人教版初一数学 平行线及其判定(基础)知识讲解
七年级数学下《平行线及其判定》笔记

七年级数学下《平行线及其判定》笔记
一、平行线的定义
平行线是指在同一平面内,两条直线没有交点,或者说两条直线之间的距离处处相等。
二、平行线的判定定理
1.同位角相等:当两条直线被第三条直线所截,如果同位角相等,则这两条直线
平行。
2.内错角相等:当两条直线被第三条直线所截,如果内错角相等,则这两条直线
平行。
3.同旁内角互补:当两条直线被第三条直线所截,如果同旁内角互补(即角度和
为180°),则这两条直线平行。
三、应用实例
1.交通标志:在公路上,车道线通常都是平行的,这些线可以帮助驾驶员判断车
辆是否在正确的车道上行驶。
2.建筑设计:在建筑设计中,为了确保建筑物的稳定性,通常会使用平行线来构
建平行的梁和柱子。
3.机械制造:在机械制造中,为了确保机器的精确度,常常需要使用平行线来检
测和调整机器的部件。
四、注意事项
1.平行线必须在同一平面内定义。
2.平行线的判定定理必须同时满足,不能只满足其中一条。
3.在实际应用中,要结合具体情境判断两条线是否平行。
五、练习与巩固
1.判断题:给出一些线段的图片,判断它们是否平行。
2.选择题:给出一些关于平行线的描述,选择正确的判定定理。
3.应用题:结合实际问题,例如计算平行线的距离、判断两条线是否平行等。
人教版七年级数学课件《平行线的判定》

B.①③
C.①④
D.③④
2.如图,下列条件中,能判断直线.l1//l2的是( B )
A.∠2=∠3
C.∠4+∠5=180°
B.∠1=∠3
D.∠2=∠4
达标检测
人教版数学七年级下册
3.如图,下列条件中,能判断直线l1//l2的是( C )
A.∠1=∠2
C.∠1+∠3=180°
B.∠1=∠5
D.∠3=∠5
得∠1=∠2(等量代换),
内错角相等,两直线平行
所以_________(________________________).
AE∥GF
针对练习
人教版数学七年级下册
已知如图所示,∠ = ∠,点、、在同一条直线上,
∠ = ∠ + ∠,且平分∠,试说明 ∥ 的理由.
复习回顾
人教版数学七年级下册
如何用直尺和三角板过直线AB外一点P做AB的平行线CD.
知识精讲
人教版数学七年级下册
在用直尺和三角尺画平行线的过程中,直尺和三角尺分别
起着什么样的作用?
知识精讲
人教版数学七年级下册
可以看出,画直线AB的平行线CD,实际上就是过点P画与∠2
在用直尺和三角尺画平行线的过程中,直尺和三角尺分别
4.如图,下列结论中正确的是( C)
A.若∠1=∠4,则m//c
B.若∠1=∠2,则a//b
C.若∠1+∠3=180,则n//c
D.若∠2+∠3=180°,则m//n
达标检测
人教版数学七年级下册
5.如图(1),光线AB,CD被一个平面镜反射,此时
∥
CD
∠1=∠3,∠2=∠4,则AB // _____,BE_____DF.
七年级下册平行判定知识点

七年级下册平行判定知识点在七年级数学中,平行判定是一个重要的知识点。
理解平行线的概念和特性,掌握平行线的判定方法,是学好平行线相关知识的前提。
一、平行线的概念和特性1. 平行线的概念:如果两条直线在同一平面内且没有交点,则这两条直线互相平行。
2. 平行线之间的特性:(1)两条平行线夹在同一条横线上的对应角相等。
(2)两条平行线夹在同一条平行线上的内角互补,外角相等。
(3)平行线与第三条交线所形成的对应角、内角和外角相等。
二、平行线的判定方法1. 判定法一:同位角相等判定法。
如果两条直线被一条横线分成左右两部分,且在同一边内,对应角相等,则这两条直线互相平行。
2. 判定法二:内部夹角相等判定法。
如果两条直线被一条横线分成左右两部分,且在同一边内,内角互补,则这两条直线互相平行。
3. 判定法三:平行于同一直线的两条直线。
如果两条直线分别与第三条直线平行,则这两条直线互相平行。
4. 判定法四:垂线判定法。
如果一条直线与另一条直线垂直,并且与第三条直线交于同一点上,则这两条直线互相平行。
总之,熟练掌握以上四种判定方法,能够准确判定平行线,有利于学生对平行线的理解和应用。
三、平行线的应用1. 平行线可以用来解决平面图形的性质问题,如找出等边三角形、全等三角形等。
2. 平行线也可以用来解决实际生活中的测量问题,如在制作家具时,需要用到平行线的概念和判定方法。
3. 平行线还可以用来解决其他数学和物理问题,如在研究太阳系星体的运动时,需要用到平行线的概念和特性。
总之,平行线是学习数学的重要知识点之一,理解其概念和方法,能够更好地应用于实际问题的解决中。
希望同学们在学习中认真掌握,提高数学水平,更好地适应未来的学习和工作。
七年级平行线知识点

七年级平行线知识点平行线,顾名思义,就是在同一个平面内不相交且方向相同的线。
在初中数学中,平行线是一个重要的知识点,尤其是在几何中,平行线更是无处不在。
本文将会介绍七年级学生所需掌握的平行线相关知识点。
一、平行线的定义平行线是指在同一平面内不相交的直线,它们的方向相同,永远不会相交。
我们可以使用符号“∥”来表示两条平行线。
二、平行线的判定判定两条直线是否平行,有以下几种方法:1.同位角相等若两条直线在同侧与一条直线相交,且同侧的内角互相相等,则这两条直线是平行的。
2.平行公理平行公理是几何学中的一个基本公理,它是指:如果在一个平面上给定一条直线和一个点,那么可以通过这个点有且仅有一条直线与这条直线平行。
3.反证法对于两条直线,如果它们不相交,那么它们要么平行,要么共面。
如果可以证明两条直线不共面,那么它们就是平行的。
三、平行线的性质1.同位角相等若两条直线与一条直线相交,那么同侧的内角互相相等,同侧的外角互相相等。
2.对顶角相等当两条平行线被一条直线所交,那么同位角对顶角相等,即相对的内角和相等,相对的外角和相等。
3.内错角互补当两条平行线被一条直线所交,那么同位角的内错角互补。
4.平衡定理有一条平行于底边的直线与三角形两边相交,那么这条直线所切割的两条边上的线段成比例。
四、解题方法1.同位角相等解题时需要注意同位角的特性。
当两个角互相对立时,它们是同位角并且相等。
同侧的两个内角之和等于 180°。
2.利用对顶角和内错角求解当两条线被一条直线切割时,对于同一顶点的两个角叫做对顶角,它们相等。
同一边内,错角相等。
3.平衡定理当直线与平行线交错来求解线段成比例的问题是,可以根据平衡定理解题。
即在一条平行于底边的直线与三角形两边相交的时候,这条直线所切割的两边上的线段成比例。
五、总结平行线是几何学中重要的知识点,掌握平行线及其相关性质对于初中生数学学习非常重要。
本文介绍了平行线的定义、判定方法、性质及解题方法,希望对七年级学生的学习有所帮助。
人教版七年级数学下平行线的性质及其判定定理

平行线的性质一、平行线的概念:注意:(1)在平行线的定义中,“在同一平面内”是个重要前提;(2)必须是两条直线;(3)同一平面内两条直线的位置关系是:相交或平行,互相重合的直线视为同一条直线。
进行分类的。
2. 平行线的表示方法平行用“∥”表示,直线AB 与直线CD 平行,记作AB ∥CD ,读作AB 平行于CD 。
3. 平行线的画法4. 平行线的基本性质(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行。
(2)平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也平行。
二、“三线八角”两条直线被第三条线所截,可得八个角,即“三线八角”,如图所示。
(1)同位角:可以发现∠1与∠5都处于直线l 的同一侧,直线a 、b 的同一方,这样位置的一对角就是同位角。
图中的同位角还有∠2与∠6,∠3与∠7,∠4与∠8。
(2)内错角:可以发现∠3与∠5都处于直线l 的两旁,直线a 、b 的两方,这样位置的一对角就是内错角。
图中的内错角还有∠4与∠6。
(3)同旁内角:可以发现∠4与∠5都处于直线l 的同一侧,直线a 、b 的两方,这样位置的一对角就是同旁内角。
图中的同旁内角还有∠3与∠6。
例1. 判断下列语句是否正确,如果是错误的,说明理由。
(1)过直线外一点画直线的垂线,垂线的长度叫做这个点到这条直线的距离;(2)从直线外一点到直线的垂线段,叫做这个点到这条直线的距离;(3)两条直线相交,若有一组对顶角互补,则这两条直线互相垂直;(4)两条直线的位置关系只有相交和平行两种情况。
例2. 如下图所示,直线DE 、BC 被直线AB 所截,请把下面的角分类。
AD12 3E4 B C l 2 3 6 45 1 2 l 1l 3例2 例3例3 如图(1)21∠∠与是两条直线____与___被第三条直线___所截构成的__角。
(2)31∠∠与是两条直线____与______被第三条直线____所截构成的____角。
平行线及其判定知识点(含例题)

平行线及其判定1.平行线的定义和画法(1)平行线的定义:在同一平面内,不相交的两条直线叫做__________,记作a∥b,读作a平行于b.(2)平行线没有公共点;在同一平面内,不重合的两条直线只有两种位置关系:相交和平行,应特别注意“在同一平面内”这一条件,重合的直线视为一条直线.(3)平行线定义满足三个条件:一是在同一平面内,二是两条直线,三是不相交,三者缺一不可.(4)平行线的画法一落:把三角尺一边落在已知直线上;二靠:用直尺紧靠三角尺的另一边;三推:沿直尺推动三角尺,使三角尺与已知直线重合的边过已知点;四画:沿三角尺过已知点的边画直线.【注意】在作图中必须确保直尺定好位置后不再变动位置;三角尺移动时,要始终保持一边紧靠直尺.2.平行线的基本事实及其推论(1)平行线的基本事实(平行公理):经过直线__________一点,有且只有__________条直线与这条直线平行.(2)推论:如果两条直线都与第三条直线__________,那么这两条直线也互相平行.3.平行线的判定(1)判定方法1两条直线被第三条直线所截,如果同位角__________,那么这两条直线平行. 简单说成:__________.(2)判定方法2两条直线被第三条直线所截,如果内错角__________,那么这两条直线平行. 简单说成:__________.(3)判定方法3两条直线被第三条直线所截,如果同旁内角__________,那么这两条直线平行. 简单说成:__________.归纳:判定平行线的思路:(1)定:确定已知条件是位置关系还是数量关系;(2)选:若已知条件是位置关系,则用平行公理的推论证明;若已知条件是数量关系,则选用平行线的3个判定方法证明;(3)证:根据所选证明方法写出证明过程.拓展:在同一平面内,如果两直线都垂直于同一条直线,那么这两条直线平行,即a⊥b,a⊥c,则b∥c.K知识参考答案:1.(1)平行线2.(1)外;一(2)平行3.(1)相等;同位角相等,两直线平行(2)相等;内错角相等,两直线平行(3)互补;同旁内角互补,两直线平行一、平行线的基本事实及其推论的应用强调“经过直线外一点”,而非直线上的点;“有且只有”强调直线的存在性和唯一性.【例1】如图,已知A,B,C三点及直线EF,过B点作AB∥EF,过B点作BC∥EF,那么A,B,C三点一定在同一条直线上,依据是__________.【答案】过直线外一点,有且只有一条直线与已知直线平行【解析】∵AB∥EF,BC∥EF,∴A、B,C三点在同一条直线上(过直线外一点,有且只有一条直线与已知直线平行),故答案为:过直线外一点,有且只有一条直线与已知直线平行.二、平行线的判定方法的综合应用判定两直线平行的一般思路是先看题中存在同位角、内错角、同旁内角中的哪一类角,然后说明同位角或内错角相等,或说明同旁内角互补,从而得出两直线平行.【例2】如图,下列条件不能判定直线a∥b的是A.∠1=∠3 B.∠2=∠4C.∠2=∠3 D.∠2+∠3=180°【答案】C【解析】A、∵∠1=∠3,∴a∥b(同位角相等,两直线平行);B、∵∠2=∠4,∴a∥b(同位角相等,两直线平行);C、∠2=∠3与a,b的位置无关,不能判定直线a∥b;D、∵∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行).故选C.【例3】如图,∠EFB=∠GHD=53°,∠IGA=127°,由这些条件,能找到__________对平行线.【答案】2【解析】∵∠GHD=53°,∴∠GHC=127°,∵∠IGA=127°,∴∠GHC=∠IGA,∠IGB=53°,∴AB∥CD,∵∠EFB=53°,∴∠IGB=∠EFB,∴IH∥EF.故答案为:2.【点评】本题考查了平行线的判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.【例4】如图,两直线a,b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a,b 的位置关系是__________.【答案】a∥b【解析】因为∠2=130°,所以∠3=50°,因为∠1=50°,所以a∥b,故答案为:a∥b.【例5】已知:如图,∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.【解析】(1)∵∠A=∠ADE,∴AC∥DE,∴∠EDC+∠C=180°,又∵∠EDC=3∠C,∴4∠C=180°,即∠C=45°;(2)∵AC∥DE,∴∠E=∠ABE,又∵∠C=∠E,∴∠C=∠ABE,∴BE∥CD.【点评】本题主要考查了平行线的性质以及判定的运用,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.三、平行线的判定的实际应用解决几何证明或计算问题时,通常把已知的数量关系标注在图形上,并结合图形中的位置关系及相关的性质确定解法,这种“数形结合”的方法在解决几何问题时具有非常重要的作用.【例6】如图是一块四边形木板和一把曲尺(直角尺),把曲尺一边紧靠木板边缘PQ,画直线AB,与PQ,MN分别交于点A,B;再把曲尺的一边紧靠木板的边缘MN,移动使曲尺另一边过点B画直线,若所画直线与BA重合,则这块木板的对边MN与PQ是平行的,其理论依据是__________.【答案】内错角相等,两条直线平行【解析】∵∠ABM=90°,∠BAQ=90°,∴∠MBA=∠QAB,∴MN∥PQ(内错角相等,两条直线平行),故答案为:内错角相等,两条直线平行.【点评】本题考查了平行线的判定;熟记内错角相等,两直线平行是解决问题的关键.。
七年级下册数学平行线及其判定

七年级下册数学平行线及其判定数学是一门让许多学生望而生畏的学科,而平行线及其判定更是让许多人头疼的难题。
本文将从简单易懂的角度来讲解平行线及其判定,希望能帮助大家更好地理解这个概念。
一、平行线的概念平行线是指在同一个平面上,不相交且在任意一点的夹角相等的两条直线。
简单来说,就是两条直线永远不会相交。
二、平行线的判定1.直线与直线的判定(1)同位角相等判定:如果两条直线被一条直线所截,同位角相等,那么这两条直线平行。
(2)对顶角相等判定:如果两条直线被一条直线所截,对顶角相等,则这两条直线平行。
2.直线与平面的判定(1)平行线与平面的关系:如果一条直线与平面内的一条平行线平行,则这条直线与该平面平行。
(2)垂直平分线的判定:如果一条直线与平面内的两条平行线垂直相交,那么这条直线与这两条平行线平行。
三、平行线的性质1.同位角相等性质:同位角相等的两条平行线之间的角相等。
2.对顶角相等性质:对顶角相等的两条平行线之间的角相等。
3.垂直与平行线性质:两条垂直线分别与第三条直线交于同一点,则这两条直线平行。
四、生活中的平行线及其应用1.建筑工程中的应用:在建筑工程中,平行线的概念被广泛应用。
比如,建筑物的平行线结构能够保证房屋的稳固性。
2.道路规划中的应用:在城市道路的规划中,平行线的概念也有所体现。
平行的道路通常能够更好地分流交通,提高交通效率。
五、学习技巧与方法1.理解概念:首先要对平行线的概念有一个清晰的理解,了解什么是平行线,以及平行线的性质和判定方法。
2.多练习题:通过大量的练习题来巩固自己对平行线的理解,特别是对于平行线的判定方法要多加练习,掌握各种不同的情况。
3.多思考、多讨论:在学习过程中,如果有不理解的地方,可以多思考、多讨论,可以向老师或同学请教。
总结:平行线及其判定是数学中的一个重要概念,对于初学者来说可能有些难度,但只要掌握了相关的概念、性质和判定方法,相信大家都能够轻松理解并掌握这个知识点。
七年级数学平行线的知识点

七年级数学平行线的知识点数学是一门非常重要的学科,而数学中平行线也是十分重要的知识点之一。
在初中数学中,七年级的学生就需要学习关于平行线的知识,掌握平行线的性质和运用方法。
本文将介绍七年级数学平行线的知识点,方便同学们更好地学习和掌握平行线知识。
一、平行线的定义平行线是指在同一平面内,永远不会相交的直线,其间的距离保持不变。
平行线的符号是“||”。
二、平行线的性质1.在同一平面内,两条直线要么相交,要么平行,不能既相交又平行。
2.在同一平面内,如果一条直线与另外一条直线分别平行,则这两条直线也是平行的。
3.如果一条直线与平面内一条直线平行,则该直线与同一平面内的所有其他直线也都平行。
4.两条平行线所对应的内角和相等,两条平行线所对应的外角互补。
三、平行线的运用方法1.利用平行线的性质解题。
在解题时,需要灵活掌握平行线的各项性质,如对应角、内角和、外角互补等,可以运用这些性质计算出所求的角度或线段。
2.利用平行线的交点特点解题。
当两条平行线被一条第三条直线所切割时,其所对应的内角相等,同旁内角互补等性质可以运用到解题中。
3.利用平行四边形的特点解题。
平行四边形的对边相等,且对边平行。
在平行四边形的计算中,可以运用平行四边形的特点进行计算。
四、平行线的经典应用1.三线共点定理:在平面直角坐标系中,三条不共线的直线如果它们的交点恰好是这个平面的一个点,则这三条直线互相平行。
2.相交线段定理:以一条直线为两边的两个三角形相似的充要条件是这条直线把它们的另一对对边分向比相等。
以上就是七年级数学平行线的知识点,同学们可以通过掌握这些知识点,更好地理解和学习平行线知识。
平行线是数学中的重要知识点,将贯穿整个数学学习过程,希望同学们能够认真学习并掌握。
数学《平行线的判定》知识点初一年级

数学《平行线的判定》知识点初一年级
给大家整理平行线的判定知识点,大家可以参考阅读,希望能帮助大家取得好成绩。
1、平行线的概念
在同一个平面内,不相交的两条直线叫做平行线。
平行用符号‖表示,如AB‖CD,读作AB平行于CD。
同一平面内,两条直线的位置关系只有两种:相交或平行。
注意:
(1)平行线是无限延伸的,无论怎样延伸也不相交。
(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。
2、平行线公理及其推论
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
3、平行线的判定
平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
简称:同位角相等,两直线平行。
平行线的两条判定定理:
(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
简称:内错角相等,两直线平行。
(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
简称:同旁内角互补,两直线平行。
补充平行线的判定方法:
(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
4、平行线的性质
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
有了上文梳理的平行线的判定知识点,相信大家对考试充满了信心,同时预祝大家考试取得好成绩。
人教版七年级下册数学《平行线及其判定》期末复习讲义(含知识点和习题)

第五章《相交线与平行线》期末复习讲义5.2平行线及其判定【知识回顾】一.平行线1.定义:在同一平面内,__________的两条直线叫做平行线2.要点剖析(1):平行线的特征:在同一平面内;是直线;没有公共点。
(2)在同一平面内,不重合的两条直线的位置关系只有相交和平行两种,重合的直线视为一条直线。
(3)平行线是指的两条直线的位置关系,两条射线或线段平行,是指的它们所在的直线平行。
二.平行线的画法1.“一落”把三角尺的一边落在已知直线上2.“二靠”用直尺紧靠三角尺的另一边3.“三推”把三角尺沿着直尺推到三角尺的一边刚好过已知点的位置4.“四画”沿三角尺过已知点的边画直线三.平行公理及其推论1.平行公理:经过直线外一点,_________一条直线与这条直线平行2.平行公理的推论:如果两条直线都与_________直线平行,那么这两条直线也互相平行四.平行线的判定1.同位角相等,两直线_________2.内错角相等,两直线_________3.同旁内角互补,两直线___________4.在同一平面内,垂直于_______________的两条直线互相平行题型拓展题型1 平行公理及其推论的应用例1:1.如图,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF 为折痕.把长方形ABEF平放在桌面上,另一个面CDEF无论怎么改变位置,总有CD∥AB存在,你知道为什么吗?例2:2.如图,取一张长方形的硬纸片ABCD对折,MN是折痕,把ABNM平摊在桌面上,另一个面CDMN不论怎样改变位置,总有MN∥∥.因此∥.题型2 综合运用各种判定方法判定两条直线平行例1:3.如图,∠1=47°,∠2=133°,∠D=47°,那么BC与DE平行吗?AB与CD呢?为什么?例2:4.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,()所以a∥c.()又因为∠2+∠3=180°(已知)∠3=∠6()所以∠2+∠6=180°,()所以a∥b.()所以b∥c.()题型3 平行线判定的开放探究题例1:5.如图,∠A=60°,∠1=60°,∠2=120°,猜想图中哪些直线平行,并证明.例2:6.如图,直线a,b被c所截,∠1=50°,若要a∥b,则需增加条件(填图中某角的度数);依据是.题型4 平行线的判定在实际生活中的应用例1:7.如图所示,给你两块同样的三角板和一根直尺(直尺比桌子长),请你设计一个方案,检验桌子的相对边缘线是否平行?例2:8.在铺设铁轨时,两条直轨必须是互相平行的,如图,已经知道∠2是直角,那么再度量图中已标出的哪个角,就可以判断两条直线是否平行?为什么?课后提高训练9.下列说法错误的是()A.平行于同一条直线的两直线平行B.两直线平行,同旁内角互补C.对顶角相等D.同位角相等10.如图,下面哪个条件不能判断AC∥EF的是()A.∠1=∠2B.∠4=∠C C.∠1+∠3=180°D.∠3+∠C=180°11.如图,平面内有五条直线l1、l2、l3、l4、l5,根据所标角度,下列说法正确的是()A.l1∥l2B.l2∥l3C.l1∥l3D.l4∥l512.如图,在下列条件中,能判断AB∥CD的是()A.∠1=∠4B.∠BAD=∠BCDC.∠BAD+∠ADC=180°D.∠2=∠313.如图所示,下列推理正确的是()A.∵∠1=∠4(已知)∴AB∥CD(内错角相等,两直线平行)B.∵∠2=∠3(已知)∴AE∥DF(内错角相等,两直线平行)C.∵∠1=∠3(已知)∴AB∥DF(内错角相等,两直线平行)D.∵∠2=∠2(已知)∴AE∥DC(内错角相等,两直线平行)14.下列说法中正确的个数为()①过一点有且只有一条直线与已知直线垂直②两条直线被第三条直线所截,同位角相等③经过两点有一条直线,并且只有一条直线④在同一平面内,不重合的两条直线不是平行就是相交A.1个B.2个C.3个D.4个15.如图,下列能判定AB∥CD的条件有(填序号)①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠5;⑤∠D=∠5.16.如图,要使BE∥DF,需补充一个条件,你认为这个条件应该是(填一个条件即可).17.一副三角板按如图所示叠放在一起,其中点C、D重合,若固三角板定ABC,改变三角板AED的位置(其中A点位置始终不变),当∠CAD=时,ED∥AC.18.如图,直线a、b被直线c所截,现给出的下列四个条件:①∠4=∠7;②∠2=∠5;③∠2+∠3=180°;④∠2=∠7.其中能判定a∥b的条件的序号是.19.已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.20.如图,若∠1=42°,∠2=53°,∠3=85°,则直线l1与l2平行吗?判断并说明理由.21.如图,已知CD⊥AD于点D,DA⊥AB于点A,∠1=∠2,试说明DF∥AE.解:因为CD⊥AD(已知),所以∠CDA=90°().同理∠DAB=90°.所以∠CDA=∠DAB=90°().即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4().所以DF∥AE().22.完成下列证明过程,并在括号内填上依据.如图,点E在AB上,点F在CD上,∠1=∠2,∠B=∠C,求证AB∥CD.证明:∵∠1=∠2(已知),∠1=∠4(),∴∠2=∠4(等量代换),∴().∴∠3=∠C().又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD().参考答案与解析1.解:∵四边形FECD是矩形,∴CD∥EF;又∵四边形ABEF是矩形,∴AB∥EF,∴CD∥AB.2.解:∵长方形的硬纸片ABCD对折,MN是折痕,∴MN∥AB,MN∥CD,即MN∥AB∥CD,∴AB∥CD(平行于同一直线的两条直线互相平行).故各空依次填AB、CD、AB、CD.3.解:BC∥DE,AB∥CD.理由如下:∵∠1=47°,∠2=133°,而∠ABC=∠1=47°,∴∠ABC+∠2=180°,∴AB∥CD;∵∠2=133°,∴∠BCD=180°﹣133°=47°,而∠D=47°,∴∠BCD=∠D,∴BC∥DE.4.解:因为∠1+∠2=180°,∠2+∠4=180°(已知),所以∠1=∠4,(同角的补角相等)所以a∥c.(内错角相等,两直线平行)又因为∠2+∠3=180°(已知)∠3=∠6(对顶角相等)所以∠2+∠6=180°,(等量代换)所以a∥b.(同旁内角互补,两直线平行)所以b∥c.(平行于同一条直线的两条直线平行).故答案为:同角的补角相等;内错角相等,两直线平行;对顶角相等;等量代换;同旁内角互补,两直线平行;平行于同一条直线的两条直线平行.5.解:如图,∵∠A=60°,∠1=60°,∴∠A=∠1,∴DE∥AC.又∵∠A=60°,∠2=120°,∴∠A+∠2=180°,∴EF∥AB.6.解:∵∠3=50°,1=50°,∴∠1=∠3,∴a∥b(同位角相等,两直线平行).故答案为:∠3=50°;同位角相等;两直线平行.7.解:(1)将直尺放在桌面上,使其与桌面一组对边相交;(2)将三角板一边贴近直尺,斜边贴近桌面边缘;(3)使另一个三角形同样方法放置,如果相符合说明对边平行,原理如图所示,若∠1=∠2则a∥b,再检查另一组对边是否平行.8.解:①通过度量∠3的度数,若满足∠2+∠3=180°,根据同旁内角互补,两直线平行,就可以验证这个结论;②通过度量∠4的度数,若满足∠2=∠4,根据同位角相等,两直线平行,就可以验证这个结论;③通过度量∠5的度数,若满足∠2=∠5,根据内错角相等,两直线平行,就可以验证这个结论.9. D10.C11.D12.C13.B14.B15.解:选项①中∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确;选项②中,∵∠2=∠3,∴AD∥BC(内错角相等,两直线平行),所以错误;选项③中,∵∠1=∠4,∴AB∥CD(内错角相等,两直线平行),所以正确;选项④中,∵∠B=∠5,∴AB∥CD(同位角相等,两直线平行),所以正确;选项⑤中,∠D=∠5,∴AD∥BC(内错角相等,两直线平行),所以错误;故答案为:①③④.16.解:添加条件为:∠D=∠COE.理由如下:∵∠D=∠COE,∴BE∥DE(同位角相等,两直线平行).故答案为:∠D=∠COE(答案不唯一).17.解:如图所示:当ED∥AC时,∠CAD=∠D=30°;如图所示,当ED∥AC时,∠E=∠EAC=60°,∴∠CAD=60°+90°=150°;故答案为:30°或150°.18.解:当∠4=∠7时,a∥b,故①正确;当∠2=∠5时,无法证明a∥b,故②错误;当∠2+∠3=180°时,无法证明a∥b,故③错误;当∠2=∠7时,a∥b,故④正确;故答案为:①④.19.证明:∵∠A=∠C=120°,∠AEF=∠CEF=60°,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴AB∥EF,CD∥EF,∴AB∥CD.20.解:直线l1与l2平行,理由:∵∠1=∠4,∠2=∠5,∠1=42°,∠2=53°,∴∠4=42°,∠5=53°,又∵∠3=85°,∴∠3+∠5=85°+53°=138°,∴∠3+∠5+∠4=138°+42°=180°,∴l1∥l2(同旁内角互补,两直线平行).21.解:因为CD⊥AD(已知),所以∠CDA=90°(垂直的定义),同理∠DAB=90°.所以∠CDA=∠DAB=90°(等量代换),即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4(等式的性质1),所以DF∥AE(内错角相等,两直线平行).22.证明:∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴CE∥BF(同位角相等,两直线平行).∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行.。
初中数学知识归纳平行线的性质与判定

初中数学知识归纳平行线的性质与判定平行线是数学中最基础的概念之一,在初中数学中也占据了重要的地位。
平行线的性质和判定方法具有一定的规律性和逻辑性,掌握了这些知识,对于解题和推理都有很大的帮助。
本文将对初中数学中与平行线相关的性质和判定进行归纳和总结。
一、平行线的性质1. 平行线性质一:同位角性质同位角是指两条平行线被一条第三条线(称为横线)所切割所形成的内角和外角。
同位角性质可以概括为:当直线与两条平行线相交时,同位角相等。
例如,图1中的直线l与平行线m、n相交,角A和角B、C都是同位角。
根据同位角性质,可知∠A = ∠B = ∠C。
2. 平行线性质二:内错角性质内错角是指两条平行线被一条第三条线所切割所形成的内角。
内错角性质可以概括为:当直线与两条平行线相交时,内错角相等。
例如,图2中的直线l与平行线m、n相交,角A和角B是内错角。
根据内错角性质,可知∠A = ∠B。
3. 平行线性质三:同旁内角性质同旁内角是指两条直线与两条平行线相交所形成的内角。
同旁内角性质可以概括为:当两条直线与两条平行线相交时,同旁内角互补。
例如,图3中的直线a、b与平行线m、n相交,角A和角B、C是同旁内角。
根据同旁内角性质,可知∠A + ∠B = 180°和∠A + ∠C = 180°。
二、平行线的判定方法1. 直线平行判定法一:同位角相等法如果一条直线与另外两条直线相交时,同位角相等,则这两条直线平行。
例如,图4中的直线l与线段AB、CD相交,∠1 = ∠2,则可判定线段AB与线段CD是平行的。
2. 直线平行判定法二:内错角相等法如果一条直线与两条平行线相交时,内错角相等,则这条直线与这两条平行线平行。
例如,图5中的直线l与平行线m、n相交,∠A = ∠B,则可判定直线l与平行线m、n是平行的。
3. 直线平行判定法三:同旁内角互补法如果一条直线与两条平行线相交时,同旁内角互补,则这条直线与这两条平行线平行。
人教版初一数学下册:平行线及其判定(基础)知识讲解

平行线及其判定(基础)知识讲解【学习目标】1.理解平行线的概念,会用作图工具画平行线,了解在同一平面内两条直线的位置关系;2.掌握平行公理及其推论;3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行.【要点梳理】要点一、平行线的定义及画法1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.要点诠释:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行线的画法:用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.要点二、平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.要点三、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、平行线的定义及表示1.下列叙述正确的是()A.两条直线不相交就平行B.在同一平面内,不相交的两条线叫做平行线C.在同一平面内,不相交的两条直线叫做平行线D.在同一平面内,不相交的两条线段叫做平行线【答案】C【解析】在同一平面内两条直线的位置关系是不相交就平行,但在空间就不一定了,故A 选项错;平行线是在同一平面内不相交的两条直线,不相交的两条曲线就不是平行线,故B选项错;平行线是针对两条直线而言.不相交的两条线段所在的直线不一定不相交,故D选项错.【总结升华】本例属于对概念的考查,应从平行线的概念入手进行判断.举一反三:【变式】(2015春•鞍山期末)下列说法错误的是()A.无数条直线可交于一点B.直线的垂线有无数条,但过一点与垂直的直线只有一条C.直线的平行线有无数条,但过直线外一点的平行线只有一条D.互为邻补角的两个角一个是钝角,一个是锐角【答案】D类型二、平行公理及推论2.下列说法中正确的有()①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③因为a∥b,c ∥d ,所以a ∥d ;④经过直线外一点有且只有一条直线与已知直线平行. A .1个 B 2个 C .3个 D .4个 【答案】 A 【解析】一条直线的平行线有无数条,故①错;②中的点在直线外还是在直线上位置不明确,所以②错,③中b 与c 的位置关系不明确,所以③也是错误的;根据平行公理可知④正确,故选A .【总结升华】本题主要考察的是“平行公理及推论”的内容,要正确理解必须要抓住关键字词及其重要特征,在理解的基础上记忆,在比较中理解. 举一反三:【变式】直线a ∥b ,b ∥c ,则直线a 与c 的位置关系是 . 【答案】平行类型三、两直线平行的判定3. (2016•来宾)如图,在下列条件中,不能判定直线a 与b 平行的是( )A .∠1=∠2B . ∠2=∠3C . ∠3=∠5D .∠3+∠4=180° 【思路点拨】根据平行线的判定方法进行判断. 【答案】C【解析】解:∠3与∠5不是同位角,不是内错角,也不是同旁内角,所以∠3=∠5不能判定AB ∥CD .【总结升华】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,熟练掌握平行线的判定定理. 举一反三:【变式1】如图,下列条件中,不能判断直线1l ∥2l 的是( ).A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=1800【答案】B【高清课堂:平行线及判定 例1】【变式2】已知,如图,BE平分∠ABC,CF平分∠BCD,∠1=∠2,求证:AB//CD.【答案】∵∠1=∠2∴ 2∠1=2∠2 ,即∠ABC=∠BCD∴ AB//CD (内错角相等,两直线平行)4.如图所示,由(1)∠1=∠3,(2)∠BAD=∠DCB,可以判定哪两条直线平行.【思路点拨】试着将复杂的图形分解成“基本图形”.【答案与解析】解:(1)由∠1=∠3,可判定AD∥BC(内错角相等,两直线平行);(2)由∠BAD=∠DCB,∠1=∠3得:∠2=∠BAD-∠1=∠DCB-∠3=∠4(等式性质),即∠2=∠4可以判定AB∥CD(内错角相等,两直线平行).综上,由(1)(2)可判定:AD∥BC,AB∥CD.【总结升华】本题探索结论的过程采用了“由因索果”的方法.即在条件下探索由这些条件可推导出哪些结论,再由这些结论推导出新的结论,直到得出结果.5.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?【答案与解析】解:这两条直线平行.理由如下:如图:∵ b⊥a, c⊥a∴∠1=∠2=90°∴b∥c (同位角相等,两直线平行) .【总结升华】本题的结论可以作为两直线平行的判定方法.【高清课堂:平行线及判定例5】举一反三:【变式】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由.【答案】解:AB∥CD.理由如下:如图:∵EF⊥EG,GM⊥EG (已知),∴∠FEQ=∠MGE=90°(垂直的定义).又∵∠1=∠2(已知),∴∠FEQ -∠1=∠MGE -∠2 (等式性质),即∠3=∠4.∴AB∥CD (同位角相等,两直线平行).附录资料:一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34. xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3xx>⎧⎨>-⎩的解集是______;(2)2,3x x <⎧⎨<-⎩的解集是______;(3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______.【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集. 【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x ≥-5故原不等式组的解集为-5≤x <-2. 其解集在数轴上表示如图所示.(2) 原不等式可变为:213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①②解①得:4x < 解②得:12x ≥-故原不等式组的解集为142x -≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了. 举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来. 【答案】 解:,∵解不等式①得:x≤1, 解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x≤1. 在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵. 【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树; 最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵, 这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组. 【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x <2121; 不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵) 答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内? 【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案. 【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可. 【答案与解析】 解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本; 方案二:文学名著27本,动漫书47本; 方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少? 【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7, ∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆; 方案2:租甲种货车6辆,乙种货车4辆; 方案3:租甲种货车7辆,乙种货车3辆. (2)运输费用:方案1:2000×5+1300×5=16500(元); 方案2:2000×6+1300×4=17200(元); 方案3:2000×7+1300×3=17900(元). ∴方案1运费最少,应选方案1.。
七年级平行线知识点归纳

七年级平行线知识点归纳
平行线是初中数学中的重要知识点,学好平行线对后续学习几何知识有很大帮助。
下面是对七年级平行线知识点的归纳总结。
一、平行线和垂直线的基本概念
1.两条不在同一平面内的直线没有交点,称为异面直线。
2.两条在同一平面内的直线,若它们不在同一点相交,则称它们为平行的。
3.两条平行直线之间的距离是相等的。
4.两条垂直直线之间的角度为90度。
二、判定平行线的方法
1.同位角相等定理:当一条直线被另外两个直线截断时,同位角相等的两条直线平行。
2.内错角、外错角定理:两条直线被一条横截线截断时,同侧内错角之和等于180度,同侧外错角之和等于180度。
3.平行线的性质之一:一条直线与两条平行直线相交时,所作的内角和为180度。
三、平行线的性质
1.平行线与平面的交线上所有的角都相等。
2.同位角互相等价,即对应的同位角互相相等。
3.被平行线截断的两条直线所夹角相等。
4.平行四边形的对角线互相平分。
四、平面内角和公式
1.三角形的内角和为180度。
2.四边形的内角和为360度。
3.n边形的内角和为(n-2)×180度。
以上是七年级平行线知识点的归纳总结,希望对你的学习有帮助。
同时还需要多做练习,加深理解和熟练掌握。
平行线及其判定知识点总结

平行线及其判定知识点1:平行线的定义及平面内两直线的位置关系定义:在同一平面内,的两条直线叫做平行线,直线a,b平行,记作。
在同一平面内,不重合的两条直线只有两种位置关系: 。
说明1(1)在同一平面内,两条直线的位置关系只有平行与相交两种,若没有特别说明,“重合”视为一条直线。
(2)平常所说的“两条射线平行,两条线段平行”都是指它们所在的直线平行(3)平行线的定义有三个特征:一是在同一平面内;二是两条直线;三是不相交。
三者缺一不可。
例题:下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若直线a∥b,b∥c,则a∥eD.若两条线段不相交,则它们互相平行【分析】根据平行线的定义、平行公理的推论来判断【解析】A选项中缺少“在同一平面内”这个条件,故A选项错误。
若没有其条件限制,一条直线的平行线有无数条,故B选项错误。
平行于同一直线的两条直线平行,故C选项正确。
根据平行线的定义可知D选项错误.故选C知识点2:平行公理平行公理:经过一点.有且只有一条直线与这条直线平行。
(注意:①平行公理特别强调“经过直线外一点”,而非直线上的点,它和垂线的性质不同②“有且只有"强调直线的存在性和唯一性)如图,经过直线a外一点P,能且只能画出一条直线与直线a平行·Pa例题:下列说法正确的是()A.在同一平面内,过直线外一点有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线平行C.经过一点有且只有一条线段与已知线段平行D.过一点有且只有一条直线与己知直线垂直【解析】A选项中“在同一平面内”这个条件,不影响后半向的对错。
“过直线外一点有一条直线与已知直线平行”说的是存在性,即过直线外一点肯定有一条直线与已知直线平行,故A选项正确。
B选项错误,因为若经过直线上一点,则没有直线与已知直线平行。
C选项错误,道理同B选项。
D选项错误,因为缺少“在同一平面内”这个大前提,D选项中结论不成立,如图,AB,BC,BD是正方体的三条棱,它们两两垂直,且都经过点B,若把AB看作已知直线,则经过点B有两条直线BC,BD与已知直线AB垂直知知识点3:平行公理的推论平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也。
平行线的判定和性质知识点详解

平行线的判定和性质知识点详解平行线是在同一个平面上,永不相交的两条直线。
在平行线的判定和性质中,我们会涉及到直线和角的相关概念以及它们之间的关系。
1.同位角平行线判定:如果两条直线与一条横截线相交,且同位角相等,则这两条直线是平行线。
同位角是指两条直线被横截线所形成的内外两对相似角。
2.顶角平行线判定:如果两条直线被一条直线所截断,使得内侧的两个顶角互补,则这两条直线是平行线。
顶角是指两条直线被截断所形成的内外两个相交角。
3.对顶角平行线判定:如果两条直线被一条直线所截断,使得对顶角互补,则这两条直线是平行线。
对顶角是指两条直线被截断所形成的相对两侧的相交角。
平行线的性质如下:1.同位角性质:同位角是两条平行线被横截线所形成的内外两对相似角。
性质有:同位角相等;同位角的对应角相等;同位角的内外两个对顶角互补。
2.内错角性质:内部错位的两个角,分别在两对同位角之间,互为补角。
3.外错角性质:外部错位的两个角,分别在两对同位角之间,互为补角。
4.顶角性质:顶角是两条平行线被一条截断线所形成的内外两个相交角。
性质有:顶角相等;顶角的对应角相等;顶角的内外两个对位角互为补角。
5.对顶角性质:对顶角是两条平行线被一条截断线所形成的相对两侧的相交角。
性质有:对顶角互为补角。
6.互补角性质:互补角是指两个角的和为90度。
在平行线中,同位角和对位角都是互补角。
7.直角性质:如果一条直线垂直于一条平行线,则它与这条平行线的对位角都是直角。
8.平行线之间的距离性质:平行线之间的距离在任意两点之间是相等的。
总结起来,平行线的判定方法包括同位角平行线判定、顶角平行线判定和对顶角平行线判定。
而平行线的性质包括同位角性质、内错角性质、外错角性质、顶角性质、对顶角性质、互补角性质、直角性质以及平行线之间的距离性质等。
这些性质可以帮助我们在解决平行线相关问题时更加便捷地推导和证明结论。
七年级平行线判定知识点

七年级平行线判定知识点在七年级的数学教学中,平行线的判定是十分基础且重要的知识点。
学生通过掌握这些知识点,可以成功地判定平行线,进而解决平面图形中的各种问题。
本文将介绍七年级平行线判定知识点,以帮助学生更好地掌握这一知识点。
1. 平行线的定义平行线是在同一平面内,永远不相交的两条直线。
两条平行线的距离始终相等,符号为 ||。
2. 平行线判定定理(1) 同位角定理:如果两条直线被一条横线切割,那么同侧的内部角互相补角,则这两条直线平行。
(2) 平行线夹角定理:如果一条直线与另外两条直线交成的两个内角不相等,那么这两条直线不平行;相等则平行。
(3) 垂线的判定:如果两条直线交成的六个角中有四个角互相补角,则这两条直线垂直;不是则不垂直。
(4) 平行四边形的性质:如果一组对边平行的四边形是平行四边形,则两组对角线互相平分。
(5) 梯形的性质:如果一个四边形有一对对边是平行边,则这个四边形是梯形;梯形的两个底角(与底边平行的两个角)相等,两个顶角(不与底边平行的两个角)相等。
(6) 相交线的判定:如果两条直线被一条第三条直线所交,使得同侧的相邻内角之和为 180 度,则这两条直线平行。
3. 实例分析现在以实例的形式来展示上述平行线判定定理的使用,以帮助学生更好地理解。
如图,已知 AB || CD,BC ⊥ EF,求∠FCE 的度数。
根据同位角定理可得∠A = ∠D,因为 AB || CD。
又因为∠BCD 和∠ECF 是同位角,根据同位角定理可得∠EFC =∠BCD。
由于 EF ⊥ BC,所以∠BCD = 90°,代入得∠EFC = 90°。
再根据∠FCE + ∠EFC = 180°,可得∠FCE = 90°。
4. 总结掌握平行线的判定是七年级数学学习的基础,需要学生认真学习和掌握相关定理和性质,灵活应用于解决各种实际问题。
在实际学习中,学生可以通过多做相关习题来加深理解和熟练运用,夯实基础。
初步认识平行线的性质和判定方法

初步认识平行线的性质和判定方法平行线是初中数学中一个非常重要的概念,它在几何学中占据着重要的地位。
初步认识平行线的性质和判定方法,能够帮助我们更好地理解和运用这一概念。
本文将从平行线的定义、性质以及判定方法三个方面进行论述。
一、平行线的定义在几何学中,我们称两条直线为平行线,意味着它们在同一平面上,并且永远不会相交。
这是平行线最基本的定义。
需要注意的是,两条平行线之间的距离始终相等,在图形排列中有很重要的应用。
二、平行线的性质1. 平行线具有等角折射性质:当两条平行线被一条横线(称为割线)切割时,所产生的对应角相等。
这是平行线最重要的性质之一,也是判定平行线的基础。
2. 平行线具有交错性质:当一条直线与两条平行线相交时,所产生的内错角互为补角,外错角互为补角。
这一性质在证明平行线相关定理时经常使用。
3. 平行线具有等比例性质:当两条平行线被一条斜线切割时,所产生的截线与平行线之间的长度比例保持不变。
这个性质在割线定理中有广泛的应用。
三、平行线的判定方法根据平行线的性质,我们可以利用不同的条件来判定两条直线是否平行。
1. 定理一:同位角相等法则同位角是指两条平行线被一条割线切割所形成的对应角。
如果两个对应角相等,那么这两条直线就是平行线。
这个方法在证明平行线定理时经常使用。
2. 定理二:内错角补角法则当两条平行线被一条割线切割时,所形成的内错角互为补角。
如果两个内错角互为补角,那么这两条直线是平行线。
3. 定理三:等角斜线法则当两条平行线被一条斜线切割时,所产生的截线与平行线之间的长度比例相等。
根据这一比例关系,我们可以判定两条直线是否平行。
通过以上三个判定方法,我们可以初步认识平行线的性质和判定方法。
在实际应用中,我们可以结合具体的问题和知识点,灵活运用这些方法,解决与平行线相关的几何问题。
综上所述,平行线是几何学中的重要概念,具有丰富的性质和判定方法。
通过对平行线的初步认识,我们可以更好地理解、运用和证明涉及平行线的问题。
平行线及其判定知识点总结

平行线及其判定知识点总结平行线,是解析几何中比较基础的一个概念。
几何上,两个直线如果在同一平面内不相交,则称这两条直线平行。
平行线具有很多性质和特点,也有很多的判定方法。
在数学考试中,平行线常常与其他几何概念联系在一起,考查学生对几何性质的掌握和理解。
本文将从各个角度总结平行线及其判定知识点。
一、平行线的定义平行线的定义是:在同一平面内,不相交的两条直线叫做平行线。
这个定义是解析几何中最基础的概念之一,也是其他关于平行线的定义和性质的基础。
二、平行线的性质1. 平行线上的所有点到另一条直线的距离相等。
2. 两条平行线的任意一组对应角都相等。
3. 平行线与另一条直线之间的对应角相等。
4. 平行线所夹区域的内部角和是180度。
5. 如果两条直线与同一直线相交,使得相邻角的和等于180度,则这两条直线是平行线。
以上这些性质都是与平行线紧密相关的。
在解决几何问题时,这些性质能够帮助我们推导出其他几何关系。
三、平行线的判定方法1. 相关角判定法如果两条直线与同一直线相交,使得相邻角的和等于180度,则这两条直线是平行线。
此时,相邻角被称为“内错角”。
如图,直线L1和L2相交于直线a,相邻角∠1和∠2相加为180度,因此L1 || L2。
2. 平行线夹角判定法在一个平行四边形中,两组对角线是相互平分的。
如果一条线段与一个平行四边形的两条对角线相交,且这两个角相等,则这条线段与平行四边形的另一条边平行。
如图,设∠DAB = ∠DCB,则AB || CD。
3. 垂线判定法如果两条直线在同一平面内,并且任意一条直线上有一点垂直于另一条直线,那么这两条直线是平行的。
如图,直线a上的点C垂直于直线b,因此a || b。
4. 距离判定法如果两条直线在同一平面内,且它们上面的任何一条平行线距离相等,则这两条直线是平行的。
如图,AB = CD,因此直线AB || 直线CD。
5. 三角形内部角和判定法如果一个三角形的两个角分别与一条直线相交,那么这条直线与另一个角的对边边平行,当且仅当这两个角的和等于180度。
初一数学人教版下册平行线及其判定知识点

初一数学人教版下册平行线及其判断知识点平行线能够陈说为过直线外一点有独一的一条直线和已知直线平行的直线,今日的主要内容是平行线及其判断知识点,大家必定要认真阅读学习,希望对大家新学期有帮助!知识点1.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
2.平行线:在同一平面内,不订交的两条直线叫做平行线。
3.命题:判断一件事情的语句叫命题。
4.真命题:正确的命题,即假如命题的题设建立,那么结论必定建立。
5.假命题:条件和结果相矛盾的命题是假命题。
6.平移:在平面内,将一个图形沿某个方向挪动必定的距离,图形的这类挪动叫做平移平移变换,简称平移。
7.对应点:平移后获得的新图形中每一点,都是由原图形中的某一点挪动后获得的,这样的两个点叫做对应点。
8.定理与性质对顶角的性质:对顶角相等。
9.垂线的性质:性质 1:过一点有且只有一条直线与已知直线垂直。
性质 2:连结直线外一点与直线上各点的所有线段中,垂线段最短。
10.平行公义:经过直线外一点有且只有一条直线与已知直线平行。
平行公义的推论:假如两条直线都与第三条直线平行,那么这两条直线也相互平行。
11.平行线的性质:性质 1:两直线平行,同位角相等。
性质 2:两直线平行,内错角相等。
性质 3:两直线平行,同旁内角互补。
12.平行线的判断:判断 1:同位角相等,两直线平行。
判断 2:内错角相等,两直线平行。
判断 3:同旁内角相等,两直线平行。
课后习题1、在同一平面内 ,两条直线的地点关系有_________2、两条直线 L1 与 L2 订交点 A,假如 L1 ‖ L那,么 L2 与 L(),这是由于 ()。
3、在同一平面内 ,一条直线和两条平行线中一条直线订交 ,那么这条直线与平行线中的另一边必 __________.4、两条直线订交 ,交点的个数是 ________两,条直线平行 ,交点的个数是 _____个.参照答案:1、订交于平行2、订交过一点有且只有一条直线与已知直线平行3、订交4、0 或 1,0平行线及其判断知识点的所有内容就是这些,不知道大家能否学会了呢?大家必定要好好利用最后的时间复习备考,预祝大家能够在期末考试中获得优秀的成绩!精心整理,仅供学习参照。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线及其判定(基础)知识讲解
【学习目标】
1.理解平行线的概念,会用作图工具画平行线,了解在同一平面内两条直线的位置关系;
2.掌握平行公理及其推论;
3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行.
【要点梳理】
要点一、平行线的定义及画法
1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.要点诠释:
(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;
(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.
(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.
2.平行线的画法:
用直尺和三角板作平行线的步骤:
①落:用三角板的一条直角边与已知直线重合.
②靠:用直尺紧靠三角板另一条直角边.
③推:沿着直尺平移三角板,使与已知直线重合的直角边通过已知点.
④画:沿着这条直角边画一条直线,所画直线与已知直线平行.
要点二、平行公理及推论
1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
要点诠释:
(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.
(2)公理中“有”说明存在;“只有”说明唯一.
(3)“平行公理的推论”也叫平行线的传递性.
要点三、直线平行的判定
判定方法1:同位角相等,两直线平行.如上图,几何语言:
∵∠3=∠2
∴AB∥CD(同位角相等,两直线平行)
判定方法2:内错角相等,两直线平行.如上图,几何语言:
∵∠1=∠2
∴AB∥CD(内错角相等,两直线平行)
判定方法3:同旁内角互补,两直线平行.如上图,几何语言:
∵∠4+∠2=180°
∴AB∥CD(同旁内角互补,两直线平行)
要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.
【典型例题】
类型一、平行线的定义及表示
1.下列叙述正确的是()
A.两条直线不相交就平行
B.在同一平面内,不相交的两条线叫做平行线
C.在同一平面内,不相交的两条直线叫做平行线
D.在同一平面内,不相交的两条线段叫做平行线
【答案】C
【解析】在同一平面内两条直线的位置关系是不相交就平行,但在空间就不一定了,故A 选项错;平行线是在同一平面内不相交的两条直线,不相交的两条曲线就不是平行线,故B选项错;平行线是针对两条直线而言.不相交的两条线段所在的直线不一定不相交,故D选项错.
【总结升华】本例属于对概念的考查,应从平行线的概念入手进行判断.
举一反三:
【变式】在同一平面内,不重合的两条直线的位置关系有()
A.平行或垂直B.平行或相交C.垂直或相交D.平行、垂直或相交
【答案】B
类型二、平行公理及推论
2.下列说法中正确的有()
①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③因为a∥b,c∥d,所以a∥d;④经过直线外一点有且只有一条直线与已知直线平行.
A.1个 B 2个C.3个D.4个
【答案】 A
【解析】一条直线的平行线有无数条,故①错;②中的点在直线外还是在直线上位置不明确,所以②错,③中b 与c 的位置关系不明确,所以③也是错误的;根据平行公理可知④正确,故选A .
【总结升华】本题主要考察的是“平行公理及推论”的内容,要正确理解必须要抓住关键字词及其重要特征,在理解的基础上记忆,在比较中理解.
举一反三:
【变式】直线a ∥b ,b ∥c ,则直线a 与c 的位置关系是 .
【答案】平行
类型三、两直线平行的判定
3. (江苏)如图所示,直线a 、b 被直线c 所截,现给出下列四个条件:
①∠1=∠5; ②∠1=∠7; ③∠2+∠3=180°; ④∠4=∠7,其中能判断a ∥b 的条件的序号是 ( ).
A .①②
B .①③
C .①④
D .③④
【思路点拨】根据平行线的判定方法进行判断.
【答案】A
【解析】①由∠1=∠5可推出a ∥b ,理由是同位角相等,两直线平行.
②∵ ∠1=∠7,又∠7=∠5,
∴ ∠1=∠5,可推出a ∥b .
③∠2+∠3=180°不能推出a ∥b .
④∠4=∠7不能推出a ∥b .
【总结升华】从题目的结论出发分析所要说明的结论能成立,必须具备的是哪些条件,再看这些条件成立又需具备什么条件,直到追溯到已知条件为止.
举一反三:
【变式1】如图,下列条件中,不能判断直线1l ∥2l 的是( ).
A .∠1=∠3
B .∠2=∠3
C .∠4=∠5
D .∠2+∠4=1800
【答案】B
【变式2】已知,如图,BE平分∠ABC,CF平分∠BCD,∠1=∠2,求证:AB//CD.
【答案】∵∠1=∠2
∴ 2∠1=2∠2 ,即∠ABC=∠BCD
∴ AB//CD (内错角相等,两直线平行)
4.如图所示,由(1)∠1=∠3,(2)∠BAD=∠DCB,可以判定哪两条直线平行.
【思路点拨】试着将复杂的图形分解成“基本图形”.
【答案与解析】
解:(1)由∠1=∠3,
可判定AD∥BC(内错角相等,两直线平行);
(2)由∠BAD=∠DCB,∠1=∠3得:
∠2=∠BAD-∠1=∠DCB-∠3=∠4(等式性质),即∠2=∠4
可以判定AB∥CD(内错角相等,两直线平行).
综上,由(1)(2)可判定:AD∥BC,AB∥CD.
【总结升华】本题探索结论的过程采用了“由因索果”的方法.即在条件下探索由这些条件可推导出哪些结论,再由这些结论推导出新的结论,直到得出结果.
5.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?
【答案与解析】
解:这两条直线平行.理由如下:
如图:
∵ b⊥a, c⊥a
∴∠1=∠2=90°
∴b∥c (同位角相等,两直线平行) .
【总结升华】本题的结论可以作为两直线平行的判定方法.
举一反三:
【变式】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由.
【答案】
解:AB∥CD.理由如下:如图:
∵EF⊥EG,GM⊥EG (已知),
∴∠FEQ=∠MGE=90°(垂直的定义).
又∵∠1=∠2(已知),
∴∠FEQ -∠1=∠MGE -∠2 (等式性质),
即∠3=∠4.
∴AB∥CD (同位角相等,两直线平行).。