖的学生是__________.14.在圆中:半径为r的圆的内接矩形中,以正方形的面积最大,最大值为22r.类比到球中:半径为R的球的内接长方体中,以正方体的体积最大,最大值为__________.15.把一数列依次按第一个括号内一个数,第二个括号内两个数,第三个括号内三个数,第四个括号内一个数,……循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第100个括号内的数为_________.16.古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为22n n+,记第n 个k 边形数为(,)(3)N n k k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数:211(,3)22N n n n =+;正方形数:2(,4)N n n =;五边形数:231(,5)22N n n n =-;六边形数:2(,6)2N n n n =-,…,由此推测(8,8)N =__________.17.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖 块. 18.在数列{a n }中,a 1=2,a n +1=31nn a a + (n ∈N *),可以猜测数列通项a n 的表达式为________.19.面积为S 的平面凸四边形的第i 条边的边长记为(1,2,3,4)i a i =,此四边形内任一点P 到第i 条边的距离记为,若31241234a a a a k ====,则12342234Sh h h h k+++=.类比以上性质,体积为V 的三棱锥的第i 个面的面积记为(1,2,3,4)i S i =,此三棱锥内任一点Q 到第i 个面的距离记为(1,2,3,4)i H i =,若31241234S S S S K ====,则1234234H H H H +++等于_____________. 20.用数学归纳法证明某命题时,左式为(n 为正偶数),从“n=2k”到“n=2k+2”左边需增加的代数式为________.三、解答题21.已知数列{}n a 满足:12a =,1(1)(1)n n na n a n n +=+++,*n N ∈. (1)求证:数列{}na n为等差数列,并求出数列{}n a 的通项公式; (2)记2(1)n nb n a =+(*n N ∈),用数学归纳法证明:12211(1)n b b b n +++<-+,*n N ∈22.已知数列{}n a 满足关系式()10a a a =>,()1122,1n n n a a n n N a --=≥∈+. (1)用a 表示2a ,3a ,4a ;(2)根据上面的结果猜想用a 和n 表示n a 的表达式,并用数学归纳法证之. 23.(1)已知数列{}n a 通项公式为()12n n n a +=,写出数列前5项. (2)记数列3333331,2,3,4,5,,,n 的前n 项和为n S ,写出n S 的前5项并归纳出nS 的计算公式.(3)选择适当的方法对(2)中归纳出的公式进行证明. 24.正项数列{}n a 的前n 项和n S满足1n a n =-. (Ⅰ)求1a ,2a ,3a ;(Ⅱ)猜想{}n a 的通项公式,并用数学归纳法证明. 25.设数列{}n a 满足关系式:12a p ,212nn p a p a (p 是常数).(1)求234,,a a a ;(2)猜想{}n a 的通项公式,并证明. 26.已知数列{}11,2n a a =,133n n na a a +=+. (1)求2345,,,a a a a 的值;(2)猜想数列{n a }的通项公式,并用数学归纳法证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用n 次二项式系数对应杨辉三角形的第n +1行,然后令x =1得到对应项的系数和,结合等比数列和等差数列的公式进行转化求解即可. 【详解】解:由题意可知:每一行数字和为首项为1,公比为2的等比数列,则杨辉三角形的前n 项和为S n 1212n-==-2n ﹣1,若去除所有的为1的项,则剩下的每一行的个数为1,2,3,4,……,可以看成构成一个首项为1,公差为1的等差数列, 则T n ()12n n +=,可得当n =10,所有项的个数和为55, 则杨辉三角形的前12项的和为S 12=212﹣1, 则此数列前55项的和为S 12﹣23=4072, 故选A . 【点睛】本题主要考查归纳推理的应用,结合杨辉三角形的系数与二项式系数的关系以及等比数列等差数列的求和公式是解决本题的关键,综合性较强,难度较大.2.D解析:D 【解析】由归纳推理可知偶函数的导数是奇函数,因为()f x 是偶函数,则()()g x f x '=是奇函数,所以()()g x g x -=-,应选答案D .3.D解析:D 【分析】假设其中一个人说了谎,针对其他的回答逐个判断对错即可,正确答案为丁. 【详解】假设甲打碎玻璃,甲、乙说了谎,矛盾, 假设乙打碎了玻璃,甲、乙说了谎,矛盾, 假设丙打碎了玻璃,丙、乙说了谎,矛盾, 假设丁打碎了玻璃,只有丁说了谎,符合题意, 所以是丁打碎了玻璃; 故选:D 【点睛】本题考查了进行简单的合情推理,采用逐一检验的方法解题,属基础题.4.B解析:B 【分析】分别假设甲、乙、丙、丁获得冠军,看是否满足“只有一人说了假话,”,即可得出结果. 【详解】若甲获个人杰出代表奖,则甲、乙、丙三人同时回答错误,丁回答正确,不满足题意; 若乙获个人杰出代表奖,则甲、丙,丁回答正确,只有乙回答错误,满足题意; 若丙获个人杰出代表奖,则乙、丙回答错误,甲、丁回答正确,不满足题意; 若丁获个人杰出代表奖,则甲、乙回答正确,丙、丁回答错误,不满足题意, 综上,获得杰出代表奖的是乙,故选B.【点睛】本题主要考查推理案例,属于难题.推理案例的题型是高考命题的热点,由于条件较多,做题时往往感到不知从哪里找到突破点,解答这类问题,一定要仔细阅读题文,逐条分析所给条件,并将其引伸,找到各条件的融汇之处和矛盾之处,多次应用假设、排除、验证,清理出有用“线索”,找准突破点,从而使问题得以解决.5.A解析:A 【解析】分析:本题考查的知识点是数学归纳法,由归纳法的性质,我们由P (n )对n=k 成立,则它对n=k+1也成立,由此类推,对n >k 的任意整数均成立,结合逆否命题同真同假的原理,当P (n )对n=k 不成立时,则它对n=k-1也不成立,由此类推,对n <k 的任意正整数均不成立,由此不难得到答案.详解:由题意可知,原命题成立则逆否命题成立, P (n )对n=8不成立,P (n )对n=7也不成立, 否则n=7时成立,由已知推得n=8也成立. 与当n=7时该命题不成立矛盾 故选:A .点睛:当P (n )对n=k 成立,则它对n=k+1也成立,由此类推,对n >k 的任意整数均成立;结合逆否命题同真同假的原理,当P (n )对n=k 不成立时,则它对n=k-1也不成立,由此类推,对n <k 的任意正整数均不成立.6.C解析:C 【解析】分析:利用命题的否定的定义判断即可.详解:①2p q +≤的命题否定为2p q +>,故①的假设正确.2x =-或2x =”的否定应是“2x ≠-且2x ≠”② 的假设错误,所以①的假设正确,②的假设错误,故选C.点睛:本题主要考查反证法,命题的否定,属于简单题. 用反证法证明时,假设命题为假,应为原命题的全面否定.7.A解析:A 【解析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为()0'0f x =时,0x 是()f x 的极值点,而对于函数()3f x x =,()'00f =,所以0是函数()3f x x =的极值点.”中,大前提:()0'0f x =时,f x '()在0x 两侧的符号如果不相反,则0x 不是()f x 的极值点,故错误,故导致错误的原因是:大前提错误, 故选:A .点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题8.B解析:B 【解析】∵三个数a ,b ,c 的和为1,其平均数为13∴三个数中至少有一个大于或等于13假设a ,b ,c 都小于13,则1a b c ++< ∴a ,b ,c 中至少有一个数不小于13故选B.9.C解析:C 【解析】2015年是“干支纪年法”中的乙未年,2016年是“干支纪年法”中的丙申年,那么2017年是“干支纪年法”中的丁酉年,2018是戊戌年,2019年是己亥年,以此类推记得到2020年是庚子年. 故答案为C .10.C解析:C 【解析】丙的年龄比语文老师大,则丙是数学老师或英语老师,不是语文老师;甲的年龄和英语老师不同,则甲是数学老师或语文老师,不是英语老师;选项B 错误; 英语老师的年龄比乙小,则乙是数学老师或语文老师,不是英语老师;选项D 错误; 选项A 中,英语老师的年龄比乙大,选项A 错误; 据此可得:甲是语文老师、乙是数学老师、丙是英语老师. 本题选择C 选项.11.D解析:D 【解析】“至少有一个内角不超过90︒”的反面含义为“四个内角没有一个不超过90︒”,即四个内角均超过90︒,选D.12.C解析:C 【分析】由所给数的排列规律得到第n 行的最后一个数为2n ,然后根据2452025=可推测2019所在的位置. 【详解】由所给数表可得,每一行最后一个数为2221,2,3,,由于22441936,452025==,2244201945<<, 所以故2019是第45行的倒数第4个数, 所以数字2019的位置为(45,42). 故选C . 【点睛】(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识. (2)解决归纳推理问题的基本步骤①发现共性,通过观察特例发现某些相似性(特例的共性或一般规律); ②归纳推理,把这种相似性推广为一个明确表述的一般命题(猜想).二、填空题13.丙【解析】分析:分别假设甲乙丙丁的一个人获奖分析四个人的话能求出获奖的同学详解:若甲获奖则都说了假话不符合题意若乙获奖则甲乙丁说了真话丙说了假话不符合题意若丁获奖则甲丙丁说假话乙说真话不符合题意故丙解析:丙【解析】分析:分别假设甲,乙,丙,丁的一个人获奖,分析四个人的话,能求出获奖的同学详解:若甲获奖,则都说了假话,不符合题意若乙获奖,则甲,乙,丁说了真话,丙说了假话,不符合题意 若丁获奖,则甲,丙,丁说假话,乙说真话,不符合题意 故丙获奖点睛:本题是一个简单的合情推理题,主要考查了合情推理的含义和作用。

(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试题(包含答案解析)(3)

(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试题(包含答案解析)(3)

一、选择题1.数学归纳法证明*1111(1,)n 1n 2n 2n n N n +++>>∈+++,过程中由n k =到1n k =+时,左边增加的代数式为( )A .122k +B .121k + C .11+2122++k k D .112k 12k 2++- 2.正四面体ABCD 的棱AD 与平面α所成角为θ,其中02πθ<<,点D 在平面α内,则当四面体ABCD 转动时( )A .存在某个位置使得BC α,也存在某个位置使得BC α⊥B .存在某个位置使得BC α,但不存在某个位置使得BC α⊥ C .不存在某个位置使得BC α,但存在某个位置使得BC α⊥D .既不存在某个位置使得BC α,也不存在某个位置使得BC α⊥ 3.用反证法证明某命题时,对其结论“a ,b 都是正实数”的假设应为( ) A .a ,b 都是负实数B .a ,b 都不是正实数C .a ,b 中至少有一个不是正实数D .a ,b 中至多有一个不是正实数4.给出下面四个推理:①由“若a b 、是实数,则+≤+a b a b ”推广到复数中,则有“若12z z 、是复数,则1212z z z z +≤+”;②由“在半径为R 的圆内接矩形中,正方形的面积最大”类比推出“在半径为R 的球内接长方体中,正方体的体积最大”;③以半径R 为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;④由“直角坐标系中两点11(,)A x y 、22(,)B x y 的中点坐标为1212(,)22x x y y ++”类比推出“极坐标系中两点11(,)C ρθ、22(,)D ρθ的中点坐标为1212(,)22ρρθθ++”.其中,推理得到的结论是正确的个数有( )个 A .1B .2C .3D .45.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则411a a +的值为A .528B .1032C .1040D .20646.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( ) A .甲B .乙C .丙D .丁7.圆有6条弦,两两相交,这6条弦将圆最多分割成( )个部分 A .16 B .21 C .22 D .238.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是( ) A .甲B .乙C .丙D .丁9.定义*A B ,*B C ,*C D ,*D A 的运算分别对应下面图中的⑴,⑵,⑶,⑷,则图中⑸,⑹对应的运算是( )A .*B D ,*A D B .*B D ,*AC C .*B C ,*AD D .*C D ,*A D10.由圆心与弦(非直径)中点的连线垂直于弦,想到球心与截面圆(不经过球心的小截面圆)圆心的连线垂直于截面,用的是( )A .类比推理B .三段论推理C .归纳推理D .传递性推理 11.根据给出的数塔猜测12345697⨯+( )19211⨯+=1293111⨯+= 123941111⨯+= 12349511111⨯+= 1234596111111⨯+=…A .1111111B .1111110C .1111112D .111111312.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需T i 分钟,假设T i 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( ) A .从T i 中最大的开始,按由大到小的顺序排队B .从T i 中最小的开始,按由小到大的顺序排队C .从靠近T i 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变二、填空题13.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=14.在圆中:半径为r 的圆的内接矩形中,以正方形的面积最大,最大值为22r .类比到球中:半径为R 的球的内接长方体中,以正方体的体积最大,最大值为__________. 15.某次高三英语听力考试中有5道选择题,每题1分,每道题在三个选项中只有一个是正确的.下表是甲、乙、丙三名同学每道题填涂的答案和这5道题的得分:1 2 3 4 5 得分甲 4 乙 3 丙2则甲同学答错的题目的题号是__________.16.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖 块.17.在探究实系数一元二次方程的根与系数的关系时,可按下述方法进行: 设实系数一元二次方程22100a x a x a ++=……①在复数集C 内的根为1x ,2x ,则方程①可变形为()()2120a x x x x --=, 展开得()222122120a x a x x x a x x -++=.……②比较①②可以得到:11220122a x x a a x x a ⎧+=-⎪⎪⎨⎪=⎪⎩类比上述方法,设实系数一元n 次方程11100nn n n a x a xa x a --++++=(2n ≥且*N n ∈)在复数集C 内的根为1x ,2x ,…,n x ,则这n 个根的积1ni i x ==∏ __________.18.观察下列等式: (1)24sin sin 033ππ+= (2)2468sin sin sin sin 05555ππππ+++= (3)2468sinsin sin sin 7777ππππ+++1012sin sin 077ππ++= …… …… …… …… …… ……由以上规律推测,第n 个等式为:__________.19.小明在做一道数学题目时发现:若复数111cos i?sin ?,z αα=+222 cos i?sin ,z αα=+,333cos i?sin z αα=+(其中123,,R ααα∈), 则121212cos()i?sin(+)z z αααα⋅=++,232323cos()i?sin(+)z z αααα⋅=++ ,根据上面的结论,可以提出猜想: z 1·z 2·z 3=__________________. 20.观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++=______________.三、解答题21.设数列{}n a 的前n 项和为n S ,对任意*n ∈N 都有2132n n S n a =+. (1)求数列{}n a 的通项公式;(2)记*4()n n b a n N =+∈*1)nn N b ++<∈ 22.已知数列{}n a 满足11a =,1(5)5n n n a a a ++=. (1)计算234,,a a a 的值,猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中的猜想. 23.已知数列1111,,,,,112123123n+++++++,其前n 项和为n S ;(1)计算1234,,,S S S S ;(2)猜想n S 的表达式,并用数学归纳法进行证明.24.(1)当1x >时,求2()1x f x x =-的最小值.(2)用数学归纳法证明:11111222n n n +++≥++*()n N ∈. 25.在数列{}n a 中,111,21nn n a a a a +==+,其中1,2,3,n =.(Ⅰ)计算234,,a a a 的值;(Ⅱ)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 26.已知()()()()20121111nnn x a a x a x a x +=+-+-++-(2,*n n N ≥∈),(1)当5n =时,求12345a a a a a ++++的值; (2)设2233,2n n n n a b T b b b -==+++,试用数学归纳法证明:当2n ≥时,()()113n n n n T +-=。

(常考题)北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(有答案解析)(4)

(常考题)北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(有答案解析)(4)

一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种2.如图,第(1)个图案由1个点组成,第(2)个图案由3个点组成,第(3)个图案由7个点组成,第(4)个图案由13个点组成,第(5)个图案由21个点组成,……,依此类推,根据图案中点的排列规律,第50个图形由多少个点组成( )A .2450B .2451C .2452D .2453 3.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .1994.设,,(0,1)a b c ∈,则1a b +,1b c +,1c a+( ) A .都不大于2 B .都不小于2 C .至少有一个不大于2D .至少有一个大于25.下面几种推理过程是演绎推理的是 ( ).A .某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B .由三角形的性质,推测空间四面体的性质C .平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D .在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式 6.期末考试结束后,甲、乙、丙、丁四位同学预测数学成绩甲:我不能及格. 乙:丁肯定能及格. 丙:我们四人都能及格.丁:要是我能及格,大家都能及格.成绩公布后,四人中恰有一人的预测是错误的,则预测错误的同学是( ) A .甲 B .乙 C .丙 D .丁7.设函数()nf x '是()n f x 的导函数,0()(cos sin )xf x e x x =+,01()()2f x f x '=,12()(),2f x f x '=,*1()()()2n n f x f x n N '+=∈,则2018()f x =( ) A .(cos sin )x e x x + B .(cos sin )x e x x - C .(cos sin )x e x x -+D .(cos sin )x e x x --8.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确9.若实数,,a b c 满足1a b c ++=,给出以下说法:①,,a b c 中至少有一个大于13;②,,a b c 中至少有一个小于13;③,,a b c 中至少有一个不大于1;④,,a b c 中至少有一个不小于14.其中正确说法的个数是( ) A .3B .2C .1D .010.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为( )A .0720sin1B .0720sin 0.5C .0720sin 0.25D .0720sin 0.12511.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( )A .甲B .乙C .丙D .丁12.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是 ( )2017 2016 2015 2014……6 5 4 3 2 1 4033 4031 4029…………11 9 7 5 3 8064 8060………………20 16 12 8 16124……………………36 28 20 ……………………… A .201620172⨯ B .201501822⨯ C .201520172⨯D .201601822⨯二、填空题13.点()00,x y 到直线0Ax By c ++=的距离公式为0022Ax By c d A B++=+,通过类比的方法,可求得:在空间中,点()1,1,2到平面230x y z +++=的距离为___.14.如图所示为计算机科学中的蛇形模型,则第20行从左到右第4个数字为__________.15.把一数列依次按第一个括号内一个数,第二个括号内两个数,第三个括号内三个数,第四个括号内一个数,……循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第100个括号内的数为_________.16.某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是__________小时.17.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖 块.18.研究问题:“已知关于x 的不等式20ax bx c -+>的解集为(1,2),解关于x 的不等式20cx bx a -+>”,有如下解法:由22110()()0ax bx c a b c x x-+>⇒-+>,令1y x=,则1(,1)2y ∈,所以不等式20cx bx a -+>的解集为1(,1)2,类比上述解法,已知关于x 的不等式0k x b x a x c ++<++的解集为(2,1)(2,3)--⋃,则关于x 的不等式1011kx bx ax cx -+<--的解集为__________.19.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.20.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了”.丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是__________.三、解答题21.在数列{}n a 中,11a =,()*121n n n a a n N n++=+∈. (1)求2a 、3a 、4a 的值;(2)猜想{}n a 的通项公式,并用数学归纳法证明. 22.将下列问题的解答过程补充完整.依次计算数列1,121++,12321++++,1234321++++++,…的前四项的值,由此猜测123(1)(1)321n a n n n =++++-++-++++的有限项的表达式,并用数学归纳法加以证明. 解:计算 11=,1214++=,12321++++= ① ,1234321++++++= ② ,由此猜想123(1)(1)321n a n n n =++++-++-++++= ③ .(*)下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立,即 123(1)(1)321k a k k k =++++-++-++++= ④ .那么,当1n k =+时,1k a += ⑤k a =+ ⑥= ⑦ .等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 23.用数学归纳法证明11111112324n n n n n +++⋅⋅⋅+>++++*()n N ∈. 24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式.25.已知,a b ∈R ,且1a b +=求证:()()2225222a b +++≥. 26.已知数列{}11,2n a a =,133n n n a a a +=+. (1)求2345,,,a a a a 的值;(2)猜想数列{n a }的通项公式,并用数学归纳法证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.B解析:B 【解析】 【分析】设第n 个图案的点的个数为n a ,由图归纳可得()121,1n n a a n n --=--个式子相加,由等差数列的求和公式可得结果. 【详解】设第n 个图案的点的个数为n a ,由题意可得123451,3,7,13,21a a a a a =====, 故213243542,4,6,8,...a a a a a a a a -=-=-=-=, 由此可推得()121n n a a n --=-,以上1n -个式子相加可得:()()()()()2132431...246...21n n a a a a a a a a n --+-+-++-=++++-,化简可得()()()1222112n n n a n n -+--==-,故()11n a n n =-+, 故50504912451a =⨯+=,即第50个图形由2451个点组成,故选B . 【点睛】本题主要考查归纳推理以及等差数列的求和公式,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.3.C解析:C 【详解】由题观察可发现,347,4711,71118+=+=+=, 111829,182947+=+=,294776,4776123+=+=,即1010123a b +=, 故选C.考点:观察和归纳推理能力.4.D解析:D 【解析】分析:利用举反例和反证法证明每一个命题,即得正确答案. 详解:因为1116a b c b c a+++++>与都不大于2矛盾,所以A 错误. 若1315,,2,343a b a b ==+=<所以B 错误. 若111,,,222a b c <<<则a>2,b>2,c>2,所以C 错误. 故答案为D 点睛:(1)本题主要考查推理证明和反证法,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)对于含有“至少”“至多”等概念的命题常用反证法.5.C解析:C 【解析】分析:根据归纳推理、类比推理、演绎推理得概念判断选择.详解:某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人,这个是归纳推理;由三角形的性质,推测空间四面体的性质,是类比推理;平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分,是演绎推理;在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式,是归纳推理,因此选C.点睛:本题考查归纳推理、类比推理、演绎推理,考查识别能力.6.A解析:A【解析】分析:若甲预测正确,显然导出矛盾.详解:若甲预测正确,则乙,丙 , 丁都正确,乙:丁肯定能及格.丙:我们四人都能及格.丁:要是我能及格,大家都能及格.,即四人都及格显然矛盾, 故甲预测错误. 故选A.点睛:本题考查推理与论证,根据已知分别假设得出矛盾进而得出是解题关键.7.B解析:B 【解析】分析:易得到f n (x )表达式以8为周期,呈周期性变化,由于2018÷8余2,故f 2008(x )= f 2(x ),进而得到答案详解:∵f 0(x )=e x (cosx+sinx ),∴f 0′(x )=e x (cosx+sinx )+e x (﹣sinx+cosx )=2e x cosx , ∴f1(x )'f x x cosx ,∴f1′(x )x (cosx ﹣sinx ), ∴f 2(x )'f x =e x (cosx ﹣sinx ),∴f 2′(x )=e x (cosx ﹣sinx )+e x (﹣sinx ﹣cosx )=﹣2e x sinx , ∴f3(x )=x sinx , ∴f3′(x )=x (sinx+cosx ), ∴f 4(x )=﹣e x (cosx+sinx ), ∴f 4′(x )=﹣2e x cosx , ∴f5(x )=x cosx , ∴f 6(x )=﹣e x (cosx ﹣sinx ), ∴f7(x )x sinx , ∴f 8(x )=e x (cosx+sinx ), …,∴()2018f x == f 2(x )=()cos sin xe x x -,故选:B .点睛:本题通过观察几个函数解析式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.8.A解析:A 【解析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为()0'0f x =时,0x 是()f x 的极值点,而对于函数()3f x x =,()'00f =,所以0是函数()3f x x =的极值点.”中,大前提:()0'0f x =时,f x '()在0x 两侧的符号如果不相反,则0x 不是()f x 的极值点,故错误,故导致错误的原因是:大前提错误, 故选:A .点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题9.B解析:B 【解析】分析:根据反证法思想方法,可判定③④是正确的,通过举例子,可判定①②是错误的. 详解:由题意,,a b c 满足1a b c ++=, 则在①、②中,当13a b c ===时,满足1a b c ++=,所以命题不正确; 对于③中,假设,,a b c 三个数列都大于1,则1a b c ++>,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不大于1,所以是正确的; 对于④中,假设,,a b c 三个数列都小于14,则1a b c ++<,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不小于14,所以是正确的; 综上可知,正确的命题由两个,故选B.点睛:本题主要考查了 命题个数的真假判定,其中解答中涉及反证法的思想的应用,着重考查了分析问题和解答问题的能力.10.C解析:C 【解析】 设圆的半径为1,正多边形的圆心角为3600.5720︒︒=,边长为2sin0.25︒==,所以7202sin0.252π︒⨯=,即0π720sin0.25=故选:C11.C解析:C 【详解】若甲是获奖的歌手,则四句全是假话,不合题意;若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,与题意不符; 若丁是获奖的歌手,则甲、丁、丙都说假话,丙说真话,与题意不符; 当丙是获奖的歌手,甲、丙说了真话,乙、丁说了假话,与题意相符. 故选C.点睛:本题主要考查的是简单的合情推理题,解决本题的关键是假设甲、乙、丙、丁分别是获奖歌手时的,甲乙丙丁说法的正确性即可.12.B解析:B 【分析】数表的每一行都是等差数列,从右到左,第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M ,由此可得结论. 【详解】由题意,数表的每一行都是等差数列,从右到左,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014, 故从右到左第1行的第一个数为:2×2﹣1, 从右到左第2行的第一个数为:3×20, 从右到左第3行的第一个数为:4×21, …从右到左第n 行的第一个数为:(n+1)×2n ﹣2,第2017行只有M ,则M=(1+2017)•22015=2018×22015 故答案为:B . 【点睛】本题主要考查归纳与推理,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题13.【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可详解:类比点到直线的距离可知在空间中点到平面的距离故答案是点睛:该题考查的是类比推理利用平面内点到直线的距离公式类比着得【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可. 详解:类比点00(,)P x y 到直线0Ax By C ++=的距离d =,可知在空间中点(0,1,1)-到平面230x y z +++=的距离2d ==,故答案是2.点睛:该题考查的是类比推理,利用平面内点到直线的距离公式类比着得出空间中点到平面的距离公式,代入求得结果,属于简单题目.14.194【解析】由题意得前行共有个数第行最左端的数为第行从左到右第个数字为点睛:本题非常巧妙的将数表的排列问题和数列融合在一起首先需要读懂题目所表达的具体含义以及观察所给定数列的特征进而判断出该数列的解析:194 【解析】由题意得,前19行共有19(119)1902+=个数,第19行最左端的数为190,第20行从左到右第4个数字为194.点睛:本题非常巧妙的将数表的排列问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和,另外,本题的难点在于根据数表中的数据归纳数列的知识,利用等差数列的通项公式及前n 项和公式求解,体现了用方程的思想解决问题.15.392【解析】由题意可得将三个括号作为一组则由第50个括号应为第17组的第二个括号即50个括号中应有两个数因为每组中有6个数所以第48个括号的最后一个数为数列的第项第50个括号的第一个数为数列的第项解析:392 【解析】由题意可得,将三个括号作为一组,则由501632=⨯+,第50个括号应为第17组的第二个括号,即50个括号中应有两个数,因为每组中有6个数,所以第48个括号的最后一个数为数列{}21n -的第16696⨯=项,第50个括号的第一个数为数列{}21n -的第166298⨯+=项,即2981195⨯-=,第二个数是2991197⨯-=,所以第50个括号内各数之和为195197392+=16.11【解析】A 到E 的时间为2+4=6小时或5小时A 经C 到D 的时间为3+4=7小时故A 到F 的最短时间就为9小时则A 经F 到G 的时间为9+2=11小时即组装该产品所需要的最短时间是11小时解析:11 【解析】A 到E 的时间,为2+4=6小时,或5小时, A 经C 到D 的时间为3+4=7小时, 故A 到F 的最短时间就为9小时, 则A 经F 到G 的时间为9+2=11小时, 即组装该产品所需要的最短时间是11小时17.4n+2【解析】解:观察分析图案得到规律第1个第2个第3个…个图案有白色地板砖分别是61014…个组成一个公差是4首项为6的等差数列因此第n 个图案中有白色地面砖有6+(n-1)×4=6+4n-4=4【解析】解:观察、分析图案,得到规律,第1个、第2个,第3个…个图案有白色地板砖分别是6,10,14…个,组成一个公差是4,首项为6的等差数列.因此第n个图案中有白色地面砖有6+(n-1)×4=6+4n-4=4n+2.故答案为:4n+2.18.【解析】解析:111,,1232⎛⎫⎛⎫--⋃⎪ ⎪⎝⎭⎝⎭【解析】关于x的不等式111kx bxax cx-+<--可化为111bk xa cx x-+<--,则由题设中提供的解法可得:1111(2,1)(2,3)(,)(,1)232xx-∈--⋃⇒∈--⋃,则关于x的不等式111kx bx ax cx -+< --的解集为111(,)(,1)232--,应填答案111(,)(,1)232--.19.1和3【详解】根据丙的说法知丙的卡片上写着和或和;(1)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;所以甲的说法知甲的卡片上写着和;(2)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;又加解析:1和3.【详解】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又加说:“我与乙的卡片上相同的数字不是2”;所以甲的卡片上写的数字不是1和2,这与已知矛盾;所以甲的卡片上的数字是1和3.20.丙【详解】若甲获奖则甲乙丙丁说的都是错的同理可推知乙丙丁获奖的情况可知获奖的歌手是丙考点:反证法在推理中的应用解析:丙【详解】若甲获奖,则甲、乙、丙、丁说的都是错的,同理可推知乙、丙、丁获奖的情况,可知获奖的歌手是丙.考点:反证法在推理中的应用.21.(1)24a =,39a =,416a =;(2)2n a n =,证明见解析.【分析】(1)根据数列递推关系,把1n =、2、3分别代入,求出2a 、3a 、4a 的值;(2)先假设n k =时,2k a k =成立,再证明1n k =+时,猜想也成立.【详解】 (1)11a =,1n a +21n n a n+=+,22314a a ∴=+=,32219a a =+=,4351163a a =+=;(2)由(1)猜想2n a n =,用数学归纳法证明如下: ①当1n =时,11a =,猜想显然成立; ②设n k =时,猜想成立,即2k a k =, 则当1n k =+时,()22121211k k k a a k k k k++=+=++=+, 即当1n k =+时猜想也成立, 由①②可知,猜想成立,即2n a n =. 【点睛】运用数学归纳法证明命题时,要求严格按照从特殊到一般的思想证明,特别是归纳假设一定要用到,否则算是没有完成证明.22.①:9;②:16;③:2n ;④:2k ;⑤:123(1)(1)(1)321k k k k k ++++-+++++-++++;⑥:21k +;⑦:2(1)k + 【分析】根据数学归纳法的定义依次填空得到答案. 【详解】123219++++=,123432116++++++=,由此猜想2123(1)(1)321n a n n n n =++++-++-++++=,下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立, 即2123(1)(1)321k a k k k k =++++-++-++++=.当1n k =+时,1123(1)(1)(1)321k a k k k k k +=++++-+++++-++++()2211k k a k +=+=+,等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 故答案为:①:9;②:16;③:2n ;④:2k ; ⑤:123(1)(1)(1)321k k k k k ++++-+++++-++++;⑥:21k +;⑦:2(1)k + 【点睛】本题考查了数学归纳法,意在考查学生对于数列归纳法的理解和应用能力. 23.见解析. 【解析】分析:直接利用数学归纳法的证明步骤证明不等式,(1)验证1n =时不等式成立;(2)假设当()*,1n k k N k =∈≥时成立,利用放缩法证明1n k =+时,不等式也成立.详解:证明:①当1n =时,左边111224=>,不等式成立. ②假设当()*,1n k k N k =∈≥时,不等式成立,即11111112324k k k k k +++⋅⋅⋅+>++++, 则当1n k =+时,111112322122k k k k k ++⋅⋅⋅+++++++ 11111232k k k k =+++⋅⋅⋅++++ 11121221k k k ++-+++ 111112421221k k k >++-+++, ∵11121221k k k +-+++ ()()()()()21212212121k k k k k +++-+=++()()102121k k =>++,∴11111232k k k k +++⋅⋅⋅++++ 11121221k k k ++-+++ 1111111242122124k k k >++->+++, ∴当1n k =+时,不等式成立.由①②知对于任意正整数n ,不等式成立.点睛:本题是中档题,考查数学归纳法的证明步骤,注意不等式的证明方法,放缩法的应用,考查逻辑推理能力.24.(I )()541f =;(II )()2221f n n n =-+.【解析】试题分析:(I )先用前几项找出规律()()21441f f -==⨯,()()32842f f -==⨯,()()431243f f -==⨯,()()541644f f -==⨯,可知()5254441f =+⨯=;(II )由(I )知()()14f n f n n +-=,然后利用累加法求出()2221f n n n =-+.试题 解:(I )()11f =,()25f =,()313f =,()425f =,∴()()21441f f -==⨯,()()32842f f -==⨯,()()431243f f -==⨯,()()541644f f -==⨯∴()5254441f =+⨯=.(II )由上式规律得出()()14f n f n n +-=.∴()()2141f f -=⨯,()()3242f f -=⨯,()()4343f f -=⨯,⋅⋅⋅,()()()1242f n f n n ---=⋅-,()()()141f n f n n --=⋅-∴()()()()()14122121f n f n n n n ⎡⎤-=++⋅⋅⋅+-+-=-⋅⎣⎦, ∴()2221f n n n =-+.考点:1.合情推理与演绎推理;2.数列累加法求通项公式. 25.见解析. 【分析】将代数式()()2222a b +++展开,利用基本不等式()2222a b a b ++≥可证出所证的不等式. 【详解】222a b ab +≥,()()2222222a babab a b ∴+≥++=+,则()222122a b a b ++≥=,()()()222212522484822a b a b a b ∴+++=++++≥++=, 当且仅当12a b ==时,等号成立,因此,()()2225222a b +++≥. 【点睛】本题考查利用基本不等式证明不等式,解题的关键就是对基本不等式进行变形,再对所证不等式进行配凑得到,考查计算能力,属于中等题. 26.(1)237a =,338a =,439a =,5310a =.(2)证明见解析. 【分析】利用递推式直接求2a 、3a 、4a 、5a ,猜想数列{}n a 的通项公式为35n a n =+()*n N ∈用数学归纳法证明即可. 【详解】(1)由112a =,133n n n a a a +=+,得121333213732a a a ===++,232933733837a a a ===++,444933833938a a a ===++, 5559339331039a a a ===++. (2)由(1)猜想35n a n =+,下面用数学归纳法证明:①当n =1时,131152a ==+猜想成立. ②假设当n =k (k ≥1,k ∈N *)时猜想成立,即35k a k =+. 则当n =k +1时,133335331535k k k a k a a k k +⨯+===+++++,所以当n =k +1时猜想也成立,由①②知,对n ∈N *,35n a n =+都成立. 【点睛】本题考查了数列中的归纳法思想,及证明基本步骤,属于基础题;用数学归纳法证明恒等式的步骤及注意事项:①明确初始值0n 并验证真假;②“假设n k =时命题正确”并写出命题形式;③分析“1n k =+时”命题是什么,并找出与“n k =”时命题形式的差别,弄清左端应增加的项;④明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等,并用上假设.。

推理与证明单元测试题及答案

推理与证明单元测试题及答案

A B C 1. 用数学归纳法证明“22111(1)1n n a a a a a a++-++++=≠-”,在验证1n =成立时,等号左边的式子是_________. 2. 由命题“存在x ∈R ,使220x x m ++≤”是假命题,求得m 的取值范围是(,)a +∞,则实数a 的值是3.空间任一点O 和不共线三点A 、B 、C ,则)1(=++++=z y x OC z OB y OA x OP 是P ,A ,B ,C 四点共面的充要条件.在平面中,类似的定理是 .4. 设函数)12ln()(-++=x a x x f 是奇函数的充要条件a = . 5. 如图,在每个三角形的顶点处各放置一个数,使位于ABC △的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别成等差数列.若顶点A ,B ,C 处的三个数互不相同且和为1,则所有顶点上的数之和等于 .6.已知a b c >>,且0a b c ++=,求证:23b ac a -<.7. 等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数(0xy b r b =+>且1,,b b r ≠均为常数)的图像上. (1)求r 的值;(11)当b=2时,记 22(log 1)()n n b a n N +=+∈证明:对任意的n N +∈ ,不等式1212111·······1n nb b b n b b b +++>+16.证明:(分析法)因为a b c >>,且0a b c ++=,所以0a >,0c <,要证明原不等式成立,只需证明23b ac a -<, 即证223b ac a -<,从而只需证明22()3a c ac a +-<, 即()(2)0a c a c -+>,因为0a c ->,20a c a c a a b +=++=->,所以()(2)0a c a c -+>成立,故原不等式成立.17.解:因为对任意的n N +∈,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数的图像上.所以得n n S b r =+,当1n =时,11a S b r ==+,当2n ≥时,1111()(1)n n n n n n n n a S S b r b r b b b b ----=-=+-+=-=-,又因为{n a }为等比数列,所以1r =-,公比为b ,1(1)n n a b b -=-(2)当b=2时,11(1)2n n n a b b --=-=, 1222(log 1)2(log 21)2n n n b a n -=+=+=则1212n n b n b n ++=,所以121211135721·······2462n n b b b n b b b n++++=⋅⋅ 下面用数学归纳法证明不等式121211135721 (1246)2n n b b b n n b b b n ++++=⋅⋅>+成立. ① 当1n =时,左边=32,右边=2,因为322>,所以不等式成立. ② 假设当n k =时不等式成立,即121211135721·······12462k k b b b k k b b b k ++++=⋅⋅>+成立.则当1n k =+时,左边=11212111113572123·······246222k k k k b b b b k k b b b b k k ++++++++=⋅⋅⋅⋅⋅+ 2223(23)4(1)4(1)111(1)1(1)1224(1)4(1)4(1)k k k k k k k k k k k ++++++>+⋅===+++>++++++ 所以当1n k =+时,不等式也成立.由①、②可得不等式恒成立.。

高考数学压轴专题最新备战高考《推理与证明》经典测试题附答案解析

高考数学压轴专题最新备战高考《推理与证明》经典测试题附答案解析

高考数学《推理与证明》练习题一、选择题1.幻方最早起源于我国,由正整数1,2,3,……,2n 这2n 个数填入n n ⨯方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫n 阶幻方.定义()f n 为n 阶幻方对角线上所有数的和,如(3)15f =,则(10)f =( )A .55B .500C .505D .5050【答案】C 【解析】 【分析】因为幻方的每行、每列、每条对角线上的数的和相等,可得2123()n f n n+++⋅⋅⋅+=,即得解. 【详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以n 阶幻方对角线上数的和()f n 就等于每行(或每列)的数的和,又n 阶幻方有n 行(或n 列),因此,2123()n f n n+++⋅⋅⋅+=,于是12399100(10)50510f +++⋅⋅⋅++==.故选:C 【点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.2.甲、乙、丙、丁四个孩子踢球打碎了玻璃.甲说:“是丙或丁打碎的.”乙说:“是丁打碎的.”丙说:“我没有打碎玻璃.”丁说:“不是我打碎的.”他们中只有一人说了谎,请问是( )打碎了玻璃. A .甲 B .乙C .丙D .丁【答案】D 【解析】 【分析】假设其中一个人说了谎,针对其他的回答逐个判断对错即可,正确答案为丁. 【详解】假设甲打碎玻璃,甲、乙说了谎,矛盾,假设乙打碎了玻璃,甲、乙说了谎,矛盾, 假设丙打碎了玻璃,丙、乙说了谎,矛盾, 假设丁打碎了玻璃,只有丁说了谎,符合题意, 所以是丁打碎了玻璃; 故选:D 【点睛】本题考查了进行简单的合情推理,采用逐一检验的方法解题,属基础题.3.观察下图:12343456745678910LL则第 行的各数之和等于22017( ) A .2017 B .1009C .1010D .1011【答案】B 【解析】 【分析】由图可得:第n 行的第一个数为n ,有21n -个数,且这21n -个数成公差为1的等差数列,利用等差数列求和公式算出即可 【详解】由图可得:第n 行的第一个数为n ,有21n -个数 且这21n -个数成公差为1的等差数列 所以第n 行的各数之和为:()()()()22122211212n n n n n ---+⨯=-令212017n -=,得1009n = 故选:B 【点睛】本题考查的是推理和等差数列的知识,较简单.4.设a ,b ,c 都大于0,则三个数1a b +,1b c +,1c a+的值( ) A .至少有一个不小于2 B .至少有一个不大于2 C .至多有一个不小于2 D .至多有一个不大于2【答案】A 【解析】 【分析】根据基本不等式,利用反证法思想,即可得出答案【详解】因为a ,b ,c 都大于0 1111111112226a b c a b c a b c b c a a b c a b c+++++=+++++≥⋅+⋅+⋅= 当且仅当1a b c ===时取得最小值若12a b +<,12b c+<,12c a +<则1116a b c b c a+++++<,与前面矛盾所以三个数1a b +,1b c +,1c a+的值至少有一个不小于2 故选:A 【点睛】本题是一道关于基本不等式应用的题目,掌握基本不等式是解题的关键.5.用“算筹”表示数是我国古代计数方法之一,计数形式有纵式和横式两种,如图1所示.金元时期的数学家李冶在《测圆海镜》中记载:用“天元术”列方程,就是用算筹来表示方程中各项的系数.所谓“天元术”,即是一种用数学符号列方程的方法,“立天元一为某某”,意即“设x 为某某”.如图2所示的天元式表示方程10110n n n n a x a x a x a --++⋅⋅⋅++=,其中0a ,1a ,…,1n a -,n a 表示方程各项的系数,均为筹算数码,在常数项旁边记一“太”字或在一次项旁边记一“元”字,“太”或“元”向上每层减少一次幂,向下每层增加一次幂.试根据上述数学史料,判断图3天元式表示的方程是( ) A .228617430x x ++= B .4227841630x x x +++= C .2174328610x x ++= D .43163842710x x x +++=【答案】C 【解析】 【分析】根据“算筹”法表示数可得题图3中从上至下三个数字分别为1,286,1743,结合“天元术”列方程的特征即可得结果. 【详解】由题意可得,题图3中从上至下三个数字分别为1,286,1743, 由“元”向上每层减少一次幂,向下每层增加一次幂.可得天元式表示的方程为2174328610x x ++=.故选:C. 【点睛】本题主要是以数学文化为背景,考查数学阅读及理解能力,充分理解“算筹”法表示数和“天元术”列方程的概念是解题的关键,属于中档题.6.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2n B .n nC .2nD .222n -【答案】B 【解析】 【分析】由题意归纳推理得到a 的值即可. 【详解】由题意,当分母的指数为1时,分子为111=; 当分母的指数为2时,分子为224=; 当分母的指数为3时,分子为3327=; 据此归纳可得:1n ax n x+≥+中,a 的值为n n . 本题选择B 选项. 【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.7.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( ) A .丙被录用了 B .乙被录用了C .甲被录用了D .无法确定谁被录用了 【答案】C 【解析】 【分析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可. 【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意, 若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意, 若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意, 综上可得甲被录用了, 故选:C. 【点睛】本题考查了逻辑推理能力,属基础题.8.已知2a b c ++=,则ab bc ca ++的值( ) A .大于2 B .小于2C .不小于2D .不大于2【答案】B 【解析】 【分析】把已知变形得到a b c +=-,a c b +=-,b c a +=-,把2()ab bc ac ++拆开后提取公因式代入a b c +=-,a c b +=-,b c a +=-,则可判断2()ab bc ac ++的符号,从而得到ab bc ac ++的值的符号. 【详解】解:2a b c ++=Q ,2a b c ∴+=-,2a c b +=-,2b c a +=-.则2()ab bc ac ++222ab ac bc =++ ab ac bc ac ab bc =+++++()()()a b c c b a b a c =+++++ (2)(2)(2)b b a a c c =-+-+-222222b b a a c c =-+-+-()()2222a b c a b c =-+++++ ()2224a b c =-+++,2a b c ++=Q ,()2220a b c ∴++>,即()2220a b c -++<,2()4ab bc ac ++<Q ,()2ab bc ac ∴++<即ab bc ac ++的值小于2. 故选:B . 【点睛】本题考查不等式的应用,考查了学生的灵活处理问题和解决问题的能力.9.观察下列等式:332123+=,33321236++=,33332123410+++=,记()3333123f n n =+++⋅⋅⋅+.根据上述规律,若()225f n =,则正整数n 的值为( )A .8B .7C .6D .5【答案】D 【解析】 【分析】由规律得()()()22211234n n f n n +=+++⋅⋅⋅+=再解方程即可 【详解】由已知等式的规律可知()()()22211234n n f n n +=+++⋅⋅⋅+=,当()225f n =时,可得5n =. 故选:D 【点睛】本题考查归纳推理,熟记等差数列求和公式是关键,考查观察转化能力,是基础题10.学业水平测试成绩按照考生原始成绩从高到低分为A 、B 、C 、D 、E 五个等级.某班共有36名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为A 的学生有5人,这两科中仅有一科等级为A 的学生,其另外一科等级为B ,则该班( )A.物理化学等级都是B的学生至多有12人B.物理化学等级都是B的学生至少有5人C.这两科只有一科等级为B且最高等级为B的学生至多有18人D.这两科只有一科等级为B且最高等级为B的学生至少有1人【答案】D【解析】【分析】根据题意分别计算出物理等级为A,化学等级为B的学生人数以及物理等级为B,化学等级为A的学生人数,结合表格中的数据进行分析,可得出合适的选项.【详解】-+-=人根据题意可知,36名学生减去5名全A和一科为A另一科为B的学生105858(其中物理A化学B的有5人,物理B化学A的有3人),表格变为:对于A选项,物理化学等级都是B的学生至多有13人,A选项错误;对于B选项,当物理C和D,化学都是B时,或化学C和D,物理都是B时,物理、化--=(人),B选项错误;学都是B的人数最少,至少为13724对于C选项,在表格中,除去物理化学都是B的学生,剩下的都是一科为B且最高等级为B的学生,因为都是B的学生最少4人,所以一科为B且最高等级为B的学生最多为1391419++-=(人),C选项错误;对于D选项,物理化学都是B的最多13人,所以两科只有一科等级为B且最高等级为B -=(人),D选项正确.的学生最少14131故选:D.【点睛】本题考查合情推理,考查推理能力,属于中等题.11.甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测:甲预测说:获奖者在乙、丙、丁三人中;乙预测说:我不会获奖,丙获奖丙预测说:甲和丁中有一人获奖;丁预测说:乙的猜测是对的成绩公布后表明,四人的猜测中有两人的预测与结果相符.另外两人的预测与结果不相符,已知有两人获奖,则获奖的是() A .甲和丁 B .乙和丁 C .乙和丙 D .甲和丙 【答案】B 【解析】 【分析】从四人的描述语句中可以看出,乙、丁的表述要么同时与结果相符,要么同时与结果不符,再进行判断 【详解】若乙、丁的预测成立,则甲、丙的预测不成立,推出矛盾.故乙、丙预测不成立时,推出获奖的是乙和丁 答案选B 【点睛】真假语句的判断需要结合实际情况,作出合理假设,才可进行有效论证12.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近()lg 20.3≈( )A .30010B .40010C .50010D .60010【答案】A 【解析】 【分析】结合所给数字特征,我们可将每层数字表示成2的指数的形式,观察可知,每层指数的和成等比数列分布,结合等比数列前n 项和公式和对数恒等式即可求解 【详解】如图,将数字塔中的数写成指数形式,可发现其指数恰好构成“杨辉三角”,前10层的指数之和为29101222211023+++⋅⋅⋅+=-=,所以原数字塔中前10层所有数字之积为10231023lg 230021010=≈.故选:A 【点睛】本题考查与“杨辉三角”有关的规律求解问题,逻辑推理,等比数列前n 项和公式应用,属于中档题13.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:223344552,33,4,55338815152424====888n n=“穿墙术”,则n =( ) A .35 B .48C .63D .80【答案】C 【解析】 【分析】通过观察四个等式,发现存在相同性质,从而得出78763n =⨯+=即可. 【详解】 因为22222233121==⨯+33333388232==⨯⨯+ 444441515343==⨯⨯+,5555552424454==⨯⨯+ 所以8888888878763n n ==⨯=⨯+63n =. 故选:C. 【点睛】归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).14.三角形面积为()12S a b c r =++,a ,b ,c 为三角形三边长,r 为三角形内切圆半径,利用类比推理,可以得出四面体的体积为( ) A .13V abc =B .13V Sh = C .()13V ab bc ac h =++⋅(h 为四面体的高) D .()123413V s s s s r =+++⋅(其中1s ,2s ,3s ,4s 分别为四面体四个面的面积,r 为四面体内切球的半径,设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ) 【答案】D 【解析】 【分析】根据平面与空间的类比推理,由点类比直线,由直线类比平面,由内切圆类比内切球,由平面图形的面积类比立体图形的体积,结合求三角形的面积的方法类比四面体的体积计算方法,即可求解. 【详解】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r , 根据三角形的面积的求解方法:利用分割法,将O 与四个顶点连起来,可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥的体积之和, 即()123413V s s s s r =+++⋅,故选D . 【点睛】本题主要考查了类比推理的应用,其中解答中类比推理是将已知的一类数学对象的性质类比到另一类数学对象上去,通常一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质取推测另一类事物的性质,得出一个明确的命题,本题属于基础题.15.观察下列一组数据11a = 235a =+ 37911a =++ 413151719a =+++…则20a 从左到右第一个数是( ) A .379 B .383C .381D .377【答案】C 【解析】 【分析】先计算前19行数字的个数,进而可得20a 从左到右第一个数. 【详解】由题意可知,n a 可表示为n 个连续的奇数相加,从1a 到19a 共有()119191902+⨯=个奇数, 所以20a 从左到右第一个数是第191个奇数,第n 个奇数为21n -,所以第191个奇数为21911381⨯-=.故选:C.【点睛】本小题主要考查归纳推理、等差数列求和公式等基础知识,考查运算求解能力,属于中档题.16.分形几何是美籍法国数学家芒德勃罗在20世纪70年代创立的一门数学新分支,其中的“谢尔宾斯基”图形的作法是:先作一个正三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的每个小正三角形中又挖去一个“中心三角形”.按上述方法无限连续地作下去直到无穷,最终所得的极限图形称为“谢尔宾斯基”图形(如图所示),按上述操作7次后,“谢尔宾斯基”图形中的小正三角形的个数为( )A .53B .63C .73D .83【答案】C【解析】【分析】 根据题意分别求出第1,2,3次操作后,图形中的小正三角形的个数,然后可归纳出一般结论,得到答案.【详解】如图,根据题意第1次操作后,图形中有3个小正三角.第2次操作后,图形中有3×3=23个小正三角.第3次操作后,图形中有9×3=33个小正三角.…………………………所以第7次操作后,图形中有73 个小正三角.故选:C【点睛】本题考查归纳推理,属于中档题.17.为了调节高三学生学习压力,某校高三年级举行了拔河比赛,在赛前三位老师对前三名进行了预测,于是有了以下对话:老师甲:“7班男生比较壮,7班肯定得第一名”.老师乙:“我觉得14班比15班强,14班名次会比15班靠前”.老师丙:“我觉得7班能赢15班”.最后老师丁去观看完了比赛,回来后说:“确实是这三个班得了前三名,且无并列,但是你们三人中只有一人预测准确”.那么,获得一、二、三名的班级依次为( )A.7班、14班、15班B.14班、7班、15班C.14班、15班、7班D.15班、14班、7班【答案】C【解析】【分析】分别假设甲、乙、丙预测准确,分析三个人的预测结果,由此能求出一、二、三名的班级.【详解】假设甲预测准确,则乙和丙都预测错误,14∴班名次比15班靠后,7班没能赢15班,故甲预测错误;假设乙预测准确,则甲和乙都预测错误,7∴班不是第一名,14班名次比15班靠前,7班没能赢15班,则获得一、二、三名的班级依次为14班,15班,7班;假设丙预测准确,则甲和乙都预测错误,7∴班不是第一名,14班名次比15班靠后,7班能赢15班,不合题意.综上,得一、二、三名的班级依次为14班,15班,7班.故选:C.【点睛】本题考查获得一、二、三名的班级的判断,考查合情推理等基础知识,考查运算求解能力,是基础题.18.三角形的面积为1()2S a b c r=++⋅,其中,,a b c为三角形的边长,r为三角形内切圆的半径,则利用类比推理,可得出四面体的体积为()A.13V abc =B.13V Sh =C.1()3V ab bc ca h=++,(h为四面体的高)D .()123413V S S S S r =+++,(1234,,,S S S S 分别为四面体的四个面的面积,r 为四面体内切球的半径)【答案】D【解析】【分析】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ,根据体积公式得到答案.【详解】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ,将O 与四顶点连起来, 可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和, ∴V 13=(S 1+S 2+S 3+S 4)r . 故选:D .【点睛】本题考查了类比推理,意在考查学生的空间想象能力和推断能力.19.设x 、y 、0z >,1a x y =+,1b y z =+,1c z x =+,则a 、b 、c 三数( ) A .都小于2B .至少有一个不大于2C .都大于2D .至少有一个不小于2【答案】D【解析】【分析】利用基本不等式计算出6a b c ++≥,于此可得出结论.【详解】 由基本不等式得111111a b c x y z x y z y z x x y z ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=+++++=+++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭6≥=, 当且仅当1x y z ===时,等号成立,因此,若a 、b 、c 三数都小于2,则6a b c ++<与6a b c ++≥矛盾,即a 、b 、c 三数至少有一个不小于2,故选D.【点睛】本题考查了基本不等式的应用,考查反证法的基本概念,解题的关键就是利用基本不等式求最值,考查分析问题和解决问题的能力,属于中等题.20.设x ,y ,z >0,则三个数,,y y z z x x x z x y z y+++ ( )A.都大于2 B.至少有一个大于2 C.至少有一个不小于2 D.至少有一个不大于2【答案】C【解析】【分析】【详解】假设这三个数都小于2,则三个数之和小于6,又yx+yz+zx+zy+xz+xy=(yx+xy)+(yz+zy)+(zx+xz)≥2+2+2=6,当且仅当x=y=z时取等号,与假设矛盾,故这三个数至少有一个不小于2.。

推理与证明过关测试题

推理与证明过关测试题

推理与证明过关题班级_______姓名_________________学号______面批时间___________ 一、选择题1、当=n 1,2,3,4,5,6时,比较n 2和2n 的大小并猜想 ( D ) A.1≥n 时,22n n > B. 3≥n 时,22n n > C. 4≥n 时,22n n > D. 5≥n 时,22n n >2、下面使用类比推理所得结论正确的是( C ) A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C.“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D.“n n a a b =n (b )” 类推出“n n a a b +=+n(b )” 3、观察式子:474131211,3531211,23211222222<+++<++<+,…,则可归纳出的式子为( C ) A 、121131211222-<+++n n()2n ≥ B 、121131211222+<+++n n ()2n ≥C 、nn n 12131211222-<+++()2n ≥ D 、122131211222+<+++n nn ()2n ≥4、把下面在平面内成立的结论推广到空间,结论还正确的是( B )(A) 如果一条直线与两条平行线中的一条相交,则必与另一条相交 . (B) 如果一条直线与两条平行线中的一条垂直,则必与另一条垂直. (C) 如果两条直线同时与第三条直线相交,则这两条直线相交. (D) 如果两条直线同时与第三条直线垂直,则这两条直线平行5、设n 为正整数,111()1...23f n n=++++,经计算得357(2),(4)2,(8),(16)3,(32),222f f f f f =>>>>观察上述结果,可推测出一般结论是( C )A. 21(2)2n f n +>B.22()2n f n +≥C.2(2)2n n f +≥ D.以上都不对6、已知m 、n 是异面直线,l n a m =⊂⊂βαβ ,平面平面,,则l ( B ) (A )与m 、n 都相交(B )与m 、n 中至少一条相交 (C )与m 、n 都不相交(D )至多与m 、n 中一条相交7、在下列表格中,每格填上一个数字后,使每一行成等差数 列,每一列成等比数列,则a+b+c 的值是( A ) A. 1 B. 2 C.3 D.48、对命题“正三角形的内切圆切于三边的中点”,可类比猜想出:正四面体的内切球切于四面各正三角形的什么位置( C )A.各正三角形内的点B.各正三角形的某高线上的点C.各正三角形的中心D.各正三角形外的某点 二、填空题9、从11=,)21(41+-=-,321941++=+-,)4321(16941+++-=-+-,…,推广到第n 个等式为__12114916(1)(1)(123)n n n n ---+-++-=-++++ _____________________. 10、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是 14 。

(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试题(含答案解析)(4)

(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试题(含答案解析)(4)

一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种2.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )A .B .C .D .3.某地铁换乘站设有编号为A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下: 安全出口编号 A ,BB ,CC ,DD ,EA ,E疏散乘客时间(s )186125160175145则疏散乘客最快的一个安全出口的编号是( ) A .AB .BC .CD .D4.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n);如果n 是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:l 可以多次出现),则n 的所有不同值的个数为 A .4B .6C .8D .325.设实数a,b,c 满足a+b+c=1,则a,b,c 中至少有一个数不小于 ( ) A .0B .13C .12D .16.利用数学归纳法证明不等式()()1111++++,2,232n f n n n N +<≥∈的过程中,由n k =变成1n k =+时,左边增加了( )A .1项B .k 项C .12k -项D .2k 项7.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )A .201620172⨯B .201501822⨯C .201520172⨯D .201601822⨯8.用数学归纳法证明“11112321n++++- ”时,由(1)n k k =>不等式成立,推证1n k =+时,左边应增加的项数是( )A .12k -B .21k -C .2kD .21k +9.一次猜奖游戏中,1,2,3,4四扇门里摆放了a ,b ,c ,d 四件奖品(每扇门里仅放一件).甲同学说:1号门里是b ,3号门里是c ;乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是c .如果他们每人都猜对了一半,那么4号门里是( ) A .aB .bC .cD .d10.如果把一个多边形的所有便中的任意一条边向两方无限延长称为一直线时,其他个边都在此直线的同旁,那么这个多边形就叫凸多边形.平行内凸四边形由2条对角线,凸五边形有5条对角线,以此类推,凸16变形的对角线条为( ) A .65B .96C .104D .11211.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2nB .n nC .2nD .222n -12.已知 222233+=,333388+=,44441515+=,m m m mt t+=()*,2m t N m ∈≥且,若不等式30m t λ--<恒成立,则实数λ的取值范围为( ) A .)22,⎡+∞⎣B .(),22-∞C .(),3-∞D .[1,3]二、填空题13.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=14.36的所有正约数之和可按如下方法得到:因为223623=⨯,所以36的所有正约数之和为22(133)(22323)++++⨯+⨯22222(22323)(122)++⨯+⨯=++2(133)91++=,参照上述方法,可得100的所有正约数之和为__________.15.平面上画n 条直线,且满足任何2条直线都相交,任何3条直线不共点,则这n 条直线将平面分成__________个部分. 16.利用数学归纳法证明不等式“()*11112,23212n n n n N +++⋯+>≥∈-”的过程中,由“n k =”变到“1n k =+”时,左边增加了_____项.17.将正整数对作如下分组,第1组为()(){}1,2,2,1,第2组为()(){}1,3,3,1,第3组为()()()(){}1,4,2,3,3,2,4,1,第4组为()()()(){}1,5,2,44,25,1⋅⋅⋅⋅⋅⋅则第30组第16个数对为__________.18.甲、乙、丙、丁四人分别从一个装有编号为1,2,3,4,的四个完全相同的小球的袋中依次取出一个小球.现知道:①甲取出的小球编号为偶数;②乙取出的小球编号比甲大;③乙、丙取出的小球编号差的绝对值比甲大.则丁取出的小球编号是________. 19.观察下面的数阵,则第40行最左边的数是__________.20.观察下列式子:,,,,…,根据以上规律,第个不等式是_________.三、解答题21.若数列{}n a 的前n 项和为n S ,且13a =,()211324222n n S S n n n -=+-+≥. (1)求2a ,3a ,4a ;(2)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 22.若10a >,11a ≠,121+=+nn na a a (n =1,2,…). (1)求证:1+≠n n a a ; (2)令112a =,写出2a ,3a ,4a ,5a 的值,观察并归纳出这个数列的通项公式n a ,并用数学归纳法证明.23.已知数列11111,,,,,12233445(1)n n ⨯⨯⨯⨯⨯+,…的前n 项和为n S .(1)计算1234,,,S S S S 的值,根据计算结果,猜想n S 的表达式; (2)用数学归纳法证明(1)中猜想的n S 表达式.24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式. 25.依次计算数列114⎛⎫-⎪⎝⎭,111149⎛⎫⎛⎫--⎪⎪⎝⎭⎝⎭,1111114916⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭,11111111491625⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,的前4项的值,由此猜想21111111111491625(1)n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(n *∈N )的结果,并用数学归纳法加以证明.26.设a ,b 均为正数,且ab .证明:(1)664224a b a b a b +>+(2)a b a b b a+>+【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.C解析:C 【分析】 结合题意可知,代入数据,即可.【详解】A 选项,13不满足某个数的平方,故错误;B 选项,,故错误;C 选项,故正确;D 选项,,故错误.故选C. 【点睛】本道题考查了归纳推理,关键抓住利用边长点数计算总点数,难度中等.3.C解析:C 【解析】分析:根据疏散1000名乘客所需的时间,两两对比,即可求出结果. 详解:同时开放其中的两个安全出口,疏散1000名乘客,所需时间对比:开方AB 、出口时间为186s ,开方BC 、出口时间为125s ,得C 比A 快; 开方CD 、出口时间为160s ,开方DE 、出口时间为175s ,得C 比E 快;开方AB 、出口时间为186s ,开方A E 、出口时间为145s ,得E 比B 快; 开方BC 、出口时间为125s ,开方CD 、出口时间为160s ,得B 比D 快; 综上,疏散乘客最快的安全出口的编号是C. 故选C.点睛:本题考查简单的合情推理,考查学生推理论证能力.4.B解析:B 【解析】分析:利用第八项为1出发,按照规则,逆向逐项即可求解n 的所有可能的取值. 详解:如果正整数n 按照上述规则施行变换后第八项为1, 则变换中的第7项一定为2, 变换中的第6项一定为4,变换中的第5项可能为1,也可能是8, 变换中的第4项可能是2,也可能是16,变换中的第4项为2时,变换中的第3项是4,变换中的第2项是1或8,变换中的第1项是2或6,变换中的第4项为16时,变换中的第3项是32或5,变换中的第2项是64或108,变换中的第1项是128或21或20,或3,则n 的所有可能的取值为2,3,16,20,21,128,共6个,故选B.点睛:本题主要考查了归纳推理的应用,其中解答中正确理解题意,利用变换规则,进行逆向逐项推理、验证是解答的关键,着重考查了推理与论证能力,试题有一定的难度,属于中档试题.5.B解析:B 【解析】∵三个数a ,b ,c 的和为1,其平均数为13∴三个数中至少有一个大于或等于13假设a ,b ,c 都小于13,则1a b c ++<∴a ,b ,c 中至少有一个数不小于13故选B.6.D解析:D 【分析】分别写出n k =、1n k =+时,不等式左边的式子,从而可得结果. 【详解】当n k =时,不等式左边为1111232k++++,当1n k =+时,不等式左边为1111111232212k k k +++++++++,则增加了112(21)1222k k k k k ++-++=-=项,故选D. 【点睛】项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.7.B解析:B 【详解】由题意,数表的每一行从右往左都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为20142, 故第1行的从右往左第一个数为:122-⨯, 第2行的从右往左第一个数为:032⨯, 第3行的从右往左第一个数为:142⨯, …第n 行的从右往左第一个数为:2(1)2n n -+⨯ , 表中最后一行仅有一个数,则这个数是201501822⨯.8.C解析:C 【解析】左边的特点:分母逐渐增加1,末项为121n -; 由n=k ,末项为121k-到n=k+1,末项为11121212k k k+=--+, ∴应增加的项数为2k . 故选C .9.A解析:A【解析】由题意得,甲同学说:1号门里是b ,3号门里是c ,乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是cc ,若他们每人猜对了一半,则可判断甲同学中1号门中是b 是正确的;乙同学说的2号门中有d 是正确的;并同学说的3号门中有c 是正确的;丁同学说的4号门中有a 是正确的,则可判断在1,2,3,4四扇门中,分别存有,,,b d c a ,所以4号门里是a ,故选A. 点睛:本题主要考查了归纳推理问题,通过具体事例,根据各位同学的说法给出判断,其中正确理解题意,合理作出推理是解答此类问题的关键,同时注意仔细审题,认真梳理.10.C解析:C 【解析】可以通过列表归纳分析得到;16边形有2+3+4+…+14=2=104条对角线. 故选C .11.B解析:B 【分析】由题意归纳推理得到a 的值即可. 【详解】由题意,当分母的指数为1时,分子为111=; 当分母的指数为2时,分子为224=; 当分母的指数为3时,分子为3327=; 据此归纳可得:1n ax n x+≥+中,a 的值为n n . 本题选择B 选项. 【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.12.C解析:C 【解析】分析:由等式归纳得出m 和t 的关系,从而得出关于m 的恒等式,利用函数单调性得出最小值即可得出λ的范围.=21t m =-, 30m t λ--<恒成立,即220m m λ--<恒成立,m N *∈且2m ≥,222m m m mλ+∴<=+.令()2f m m m =+,()221f m m ='-,2m ≥,()0f m ∴'>,()f m ∴单调递增,∴当2m =时,()f m 取得最小值()23f =,3λ∴<.故选:C.点睛:若f (x )≥a 或g (x )≤a 恒成立,只需满足f (x )min ≥a 或g (x )max ≤a 即可,利用导数方法求出f (x )的最小值或g (x )的最大值,从而问题得解.二、填空题13.【解析】分析:由题意结合所给等式的规律归纳出第个等式即可详解:首先观察等式左侧的特点:第1个等式开头为1第2个等式开头为2第3个等式开头为3第4个等式开头为4则第n 个等式开头为n 第1个等式左侧有1个解析:2(1)(32)(21)n n n n ++++-=-.【解析】分析:由题意结合所给等式的规律归纳出第n 个等式即可. 详解:首先观察等式左侧的特点: 第1个等式开头为1,第2个等式开头为2, 第3个等式开头为3,第4个等式开头为4, 则第n 个等式开头为n ,第1个等式左侧有1个数,第2个等式左侧有3个数, 第3个等式左侧有5个数,第4个等式左侧有7个数, 则第n 个等式左侧有2n -1个数, 据此可知第n 个等式左侧为:()()132n n n ++++-,第1个等式右侧为1,第2个等式右侧为9, 第3个等式右侧为25,第4个等式右侧为49, 则第n 个等式右侧为()221n -, 据此可得第n 个等式为()()()213221n n n n ++++-=-.点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.14.217【分析】根据题意类比36的所有正约数之和的方法分析100的所有正约数之和为(1+2+221+5+52)计算可得答案【详解】根据题意由36的所有正约数之和的方法:100的所有正约数之和可按如下方解析:217 【分析】根据题意,类比36的所有正约数之和的方法,分析100的所有正约数之和为(1+2+22)(1+5+52),计算可得答案. 【详解】根据题意,由36的所有正约数之和的方法:100的所有正约数之和可按如下方法得到:因为100=22×52, 所以100的所有正约数之和为(1+2+22)(1+5+52)=217. 可求得100的所有正约数之和为217; 故答案为:217. 【点睛】本题考查简单的合情推理应用,关键是认真分析36的所有正约数之和的求法,并应用到100的正约数之和的计算.15.【解析】分析:根据几何图形列出前面几项根据归纳推理和数列中的累加法即可得到结果详解:1条直线将平面分成2个部分即2条直线将平面分成4个部分即3条直线将平面分为7个部分即4条直线将平面分为11个部分即解析:(1)12n n ++ 【解析】分析:根据几何图形,列出前面几项,根据归纳推理和数列中的累加法即可得到结果。

长沙市选修1-2第三章《推理与证明》测试题(有答案解析)

长沙市选修1-2第三章《推理与证明》测试题(有答案解析)

一、选择题1.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( ) A .2人B .3人C .4人D .5人2.祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子,他提出了一条原原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆22221(0)x y a b a b+=>> 所围成的平面图形绕y 轴旋转一周后,得一橄榄状的几何体(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于( ) A .243a b π B .243ab π C .22a b πD .22ab π3.下面几种推理中是演绎推理的为( )A .高二年级有12个班,1班51人,2班53人,3班52人,由此推测各班都超过50人B .猜想数列111,,122334⋯⋯⨯⨯⨯的通项公式为()1(1)n a n N n n +=∈+C .半径为r 的圆的面积2S r π=,则单位圆的面积S π=D .由平面三角形的性质推测空间四面体的性质 4.利用反证法证明:若0x y +=,则0x y ==,假设为( )A .,x y 都不为0B .,x y 不都为0C .,x y 都不为0,且x y ≠D .,x y 至少有一个为0 5.观察下列各式:2749=,37343=,472401=,…,则10097的末两位数字为( ) A .49B .43C .07D .016.将正整数排列如下:则图中数2020出现在()A.第64行第3列B.第64行4列C.第65行3列D.第65行4列7.一位老师有两个推理能力很强的学生甲和乙,他告诉学生他手里拿着与以下扑克牌中的一张相同的牌:黑桃:3,5,Q,K 红心:7,8,Q 梅花:3,8,J,Q 方块:2,7,9老师只给甲同学说这张牌的数字(或字母),只给乙同学说这张牌的花色,接着老师让这两个同学猜这是张什么牌:甲同学说:我不知道这是张什么牌,乙同学说:我知道这是张什么牌.甲同学说:现在我们知道了.则这张牌是()A.梅花3 B.方块7 C.红心7 D.黑桃Q8.观察下面数阵,则该数阵中第9行,从左往右数的第20个数是()A.545 B.547 C.549 D.5519.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球半径相等的圆柱,与半球(如图一)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥(如图二),用任何一个平行与底面的平面去截它们时,可证得所截得的两个截面面积相等,由此证明该几何体与半球体积相等.现将椭圆22149x y+=绕y轴旋转一周后得一橄榄状的几何体(如图三),类比上述方法,运用祖暅原理可求得其体积等于()A.4πB.8πC.16πD.32π10.在某次诗词大会决赛前,甲、乙、丙丁四位选手有机会问鼎冠军,,,A B C三名诗词爱好者依据选手在之前比赛中的表现,结合自己的判断,对本场比赛的冠军进行了如下猜测:A 猜测冠军是乙或丁;B 猜测冠军一定不是丙和丁;C 猜测冠军是甲或乙。

上海民办新北郊初级中学选修1-2第三章《推理与证明》测试题(答案解析)

上海民办新北郊初级中学选修1-2第三章《推理与证明》测试题(答案解析)

一、选择题1.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数t ,如果t 是偶数,就将它减半(即2t);如果t 是奇数,则将它乘3加1(即31t +),不断重复这样的运算,经过有限步后,一定可以得到1.猜想的数列形式为:0a 为正整数,当*n N ∈时,当1n a -为偶数时12n n a a -=,当1n a -为奇数时131n n a a -=+,则数列{}n a 中必存在值为1的项.若51a =,则0a 的所有不同值的个数为( ) A .2B .3C .5D .82.某扶贫调研团根据要求从甲、乙、丙、丁、戊五个镇选择调研地点:①若去甲镇,则必须去乙镇;②丁、戊两镇至少去一镇;③乙、丙两镇只去一镇;④丙、丁两镇都去或都不去;⑤若去戊镇,则甲、丁两镇也必须去.该调研团至多去了( ) A .丙、丁两镇 B .甲、乙两镇C .乙、丁两镇D .甲、丙两镇3.观察下列一组数据12a = 246a =+ 381012a =++ 414161820a =+++…则20a 从左到右第三个数是( ) A .380B .382C .384D .3864.我们知道,在边长为a 的正三角形内任一点到三边的距离之和为定值2a ,类比上述结论,在棱长为a 的正四面体内任一点到其四个面的距离之和为定值,此定值为( )A .aB C D 5.在数学兴趣课堂上,老师出了一道数学思考题,某小组的三人先独立思考完成,然后一起讨论.甲说:“我做错了!”乙对甲说:“你做对了!”丙说:“我也做错了!”老师看了他们三人的答案后说:“你们三人中有且只有一人做对了,有且只有一人说对了.”请问下列说法正确的是( ) A .丙做对了 B .甲做对了C .乙说对了D .乙做对了6.将正整数1,2,3,4,按如图所示的方式排成三角形数组,则第20行从左往右数第1个数是( )A .381B .361C .362D .4007.在等差数列{}n a 中,若0n a >,公差0d ≠,则有2415a a a a >.类比上述性质,在等比数列{}n b 中,若0n b >,公比1q ≠,则关于3b ,5b ,2b ,6b 的一个不等关系正确的是( ) A .3526b b b b > B .5623b b b b > C .3526b b b b +<+D .5623b b b b +<+8.在ABC △中,若AC BC ⊥,AC b =,BC a =,则ABC △的外接圆半径22a b r +=,将此结论拓展到空间,可得出的正确结论是:在四面体S ABC -中,若SA 、SB 、SC 两两互相垂直,SA a =,SB b =,SC c =,则四面体S ABC -的外接球半径R =( )A 222a b c ++B 222a b c ++C 3333a b c ++D 3abc 9.甲、乙、丙、丁四位同学一起去老师处问他们的成绩.老师说:“你们四人中有2位优秀,2位良好,我现在给丙看甲、乙的成绩,给甲看乙的成绩,给丁看丙的成绩.”看后丙对大家说:“我还是不知道我的成绩.”根据以上信息,则下列结论正确的是( ) A .甲可以知道四人的成绩 B .丁可以知道自己的成绩 C .甲、丙可以知道对方的成绩D .乙、丁可以知道自己的成绩10.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证23b ac a -<”索的因应是( )A .0a b ->B .0a c ->C .()>0)(a b a c --D .()<0)(a b a c --11.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有=⨯大吕黄钟太簇()23=⨯大吕黄钟夹钟()23=⨯太簇黄钟夹钟数列{}n a 中,k a =( )A .11n k n n a a --+⋅B .11n k n n a a --+⋅C .111n k k n a a ---⋅D .111k n k n a a ---⋅12.小明在期中考后,想急迫地核对答案,于是他来到数学组办公室,寻找出卷的老师.此时办公室正好有四位老师,他们发现小明不认识他们中的任何一位,于是他们每人说了一句话:甲说:“我这学期还没出过考试卷呢!” 乙说:“丁出的这次考卷!” 丙说:“是乙出的试卷!” 丁说:“出卷的不是我!”他们告诉小明,只有一位老师说了假话,而且出卷老师就在其中,那么请问到底是谁出的期中试卷( ) A .甲B .乙C .丙D .丁二、填空题13.从22211,2343,345675,=++=++++=中,可猜想第n 个等式为__________.14.已知数列{}n a 的通项公式是2n a n =,若将数列{}n a 中的项从小到大按如下方式分组:第一组:(2,4),第二组:(6,8,10,12),第三组:(14,16,18,20,22,24),…,则2018位于第________组. 15.观察下列恒等式:12tan tan tan 2ααα=+,14tan 2tan 2tan tan 4αααα=++,18tan 2tan 24tan 4tan tan 8ααααα=+++,,请你把结论推广到一般情形,则得到的第n 个等式为___________________________________.16.我国南宋数学家杨辉所著的《详解九章算术》一书中,用图①的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为n S ,如123451,2,2,4,2,S S S S S =====⋯⋯,则33S =____________① ② 17.观察下列式子:2222221311511171,1,1,,222332344+<++<+++<根据以上式子可以猜想:2221111232019++++<__________. 18.甲、乙、丙三个同学同时做标号为A 、B 、C 的三个题,甲做对了两个题,乙做对了两个题,丙做对了两个题,则下面说法正确的是_____.(1)三个题都有人做对;(2)至少有一个题三个人都做对;(3)至少有两个题有两个人都做对.19.某班级A,B,C,D 四位学生A B C D 、、、参加了文科综合知识竞赛,在竞赛结果公布前,地理老师预测得冠军的是A 或B ;历史老师预测得冠军的是C ;政治老师预测得冠军的不可能是A 或D ;语文老师预测得冠军的是B ,而班主任老师看了竞赛结果后说以上只有两位老师都说对了,则得冠军的是_____。

高考数学压轴专题最新备战高考《推理与证明》经典测试题含解析

高考数学压轴专题最新备战高考《推理与证明》经典测试题含解析

【高中数学】数学《推理与证明》高考知识点一、选择题1.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙【答案】A【解析】【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.2.我国南宋数学家杨家辉所著的《详解九章算法》一书中记录了一个由正整数构成的三角形数表,我们通常称之为杨辉三角.以下数表的构造思路就来源于杨辉三角.( )从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数a,则a的值为( )A.100820182⨯⨯B.100920182C.1008⨯2020220202⨯D.1009【答案】C【解析】【分析】根据每一行的第一个数的变化规律即可得到结果. 【详解】解:第一行第一个数为:0112=⨯; 第二行第一个数为:1422=⨯; 第三行第一个数为:21232=⨯; 第四行第一个数为:33242=⨯;L L ,第n 行第一个数为:1n 2n n a -=⨯;一共有1010行,∴第1010行仅有一个数:10091008a 1010220202=⨯=⨯; 故选C . 【点睛】本题考查了由数表探究数列规律的问题,考查学生分析解决问题的能力,属于中档题.3.观察下列等式:332123+=,33321236++=,33332123410+++=,记()3333123f n n =+++⋅⋅⋅+.根据上述规律,若()225f n =,则正整数n 的值为( )A .8B .7C .6D .5【答案】D 【解析】 【分析】由规律得()()()22211234n n f n n +=+++⋅⋅⋅+=再解方程即可 【详解】由已知等式的规律可知()()()22211234n n f n n +=+++⋅⋅⋅+=,当()225f n =时,可得5n =. 故选:D 【点睛】本题考查归纳推理,熟记等差数列求和公式是关键,考查观察转化能力,是基础题4.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28 B .76C .123D .199【答案】C 【解析】 【分析】 【详解】 由题观察可发现,347,4711,71118+=+=+=,111829,182947+=+=,294776,4776123+=+=,即1010123a b +=, 故选C.考点:观察和归纳推理能力.5.若数列{}n a 是等差数列,则数列12nn a a a b n++⋯+=也为等差数列.类比这一性质可知,若正项数列{}n c 是等比数列,且n d 也是等比数列,则n d 的表达式应为( ) A .12nn c c c d n++⋯+=B .12nn c c c d n⋅⋅⋯⋅=C .n d =D .n d =【答案】D 【解析】 【分析】利用等差数列的求和公式,等比数列的通项公式,即可得到结论. 【详解】解:Q 数列{}n a 是等差数列,则()12112n n na a a a d n -++⋯++=,∴数列12112n n a a a n b a d n ++⋯+-==+也为等差数列Q 正项数列{}n c 是等比数列,设首项为1c ,公比为q ,则()112121111nn nn n c c c c c q c qc q--⋅⋅⋯⋅⋅⋅⋯==⋅∴121n n d c q-=∴n d =故选:D . 【点睛】本题考查类比推理,解题的关键是掌握好类比推理的定义及等差等比数列之间的共性,由此得出类比的结论即可.6.设a ,b ,c 都大于0,则三个数1a b +,1b c +,1c a+的值( ) A .至少有一个不小于2 B .至少有一个不大于2 C .至多有一个不小于2 D .至多有一个不大于2【答案】A 【解析】 【分析】根据基本不等式,利用反证法思想,即可得出答案 【详解】因为a ,b ,c 都大于01111116a b c a b c b c a a b c +++++=+++++≥ 当且仅当1a b c ===时取得最小值若12a b +<,12b c+<,12c a +<则1116a b c b c a+++++<,与前面矛盾所以三个数1a b +,1b c +,1c a+的值至少有一个不小于2 故选:A 【点睛】本题是一道关于基本不等式应用的题目,掌握基本不等式是解题的关键.7.观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= A .()f x B .()f x -C .()g xD .()g x -【答案】D 【解析】由归纳推理可知偶函数的导数是奇函数,因为()f x 是偶函数,则()()g x f x '=是奇函数,所以()()g x g x -=-,应选答案D .8.甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到."已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是( ) A .甲 B .乙C .丙D .丁【答案】A 【解析】可采用假设法进行讨论推理,即可得到结论. 【详解】由题意,假设甲:我没有抓到是真的,乙:丙抓到了,则丙:丁抓到了是假的, 丁:我没有抓到就是真的,与他们四人中只有一个人抓到是矛盾的; 假设甲:我没有抓到是假的,那么丁:我没有抓到就是真的, 乙:丙抓到了,丙:丁抓到了是假的,成立, 所以可以断定值班人是甲. 故选:A. 【点睛】本题主要考查了合情推理及其应用,其中解答中合理采用假设法进行讨论推理是解答的关键,着重考查了推理与分析判断能力,属于基础题.9.下面几种推理中是演绎推理的为( )A .由金、银、铜、铁可导电,猜想:金属都可导电B .猜想数列111122334⋯⋯⨯⨯⨯,,,的通项公式为1()(1)n a n N n n *=∈+ C .半径为r 的圆的面积2S r π=,则单位圆的面积S π=D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-= 【答案】C 【解析】 【分析】根据合情推理与演绎推理的概念,得到A 是归纳推理,B 是归纳推理,C 是演绎推理,D 是类比推理,即可求解. 【详解】根据合情推理与演绎推理的概念,可得:对于A 中, 由金、银、铜、铁可导电,猜想:金属都可导电,属于归纳推理; 对于B 中, 猜想数列111122334⋯⋯⨯⨯⨯,,,的通项公式为1()(1)n a n N n n *=∈+,属于归纳推理,不是演绎推理;对于C 中,半径为r 的圆的面积2S r π=,则单位圆的面积S π=,属于演绎推理; 对于D 中, 由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-=,属于类比推理, 综上,可演绎推理的C 项,故选C . 【点睛】本题主要考查了合情推理与演绎推理的概念及判定,其中解答中熟记合情推理和演绎推理的概念,以及推理的规则是解答的关键,着重考查了分析问题和解答问题的能力,属于基10.观察下列等式:12133+=,781011123333+++=,16171920222339333333+++++=,…,则当n m <且m ,*n N ∈时,313232313333n n m m ++--++++=L ( ) A .22m n + B .22m n -C .33m n +D .33m n -【答案】B 【解析】 【分析】观察可得等式左边首末等距离的两项和相等,即可得出结论. 【详解】313232313333n n m m ++--++++L 项数为2()m n -, 首末等距离的两项和为313133n m m n +-+=+, 313232313333n n m m ++--++++L 22()()m n m n m n =+⨯-=-,故选:B. 【点睛】本题考查合情推理与演绎推理和数列的求和,属于中档题.11.用数学归纳法证明“l+2+3+…+n 3=632n n +,n ∈N*”,则当n=k+1时,应当在n=k 时对应的等式左边加上( ) A .k 3+1 B .(k 3+1)+(k 3+2)+…+(k+1)3C .(k+1)3D .63(1)(1)2k k +++【答案】B 【解析】分析:当项数从n k =到1n k =+时,等式左边变化的项可利用两个式子相减得到。

高二数学第一章推理与证明单元测试题及答案

高二数学第一章推理与证明单元测试题及答案

高二数学选修2-2《推理与证明》质量检测试题参赛试卷 姓名:_________班级:________ 得分:________第Ⅰ卷(选择题 共60分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

. 2.由10>8,11>10,25>21,…若a >b >0且m >0,则a +m 与a 之间大小关系为( )A .相等B .前者大C .后者大D .不确定3、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。

(A)假设三内角都不大于60度; (B) 假设三内角都大于60度;(C) 假设三内角至多有一个大于60度; (D) 假设三内角至多有两个大于60度。

5、用数学归纳法证明“)12(212)()2)(1(-⋅⋅⋅⋅=+++n n n n n n”(+∈N n )时,从 “1+==k n k n 到”时,左边应增添的式子是 ( )A .12+kB .)12(2+kC .112++k k D .122++k k 6、某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时命题也成立. 现已知当7=n 时该命题不成立,那么可推得( )A .当n=6时该命题不成立B .当n=6时该命题成立C .当n=8时该命题不成立D .当n=8时该命题成立7、已知n 为正偶数,用数学归纳法证明 )214121(2114131211nn n n +++++=-++-+-时,若已假设2(≥=k k n 为偶 数)时命题为真,则还需要用归纳假设再证( )A .1+=k n 时等式成立B .2+=k n 时等式成立C .22+=k n 时等式成立D .)2(2+=k n 时等式成立8、在十进制中01232004410010010210=⨯+⨯+⨯+⨯,那么在5进制中数码2004折合成十进制为 ( ) A.29 B. 254 C. 602 D. 20049、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是( ) A .12 B.13 C.14 D.1510、数列{}n a 中,a 1=1,S n 表示前n 项和,且S n ,S n+1,2S 1成等差数列,通过计算S 1,S 2,S 3,猜想当n ≥1时,S n =( ) A .1212-+n nB .1212--n nC .nn n 2)1(+ D .1-121-n二、填空题(每小题5分,共4小题,满分20分)11、设等差数列{a n }的前n 项和为S n , 则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.12、设平面内有n条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用()f n 表示这n条直线交点的个数,则(4)f = ;当n>4时,()f n = (用含n 的数学表达式表示)。

最新高二数学题库 高二数学选修12推理与证明测试题及答案

最新高二数学题库 高二数学选修12推理与证明测试题及答案

推理与证明命题人:杨建国 审题人:郝 蓉本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.测试时间120分钟.一、选择题(本大题共12小题,每小题5分,共60分) 1. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误2.下面使用类比推理,得到正确结论的是( ) A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C.“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D.“n n a a b =n (b )” 类推出“n n a a b +=+n(b )” 3.在十进制中01232004410010010210=⨯+⨯+⨯+⨯,那么在5进制中数码2004折合成十进制为( ) A.29 B. 254 C. 602 D. 20044. 设0()sin f x x =,10()()f x f x '=,21()()f x f x '=,…,1()()n n f x f x +'=,n ∈N ,则2010()f x =( )A.cos x B .-cos x C .sin x D -sin x5.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误6.下面几种推理是类比推理的是( )A .两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线的同旁内角,则∠A +∠B =1800 B .由平面三角形的性质,推测空间四边形的性质C .某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.D .一切偶数都能被2整除,1002是偶数,所以1002能被2整除.7.黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第五个图案中有白色地面砖( )块.A.21B.22C.20D.238.用反证法证明命题“若整系数一元二次方程20(0)ax bx c a ++=≠有有理根,那么,,a b c 中至少有一个是偶数”时,下列假设中正确的是( )(A )假设,,a b c 不都是偶数 (B )假设,,a b c 都不是偶数 (C )假设,,a b c 至多有一个是偶数 (D )假设,,a b c 至多有两个是偶数9.如果=++==+)5()6()3()4()1()2(,2)1()()()(f f f f f f f b f a f b a f 则且( ). A .512B .537 C .6 D .82()3110:344,()(cos sin )(),24x x y x y y x y αα≥⎧∙=∙=-∙+-⎨<⎩、定义运算例如则的最大值为( )A .4B .3C .2D .111.下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a+≥+∙+.其中不成立的有A.1个B.2个C.3个D.4个 12.已知2()(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式为( ) A.4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2()21f x x =+二、填空题(本大题共6小题,每小题5分,共30分)13.已知一列数1,-5,9,-13,17,……,根据其规律,下一个数应为 . 14.下列表述正确的是 .①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理。

选修1-2《统计案例》、《推理与证明》单元测试题

选修1-2《统计案例》、《推理与证明》单元测试题

选修1-2?统计案例?、?推理与证明?单元测试可能用到的公式:回归直线的方程是:a bx y+=ˆ,其中1221,ni i i nii x y nxyb a y bx xnx ==-==--∑∑;相关指数21122)()ˆ(1∑∑==---=n i ini i iy yyyR ,总偏差平方和:21()nii y y =-∑,残差平方和:21ˆ()niii y y=-∑.随机变量()()()()()22n ad bc K a b c d a c b d -=++++一、选择题 〔每题 5分,共 10小题,共 50分〕1. 工人月工资 〔元〕 依劳动生产率 〔千元〕 变化的回归直线方程为6090y x =+, 以下判断正确的选项是 〔 〕.A. 劳动生产率为 1000元时,工资为 50 元B. 劳动生产率提高 1000 元时,工资提高 150元C. 劳动生产率提高 1000 元时,工资提高 90 元D. 劳动生产率为 1000元时,工资为 90 元2. 在画两个变量的散点图时,下面哪个表达是正确的〔 〕. A. 预报变量在x 轴上,解释变量在 y 轴上 B. 解释变量在x 轴上,预报变量在 y 轴上 C. 可以选择两个变量中任意一个变量在x 轴上 D. 可以选择两个变量中任意一个变量在 y 轴上3. 回归直线的斜率的估计值是 1.23,样本点的中心为(4,5),那么回归直线的方程是 〔 〕. A. 1.234y x =+ B. 1.235y x =+ C. 1.230.08y x =+ D. 0.08 1.23y x =+4.在两个变量 y 与 x 的回归模型中,分别选择了 4 个不同的模型,它们的相关指数2R 如下,其中拟合效果最好的模型是〔 〕A. 模型 1 的相关指数 2R 为 0.95 B. 模型 2的相关指数2R 为 0.80 C. 模型 3 的相关指数2R 为 0.50 D. 模型 4的相关指数2R 为 0.25 5. x 与y 那么y 与x 的线性回归方程为y bx a =+必过点〔 〕.A. 〔2,2〕B. 〔1.5,3〕C. 〔1,2〕D. 〔1.5,4〕A.“假设33a b ⋅=⋅,那么a b =〞类推出“假设00a b ⋅=⋅,那么a b =〞B.“假设()a b c ac bc +=+〞类推出“()a b c ac bc ⋅=⋅〞C.“假设()a b c ac bc +=+〞 类推出“a b a bc c c+=+ 〔c ≠0〕〞 D.“n n a a b =n (b )〞 类推出“n n a a b +=+n(b )〞7. 有一段演绎推理是这样的:“直线平行于平面,那么平行于平面内所有直线;直线b ⊆/平面α,直线⊂a 平面α,直线b ∥平面α,那么直线b ∥直线a 〞的结论显然是错误的,这是因为 〔 〕 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误8.用反证法证明命题:“三角形的内角中至少有一个不大于60度〞时,反设正确的选项是〔 〕。

高中数学-推理与证明综合测试题

高中数学-推理与证明综合测试题

高中数学-推理与证明综合测试题一、选择题1.分析法是从要证明的结论出发,逐步寻求使结论成立的( )A.充分条件 B.必要条件 C.充要条件 D.等价条件答案:A2.结论为:n n x y +能被x y +整除,令1234n =,,,验证结论是否正确,得到此结论成立的条件可以为( )A.n *∈N B.n *∈N 且3n ≥ C.n 为正奇数 D.n 为正偶数答案:C3.在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定答案:C4.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a >··,类经上述性质,在等比数列{}n b 中,若01n b q >>,,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+ C.4758b b b b +>+D.4578b b b b +>+答案:B5.(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥,(2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( ) A.(1)与(2)的假设都错误 B.(1)与(2)的假设都正确C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确答案:D6.观察式子:213122+<,221151233++<,222111712344+++<,L ,则可归纳出式子为( ) A.22211111(2)2321n n n ++++<-L ≥ B.22211111(2)2321n n n ++++<+L ≥ C.222111211(2)23n n n n -++++<L ≥ D.22211121(2)2321n n n n ++++<+L ≥答案:C7.如图,在梯形ABCD 中,()AB DC AB a CD b a b ==>,,∥.若EF AB ∥,EF 到CD 与AB 的距离之比为:m n ,则可推算出:ma mbEF m m+=+.试用类比的方法,推想出下述问题的结果.在上面的梯形ABCD 中,延长梯形两腰AD BC ,相交于O 点,设OAB △,OCD △的面积分别为12S S ,,EF AB ∥且EF 到CD 与AB 的距离之比为:m n ,则OEF △的面积0S 与12S S ,的关系是( )A.120mS nS S m n+=+B.120nS mS S m n +=+C.120m S n S S +=D.120n S m S S +=答案:C8.已知a b ∈R ,,且2a b a b ≠+=,,则( ) A.2212a b ab +<<B.2212a b ab +<<C.2212a b ab +<<D.2212a b ab +<<答案:B9.用反证法证明命题:若整系数一元二次方程20(0)ax bx c a ++=≠有有理根,那么a b c ,,中至少有一个是偶数时,下列假设中正确的是( ) A.假设a b c ,,都是偶数 B.假设a b c ,,都不是偶数C.假设a b c ,,至多有一个是偶数 D.假设a b c ,,至多有两个是偶数答案:B10.用数学归纳法证明(1)(2)()213(21)nn n n n n +++=-L L ····,从k 到1k +,左边需要增乘的代数式为( ) A.21k + B.2(21)k + C.211k k ++ D.231k k ++答案:B11.类比“两角和与差的正余弦公式”的形式,对于给定的两个函数,()2x xa a S x --=,()2x xa a C x -+=,其中0a >,且1a ≠,下面正确的运算公式是( ) ①()()()()()S x y S x C y C x S y +=+; ②()()()()()S x y S x C y C x S y -=-; ③()()()()()C x y C x C y S x S y +=-; ④()()()()()C x y C x C y S x S y -=+;A.①③ B.②④ C.①④ D.①②③④答案:D12.正整数按下表的规律排列则上起第2005行,左起第2006列的数应为( ) A.22005 B.22006C.20052006+D.20052006⨯答案:D二、填空题13.写出用三段论证明3()sin ()f x x x x =+∈R 为奇函数的步骤是 .答案:满足()()f x f x -=-的函数是奇函数, 大前提1 2 5 10 17 4 3 6 11 18 9 8 7 12 19 16 15 14 13 20 25 24 23 22 21333()()sin()sin (sin )()f x x x x x x x f x -=-+-=--=-+=-, 小前提所以3()sin f x x x =+是奇函数. 结论14.已知111()1()23f n n n *=++++∈N L ,用数学归纳法证明(2)2n nf >时,1(2)(2)k k f f +-等于 . 答案:111121222k k k ++++++L15.由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为 .答案:三角形内角平分线交于一点,且这个点是三角形内切圆的圆心16.下面是按照一定规律画出的一列“树型”图:设第n 个图有n a 个树枝,则1n a +与(2)n a n ≥之间的关系是 .答案:122n n a a +=+三、解答题17.如图(1),在三角形ABC 中,AB AC ⊥,若AD BC ⊥,则2AB BD BC =·;若类比该命题,如图(2),三棱锥A BCD -中,AD ⊥面ABC ,若A 点在三角形BCD 所在平面内的射影为M ,则有什么结论?命题是否是真命题.解:命题是:三棱锥A BCD -中,AD ⊥面ABC ,若A 点在三角形BCD 所在平面内的射影为M ,则有2ABC BCMBCD S S S =△△△·是一个真命题. 证明如下:在图(2)中,连结DM ,并延长交BC 于E ,连结AE ,则有DE BC ⊥. 因为AD ⊥面ABC ,,所以AD AE ⊥. 又AM DE ⊥,所以2AE EM ED =·. 于是22111222ABCBCM BCD SBC AE BC EM BC ED S S ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭△△△·····.18.如图,已知PA ⊥矩形ABCD 所在平面,M N ,分别是AB PC ,的中点. 求证:(1)MN ∥平面PAD ;(2)MN CD ⊥.证明:(1)取PD 的中点E ,连结AE NE ,. N E ,∵分别为PC PD ,的中点.EN ∴为PCD △的中位线,12EN CD ∥∴,12AM AB =,而ABCD 为矩形, CD AB ∴∥,且CD AB =.EN AM ∴∥,且EN AM =.AENM ∴为平行四边形,MN AE ∥,而MN ⊄平面PAC ,AE ⊂平面PAD , MN ∴∥平面PAD .(2)PA ⊥∵矩形ABCD 所在平面,CD PA ⊥∴,而CD AD ⊥,PA 与AD 是平面PAD 内的两条直交直线, CD ⊥∴平面PAD ,而AE ⊂平面PAD , AE CD ⊥∴.又MN AE ∵∥,MN CD ⊥∴.19.求证:当一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大.证明:(分析法)设圆和正方形的周长为l ,依题意,圆的面积为2π2πl ⎛⎫⎪⎝⎭·, 正方形的面积为24l ⎛⎫⎪⎝⎭.因此本题只需证明22π2π4l l ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭.要证明上式,只需证明222π4π16l l >,两边同乘以正数24l ,得11π4>.因此,只需证明4π>.∵上式是成立的,所以22π2π4l l ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭.这就证明了如果一个圆和一个正方形的周长相等,那么圆的面积比正方形的面积最大.20.已知实数a b c d ,,,满足1a b c d +=+=,1ac bd +>,求证a b c d ,,,中至少有一个是负数.证明:假设a b c d ,,,都是非负实数,因为1a b c d +=+=,所以a b c d ,,,[01]∈,,所以2a c ac +,2b cbd +, 所以122a cb dac bd ++++=≤, 这与已知1ac bd +>相矛盾,所以原假设不成立,即证得a b c d ,,,中至少有一个是负数.21.设()2x x a a f x -+=,()2x xa a g x --=(其中0a >,且1a ≠).(1)523=+请你推测(5)g 能否用(2)(3)(2)(3)f f g g ,,,来表示;(2)如果(1)中获得了一个结论,请你推测能否将其推广.解:(1)由3332332255(3)(2)(3)(2)22221a a a a a a a a a a f g g f -----+--+-+=+=··, 又55(5)2a a g --=,因此(5)(3)(2)(3)(2)g f g g f =+.(2)由(5)(3)(2)(3)(2)g f g g f =+,即(23)(3)(2)(3)(2)g f g g f +=+, 于是推测()()()()()g x y f x g y g x f y +=+.证明:因为()2x x a a f x -+=,()2x xa a g x --=(大前提).所以()()2x y x y a a g x y +-+-+=,()2y y a a g y --=,()2y ya a f y -+=,(小前提及结论)所以()()()()()()22222x x y y x x y y x y x y a a a a a a a a a a f x g y g x f y g x y ----+-++--+-+=+==+··.22.若不等式111123124an n n +++>+++L 对一切正整数n 都成立,求正整数a 的最大值,并证明结论.解:当1n =时,11111123124a ++>+++,即262424a>, 所以26a <.而a 是正整数,所以取25a =,下面用数学归纳法证明:11125123124n n n +++>+++L . (1)当1n =时,已证;(2)假设当n k =时,不等式成立,即11125123124k k k +++>+++L . 则当1n k =+时,有111(1)1(1)23(1)1k k k +++++++++L 111111112313233341k k k k k k k =++++++-+++++++L 251122432343(1)k k k ⎡⎤>++-⎢⎥+++⎣⎦. 因为2116(1)2323491883(1)k k k k k k ++=>+++++, 所以2116(1)2323491883(1)k k k k k k ++=>+++++, 所以112032343(1)k k k +->+++. 所以当1n k =+时不等式也成立. 由(1)(2)知,对一切正整数n ,都有11125123124n n n +++>+++L , 所以a 的最大值等于25.。

选修2-2推理与证明单元测试题(好经典)

选修2-2推理与证明单元测试题(好经典)

《推理与证明》单元测试题考试时间120分钟 总分150分一.选择题(共50分)1.下面几种推理过程是演绎推理的是 ( ) A .在数列{a n }中,a 1=1,a n =12(a n -1+1a n -1)(n ≥2),由此归纳出{a n }的通项公式B .某校高三(1)班有55人,高三(2)班有54人,高三(3)班有52人,由此得出高三所有班人数超过50人C .由平面三角形的性质,推测空间四面体的性质D .两条直线平行,同旁内角互补,由此若∠A ,∠B 是两条平行直线被第三条直线所截得的同旁内角,则∠A +∠B =180°2.(2012·江西高考)观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .923. 观察下列各式:72=49,73=343,74=2401,…,则72012的末两位数字为( )A .01B .43C .07D .49 4. 以下不等式(其中..0a b >>)正确的个数是( )1> ②≥③lg2>A .0 B .1 C .2D .35.如图,椭圆的中心在坐标原点,F 为左焦点,当AB FB ⊥u u u r u u u r时,有()()()22222cb b ac a +++=+,从而得其离心率为12,此类椭圆称为“黄金椭圆”,类比“黄金椭圆”,可推出“黄金双曲线”的离心率为( )A.12 BD6.如图,在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝, 第二件首饰是由6颗珠宝构成的正六边形, 第三件首饰是由15颗珠宝构成的正六边形, 第四件首饰是由28颗珠宝构成的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,依此推断第8件首饰上应有( )颗珠宝。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12、 类比平面几何中的勾股定理:若直角三角形ABC 中的两边AB 、AC 互相垂直,则三角形三边长之间满足关系:222BC AC AB =+。

若三棱锥A-BCD 的三个侧面ABC 、ACD 、ADB 两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为 . 13、从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,推广到第n 个等式为_________________________. 三、解答题:
15、(12分)观察以下各等式:
2
2
3sin 30cos 60sin 30cos604++=
202000
3sin 20cos 50sin 20cos504
++=
2
2
3sin 15cos 45sin15cos 454
++=

分析上述各式的共同特点,猜想出反映一般规律的等式.
17、(10分)已知正数c b a ,,成等差数列,且公差0 d ,求证:c
b a 1
,1,1不可能是等差数列。

18、(14分)已知数列{a n }满足S n +a n =2n +1, (1) 写出a 1, a 2, a 3,并推测a n 的表达式; (2) 用数学归纳法证明所得的结论。

高二数学选修2-2《推理与证明测试题》答案
一、选择题: DCABB CABBB
二、填空题: 11、14 12、
13、
14、 5 ;
三、解答题:本大题共6题,共58分。

15、猜想:4
3)30cos(sin )30(cos sin 22=++++ αααα 证明:
000
2
2
1cos21cos(602)sin(302)sin30sin cos (30)sin cos(30)222
ααααααα-+++-++++=++
00cos(602)cos2111[sin(302)]222ααα+-=+++-000
2sin(302)sin30111[sin(302)]
222
αα-+=+++- 00
3113sin(302)sin(302)αα=-+++= 16、证明:要证原不等式成立,
只需证(6+7)2>(22+5)2, 即证402422>。

∵上式显然成立, ∴原不等式成立.
17、可以用反证法---略
18、解: (1) a 1=23, a 2=47, a 3=815
,
猜测 a n =2-n 2
1
(2) ①由(1)已得当n =1时,命题成立;
②假设n =k 时,命题成立,即 a k =2-k 2
1
,
当n =k +1时, a 1+a 2+……+a k +a k +1+a k +1=2(k +1)+1, 且a 1+a 2+……+a k =2k +1-a k ∴2k +1-a k +2a k +1=2(k +1)+1=2k +3,
∴2a k +1=2+2-k 21, a k +1=2-12
1
+k ,
即当n =k +1时,命题成立.
根据①②得n ∈N + , a n =2-n 2
1
都成立。

相关文档
最新文档