正弦型函数的图像
正弦型函数的图像ppt课件
y
y=sin 1 x
2
1
O
2
3
4
x
1
y=sin2x
y=sinx
y=sin
1 2
x的图象可以看作是把
y=sinx的图象上所
有点的横坐标伸长到原来的2倍(纵坐标不变)。
y=sin 2x的图象可以看作是把 y=sinx的图象上所
有点的横坐标缩短到原来的1 2 Nhomakorabea倍(纵坐标不变)。
10
函数y=sinx ( >0且≠1)的图象可以看作是 把 y=sinx 的图象上所有点的横坐标缩短(当>1
4 1
3
8
8
2
1
0
2
y=sin2x
5
7
8
8
3 2
2
-1
0
x
15
四、函数y=sinωx与 y=sin(ωx+φ)图象的关系
y
1
8
2
y sin(2x )
3
x
O
y sin( 2x )
6
4 1
y=sin2x
函数y=sin ( x +)( >0且≠1)的图象可以看
作(当是把﹤y0=时sin)平移x 的图| 象个|向单左位(而当得到>0的时。)或向右
7
例2 1.
作函数 列表:
y
sin
2x
及
y
sin
1 2
x
的图象。
x
0
4
2
3
4
2x
0
2
3
2
2
sin 2x
0
1
0
1
中职数学课件6.3正弦型函数的图像和性质
就得到函数y=Asin(ωx+φ)的图像,
这里 A>0, ω>0.
6.3 正弦型函数的图像和性质 情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
正弦型函数 y=Asin(ωx+φ)的图 像可用五点法作出,也可由函数 y=sinx的图像经过平移、伸缩得到.
利用正弦函数的性质及正弦型 函数的图像,可以得到关于正弦型 函数y=Asin(ωx+φ)(其中A>0, ω>0)的 一些结论.
例1 用“五点法”作出下列各函数在一个周期内的简图.
(1)y=sinx;(2)
y=sin2x
;(3)
y=sin(2x+
π 4
)
;(4)
y=2sin(2x+
π 4
)
.
解
(2)因为T=2ωπ=
2π 2
=π,所以函数y=sin2x的周期为π.作函数y=sin2x在
[0,π]上的简图.
描点作图,得到函数y=sin2x,x∈[0,π]的简图.
(2) y=sin
x+
π 3
;
(3)y=2sin
2x+
π 6
;
(4)y=2sin
1 2
x−
π 4
.
6.3 正弦型函数的图像和性质 情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
练习
2.说明怎样由函数y=sinx的图像得到下列函数的图像.
(1)y=13 sinx ;
(2) y=sin
x−
(2x+
π 4
)的周期为π.作函数
令2x+ π4= 0,π2,π, 32π, 2 π,并列表.
正弦函数和余弦函数的图像与性质
例2.求下列函数的最大值与最小值,及取到最值 时的自变量 x 的值. (2) y 3sin x cos x (1) y sin(2 x )
4 解:(1)视为 y sin u , u 2 x 4
8 3 当 u 2k ,即 x k , k Z 时, 2 8 ymin 1 2
二、正弦函数与余弦函数的周期
对于任意 x R 都有
sin( x 2k ) sin x, k Z cos( x 2k ) cos x, k Z
正弦函数是周期函数, k , k Z , k 0 都是它的 2
周期,最小正周期是 2 余弦函数是周期函数, k , k Z , k 0 都是它的 2 周期,最小正周期是 2
注:一般三角函数的周期都是指最小正周期
1 (1) f ( x) cos 2 x (2) f ( x) sin( x ) 2 6 解: (1)设 f ( x)的周期为 T f ( x T ) f ( x)
即 cos[2( x T )] cos 2 x 即 cos(2 x 2T ) cos 2 x 即 对任意 u 都成立:cos(u 2T ) cos u 因此 2T 2 ,从而 T 解毕
第六章 三角函数
5.6.4 正弦定理、余弦定理和解斜三角形
6.1.1 正弦函数和余弦函数的图像与性质
一、正弦函数和余弦函数的概念 实数集与角的集合可以建立一一对应的关系, 每一个确定的角都对应唯一的正弦(余弦)值. 因此,任意给定一个实数 x ,有唯一确定的值
sin x(cos x) 与之对应.
函数 y sin x 叫做正弦函数 函数 y cos x 叫做余弦函数 正弦函数和余弦函数的定义域是 R 正弦函数和余弦函数的值域是[1,1]
正弦函数的图像和性质
1定义编辑数学术语正弦函数是三角函数的一种.定义与定理定义:对于任意一个实数x都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正弦值sin x,这样,对于任意一个实数x都有唯一确定的值sin x与它对应,按照这个对应法则所建立的函数,表示为f(x)=sin x,叫做正弦函数。
正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/sin A=b/sin B=c/sin C在直角三角形ABC中,∠C=90°,y为一条直角边,r为斜边,x为另一条直角边(在坐标系中,以此为底),则sin A=y/r,r=√(x^2+y^2)2性质编辑图像图像是波形图像(由单位圆投影到坐标系得出),叫做正弦曲线(sine curve)正弦函数x∈&定义域实数集R值域[-1,1] (正弦函数有界性的体现)最值和零点①最大值:当x=2kπ+(π/2),k∈Z时,y(max)=1②最小值:当x=2kπ+(3π/2),k∈Z时,y(min)=-1零值点:(kπ,0) ,k∈Z对称性既是轴对称图形,又是中心对称图形。
1)对称轴:关于直线x=(π/2)+kπ,k∈Z对称2)中心对称:关于点(kπ,0),k∈Z对称周期性最小正周期:y=sinx T=2π奇偶性奇函数(其图象关于原点对称)单调性在[-π/2+2kπ,π/2+2kπ],k∈Z上是单调递增.在[π/2+2kπ,3π/2+2kπ],k∈Z上是单调递减.3正弦型函数及其性质编辑正弦型函数解析式:y=Asin(ωx+φ)+h各常数值对函数图像的影响:φ(初相位):决定波形与X轴位置关系或横向移动距离(左加右减)ω:决定周期(最小正周期T=2π/|ω|)A:决定峰值(即纵向拉伸压缩的倍数)h:表示波形在Y轴的位置关系或纵向移动距离(上加下减)作图方法运用“五点法”作图“五点作图法”即当ωx+φ分别取0,π/2,π,3π/2,2π时y的值.单位圆定义图像中给出了用弧度度量的某个公共角。
正弦函数图像和性质
2.求函数的值域,并求取得最值时X的取值集合。
(1)y= - 2sinx
(2)y= 2sin(2x+ 4 )
x [ , ]
4
(3)y= sin2x + 2sinx - 2
-4 -3
-2
y
1
-
o
-1
2
周期的概念
3
4
5 6x
一般地,对于函数 f (x),如果存在一个非零常数 T ,
使得当 x 取定义域内的每一个值时,都有
练习:函数y=asinx+b的最大值为2,最小值为-1,
则a=________,b=________.
[解] 当 a>0 时,由题意得
[答案] 32或-32
1 2
a+b=2 -a+b=-1
,解得ab= =3212
.
当 a<0 时,由题意,得- a+a+ b=b= -21 ,
解得ab= =- 12 32
.
正弦函数的奇偶性
由公式 sin(-x)=-sin x
正弦函数是奇函数.
图象关于原点成中心对称 .
y
1
-3 5π -2 3π - π o
2
2
2
-1
x
π 2
3π 2
2 5π
2
3 7π 4 2
正弦函数的单调性
观察正弦函数图象
x
π 2
…
sinx -1
0… 0
π…
2
1
…
3π 2
0
-1
在闭区间 π22π2k,π,π2π2 2kπ, k Z 上, 是增函数;
f ( x+T )= f (x)
,那么函数 f (x) 就叫做周期函数,非零常数 T 叫做这个
正弦型函数的图像
正弦型函数的图像案场各岗位服务流程销售大厅服务岗:1、销售大厅服务岗岗位职责:1)为来访客户提供全程的休息区域及饮品;2)保持销售区域台面整洁;3)及时补足销售大厅物资,如糖果或杂志等;4)收集客户意见、建议及现场问题点;2、销售大厅服务岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。
班中工作程序服务流程行为规范迎接指引递阅资料上饮品(糕点)添加茶水工作要求1)眼神关注客人,当客人距3米距离时,应主动跨出自己的位置迎宾,然后侯客迎询问客户送客户注意事项15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!”3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人;4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品);7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等待;阶段工作及服务流程班中工作程序工作要求注意事项饮料(糕点服务)1)在所有饮料(糕点)服务中必须使用托盘;2)所有饮料服务均已“对不起,打扰一下,请问您需要什么饮品”为起始;3)服务方向:从客人的右面服务;4)当客人的饮料杯中只剩三分之一时,必须询问客人是否需要再添一杯,在二次服务中特别注意瓶口绝对不可以与客人使用的杯子接触;5)在客人再次需要饮料时必须更换杯子;下班程序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导;2)填写物资领用申请表并整理客户意见;3)参加班后总结会;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.3.3吧台服务岗1.3.3.3.1吧台服务岗岗位职责1)为来访的客人提供全程的休息及饮品服务;2)保持吧台区域的整洁;3)饮品使用的器皿必须消毒;4)及时补充吧台物资;5)收集客户意见、建议及问题点;1.3.3.3.2吧台服务岗工作及流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。
正弦函数的图像课件
通过掌握正弦函数的性质和图像, 可以解决许多实际问题,提高解决 实际问题的能力和素养。
未来研究方向和挑战
深入研究和探索
随着科学技术的发展,正弦函数的应用领域也在 不断扩大和深化,需要进一步研究和探索其性质 和应用。
数值分析和计算物理
随着计算机技术的发展,如何利用正弦函数进行 数值分析和计算物理的研究也是未来的一个重要 方向。
数学建模和算法设计
如何利用正弦函数建立数学模型和设计算法,是 未来研究的一个重要方向。
跨学科应用
正弦函数作为数学中的基础函数,可以与其他学 科进行交叉融合,例如与物理学、工程学、经济 学等学科的结合,需要进一步探索其跨学科应用 的价值和可能性。
THANKS
感谢观看
图像形状
正弦函数和对数函数的图像形状也不同。正弦函数的图像呈现波形,而对数函数的图像 呈现向上或向下凸出的趋势。
05
总结与展望
正弦函数的重要性和应用价值
数学基础
正弦函数是数学中的基本函数之 一,是学习三角函数、复数、微
积分等数学领域的基础。
应用广泛
正弦函数在物理学、工程学、经济 学等多个领域都有广泛的应用,例 如振动分析、交流电、信号处理等 。
振幅和相位
通过调整正弦函数中的振幅和相位参 数,可以改变图像的高度和位置。了 解这些参数对理解正弦函数图像的影 响非常重要。
03
正弦函数的应用
在物理中的应用
简谐振动
正弦函数描述了许多物理现象, 如简谐振动。在物理中,简谐振 动是一种基本的振动类型,其位 移与时间的关系通常可以用正弦
函数表示。
交流电
操作步骤
在软件中选择相应的函数图像绘制工具,输入正弦函数公式(例如y=sin(x)), 然后选择x的取值范围(例如-π到π),最后点击“绘制”按钮即可生成正弦函数 的图像。
正弦型函数y=A sin(ωx+φ)的图像 课件-高一上学期数学人教A版(2019)必修第一册
y
2
1
0
π
2π
3π
4π x
-1
ω的作用:使正弦函数的周期发生变化。
你能得到y=sin ( x)与y=sinx 图象的关系吗?
函数 y sin(x) 的图象,可以看作
是把 y sin( x) 的图象上所有点的横坐
标* 1 倍(纵坐标不变)而得到的. 0
T 2
练习:求下列函数的最大值、最小值、 周期
先观察y=2sinx、y= 1 sinx与y=sinx的图象间的关系
y
2
2
1
0
π
2π x
-1
-2
你能得到y=Asinx与y=sinx 图象的关系吗?
1.y=Asinx(A>0)的图象是由y=sinx的图象上所 有点的横坐标不变,纵坐标*A倍而成. 2.值域 [ -A, A]最大值A,最小值-A
正弦型函数y =Asin(ωx + )的图象
5、 3 2
1
5
y sin( x ) 1
2 2
ymax 2
ymin
2
T 2
正弦型函数y =Asin(ωx + )的图象和性质
3、 的作用:研究 y=sin(x+ )与y=sinx 图象的关系
先观察y = sin(x+ )、y = sin(x - )
2
2
与 y=sinx 的图象间的关系
y
2
1
0
π
2π
3π
4π x
-1
作y=sin
1 2
x的图象
1x
0
2
x
0
sin 12x 0
1、列表
1.3.1正弦型函数图像
得y=3sin
2x+ 3
例3、试说明函数 y=-2sin2x+6 +2 图象与函数
y=sinx的图象的变换关系。
解:将y=sinx的图象上各点的横坐标缩短为原来的 1 2
纵坐标不变,则得到y=sin2x的图象。
又将y=sin2x的图象沿x轴向左平移 个单位,则得到
方法二:先把函数 ys的inx图象上各点的横
坐标变为原来的 倍1 ,得到函数 ysinx
图移象| |;个再单把位长y度s,in得x到的函图数像向y左(si右n 的)x(图 平象)
然后把曲线上各点的纵坐标变为原来的A倍,
就得到函数
y的图A 象s. i nx()
例1、作y=2sinx2+3的图象
-
-1
o 6
3
2
2 3
5 6
7 6
4 3
3 2
5 3
11 6
2
x
-1 -
在函数 ysinx,x [0,2] 的图象上,起关键作用的点有:
最高点:( ,1 )
2
最低点:(32 ,1)
与x轴的交点:( 0 , 0 ) ( , 0 ) (2 , 0)
在精度要求不高的情况下,我们可以利用这5个点画出函数 的简图,一般把这种画图方法叫“五点法”。
36
13
2
2
7
x
2
思考1:一般地,函数 yAsi nx()
(A>0,>0)的图象,可以由函数
y sinx的图象经过怎样的变换而得到?
先把函数 y s的inx图象向左(右)平移| |
个单位长度,得到函数 y的si图nx象 (;)
正弦函数图像和性质(单调性)
解:(1)因为- ,且函数y sin x在区间
2 10 18 2
[ , ]上是增函数. 所以sin( ) sin( ),
22
10
18
y
1
2
o
2
-1
3
2
x
2
练习
不求值,比较下列各对正弦值的大小
sin 2 与sin 3
3
4
解:
2
23
3
4
3 ,
2
且y=sinx在2
,
3
2
周期性是三角函数的一大特点
周期(最小正周期) T 2
正弦型函数 y A sin(x )
周期(最小正周期) y
T
2
y=sinx xR
1
-4 -3
-2
-
o
-1
2
3
4
5 6x
正弦函数的奇偶性
由公式 sin(-x)=-sin x
正弦函数是奇函数.
图象关于原点成中心对称 .
y
1
-3 5π -2 3π - π o
∴函数 y=sinπ4-2x的单调增区间为38π+kπ,78π+kπk∈Z.
例 2 函数 y=sin2x+3π的对称轴方程为________, [对解]称中∵函心数坐y标=s为inx_,__x∈__R__的_[答对.案称]轴x方=程k2π为+1πx2=,kk∈π+Z π2,k2πk-∈π6Z,,0k∈Z
当y=f(t)和t=g(x)同为增(减)函数时,y=f[g(x)]为增函数; 当y=f(t)和t=g(x)一个为增函数,一个为减函数时,y= f[g(x)]为减函数.
“同增异减”
[分析] 令 t=3x-π3,当 x∈R 时单调递增,所以当函数 y=sint 递增
正弦型函数
1 0 -1 π 2π 3π 4π x
作y=sin
1 x的图象 的图象 2
1 x 2
1、列表 、
π
2
2、描点 、
3 π 2
3、连线 、
2π 4π 0
0 0
π 2π 0
x sin
1 x 2
π 1
又A>0 >
正弦型函数y 正弦型函数 =Asin(ωx + ϕ)的图象和性质 的图象和性质
A sin( ωx + ϕ ) 3、周期: y = Asin(ω x + ϕ ) 、周期:
= A sin[( ω x + ϕ ) + 2π ] = A sin[( ω x + 2π ) + ϕ ] 2π 2π = Asinω x + = A sin ω x + + ϕ +ϕ ω ω 2π
正弦型函数 y = A sin(ωx+ϕ ) ϕ 的性质和图象
复 习
周期函数的定义: 周期函数的定义
对于函数 f (x), x ∈D, 如果存在一个非零 常数T,使得对于每一个 x∈D,都有 x+T ∈D,且 常数 使得对于每一个 都有 且 f ( x+T)= f (x), 叫做周期函数,T叫做这个函 那么函数 f (x)叫做周期函数 叫做这个函 叫做周期函数 数的一个周期. 数的一个周期
ω 则有 A sin( ω x + ϕ ) = A sin[ ω ( x + T ) + ϕ ]
所以 T 是 y = A sin( ω x + ϕ )的一个周期
正弦函数的图像和性质
; /redianticai/ 热点概念股 ;
招呼.至于陈三六,和白狼马の女人们,孩子们就暂时没有放出来了,要不然の话挤の慌.不过大家把酒言欢,过了壹会尔就提到了根汉要出去独闯の事情,壹听说根汉过段时间就要离开这里又要去独闯了,白萱有些不高兴了."小姨,要不你跟着根汉哥哥出去壹起闯荡吧."瑶瑶建议道:"你们 都这么久不见了,现在又要分开,太残忍了.""没什么,以后不是有你们陪伴嘛,他也不能总陪着咱,再说了,咱这么大人了要人陪干吗."白萱虽然壹开始有些不高兴,但是还是欣然接受.根汉也想说,要不和白萱还有钟薇壹起去吧,也算是对她们の弥补了.不过白萱和钟薇都表示,让自己独自 壹人离开,带上她们也不太方便,那闯荡也就没什么意义了,她们也习惯在这无心峰の宁静生活了.现在再出去打拼反而不美,不如就呆在这里好好体验生活,感悟天道,或许可以早壹日突破桎梏.对此根汉也只能是表示,罢了,就让她们呆在这里吧.这壹次自己出去独闯,也不知道要面对多少 艰难险阻,她们呆在这无心峰也挺好の,起码挺安全の.虽然现在不知道老疯子又去了哪里了,但要是万壹这里出了什么变故,他相信老疯子会瞬间就会出现の,壹切都会解决,所以在这里是最安全の.不过根汉也不想现在就离开,好久没见到白萱和钟薇了,现在也不想马上就离去,他表示起 码在这里呆上三年,在情域和无心峰这壹带转壹转再走.几天之后,根汉终于是来到了旁边の壹座侧峰.这里半山腰处,有壹个山洞,洞府口贴上了几张符纸,还是壹座封印结界."咱说蓝霞妹子,这么多年过去了,你还记着咱呢."根汉站在洞口,有些无奈の苦笑.这封印结界明显是刚刚不久前 才弄出来の,显然是蓝霞仙子,不乐意待见自己,故意将这里给封上の.里面没有传来回馈,不过这样の封印结界,却完全挡不住根汉.根汉壹步便迈进了封印结界之中,然后下壹秒,他就知道自己又闯
1.2.1 正弦型函数曲线
(2)
y
sin
1
x和y
2
sin(
1
x
)
2
24
(3) y sin(1 x )和y 1 sin(1 x )
24
224
函数y
sin
x的图像
横坐标伸长到原来的2倍
函数y
sin
1
x的图像
纵坐标不变
2
横坐标向右平移 个单位
2
函数y sin(1 x )的图像
纵坐标不变
24
横坐标不变 纵坐标缩短到原来的1
列表
x
π
π
8
8
2x π 4
π
0
2
y 2sin(2x π) 4
0
2
3π
5π
7π
8
8
8
π
3π
2
2π
0
-2
0
以表中每组对应的x,y值为坐标,描出点 (x, y),用光滑的
曲线顺次联结各点,得到
y sin(2x π一) 个周期内的图像. 4
巩固知识 典型例题
(变 纵坐标伸长或缩短到原来的A倍
正弦型曲线 y Asin(x )
巩固知识典典例型例精题讲
例2、利用“五点法”作出正弦型曲线
y
3 sin(3x
π )
2
6
并指出曲线是有正弦曲线经过怎样的步骤得到的.
解:函数 y 3 sin(3x π) 可以看作由下面的方法得到:
2
6
首先将正弦曲线y=sinx上的所有点的横坐标缩短到原来的
π
π
8
8
2x π 4
π
0
2
y sin(2x π) 4
正弦型函数图像
) 6
纵坐标变为原来的3倍 4、y=sinx_______________y=3sinx
1 横坐标变为原来的4倍 5、y=sinx_______________y=sin 4
x
y=sinx
y=sin(x+ ) 5
向左平移 个单位 5
y=sinx
纵坐标不变 1 横坐标变为原来的 倍 2
y=sin2x
4π 2π 0
Sin(1/2)x 0
4
2
-4
-2
o
2
π
4
6
2π
8
10
12
4π
14
y=sin2x
-2Байду номын сангаас
y=sinx
y=sin(1/2)x
-4
向左平移 个单位 1、y=sinx_________________y=sin(x+ 6 ) 6
向右平移 单位 2、 y=sinx_______________y=sin(x6 1 横坐标变为原来的 倍 3、y=sinx________________y=sin2x 2
纵坐标不变 横坐标变为 原来的1/ω
y=sinωx
向左或向右
平移|φ/ω|个 单位
y=sin(ωx+φ)
横坐标不变 纵坐标变为 原来的A倍
y=sin(ωx+φ)
横坐标不变 纵坐标变为 原来的A倍
y=Asin(ωx+φ)
y=Asin(ωx+φ)
y=sin3x的图像沿x轴向左平移 6 个单位得到 _________________________图像
向左平移
纵坐标不变 1 横坐标变为原来的 倍 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
)] sin(2 x
3
)
向左平移 个单位 3
y sin( x
3
)
y sin( 2 x
1 2 纵坐标不变 横坐标缩短到原来的
3
)
例2. 用五点法作出函数 y 2 sin( 2 x ) 3 的图象,并指出函数的单调区间。 解:(1)列表
5
解法2:由图象可知将 y 2 sin 2 x 的图象向左移 6 即得 y 2 sin 2( x 6 ) ,即 y 2 sin( 2 x ) 3 3 所求函数解析式为 y 2 sin( 2 x ) 3
3
所求函数解析式为 y 2 sin(2 x 3 )
6
四、课堂练习
P62练习题1、2、3、4、7
小结
1.由解析式作图: 由函数y=Asin(x+)+B的解析式作图: (1)五点作图法; (2)利用函数图象的变换. 2.看图识解析式: 抓住图象的特征,如关键点,周期,振幅,对称轴等.
六、课后作业:
P65习题 A组第1、3题 B组 第2、3题
o1 -1 2 -2
2
x
2
1 y= sinx 2
---振幅变换
(3) y=sin2x
解: x
2x
0
0
4 2
2
3 4 3 2 2
1 (4) y=sin x 2
x
1 x 2 1 sin x 2
0 0
2 3 4
2
3 2 2
sin2x 0 y 1 o -1
fx = cosx
3.五点法做图
例.用五点法作出下列函数图象:
(1) y=2sinx
解:
x
0
2
3 2 2
1 (2) y= sinx x 0 2
3 2 2
sinx 0 2sinx 0
1 2
1 2
0 -1 0 -2 0
1 2
0 0 0
y=2sinx
2
0 2 0 -2 0 y 2
纵坐标变为原来的2倍 y=2sin(2x- ). 横坐标不变 6
o
x
12 3 7 12 5 6 13 12
-2
小结:
1.对于函数 y=Asin(x+) (A>0, >0):
A --- 振幅, T 2 --- 周期, f 1 --- 频率,
例1. 用两种方法将函数 y sin x 的图象变换为函数 y sin(2 x ) 的图象。 解法1:y sin x
3
1 2 纵坐标不变 横坐标缩短到原来的
y sin2 x
向左平移 个单位 6
y sin[2( x
解法2:y sin x
上下平移 y=Asin(x+) (A>0, >0) 的图象可由y=sinx经过如下变换得到:
1 向左 ( >0) 或向右 ( <0) 横坐标变为原来的 倍 y=sin(x+) y=sinx y=sin(x+) 平移个单位 纵坐标不变
y=Asin(x+) (A>0, >0) 的图象可由y=sinx经过如下变换得到:
T
x+ --- 相位, 2.图象的变换: (1)伸缩变换 (2)平移变换
--- 初相.
周期变换
振幅变换
左右平移
( ----- 形状变换) ( ----- 位置变换)
1 向左 ( >0) 或向右 ( <0) 横坐标变为原来的 倍 y=sin(x+) y=sinx y=sin(x+) 平移个单位 纵坐标不变 纵坐标变为原来的A倍 y=Asin(x+) 横坐标不变
x
6
0 0
12
2x
y
3
3
2
2 0
7 12 3 2
-2
5 6 2
0
(2)描点 (3)用平滑的曲线顺次连结各点所得图象如图所示:
的值。 例3. 如图是函数 y A sin(x ) 的图象,确定A、 、
解:显然A=2 T ( ) 6 6 2 2 2 y 2 sin(2 x ) T 解法1:由图知当 x 时,y=0 故有 2 x 2 ( ) 0 6
4 2
1
0 -1
0
0
1
0 -1
0
3 4
3 2
2
5 2
3
7 2
4
x
y=2sinx
---周期变换
1 y=sin x 2
(5) y=2sin(2x- ) 例 6
解:
x
2x 6 2sin(2x- ) 6 12
0
1 横坐标变为原来的 2 y=sinx y=sin2x 纵坐标不变 7 5 13 3 12 6 12 向右平移 12 3 y=sin[2(x)] =sin(2x- ) 2 12 2 2 6
教学重点、难点:
重点:用图象变换的方法画y=Asin(ωx+ )的图象 。
难点:理解振幅变换和周期变换和平移变换 。
复习引入
1.正弦曲线
1 -6 -5 -4 -3 -2 - -1 y 0 2 3 4 5 6 x
fx = sinx
2. 余弦曲线
1 -6 -5 -4 -3 -2 - -1 y 0 2 3 4 5 6 x
1.5函数y=Asin (ωx+φ)的图象
教学目的: 1、理解振幅变换和周期变换和平移变换;会用图 象变换的方法画y=Asin(ωx+ )的图象 ; 2、会用“五点法”画y=Asin(ωx + )的图象 ; 3、会求一些函数的振幅、周期、最值等 ; 4、渗透分类讨论的数学思想,提高分析和解决问 题的能力 。
纵坐标变为原来的A倍 y=Asin(x+) 横坐标不变
或:
1 向左 ( >0) 或向右 ( <0) 横坐标变为原来的 倍 y=sinx y=sinx y=sin(x+ ) 平移 个单位 纵坐标不变
纵坐标变为原来的A倍 y=Asin(x+) 横坐标不变
=sin(x+)