欧几里得原本十三卷共32页文档
好书阅读分享交流《几何原本》欧几里得
THANKS
感谢观看
在数学中的应用拓展
几何学的基石
《几何原本》是几何学的基石,其中的许多定理和证 明方法成为了后续几何学研究的基础。欧几里得的几 何学体系为后来的几何学发展提供了重要的启示和指 导。
对数学发展的推动
《几何原本》不仅对几何学的发展产生了重要影响, 还推动了数学其他领域的发展。例如,欧几里得几何 学中的一些概念和证明方法被用于解决代数、微积分 等领域的问题。
好书阅读分享交流《几何 原本》欧几里得
01
CATALOGUE
书籍简介与作者介绍
书籍背景与内容概述
背景
公元前300年左右,希腊数学家欧几里得集前人几何研究之大成,编写了《几 何原本》。
内容
全书共13卷,包含了早期希腊数学关于形、数、几何等基础概念和定理的精要 概括,对欧几里得之前的几何成果进行了系统性的整理和阐述。
欧几里得的证明方法是基于演绎推理,即从 已知事实和公理出发,逐步推导出结论。
04
CATALOGUE
分析与证明方法
命题的证明与推理结构
总结词
欧几里得在《几何原本》中,对每个命题的证明都进行了严谨的逻辑推理,其中使用了演绎法和其他 数学方法。
详细描述
欧几里得在证明命题时,通常会先定义术语和概念,然后使用已有的定理或命题进行推理和证明。每 个命题的证明都涉及到一个或多个已有的定理或命题,形成了一个庞大的逻辑推理体系。
VS
《几何原本》的内容
该书包含了大量的几何学定理和证明,涵 盖了平面几何、立体几何、数论等领域。
《几何原本》的结构与特点
特点
证明过程完整:每个定理的证明 过程都非常完整,这使得读者可 以深入理解每一个定理的证明思 路。
欧几里得﹝Euclid﹞
歐幾里得﹝Euclid﹞約公元前330─約公元前275,古希臘人們除了知道歐幾里得是亞歷山大里亞大學的數學教授和大名鼎鼎的、歷時長久的亞歷山大里亞數學學派的奠基人外,對他的生平所知甚少,僅估計他很可能在雅典的柏拉圖學園受過數學訓練。
公元前300年左右,在托勒密王﹝PtolemyI.公元前364─前283,托勒密王國的創建者,公元前323─前285在位﹞的邀請下,來到亞歷山大,長期在那裏工作。
他是一位溫良敦厚的教育家,對有志數學之士,總是循循善誘。
但反對不止刻苦鑽研、投機取巧的作風,也1反對狹隘實用觀點。
據普羅克洛斯﹝約410─485﹞記載,歐幾里得曾給托勒密王講授幾何學。
這位國王曾問歐幾里得說,除了《幾何原本》之外,還有沒有其他學習幾何的捷徑。
歐幾里得就用『幾何無王者之道!』﹝There is no royal road to geometry﹞的話回答,意思是:『在幾何裏,沒有專為國王鋪設的路。
』這話後來推廣為『求知無坦途』,成為傳誦千古的學習箴言。
斯托貝烏斯﹝約500﹞記述了另一則故事,說一個學生才開始學第一個命題,就問歐幾里得學了幾何學之後將得到些什麼。
歐幾里得說:『給他三個錢幣,因為他想在學習中獲取實利。
』歐幾里得的《幾何原本》﹝Elements﹞,以下簡稱《原本》,是一部劃時代的著作,就其大部份內容來說,是對於公元前七世紀以來,希臘幾何積聚起來的豐富成果作出高度成功的編纂和系統的整理,其主要功績在於對命題的巧妙選擇,和把它們排列進由少數初始假定出發,演繹地推導出的合乎邏輯的序列中。
換言之,《原本》偉大的歷史意義在於它是用公理方法建立起演繹體系的最早典範。
《原本》的內容:第一卷很自然地是從必要的初步的定義、公設和公理開始;第二卷討論面積的變換和畢氏學派的幾何式代數;第三卷包括中學幾何課本中許多關於圓、弦、割線、切線及有關角的量度的定理;第四卷討論用直尺和圓規作正三角形、正四、五、六和十五邊形,以及在給定圓內﹝外﹞作這些內接﹝外切﹞正多邊形;第五卷是對歐多克索斯比例理論的精彩闡述;第六卷把歐多克索斯的比例理論應用於平面幾何;第七、八、九卷講的是初等數論;第十卷討論無理數;第十一、十二、十三卷講立體幾何──關於空間中的直線和平面的定義、定理,以及關於平行六面體的定理,可在第十一卷找到;窮竭法在第十二卷論述體積時起重要作用;在第十三卷研究了五種正多面體。
几何原本
第6卷共有33个命题,将第5卷已建立的理论用到平面图形上去,为相似多边形的理论。
创作背景
公元前8至公元前6世纪,在小亚细亚地区,希腊移民建立了一群经济上繁荣富裕的工商业城市,发展出了希 腊城邦制度。希腊人凭借地理上的优势,大力发展海上贸易,广泛吸收先进的古埃及和古巴比伦的文化,成为古 希腊文明的中心,培育出了公元前6世纪以后的小亚细亚诸城邦的一批思想家和学者,小亚细亚、尤其爱奥尼亚成 了古希腊自然哲学和科学的故乡。希波战争以后,雅典取得了希腊城邦的领导地位,海上贸易更加发达。经济生 活更加繁荣,古希腊文明中心由小亚细亚移向希腊本土雅典,此时,希腊民主城邦制度逐步走向全盛时代。“各 城邦实行独立的主权在民和直接民主制度,即城邦的政治主权属于它的公民,公民们直接参与城邦的管 理。”“在这种制度下,凡享有政治权利的公民的各项决议无论在寡头、贵族或民主政体中总是最后的裁断,具 有最高的权威”,这种“民主生活又使得议会、陪审法庭和公民大会成为说话的艺术即雄辩术的广阔的用武之地。 雄辩术可以使一个普通的公民成为民众的领袖”。在这种环境下,雅典学术气氛十分活跃,雅典公民在公开的政 治生活中获得广泛的知识,希腊世界各地的知识分子也群趋雅典,希腊哲学、艺术、文化科学等各方面呈现出百 花齐放、各炫异彩的空前盛况。马其顿王亚历山大的帝国崩溃以后,作为东西海陆交通枢纽的埃及的亚历山大里 亚逐渐成为古希腊文化中心。其时,托勒密一世重视科学文化,在那里修建科学中心。修建博物园,建立图书馆, 藏书70余万卷,几乎包括所有古希腊的著作和东方的一部分典籍,还把当时所有学术中心的许多学者请到亚历山 大里亚,欧几里得就是在公元前300年左右受邀到那里从事教学和研究的。数学在一个自由的学术气氛中最能获 得成功,而希腊的民主城邦制度则提供了这种自由的学术环境,在那里古希腊人创立了思辩的哲学,发展和积累 了丰富的自然科学和数学知识,《几何原本》就是在这样的环境中诞生的。
三欧几里得与《原本》
欧几里得(EUCLID,约公元前330—公元前270)
欧几里得是古希腊著名 数学家、欧式几何学开 创者, 被称为“几何 学之父”他生于雅典, 曾受教于柏拉图学院。 雅典衰弱后,应托勒密 国王的邀请,来到亚历 山大城主持数学学派的 工作。
可惜的是欧几里德的身世我们知道得很少, 亚历山大大学是希腊文化最后集中的地方, 因为亚历山大自己到过亚历山大,因此就建 立了当时北非的大城,靠在地中海。但是他 远在到亚洲之后,我们知道他很快就死了。 之后,他的大将托勒密管理当时的埃及区域。 托勒密很重视学问,就成立了一个大学。这 个大学就在他的王宫旁边,是当时全世界最 优秀的大学,设备非常好,有许多书。很可 惜由于宗教的原因以及众多的原因,现在这 个学校已经被完全毁掉了。当时的基督教就 不喜欢这个学校,已经被毁了,回教人占领 北非之后就大规模地破坏、并焚烧图书馆的 书。所以现在这个学校完全不存在了。
三千年前,人们建造了高 大的金字塔,可是谁也不 知道金字塔究竟有多高。 有人这么说:“要想测量 金字塔的高度,比登天还 难!”这话传到一位几何 大师耳朵里。他笑着告诉 别人:“这有什么难的呢? 当你的影子跟你的身体一 样长的时候,你去量一下 金字塔的影子有多长,那 长度便等于金字塔的高 度!”
几何大 师
几 何 原 本
《几何原本》是欧洲数学的基础, 总结了平面几何五大公设,被广 泛的认为是历史上最成功的教科 书。欧几里得也写了一些关于透 视、圆锥曲线、球面几何学及数 论的作品。欧几里得使用了公理 化的方法。这一方法后来成了建 立任何知识体系的典范,在差不还有 不少著作,可惜大都失传。欧几 里得还有另外五本著作流传至今。 它们与《几何原本》一样,内容 都包含定义及证明。
有这样一则 故事
胡夫金字塔是古埃及金字塔中 最大的金字塔。塔高146.59米, 因年久风化,顶端剥落10米, 现高136.5米,相当于40层大 厦高。塔身是用230万块巨石 堆砌而成,大小不等的石料重 达1.5吨至50吨,塔的总重量 约为684万吨,它的规模是埃 及至今发现的110座金字塔中 最大的。
欧几里得
欧几里得辽宁师范大学梁宗巨欧几里得(Euclid,拉丁文为 Euclides 或Eucleides) 公元前300年前后活跃于古希腊文化中心亚历山大.数学.欧几里得以其所著的《几何原本》(Elements,以下简称《原本》)闻名于世,他的名字在20世纪以前一直是几何学的同义词,而对于他的生平,现在知道的却很少.他生活的年代,是根据下列的记载来确定的.雅典柏拉图学园晚期的导师普罗克洛斯(Proclus,约公元412—485年)在450年左右给欧几里得《原本》卷1作注,写了一个《几何学发展概要》,常称为《普罗克洛斯概要》(Proclus's summary),简称《概要》,是研究希腊几何学史的两大重要原始参考资料之一.另一种资料是帕波斯(Pappus)的《数学汇编》(Mathematical collection),下面简称《汇编》.《概要》中指出,欧几里得是托勒密一世(Ptolemy Soter,约公元前367—前282年,前323—前285年在位,托勒密王朝的建立者)时代的人,早年求学于雅典,深知柏拉图的学说.他著《原本》时引用许多柏拉图学派人物如欧多克索斯(Eudoxus)、泰特托斯(Theaetetus,约公元前417—前369年)的成果,可能他也是这个学派的成员.《概要》又说阿基米德(Archimedes)的书引用过《原本》的命题,可见他早于阿基米德.也早于埃拉托塞尼(Eratosthenes).通过亚里士多德(Aristotle)的著作,也可以核对欧几里得的年代.《原本》中建立公设、公理,显然受到亚里士多德逻辑思想的影响.亚里士多德在《分析前篇》(Prior analytics)中给出“等腰三角形两底角相等”的“证明”,和《原本》卷Ⅰ命题5完全不同,也没有提到欧几里得.可见《原本》的证明是欧几里得后来完成的,他的活动年代应在亚里士多德之后.另一方面,欧几里得的天文著作《观测天文学》(Phaenomena)曾引用奥托利科斯(Autolycus of Pitane,约公元前300年)《运行的天体》(On moving sphere)的命题.而奥托利科斯是阿塞西劳斯(Arcesilaus,约公元前315—前241年,曾是柏拉图学园的导师)的老师.此外,帕波斯在《汇编》(卷7)中提到阿波罗尼奥斯(Apollo-nius)长期住在亚历山大,和欧几里得的学生在一起.这说明欧几里得在亚历山大教过学.综上所述,欧几里得活跃时期应该是公元前 300—前295年前后.《概要》还记述了这样一则轶事:托勒密王问欧几里得,除了他的《原本》之外,有没有其他学习几何的捷径.欧几里得回答道:这句话后来推广为“求知无坦途”,成为传诵千古的箴言.斯托比亚斯(Stobaeus,约公元500年)的记载略有差异,他认为是门奈赫莫斯(Menaechmus)对亚历山大王说的话:“在国家里有老百姓走的小路,也有为国王铺设的大道,但在几何里,道路只有一条!”现多数学者取前说.理由是在门奈赫莫斯的时代,几何学尚未形成严整的独立学科.斯托比亚斯还记载另一则故事,说一个学生才开始学习第一个命题,就问学了几何学之后将得到些什么.欧几里得说:“给他三个钱币,因为他想在学习中获取实利”.由此可知欧几里得主张学习必须循序渐进、刻苦钻研,不赞成投机取巧的作风,也反对狭隘实用观点.帕波斯特别赞赏欧几里得的谦逊,他从不掠人之美,也没有声称过哪些是自己的独创.而阿波罗尼奥斯则不然,他过分突出自己,明明是欧几里得研究过的工作,他在《圆锥曲线论》中也没有提到欧几里得.除《原本》之外,欧几里得还有不少著作,可惜大都失传.几何著作保存下来的有《已知数》(The data)、《图形的分割》(Ondivisions of figures),此外还有光学、天文学和力学等,多已散失.《原本》产生的历史背景欧几里得《原本》是一部划时代的著作.其伟大的历史意义在于它是用公理方法建立起演绎体系的最早典范.过去所积累下来的数学知识,是零碎的、片断的,可以比作木石、砖瓦.只有借助于逻辑方法,把这些知识组织起来,加以分类、比较,揭露彼此间的内在联系,整理在一个严密的系统之中,才能建成巍峨的大厦.《原本》完成了这一艰巨的任务,对整个数学的发展产生了深远的影响.《原本》的出现不是偶然的,在它之前,已有许多希腊学者做了大量的前驱工作.从泰勒斯算起,已有 300多年的历史(见[11]).泰勒斯是希腊第一个哲学学派——伊奥尼亚学派的创建者.他力图摆脱宗教,从自然现象中去寻找真理,对一切科学问题不仅回答“怎么样”?还要回答“为什么这样”?他对数学的最大贡献是开始了命题的证明,为建立几何的演绎体系迈出了可贵的第一步.接着是毕达哥拉斯学派,用数来解释一切,将数学从具体的事物中抽象出来,建立自己的理论体系.他们发现了勾股定理,不可通约量,并知道五种正多面体的存在,这些后来都成为《原本》的重要内容.这个学派的另一特点是将算术和几何紧密联系起来,为《原本》算术的几何化提供了线索.希波战争以后,雅典成为人文荟萃的中心.雅典的智人(sophist)学派提出几何作图的三大问题:(1)三等分任意角;(2)倍立方——求作一立方体,使其体积等于已知立方体的两倍;(3)化圆为方——求作一正方形,使其面积等于一已知圆.问题的难处,是作图只许用直尺(没有刻度,只能划直线的尺)和圆规.希腊人的兴趣并不在于图形的实际作出,而是在尺规的限制下从理论上去解决这些问题.这是几何学从实际应用向演绎体系靠拢的又一步.作图只能用尺规的限制最先是伊诺皮迪斯(Oeno-pedes,约公元前465年)提出的,后来《原本》用公设的形式规定下来,于是成为希腊几何的金科玉律.智人学派的安蒂丰(Antiphon)为了解决化圆为方问题,提出颇有价值的“穷竭法”(method of exhaustion),孕育着近代极限论的思想.后来经过欧多克索斯的改进,使其严格化,成为《原本》中的重要证明方法,较有代表性的是卷Ⅻ的命题 2.(见[ 2],vol 3,p.365;[9], p.230.)埃利亚(意大利半岛南端)学派的芝诺(Zeno of Elea)提出四个著名的悖论,迫使哲学家和数学家深入思考无穷的问题.无穷历来是争论的焦点,在《原本》中,欧几里得实际上是回避了这一矛盾.例如卷Ⅸ命题20说:“素数的个数比任意给定的素数都多”,而不用我们现在更简单的说法:素数无穷多.只说直线可任意延长而不是无限延长.原子论学派的德谟克利特(Democritus,约公元前410年)用原子法得到的结论:锥体体积是同底等高柱体的 1/3,后来也是《原本》中的重要命题.柏拉图学派的思想对欧几里得无疑产生过深刻的影响.柏拉图非常重视数学,特别强调数学在训练智力方面的作用,而忽视其实用价值.他主张通过几何的学习培养逻辑思维能力,因为几何能给人以强烈的直观印象,将抽象的逻辑规律体现在具体的图形之中.这个学派的重要人物欧多克索斯创立了比例论,用公理法建立理论,使得比例也适用于不可通约量.《原本》卷Ⅴ比例论大部分采自欧多克索斯的工作.柏拉图的门徒亚里士多德是形式逻辑的奠基者,他的逻辑思想为日后将几何整理在严密的体系之中创造了必要的条件.到公元前4世纪,希腊几何学已经积累了大量的知识,逻辑理论也渐臻成熟,由来已久的公理化思想更是大势所趋.这时,形成一个严整的几何结构已是“山雨欲来风满楼”了.建筑师没有创造木石砖瓦,但利用现有的材料来建成大厦也是一项不平凡的创造.公理的选择,定义的给出,内容的编排,方法的运用以及命题的严格证明都需要有高度的智慧并要付出巨大的劳动.从事这宏伟工程的并不是个别的学者,在欧几里得之前已有好几个数学家做过这种综合整理工作.其中有希波克拉底(Hippocrates,约公元前460年),勒俄(Leo或Leon,公元前4世纪),修迪奥斯(Theudius,公元前4世纪)等.但经得起历史风霜考验的,只有欧几里得《原本》一种.在漫长的岁月里,它历尽沧桑而能流传千古,表明它有顽强的生命力.它的公理化思想和方法,将继续照耀着数学前进的道路.《原本》的版本和流传欧几里得本人的《原本》手稿早已失传,现在看到的各种版本都是根据后人的修订本、注释本、翻译本重新整理出来的.古希腊的海伦(Heron)、波菲里奥斯(Porphyrius,约公元232—304年)、帕波斯,辛普利休斯(Simplicius,6世纪前半叶)等人都注释过.最重要的是赛翁(Theon of Alexandria,约公元 390年)的修订本,对原文作了校勘和补充,这个本子是后来所有流行的希腊文本及译本的基础.赛翁虽生活在亚历山大,但离开欧几里得已有7个世纪,他究竟作了多少补充和修改,在19世纪以前是不清楚的.19世纪初,拿破仑称雄欧洲,1808年他在梵蒂冈图书馆找到一些希腊文的手稿,带回巴黎去.其中有两种欧几里得著作的手抄本,以后为 F.佩拉尔(Peyrard, 1760—1822)所得.(见[2],pp.46—47,p.103.)1814—1818年,佩拉尔将两种书用希腊文、拉丁文、法文三种文字出版,一种就是《原本》,另一种是《已知数》,通常叫做梵蒂冈本.《原本》的梵蒂冈本和过去的版本不同,过去的版本都声称来自赛翁的版本,而且包含卷Ⅵ命题33(在等圆中,无论是圆心角或圆周角,两角之比等于所对弧之比).赛翁在注释托勒密(Ptolemy)的书时自称他在注《原本》时曾扩充了这个命题并加以证明.而梵蒂冈本没有上述这些内容,可见是赛翁之前的本子,当更接近欧几里得原著.9世纪以后,大量的希腊著作被译成阿拉伯文.《原本》的阿拉伯文译本主要有三种:(1)赫贾季(al-H ajjāj ibn Yūsuf,9世纪)译;(2)伊沙格(Is hāq ibn H unain,?—910)译,后来为塔比伊本库拉(Thābit ibn Qurra,约826—901)所修订,一般称为伊沙格-塔比本;(3)纳西尔丁(Na sīr ad-Dīn al Tūsī,1201—1274)译.现存最早的拉丁文本是1120年左右由阿德拉德(Adelard ofBath.1120左右)从阿拉伯文译过来的.后来杰拉德(Gerard ofCremona,约1114—1187)又从伊沙格-塔比本译出.1255年左右,坎帕努斯(Campanus of Novara,?—1296)参考数种阿拉伯文本及早期的拉丁文本重新将《原本》译成拉丁文.两百多年之后(1482)以印刷本的形式在威尼斯出版,这是西方最早印刷的数学书.在这之后到19世纪末,《原本》的印刷本用各种文字出了一千版以上.从来没有一本科学书籍象《原本》那样长期成为广大学子传诵的读物.它流传之广,影响之大,仅次于基督教的《圣经》.15世纪以后,学者们的注意力转向希腊文本,B.赞贝蒂(Zamberti,约生于1473)第一次直接从赛翁的希腊文本译成拉丁文,1505年在威尼斯出版.目前权威的版本是J.L.海伯格(Heiberg,1854—1928,丹麦人)、 H.门格(Menge)校订注释的“Euclidis opera omnia”(《欧几里得全集》,1883—1916出版),是希腊文与拉丁文对照本.最早完整的英译本(1570)的译者是H.比林斯利(Billingsley,?—1606).现在最流行的标准英译本是 T.L.希思(Heath,1861—1940,英国人)译注的“The thirteen books of Euclid’sElements(《欧几里得几何原本13卷》,1908初版,1925再版,1956修订版),这书译自上述的海伯格本,附有一篇长达150多页的导言,实际是欧几里得研究的历史总结,又对每章每节都作了详细的注释.对其他文字的版本,包括意、德、法、荷、英、西、瑞典、丹麦以及现代希腊等语种,此书导言均有所评论.中国最早的汉译本是1607年(明万历35年丁未)意大利传教士利玛窦(Matteo Ricci, 1552—1610)和徐光启(1562—1633)合译出版的.这是中国近代翻译西方数学书籍的开始,从此打开了中西学术交流的大门.所根据的底本是德国人C.克拉维乌斯(Clavius,1537—1612)校订增补的拉丁文本“Euclidis Elementorum Libri XV”(《欧几里得原本 15卷》, 1574初版,以后再版多次).徐、利译本只译了前6卷,定名为《几何原本》,“几何”这个名称就是这样来的.有的学者认为元代(13世纪)《原本》已经传入中国,根据是元代王士点、商企翁《元秘书监志》卷7“回回书籍”条有《兀忽列的四擘算法段数十五部》的书目,其中兀忽列的应是Euclid的音译.(见[15],p.139;[16].)但也有可能仍是阿拉伯文本,只是译出书名而已.后说似更可信.克拉维乌斯本是增补本,和原著有很大出入.原著只有13卷,卷XIV,XV 是后人添加上去的.卷XIV一般认为出自许普西克勒斯(Hypsicles,约公元前180)之手,而卷XV是6世纪初大马士革乌斯(Damascius,叙利亚人)所著.(见[12],p.119,182.)利玛窦、徐光启共同译完前6卷之后,徐光启“意方锐,欲竟之”,利玛窦不同意,说:“止,请先传此,使同志者习之,果以为用也,而后徐计其余.”三年之后,利玛窦去世,留下校订的手稿.徐光启据此将前6卷旧稿再一次加以修改,重新刊刻传世.他对未能完成全部的翻译而感遗憾,在《题<几何原本>再校本》中感叹道:“续成大业,未知何日,未知何人,书以俟焉.”整整250年之后,到1857年,后9卷才由英国人伟烈亚力(Alexander Wylie,1815—1887)和李善兰(1811—1882)共同译出.但所根据的底本已不是克拉维乌斯的拉丁文本而是另一种英文版本.伟烈亚力在序中只提到底本是从希腊文译成英文的本子,按照英译本的流传情况,可能性最大的是I.巴罗(Barrow,1630—1677,牛顿的老师)的15卷英译本,他在1655年将希腊文本译成拉丁文,1660年又译成英文.李、伟译本(通称‘清译本”)至今已有100多年,现已不易看到,况且又是文言文,名词术语和现代有很大差异,这更增了研读的困难,因此重新翻译是十分必要的.徐、利前6卷的译本(通称“明译本”)在“原本”之前加上“几何”二字,称译本为《几何原本》.清译本的后9卷沿用这个名称一直到现在.这“几何”二字是怎样来的?目前有三种说法:(1)几何是拉丁文geometria字头geo的音译.此说颇为流行,源出于艾约瑟(Joseph Edkins,1825—1905,英国人)的猜想,记在日本中村正直(1832—1891)为某书所写的序中.(2)在汉语里,“几何”原是多少、若干的意思,而《原本》实际包括了当时的全部数学,故几何是“mathematica”(数学)或“magnitude”(大小)的意译.(3)《原本》前6卷讲几何,卷Ⅶ—Ⅹ是数论,但全用几何方式来叙述,其余各章也讲几何,所以基本上是一部几何书.内容和中国传统的算学很不相同.为了区别起见,应创新词来表达.几何二字既和“geometria”的字头音近,又反映了数量大小的关系,采用这两个字可以音、意兼顾.这也许更接近徐、利二氏的原意.《原本》内容简介明、清译本因为是修订增补本,和现行的希思英译本有相当大的出入,下面以希思本为主,兼顾明、清译本,作一简要的介绍.卷1首先给出23个定义.如1.点是没有部分的(A point isthat which has no part); 2.线只有长而没有宽(A line is bread-thless length),等等.还有平面、直角、垂直、锐角、钝角、平行线等定义.前7个定义实际上只是几何形象的直观描述,后面的推理完全没有用到.明译本(即克拉维乌斯增补本)在原文的基础上加入很多说明,将23个定义拆成“界说三十六则”.一开头还对“界说”加以界说:“凡造论,先当分别解说论中所用名目,故曰界说.”下面指出几何研究的对象:“凡论几何,先从一点始,自点引之为线,线展为面,面积为体,是名三度.”可见在明译本中,几何(几何学)研究的是由点、线、面、体构成的图形,和数学研究的对象不同,两者有广狭之分.但在别的地方,几何就是“大小”、“多少”的意思,即通常所说的“量”,和“数”是有区别的.如卷Ⅴ第2界:“若小几何能度大者,则大为小之几倍”,现可译为“当一个较大的量能被较小的量量尽时,较大的量叫做较小量的倍量(multiple)”.定义之后,是5个公设,头3个是作图的规定,第4个是“凡直角都相等”.这几个都是显而易见的,没有引起什么争论,第5个就很复杂:“若一直线与两直线相交,所构成的同旁内角小于二直角,那么,把这两直线延长,一定在那两内角的一侧相交”.这就是后来引起许多纠纷的“欧几里得平行公设”或简称第5公设.公设后面,还有5条公理,如1.等于同量的量彼此相等;5.整体大于部分;等等.以后各卷不再列其他公理.在《原本》中,公设(postulate)主要是关于几何的基本规定,而公理(axiom)是关于量的基本规定.将两者分开是从亚里士多德开始的,现代数学则一律称为公理.由于平行公设不象其他公理那么简单明了,人们自然会怀疑,欧几里得把它列为公设,不是它不可能证明,而是没有找到证明.这实在是这部千古不朽巨著的白璧微瑕.从《原本》的产生到19世纪初,许多学者投入无穷无尽的精力,力图洗刷这唯一的“污点”,最后导致非欧几何的建立.这一卷在公理之后给出48个命题.前4个是:1.在已知线段上作一等边三角形.2.以已知点为端点,作一线段与已知线段相等.3.已知大小二线段,求在大线段上截取一线段与小线段相等.4.两三角形两边与夹角对应相等,则这两三角形相等.这里两三角形“相等”,指的是“全等”,但在这一卷命题35以后,相等又有另外的含义,它可以指面积相等.现在已把图形全等(congruent)与等积(equiareal或equivalent)区分开来,而在《原本》中是用同一个字眼(equal)来表示的.不过欧几里得从来没有把面积看作一个数来运算,面积相等是“拼补相等”.命题5颇有趣:等腰三角形两底角相等,两底角的外角也相等.现在通常是用引顶角平分线来证明的,但作角的平分线是命题9,这里还不能用,只能用前4个命题以及公设、公理来证.证法是延长AB至D,AC至E[公设2],在AD上任取一点B',在AE上截取AC=AB'[命题3],连接B'C,BC'[公设1].接着证△AB'C≌△ABC'[命题4],故知B'C=BC',∠BB'C=∠CC'B,又BB'=CC',于是△BB'C≌△BC'C.由此就不难推出命题的结论.中世纪时,欧洲数学水平很低,学生初读《原本》,学到命题5,觉得线和角很多,一时很难领会,因此这个命题被戏称为“驴桥”(pons asinorum,asses’bridge,意思是“笨蛋的难关”)后面的命题包括三角形、垂直、平行、直线形(面积)相等等关系.命题44:用已知线段为一边,作一个平行四边形,使它等于已知三角形,且有一个角等于已知角.设AB是已知线段,S是已知三角形,α是已知角.延长AB,作∠EBC=α,根据43命题,可作一个EBCD=S.过A作 FA∥EB交 ED的延长线于 F,连FB并延长之,交DC的延长线于G(因∠EDC与∠DEB 互补,但∠EFB<∠DEB,故∠EDC+∠EFB小于二直角,按平行公设,FB与DC延线必相交),过G作GN∥BC交 EB,FA的延长线于 M,N.因AM=EC=S,故AM即为所求.欧几里得的术语是“将平行四边形AM贴合到线段AB上去”.普罗克洛斯评注《原本》时指出,“面积的贴合”(application of areas)是古希腊几何学的一种重要方法,它是毕达哥拉斯学派发现的.(见[2],vol.I,p.343.)如果已知角α是直角,则所求的平行四边形是矩形,矩形另一边未知,设为x.命题化为解一次方程ax=S的问题,或用几何作图进行除法S÷a运算的问题.命题47就是有名的勾股定理:“在直角三角形斜边上的正方形等于直角边上的两个正方形.”这里相等仍然是指拼补相等,不牵涉到长度、数的关系.本卷最后一个命题(命题48)是勾股定理的逆定理.卷Ⅱ包括14个命题,用几何的形式叙述代数的问题,即所谓“几何代数学”(geometrical algebra).一个数(或量)用一条线段来表示,两数的积说成两条线段所构成的矩形,数的平方根说成等于这个数的正方形的一边.命题1:设有两线段,其中之一被截成若干部分,则此两线段所构成的矩形等于各个部分与未截线段所构成的矩形之和.相当于恒等式a(b+c+d +…)=ab+ac+ad+…命题4:将一线段任意分为两部分,在整个线段上的正方形等于在部分线段上的两个正方形加上这两部分线段所构成的矩形的二倍.相当于(a+b)2=a2+2ab+b2.命题5是值得注意的,它相当于二次方程的解法.今用现代术语、符号解释如下:设C是线段AB的中点,D是另一任意点,则AD与DB所构成的矩形加上CD 上的正方形等于CB上的正方形.证明]完成□CEFB,连对角线EB,作DG∥CE交EB于H,过H作 KM∥AB,作 AK⊥KM.因AL=CM,CH=HF,DB=HD,故AD与DB所构成的矩形= AH=AL+CH=CM+HF,同加上CD(=LH)上的正方形□LG,即得命题的结论.1756年,R.西姆森(Simson,1687—1768)注释《原本》的英译本时指出,将本命题(记为Ⅱ5)稍加改变,即相当于二次方程的解法.已知线段AB=a,求其上一点D,使AD与DB所构成的矩形等于已知□b2(以b 为边的正方形).设DB=x,列成方程得(a-x)x=b2或x2-ax+b2=0.由Ⅱ5,AD与DB 所构成的AH=□CF-□LG,利用勾股定理(147),作一个正方形等于二正方形的差是轻而易举的,现□CF,□b2已知,作两者之差即得□LG,由此得CD及x.具体的作法是:取AB中点C,作CE⊥AB,在CE上取O点,使OC=b,以O为心,CB为半径作弧交AB于D,D',则 D就是所求的点,由于对Ⅱ5的另一种形式是恒等式用的恒等式.若令 a=(2n+1)2,b=1,代入上式化简为(2n+1)2+(2n2+2n)2=(2n2+2n+1)2.可得由毕达哥拉斯求出的勾股数组(用正整数表示直角三角形的三边):2n+1,2n2+2n,2n2+2n+1.与此相仿,命题6相当于求解另一种类型的方程x2+ax-b2=0.命题11:分已知线段为两部分,使它与一小线段所构成的矩形等于另一小线段上的正方形.相当于解方程x2+ax-a2=0.这就是将线段分成“中末比”,后来叫做“黄金分割”的著名问题.后面卷Ⅳ命题10“作一等腰三角形,使底角是顶角的两倍”,也就是作出36°及72°角,从而能作出正5边形和正10边形.卷Ⅵ命题30:“截已知线段成中末比”,都是同一问题的不同表现形式.卷命题9再次提出正10边形、正6边形与中末比的关系,可见欧里几得很重视这个分割.命题12,13是三角学中的余弦定理:c2=a2+b2-2abcos C,不过也是用几何的语言来叙述的,没有出现三角函数.卷Ⅲ有37个命题,讨论圆、弦、切线、圆周角、圆内接四边形及有关圆的图形等.较引人注目的是命题16:过直径AB端点A的垂线AD必在圆外,半圆周ACB 与AD之间不可能再插入其他直线,半圆周ACB与AB之间的角比任何锐角都大,剩下的角(与AD间的角)比任何锐角都小.与AD间的角究竟算不算角?在历史上有很大争论.在普罗克洛斯的评注中称它为“牛角”(horn-like angle),这绰号在欧几里得以前早已有,在《原本》中没有使用,也没有说它的值是零.若作一系列切于A点的圆,似乎圆越小,“牛角”越大,但命题的结论并非如此.如果说它的值是零,角边应处处重合,而图形不是这样.这些疑问按现在曲线交角的定义已经解决,“牛角”的值是零.卷Ⅳ有16个命题,包括圆内接与外切三角形、正方形的研究,圆内接正多边形(5边、10边、15边)的作图.最后一题是正15边形的作图.普罗克洛斯认为和天文学有关,因为在埃拉托塞尼(Eratosthenes,约公元前276—前195)之前,希腊天文家认为黄赤交角(黄道与天球赤道交角)是24°,即圆周角360°的 1/15.后来埃拉托塞尼测出是180°的11/83,约23°51'20″.卷Ⅴ是比例论.后世的评论家认为这是《原本》的最高的成就.毕达哥拉斯学派过去虽然也建立了比例论,不过只适用于可公度量.如果A,B两个量可公度,即存在两个正整数m,n使为A与B无法相比.这样就很难建立关于一切量的比例理论.摆脱这一困境的是欧多克索斯(Eudoxus of Cnidus,公元前4世纪),他用公理法重新建立了比例论,使它适用于所有可公度与不可公度的量.可惜他的著作已全部失传,好在还有相当一部分保存在《原本》中,如卷Ⅴ就主要取材于欧多克索斯的工作,当然也有欧几里得本人的加工整理,有的还散见于卷Ⅻ,Ⅵ,Ⅹ,之中.卷Ⅴ首先给18个定义.定义3:比是两个同类量之间的大小关系.定义4:如果一个量加大若干倍之后就可以大于另一个量,则说这两个量有一个“比”(ratio).这样就突破了毕达哥拉斯认为只有可公度量才可以比的限制.实际上,如果承认了“阿基米德公理”或“欧多克索斯公理”(在卷Ⅹ命题1正式使用):“两个有限的同类量,任一个加大适当的倍数后就能大于另一个”,任何两个有限量都有比,不必考虑可否公度.尽管不承认这个“比”是数,仍然不妨碍以此为起点建立适用于一切量的比例论.现在已经有严格建立的实数理论和完整的比例论,如果A∶B=C∶D,则有A∶nB=mC∶nD(m,n是任意正整数),从而由mA>nB可推出mC>nD,由mA<nB可推出mC<nD,由mA=nB可推出mA=nB.这是比例的基本性质.《原本》巧妙地利用这一性质来作比例的定义,即定义4:设有A,B,C,D4个量, A与C,B与D分别乘以同样的倍数m,n,如果。
欧几里得与《原本》课件人教新课标(6)
欧几里得(Euclid,活动于约前300-)古希腊数学家。以其所著的《几何本来》 闻名于世。关于他的生平,现在知道的很少。早年大概就学于雅典,深知柏拉图 的学说。
• 公元前300年左右,在托勒密王一世(公元前306~前283)的邀请下,来到 亚历山大,长期在那里工作。他是一位温良敦厚的教育家,对有志数学之士,总 是循循善诱。但反对不肯刻苦钻研、投机取巧的作风,也反对狭隘实用观点。据 普罗克洛斯(约410~485)记载,托勒密王曾经问欧几里得,除了他的《几何 本来》之外,还有没有其他学习几何的捷径。欧几里得回答说:“在几何里,没 有专为国王铺设的大道。”这句话后来成为传诵千古的 学习箴言。
• 欧多克斯对照例的界定并未限制涉及到的量是否可以公度,从而奇 妙地躲避了无理量问题,因而能够适用于更加广泛的几何命题证明。 《本来》对欧多克斯比例理论的精彩阐述。这被认为是该书的最大成绩 之所在,因为它在当时的认识水平上,消除了由不可公度量引起的数学 危机。
• 从任意一点到另外任意一点可以画直线; • 一条有限直线可以继续延长; • 以任意点为心及任意的距离可以画圆; • 凡直角都彼此相等; • 同平面内一条直线和另外两条直线相交,若在某一侧的两个内角的和
欧几里得与《本来》
从公元前338年希腊联邦被马其顿控制,到公元前30年罗马消灭最后一 个希腊化国家托勒密王国的三百余年,史称希腊数学的“黄金时代”。
古希腊灭亡,罗马成为地中海区域的统治者为止,希腊数学以亚历山 大为中心,到达它的全盛时期。这里有巨大的图书馆和浓厚的学术空气, 各地学者云集在此进行教学和研究。其中成绩最大的是亚历山大前期三大 数学家欧几里得、阿基米德和阿波罗尼奥斯
《本来》的功绩
第一,用了重合法。(其一,用了运动的概念,而这是没有逻辑根据 的;其二,重合法默认图形从一处移动到另一处时所有性质保持不变。)
欧几里德
欧几里德欧几里德(Euclid of Alexandria),希腊数学家、约生于公元前330年,约殁于公元前260年、欧几里德是古代希腊最负盛名、最有妨碍的数学家之一,他是亚历山大里亚学派的成员、欧几里德写过一本书,书名为《几何原本》(Elements),共有13卷、这一著作关于几何学、数学和科学的以后进展,关于西方人的整个思维方法都有特别大的妨碍、《几何原本》的要紧对象是几何学,但它还处理了数论、无理数理论等其他课题、欧几里德使用了公理化的方法、公理(axioms)确实是确定的、不需证公理为前提,或者以被证明了的定理为前提、这一方法后来成了建立任何知识体系的典范,在差不多2000年间,被奉为必须遵守的严密思维的范例、《几何原本》是古希腊数学进展的顶峰、《几何原本》的差不多原理和定理直到现在仍是科学教科书的一部分,我们日常生活中处处能看到《几何原本》中提到的公理、命题和推理、然而,《几何原本》真正的伟大之处,并不仅仅在于其中提及的公理和推论,还在于:1、《几何原本》奠定了人类知识体系进展的逻辑基础、它以几个简单的定义、几个显而易见的公理为基础,进一步推导出一系列推论,最终构成了几何学的完整逻辑体系大厦、这种逻辑分析方法称为后来人类知识体系进展的通用模式、牛顿的力学原理、爱因斯坦的相对论基本上遵循欧几里得的推理演绎方法取得的、2、《几何原本》事实上不是一本数学著作,按照欧几里德的本意,它是探究神存在的证据的哲学著作、欧几里德并不盼望人们应用几何原理去盖房、造船,他盼望通过揭示世间万物之间存在的各种巧妙的几何关系,向人们证明神的存在,在他眼里,数学是现实世界通往理想世界的桥梁,而理想世界确实是神存在的地方、事与愿违、几千年后,《几何原本》尽管流传至今,但人们更加看重的是它给日常生活所带来的生产效应,它的哲学本质却被忽略、假如你认真地阅读一遍《几何原本》,你会发明,原来在中学课堂里学过的几何知识是这么优美而和谐,其间蕴藏的巧妙和精准,确非人力之所及、这种感受与人们看到埃及金字塔,复活节岛石像时的感受是完全一致的,它们基本上“神迹”!。
欧几里得与欧几里得几何
几何原本几何原本书籍简介定义公理公设主要内容意义影响传播情况传入中国所获评价图书信息书籍简介定义公理公设主要内容意义影响传播情况传入中国所获评价图书信息•内容简介•作者简介•图书目录展开几何原本古希腊大数学家欧几里得是与他的巨著——《几何原本》一起名垂千古的。
这本书是世界上最著名、最完整而且流传最广的数学著作,也是欧几里得最有价值的一部著作。
在《原本》里,欧几里得系统地总结了古代劳动人民和学者们在实践和思考中获得的几何知识,欧几里德把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。
而这本书,也就成了欧式几何的奠基之作。
两千多年来,《几何原本》一直是学习几何的主要教材。
哥白尼、伽利略、笛卡尔、牛顿等许多伟大的学者都曾学习过《几何原本》,从中吸取了丰富的营养,从而作出了许多伟大的成就。
《几何原本》是古希腊数学家欧几里得的一部不朽之作,集整个古希腊数学的成果和精神于一书。
既是数学巨著,又是哲学巨著,并且第一次完成了人类对空间的认识。
除《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛,能够与《几何原本》相比。
编辑本段定义公理公设23条定义1. 点是没有部分的东西2.线只有长度而没有宽度3.一线的两端是点4.直线是它上面的点一样地平放着的线5.面只有长度和宽度6.面的边缘是线7.平面是它上面的线一样地平放着的面8. 平面角是在一平面内但不在一条直线上的两条相交线相互的倾斜度.9. 当包含角的两条线都是直线时,这个角叫做直线角.10. 当一条直线和另一条直线交成邻角彼此相等时,这些角每一个被叫做直角,而且称这一条直线垂直于另一条直线。
11. 大于直角的角称为钝角。
12. 小于直角的角称为锐角13. 边界是物体的边缘14. 图形是一个边界或者几个边界所围成的15. 圆:由一条线包围着的平面图形,其内有一点与这条线上任何一个点所连成的线段都相等。
欧几里得原本十三卷
主讲人:xxxx
《几何原本》(希腊语Στοιχεῖ)
是古希腊数学家欧几里得所著的一部数
学著作,共13卷。这本著作是现代数学
的基础,在西方是仅次于《圣经》而流
传最广的书籍。
欧几里得约于前300年写成《几何
原本》。它翻译成阿拉伯文,然后再
二手翻译成拉丁文。最先的印制本出 现于1482年。希腊文版的文字仍然存
足球是由二十个正六边形、十二个正五边形组成若 正二十面体棱边的三分之一处切去角。
食盐的结晶体是正六面体,明矾的结晶体是正八面
体,硫化铁结晶体有时会出现接近正十二面体的形状。
金字塔是正四面体。
病毒都是正二十面体(SARS) 具有正二十面体的艾滋病病毒 ——魔鬼与天使的结合体
构 成 面 正 八 面 体 等 边 三 角 形
图形
几何数据
表面积: 12a 2 体积: 2 a 3 3 二面角角度: arccos( 1 ) 外接球半径:
内接球半径:
2 a 2 a 6
3
构 成 面 正 十 二 面 体 正 五 边 形
图形
几何数据
表面积: 25 10 5 a 2 3
1 (15 7 5 ) a 3 4 5 arccos( ) 二面角角度: 5
对称性:每个正多面体是相似多 面体所属点群中对称性最高的。 对偶性:正六面体与正八面体对 偶,正十二面体与正二十面体对偶。 欧拉公式:V-E+F=2 五个正多面体间的关系
正四面体
正八面体
正六面体
正二十面体
正十二面体
正多面体的应用:
柏拉图视火、空气、水、土四个元
素为原子,其形状如正多面体中 其中四个 。
体积:
欧几里得和他的《几何原本》
欧几里得和他的《几何原本》(—)欧几里得传略欧几里得(Euclid,拉丁文拼为Euclides或Eucleides,希腊文Εύκλείδηρ,公元前300年前后)是希腊数学家,以其所著的《几何原本》(Elements, Σηασεια)闻名于世,对于他的生平,现在知道的很少,他生活的年代,是根据下列的记载来确定的,普罗克洛斯(Proclus, Ππόκλορ,412?——485)是雅典柏拉图园1 晚期的导师,公元450年左右,他给《几何原本》作注,写了一个简明的《几何学发展概要》2(以下简称《概要》),字数虽不多,但已包括从泰勒斯(Thales,Θαληρ,公元前640?年——546?)到欧几里得数百年间主要数学家的事迹,这是几何学史的重要资料。
《概要》中指出,欧几里得是托勒密一世 3 时代的人,早年学于雅典,深知柏拉图的学说。
又说阿基米德(Archimedes, Άπσιμήδηρ,公元前287~212)的书引用过的《几何原本》的命题4,可见他早于阿基米德。
另一位学者帕波斯(Pappus, Πάππορ,公元300~350前后)在《数学汇编》中提到阿波罗尼奥斯(Apollonius, Άπολλώςιορ,约公元前225)长期住在亚历山大,和欧几里得的学生在一起,这说明欧几里得在亚历山大教过学。
综上所述,欧几里得应该是公元前300年前后的人。
《概要》还记述了这样一则故事:托勒密王问欧几里得说,除了他的《几何原本》之外,还有没有其他学习几何的捷径,欧几里得回答道:“在几何里,没有专为国王铺设的大道”(There is no royal road to geometry)5,这句话成为传诵千古的学习箴言6。
斯托比亚斯(Stobaeus,约500)记述另一则故事,说一个学生才开始学习第一个命题,就问学了几何学之后将得到些什么,欧几里得说:“给他三个钱币,因为他想在学习中获取实利。
”由此可知欧几里得主张学习必须循序渐进、刻苦钻研,不赞成投机取巧的作风,也反对狭隘实用观点。
数学史(11):欧几里得与《几何原本》
数学史(11):欧几里得与《几何原本》一个人当他最初接触欧几里得几何学时,如果不曾为它的明晰性和可靠性所感动,那么他是不会成为一个科学家的。
——爱因斯坦古典时期学者们的数学工作的精华,幸运地在欧几里得和阿波罗尼斯两个人的著作中流传到今天。
从生活年代来说,两人都属于希腊历史上第二个大分期,即亚历山大时期。
但他们的著作的内容和精神都是属于古典时期的。
首先介绍欧几里得。
一、背景欧几里得(Euclid,约公元前330年—公元前275年),出生于雅典的古希腊数学家,欧氏几何开创者,被称为“几何之父”。
年轻时在柏拉图学院求学,后应托勒密王邀请在埃及的亚历山大城办学授徒,并于公元前300年完成《几何原本》的编著。
《几何原本》共分13卷,包含了5条公理、5条公设、23个定义和467个命题,是一部集前人思想和欧几里得个人创造性于一体的不朽之作,基本囊括了从公元前7世纪一直到公元前4世纪前后总共400多年的数学发展历史,并使几何学成为一门独立的、演绎的科学——欧氏几何。
《几何原本》开创了基于公理化基础、利用演绎逻辑推导出结论(定理)进而建立系统化知识体系的方法——公理化方法,成为后来2000多年间建立任何知识体系必须遵守的严密思维的范式。
牛顿的《自然哲学之数学原理》即照此范式写成。
最早的中译本是1607年(明代万历35年)由意大利传教士利玛窦和徐光启合译出版的,只译了15卷本的前6卷,它是我国第一部数学翻译著作。
取名为《几何原本》,中文“几何”的名称就是从这里开始的。
而后9卷的引入是在两个半世纪后的1857年由清朝的学者李善兰和英国人韦列亚力翻译补充的。
二、《几何原本》里的定义和公理定义1、点是没有部分的那种东西。
2、线是没有宽度的长度。
(注:线这个字指曲线)3、一线的两端是点。
(注:书中没有无限伸展的线)4、直线是同其中个点看齐的线。
(注:书中直线指线段)5、面是只有长度和宽度的那种东西。
6、面的边缘是线。
(注:所以是有界的)7、平面是与其上直线看齐的那种面。
人教版数学七年级下册-几何原本
《几何原本》欧几里得的《几何原本》共有十三卷,其中第一卷讲三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件;第二卷讲如何把三角形变成等积的正方形;第三卷讲圆;第四卷讨论内接和外切多边形;第六卷讲相似多边形理论;第五、第七、第八、第九、第十卷讲述比例和算术得里论;最后讲述立体几何的内容。
从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。
因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。
属于《几何原本》内容的几何学,人们把它叫做欧几里得几何学,或简称为欧式几何。
《几何原本》最主要的特色是建立了比较严格的几何体系,在这个体系中有四方面主要内容,定义、公理、公设、命题(包括作图和定理)。
《几何原本》第一卷列有23个定义,5条公理,5条公设。
(其中最后一条公设就是著名的平行公设,或者叫做第五公设。
它引发了几何史上最著名的长达两千多年的关于“平行线理论”的讨论,并最终诞生了非欧几何。
)这些定义、公理、公设就是《几何原本》全书的基础。
全书以这些定义、公理、公设为依据逻辑地展开他的各个部分的。
比如后面出现的每一个定理都写明什么是已知、什么是求证。
都要根据前面的定义、公理、定理进行逻辑推理给予仔细证明。
关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。
所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。
欧几里得《几何原本》的诞生在几何学发展的历史中具有重要意义。
它标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。
从欧几里得发表《几何原本》到现在,已经过去了两千多年,尽管科学技术日新月异,但是欧几里得几何学仍旧是中学生学习数学基础知识的好教材。
欧几里得《原本》
《原本》《原本》是古希腊数学家欧几里得的一部不朽之作,集整个古希腊数学的成果和精神于一书。
既是数学巨著,又是哲学巨著,并且第一次完成了人类对空间的认识。
除《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛,能够与《原本》相比。
《原本》大约成书与公元前300年,原书早已失传,如今见到的《原本》是经过后来的数学家们修改过的,而且有的包含13卷,有的包含15卷,书中大部分内容有关图形的知识(即几何知识)。
至今这本书是流传最广、影响最大的一部世界数学名著,它对数学及其他科学乃至人类的思想所产生的巨大推动作用是其他著作无法取代的。
这本著作最主要的特色是建立了比较严格的几何体系,在这个体系中有四方面主要内容,定义、公理、公设、命题(包括作图和定理)。
《几何原本》第一卷列有23个定义,5条公理,5条公设,其中最后一条公设就是著名的平行公设。
这些定义、公理、公设就是《几何原本》全书的基础。
全书以这些定义、公理、公设为依据逻辑地展开他的各个部分的。
比如后面出现的每一个定理都写明什么是已知、什么是求证。
都要根据前面的定义、公理、定理进行逻辑推理给予仔细证明。
《原本》的诞生在几何学发展的历史中具有重要意义。
它标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。
另外,这本著作传入我国是在明代,1582年,意大利人利玛窦到我国传教,带来了15卷本的《原本》。
1600年,明代数学家徐光启(1562- 1633)与利玛窦相识后,便经常来往。
1607年,他们把该书的前6卷平面几何部分合译成中文,并改名为《原本》。
后9卷是1857年由我国清代数学家李善兰(1811-1882)和英国人伟烈亚历译完的。
欧几里得的《原本》
欧几里得在数学史上声名显赫,得益于他编纂的《原本》这部著作对西方思想有着深远的影响,人们一个世纪又一个世纪地研究、分析和编辑此书,直至现代。据说在西方文明的全部书籍中,只有《圣经》才能够与欧几里得的《原本》比美。
得到人们高度评价的《原本》是一部大型汇编书籍,全书分为13篇,465个命题,其涉及范围,从平面几何、立体几何到数论,无所不包。今天,人们一般认为,在所有这些定理中,只有比较少的一部分是欧几里得本人创立的。尽管如此,但从整个希腊数学体系来看。他毕竟创造了一个数学宝库,它是如此的成功,如此的受人尊崇,以致于所有前人的类似著作都相形见细。欧几里得的著作很快就成为了一种标准。如此一来,如果一个数学家说到I.47,就只能意为《原本》第一篇第47命题,而无须解释我们所说的是《原本》,犹如人们一提到《列王记》7:23,就知道说的是《圣经》一样。
欧几里得几何学
2.1 早期几何知识
• 约公元前300年,古希腊数学家欧几里得 集前人之大成,总结了人们在生产、生活 实践中获得的大量的几何知识,规定了少 数几个原始假定为公理、公设,并定义了 一些名词概念,通过逻辑推理,得到一系 列的几何命题,形成了欧几里得几何学, 简称欧氏几何。
2.2 著名作品
• 欧几里得著有《几何原本》(以下简称《原本》)一 书,该书共13卷,除第5、7、8、9、10卷是用几何方法讲 述比例和算术理论以外,其他各卷都是论述几何问题的。 这部书成为传播几何知识的教科书达2000年之久,现代初 等几何学(即平面几何和立体几何)的内容基本全包括在 此书内。中国最早的译本是明代万历年间(1607)由大学 士徐光启与意大利天主教传教士利玛窦合译的《几何原本》 前6卷。《原本》之所以具有价值,不仅因为欧几里得非 常详尽地搜集了当时所知道的一切几何资料,而更重要的 是把那些分散的知识用逻辑推理的方法编排成一个有系统 的演绎的几何学体系。他是历史上第一个创造了一个比较 完整的数学理论的人
3.4 缺点
欧几里得的《几何原本》,虽然在教育和科学意义上, 在历史上受到很高的评价,但用现在的科学水平衡量,它 的几何逻辑结构在严谨性上还存在很多缺点。首先,欧几 里得的定义并不能成为一种数学定义,有的不过是几何对 象点、线、面的一种直观描述,有的含混不清,这些定义 在后面的论证中,实际上是无用的。其次,欧几里得的公 设和公理,是远不够用的,因而在《几何原本》的许多命 题的论证中,不得不借助直观,或者或明或暗地引用了用 他的公设和公理无法证明的事实。特别要指出的是研究 《几何原本》的许多学者都注意到欧几里得的第五公设比 较复杂,看来很象定理。欧几里得之后的两千年很多学者 都试图用其他公设和公理加以证明,但都失败。直到19世 纪,C.F.高斯、H.И.罗巴切夫斯基、J.波尔约、(G.F.) B.黎曼等发现了非欧几何,才了解到欧几里得第五公设不 是其余公设和公理的推论,不能用那些公设和公理来证明, 而是一个独立的命题。 • 在欧几里得几何体系中,第五公设和“在平面内过已 知直线外一点,只有一条直线与已知直线平行”相等价, 现在把后一命题称作欧几里得平行公理。它体现了“欧几 里得几何”与“非欧几里得几何”的区别。
使用最久的数学教科书《几何原本》
使用最久的数学教科书《几何原本》«几何原本»〔TheElements〕由希腊数学家欧几里得〔Euclid,公元前330年~公元前275年〕所著,是用公理方法树立归结数学体系的最早模范。
是至今传达最广、影响最大的一部世界数学名著。
«几何原本»全书共13卷。
第1卷,给出了欧几里得几何学的基本概念、定义、公理、公设等;第2卷,面积和变换;第3卷,圆及其有关图形;第4卷,多边形及圆与正多边形的作图;第5、6卷,比例与相似形;第7卷,数论;第8卷,连比例;第9卷,数论;第10卷,不可通约量的实际;第11卷,平面几何;第12卷,应用〝穷竭法〞证明圆面积的比等于半径平方的比;球体积的比等于半径立方的比,等等;第13卷,正多面体。
«几何原本»一书从很少的几个定义、公设、公理动身,推导出少量结果,最重要的是它给出的公理体系标志着归结数学的成熟,主导了其后数学开展的主要方向,使公理化成为现代数学的基本特征之一。
«几何原本»是数学史上的一个伟大的里程碑,问世以来,遭到普遍的注重与传达。
除«圣经»之外,没有任何一本著作,其运用、研讨与印行之普遍能与«几何原本»相比。
2021多年来,它不时支配着几何的教学。
因此,有人称«几何原本»为数学的«圣经»。
战争使少量人类文明和珍贵书籍化为灰烬。
欧几里得的«几何原本»手稿至今也荡然无存。
现存«几何原本»的一种版本是公元4世纪末泰恩(Theon)的«几何原本»修订本。
还有一个版本是18世纪在梵蒂冈图书馆发现的一个10世纪的«几何原本»希腊手抄本,其内容早于泰恩的修订本。
«几何原本»传人中国,首先应归功于明末迷信家徐光启。
徐光启(1562~1633),字子先,上海吴淞人。
欧几里得与《原本》课件人教新课标(2)
故 N2 至少有两个不同的素因数.
令 N3 nn1nn11 ,
又 nn1,nn11 1,故 N3 至少有三个不同的素因数
此进程无限进行下去,得素数有无穷多个.
二、《本来》内容简介
卷Ⅹ 讨论无理量,实际只涉及 a b
共115个命题. 但卷Ⅹ命题1 十分重要.
题,讨论正整数的性质,如:
Ⅶ,32 任一数或者是素数,或者可被某数
所量尽.
Ⅸ,20 预先给定任意多个素数,则有比它
们更多的素数.
Ⅸ,20 的证明
A--- B----
设 A,B,C 是预先给定的素数.可证有比 A,B,C
C-------- G-----------
更多的素数.
为此,取能被 A,B,C 量尽的最小数,并设它为 DE, E ------------------ D --F
Henry Perigal (1801-1898) This really shows the two squares on the sides becoming the square on the hypotenuse
二、《本来》内容简介
卷Ⅱ 给出两个定义,14个命题,是用几 何情势叙述代数问题,如:
故证明了素数的个数是无穷的.
证完
欧几里得的原始证明是先假设只有 A,B,C 三个素数(当然这也太特殊了),然后推出还有这
三个素数以外的素数存在. 而现在的证明不过是将三个改为任意 k 个,这在方法上并没有本质区
别.
库默尔(Kummer,1810----1893)
在1878年给出欧几里得证明的一个奇妙变形:
再给 DE 加上单位 DF. 那么 EF 或者是素数或者不是素数.