七年级数学下册平行线平行线练习浙教版
第一章平行线单元练习+2023—2024学年浙教版数学七年级下册
浙教版七年级下学期第一章平行线单元练习一、选择题1.下列各组图形中,左边的图形平移后可以得到右边图形的是 ( )A B C D2.如图,直线 a , b 被直线 c 所截, ∠1 与∠2 是()A.同位角B.内错角C.同旁内角D.对顶角(第2题图)(第3题图)(第4题图)3.如图是木匠师傅利用直尺和三角尺过已知直线l外一点P作直线l的平行线的方法,其直接理由是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.平面内垂直于同一条直线的两条直线互相平行4.如图,下列两个角属于内错角的是()A.∠1 与∠2B.∠1 与∠3C.∠1 与∠4D.∠2 与∠45.如图,已知 AB ∥ CD , ∠ A =53°, ∠ E =19 ,则∠ C 的度数为()A.34°B.33°C.72°D.73°(第5题图)(第6题图)(第7题图)6.如图, ∠1=∠ A , ∠2=∠ D .有下列结论:① AD ∥ EF ; ② AD ∥ BC ; ③EF ∥ BC ; ④ AB ∥ DC .其中正确的有A.1个B.2个C.3个D.4个7.小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知 AB∥CD,∠BAE=91°,∠DCE=124°,则∠AEC的度数为()A.29°B.30°C.31°D.33°8. 如图,人民公园内一块长方形草地上原有一条 1m 宽的笔直小路,现要将这条小路改造成弯曲小路,小路的上边线向下平移 1m 就是它的下边线,则改造后小路的面积 ( )A.变大了B.变小了C.没变D.无法确定(第8题图)(第9题图)9. 如图, AB ∥ CD ,点 P 在 AB , CD 之间,∠ ACP =2∠ PCD =40° ,连结 AP . 若∠ BAP = α , ∠ CAP = α + β ,则下列说法中,正确的是()A.当∠ P =60°时,α =30°B.当∠ P =60°时,β =40°C.当β =20°时, ∠ P =90°D.当β =0°时,∠ P =90°10.如图1,当光线从空气斜入射到某种透明的液体时发生了折射,满足入射角∠1与折射角∠2的度数比为3∶2.如图2,在同一平面上,两条光线同时从空气斜射入这种液体中,两条入射光线与水平液面夹角分别为α,β,在液体中两条折射光线的夹角为γ,则α,β,γ三者之间的数量关系为()A.23(α+β)=γB.23(α+β)=120°-γC.α+β=γD.α+β+γ=180°二、填空题11. 如图,请写出能判定 CE ∥ AB 的一个条件:________.(第11题图)(第12题图)(第13题图)12. 如图,直线 a , b 分别被直线 c , d 所截,如果∠1=∠2 ,那么∠3+∠4= ________.13.一个三角板(含30°、60°角)和一把直尺摆放位置如图所示,直尺与三角板的一角相交于点A,一边与三角板的两条直角边分别相交于点D、点E,且CD=CE,点F在直尺的另一边上,那么∠BAF的大小为°.14.如图,把一张长方形纸片沿着直线 GF 折叠, ∠ CGF= 30° ,则∠1 的度数是__________.15. 夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥 . 若荷塘的周长为 300m ,且桥宽不计,则小桥的总长为________ m.(第14题图)(第15题图)16.如图1是一盏可调节台灯,图2,图3为示意图.固定底座AO⊥OE于点O,BA与CB是分别可绕点A和B旋转的调节杆.在调节过程中,灯体CD始终保持平行于OE,台灯最外侧光线DM,DN组成的∠MDN始终保持不变.如图2,调节台灯使光线DN∥BA,此时∠BAO=130°,且CD的延长线恰好是∠MDN的角平分线,则∠MDN=_____.如图3,调节台灯使光线MD垂直AB于点B,此时∠BAO=120°,则∠PDN=________.三、解答题17.如图,在方格纸中,有两条线段 AB,BC.利用方格纸完成以下操作:(1)过点 A 作BC的平行线AE.(2)过点 C作AB 的平行线,与(1)中的平行线相交于点 D.(3)用符号表示出图中的一组平行线.18.如图, ∠1=∠ B ,∠ CEB =∠ CFB ,试说明 AB ∥ CD 的理由 .19. 如图,已知∠1=∠2=∠ A .(1 )试说明∠1=∠3 的理由 .(2 )当∠ ADG =80°时,求∠2 的度数 .20.如图, ∠1+∠2=180°, ∠ B=∠3.(1 )判断 DE 与 BC 的位置关系,并说明理由 .(2 )若∠ C =63° ,求∠ DEC 的度数 .21.(1 )如图① ,已知∠ ABC +∠ ECB =180° ,∠ P =∠ Q ,试说明∠1=∠2 的理由 .(2 )如图② , AB ∥ CD , ∠1=∠2 ,试说明∠ F =∠ M 的理由22如图,一副三角板,其中∠EDF=∠ACB=90°,∠E=45°,∠A=30°.(1)若这副三角板如图摆放,EF∥CD,求∠ABF的度数.(2)将一副三角板如图1所示摆放,直线GH∥MN,保持三角板ABC不动,现将三角板DEF绕点D以每秒2°的速度顺时针旋转,如图2,设旋转时间为t秒,且0≤t≤180,若边BC与三角板的一条直角边(边DE,DF)平行时,求所有满足条件的t的值.(3)将一副三角板如图3所示摆放,直线GH∥MN,现将三角板ABC绕点A以每秒1°的速度顺时针旋转,同时三角板DEF绕点D以每秒2°的速度顺时针旋转.设旋转时何为t秒,如图4,∠BAH=t°,∠FDM=2t°,且0≤t≤150,若边BC与三角板的一条直角边(边DE,DF)平行时,请直接写出满足条件的t的值.参考答案1-5 CAAAA6-10 BDCBB11.略12.180°13.15°14.60°15.15016.80°,20°17.略18.略19.(1)略(2)50°20.(1)DE∥BC,;理由略(2)117°21.略22.(1)75°(2)15或60或105或150(3)30或120。
浙教版七年级下册数学第一章 平行线含答案(必刷题)
浙教版七年级下册数学第一章平行线含答案一、单选题(共15题,共计45分)1、如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A.50°B.40°C.30°D.25°2、如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A.28°B.38°C.48°D.88°3、下列说法中正确的是()A.两条相交的直线叫做平行线B.在直线外一点,只能画出一条直线与已知直线平行C.如果a∥b,b∥c,则a不与b平行D.两条不平行的射线,在同一平面内一定相交4、如图,已知BE∥AC,图中和∠C相等的角是()A.∠ABEB.∠AC.∠ABCD.∠DBE5、含30°角的直角三角板与直线l1、l2的位置关系如图所示,已知l1∥l2,∠ACD=∠A,则∠1=()A.70°B.60°C.40°D.30°6、若把函数y=2x-3图象向上平移3个单位长度,得到图象对应的函数解析式为( )A.y=2xB.y=2x-6C.y=4x-3D.y=-x-37、将两张长方形纸片按如图所示方式摆放,使其中一张长方形纸片的两个顶点恰好落在另一张长方形纸片的两条边上,则∠1+∠2的度数为()A.120°B.110°C.100°D.90°8、如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°9、将直线y=x-2向上平移3个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小10、如图,CD∥AB,点F在AB上,EF⊥GF,F为垂足,若∠1=48°,则∠2的度数为()A.42°B.45°C.48°D.50°11、如图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,则图2中∠AEF的度数为()A. B. C. D.12、如果∠A和∠B是两平行直线中的同旁内角,且∠A比∠B的2倍少30º,则∠B的度数是()A.30ºB.70ºC.110ºD.30º或70º13、如图,直线AB∥CD,EF⊥CE,垂足为E,EF交CD于点F,∠1=48°,则∠2的度数是()A.42°B.48°C.52°D.58°14、在以下现象中,属于平移的是()①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程.A.①②B.②④C.②③D.③④15、如图,已知直线,,且,则等于()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y= x上一点,则点B与其对应点B′间的距离为________.17、如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=________°.18、如图,在中,,,BD平分,CD平分,,且EF过点D,则的周长是________.19、如图AB∥CD.直线MN交AB,CD于点M和N,MH平分∠AMN,NH⊥MH于点H,若∠MND=64°,则∠CNH=________.20、如图,直线,等边的顶点B在直线m上,边与直线m所夹锐角为,则的度数为________.21、如图一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD,是根据________22、如图,E为△ABC边CA延长线上一点,过点E作ED∥BC.若∠BAC=70°,∠CED=50°,则∠B=________°.23、如图,在△ABC中,CD平分∠ACB,∠1=∠2=36°,则∠3=________°.24、如图,将沿方向平移得到,如果,, ,那么图中阴影部分的面积为________25、如图(1)是长方形纸带,,将纸带沿折叠图(2)形状,则等于________度.三、解答题(共5题,共计25分)26、已知:如图,,求证:.27、如图,BD是∠ABC的平分线,DE∥CB,交AB于点E,∠A=45°,∠BDC=60°.求△BDE各内角的度数.28、如图,已知∠ABC=∠ADC,BF,DE是∠ABC,∠ADC的角平分线,∠1=∠2,试说明:DC∥AB.29、光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射,如图,水面与水杯下沿平行,光线从水中射向空气时发生折射,光线变成,点G在射线上,已知,求的度数.30、如图,∠B=∠C,AB∥EF,求证:∠BGF=∠C.参考答案一、单选题(共15题,共计45分)1、D2、C3、B4、D5、B7、D8、B9、C10、A11、B12、B13、A14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。
浙教版七年级下册数学第一章平行线练习题
5D 1C B A F E G H432初一数学平行线-1测试题一、选择题1.在同一平面内,两条直线可能的位置关系是 ( )(A) 平行. (B) 相交. (C) 相交或平行. (D) 垂直.2.判定两角相等,不正确的是 ( )(A ) 对顶角相等.(B ) 两直线平行,同位角相等.(C ) ∵∠1=∠2,∠2=∠3,∴∠1=∠3.(D ) 两条直线被第三条直线所截,内错角相等.3.两个角的两边分别平行,其中一个角是60°,则另一个角是 ( )(A )60°. (B )120°.(C ) 60°或120°. (D ) 无法确定.4.下列语句中正确的是( )(A )不相交的两条直线叫做平行线.(B )过一点有且只有一条直线与已知直线平行.(C )两直线平行,同旁内角相等.(D5. 如图,与∠1 是同位角的是A .2∠B .3∠C .4∠D .5∠6.如图1所示,∠1的邻补角是( ) A.∠BOC B.∠BOE 和∠AOF C.∠AOF D.∠BOC 和∠AOF 54321图77.观察图7中角的位置关系,∠1和∠2是______角,∠3和∠1是_____角,∠1•和∠4是_______角,∠3和∠4是_____角,∠3和∠5是______角.8.填注理由:如图,已知:直线AB ,CD 被直线EF ,GH 所截,且∠1=∠2,试说明:∠3+∠4=180°.解:∵∠1=∠2 ( ) 又∵∠2=∠5 ( ) ∴∠1=∠5 ( ) ∴AB ∥CD ( )∴∠3+∠4=180° ( )图1 F E O 1CB AD。
浙教版七年级下数学第一章平行线单元测试及答案(共7张)
浙教版七年级下第一章平行线单元测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共10小题,3*10=30)1.若∠α与∠β同旁内角,且∠α=50°时,则∠β的度数为()A.50°B.130°C.50°或130°D.无法确定2.已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A.有且仅有一条B.有两条C.不存在D.有一条或不存在3.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行4.如图是用一张长方形纸片折成的,如果∠1=100°,那么∠2的度数是()A.50°B.60°C.70°D.80°5.如图所示,AB∥CD,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°6.如图,AB∥CD,MP∥AB,MN平分∠AMD,∠A=40°,∠D=30°,则∠NMP等于()A.10°B.15°C.5°D.7.5°7.将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A.①②③B.①②④C.③④D.①②③④8.如图,多边形ABCDEFGHIJ的相邻两边互相垂直,要求出它的周长,至少需要知道()条边的边长.A.3 B.4 C.5 D.69.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对10.如图,已知AB∥DE,那么下列结论正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2﹣∠3=180°C.∠1=∠2+∠3 D.∠1﹣∠2+∠3=180°第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二.填空题(共6小题,3*6=18)11.在同一平面内有三条直线,如果其中有两条且只有两条相互平行,那么它们有个交点.12.如图,与∠1构成同位角的是,与∠2构成同旁内角的是.13.经过直线外一点,一条直线与这条直线平行.14.如图,将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°,则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C.其中正确的有.(填序号)15.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,则∠FGD的度数是度,再沿BF折叠成图c,则图c中的∠DHF的度数是.16.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在MN的位置上,若∠EFG=55°,则∠2=.三.解答题(共7小题,52分)17.(6分)按要求完成作图,并回答问题;如图在△ABC中:(1)过点A画BC的垂线,垂足为E;(2)画∠ABC的平分线,交AC于F;(3)过E画AB的平行线,交AC于点G;(4)过点C画AB所在的直线的垂线段,垂足为H.18.(6分)如图,有四条互相不平行的直线L1、L2、L3、L4所截出的八个角.请你任意选择其中的三个角(不可选择未标注的角),尝试找到它们的关系,并选择其中一组予以证明.19.(6分)如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD()∴∠2=∠CGD(等量代换)∴CE∥BF()∴∠=∠BFD()又∵∠B=∠C(已知)∴∠BFD=∠B(等量代换)∴AB∥CD()20.(8分)(1)如图1,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在线段AB上,则∠1,∠2,∠3之间的等量关系是;如图2,点A在B处北偏东40°方向,在C处的北偏西45°方向,则∠BAC=°.(2)如图3,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°,试说明:AB∥CD;并探究∠2与∠3的数量关系.21.(8分)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM 交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N 的度数.22.(8分)若在方格(每小格正方形边长为1m)上沿着网格线平移,规定:沿水平方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿竖直方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.例如:点A按“平移量”{1,4}可平移至点B.(1)从点C按“平移量”{,}可平移到点B;(2)若点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D,①请在图中标出点D;(用黑色水笔在答题卡上作出点D)②如果每平移1m需要2.5秒,那么按此方法从点B移动至点D需要多少秒?③观察点D的位置,其实点B也可按“平移量”{,}直接平移至点D;观察这两种平移的“平移量”,猜想:点E依次按“平移量”{2a,3b}、{﹣5a,b}、{a,﹣5b}平移至点F,则相当于点E按“平移量”{,}直接平移至点F.23.(10分)如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.参考答案与试题解析一.选择题(共10小题)1.D2.D 3.A 4.A 5.C 6.C 7.B 8.A 9.D 10.B 二.填空题(共6小题)11.2 12.∠B,∠1 13.有且只有.14.①②④15.52,78°16.110°三.解答题(共7小题)17.解:(1)作法利用量角器测得∠AEC=90°,AE即为所求;(2)作法:①以点B为圆心,以任意长为半径画弧,两弧交∠ABC两边于点M,N.②分别以点M,N为圆心,以大于MN的长度为半径画弧,两弧交于点P③作射线BP,则射线BP为角ABC的角平分线;④射线BP交AC于点F;(3)作法:用量角器测得∠ABC=∠GEC,EG即为所求;(4)作法:利用量角器测得∠BHC=90°,CH即为所求.18.解:如∠2+∠4+∠6=360°,∠1+∠5+∠7=180°,∠2=∠5+∠7,∠3=∠1+∠8,已知如图:有四条互相不平行的直线L1、L2、L3、L4所截出的八个角,求证:∠1+∠5+∠7=180°,证明:∵∠DAC+∠7+∠5=180°,又∵∠1=∠DAC,∴∠1+∠5+∠7=180°.19.解:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠C=∠BFD(两直线平行,同位角相等),又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:(对顶角相等),(同位角相等,两直线平行),C,(两直线平行,同位角相等),(内错角相等,两直线平行).20.解:(1)如图1中,作PM∥AC,∵AC∥BD,∴PM∥BD,∴∠1=∠CPM,∠2=∠MPD,∴∠1+∠2=∠CPM+∠MPD=∠CPD=∠3.由题可知:∠BAC=∠B+∠C,∵∠B=40°,∠C=45°,∴∠BAC=40°+45°=85°.故答案为:∠1+∠2=∠3,85°.(2)证明:∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.21.解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.22.解:(1)从C到B,向左2个单位,向下1个单位,所以,平移量为{﹣2,﹣1};(2)①点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D如图所示;②(4+3+2+1)×2.5=10×2.5=25秒;③由图可知,点B到点D,向右2个单位,向下2个单位,所以,平移量为{2,﹣2},∵2a﹣5a+a=﹣2a,3b+b﹣5b=﹣b,∴点E到F的平移量为{﹣2a,﹣b}.故答案为:(1)﹣2,﹣1;(2)③2,﹣2;﹣2a,﹣b.23.【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,∴∠O=180°﹣∠B=60°,而∠A=120°,∴∠A+∠O=180°,∴OB∥AC;(2)∵OE平分∠BOF,∴∠BOE=∠FOE,而∠FOC=∠AOC,∴∠EOF+∠COF=∠AOB=×60°=30°,即∠EOC=30°;(3)比值不改变.∵BC∥OA,∴∠OCB=∠AOC,∠OFB=∠AOF,∵∠FOC=∠AOC,∴∠AOF=2∠AOC,∴∠OFB=2∠OCB,即∠OCB:∠OFB的值为1:2;(4)设∠AOC的度数为x,则∠OFB=2x,∵∠OEB=∠AOE,∴∠OEB=∠EOC+∠AOC=30°+x,而∠OCA=180°﹣∠AOC﹣∠A=180°﹣x﹣120°=60°﹣x,∵∠OEB=∠OCA,∴30°+x=60°﹣x,解得x=15°,∴∠OCA=60°﹣x=60°﹣15°=45°.浙教版七年级下第一章平行线单元检测卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
浙教版2022年七年级数学下册第1章平行线平行线练习(含答案)
浙教版2022年七年级数学下册第1章平行线平行线练习(含答案)第1章平行线1.1平行线知识点1平行线的概念在同一个平面内,不相交的两条直线叫做平行线.“平行”用符号“∥”表示,直线a和b是平行线,记做a∥b,读做“a平行b”.平行线的定义包含三层意思:(1)“在同一平面内”是前提条件;(2)“不相交”就是说两条直线没有交点;(3)平行线指的是“两条直线”,而不是“两条射线”或“两条线段”.1.下列说法正确的是()A.在同一平面内,不相交的两条线段是平行线段B.不相交的两条直线是平行线C.在同一平面内,不重合的两条直线的位置关系只有相交和平行两种D.在同一平面内,不相交的两条射线是平行线知识点2平行线的画法用三角尺和直尺画平行线.如图1-1-1所示,把三角尺的一边紧靠直线CD,用直尺紧靠三角板尺的另一边,沿直尺推动三角尺,然后过三角尺的一边画直线AB,这时就可画出CD的平行线AB.图1-1-12.如图1-1-2所示,过三角形ABC的三个顶点分别作它对边的平行线,标出交点,并将平行线用“∥”符号表示出来.图1-1-2知识点3平行线的性质过直线外一点只能画一条已知直线的平行线,过直线上一点不能画已知直线的平行线.3.先在纸上画三角形ABC,再任取一点P,过点P画一条直线与BC 平行,则这样的直线()A.有且只有一条B.有两条C.不存在D.有一条或不存在一利用平行线的性质进行简单的推理教材例题变式题在同一平面内,已知直线AB∥EF,直线CD与AB相交于点P,试问直线CD与EF相交吗?为什么?[归纳总结]由本题可以得出一个常用的结论:在同一平面内,如果一条直线与一组平行线中的一条相交,那么它必定与其余的直线都相交.二平面内直线交点个数的探究教材补充题已知平面内有三条互不重合的直线,请画图探究它们的位置关系并说出它们的交点个数.[反思]判断下列说法是否正确,并说明理由.(1)不相交的两条直线叫做平行线;(2)过一点有且只有一条直线与已知直线平行.一、选择题1.在同一平面内两条不重合直线的位置关系有()A.两种:平行或相交23B.两种:平行或垂直C.三种:平行、垂直或相交D.两种:垂直或相交2.如图1-1-3,在同一平面内,过点C作线段AB的平行线,下列说法正确的是()图1-1-3A.不能作B.只能作一条C.能作两条D.能作无数条3.下列关于平行的表示方法正确的是()A.a∥AB.AB∥cdC.A∥BD.a∥b4.下列四边形中,AB与CD不平行的是()图1-1-5.在同一平面内,有三条互不重合的直线,其中只有两条是平行的,那么交点有()A.0个B.1个C.2个D.3个6.下列结论正确的是()A.不相交的直线互相平行B.不相交的线段互相平行C.不相交的射线互相平行D.有公共点的直线一定不平行7.已知直线a,b在同一平面内且不相交,直线c也在这一平面内,且c与a相交,则()A.b与c相交B.b与c平行C.b与c平行或相交D.b与c的位置关系不确定二、填空题8.如图1-1-5所示,AE∥BC,AF∥BC,则A,E,F三点________,理由是____________________.图1-1-59.把图1-1-6中互相平行的线段一一写出来:______________________________________.4图1-1-610.列举现实生活中体现平行的一个例子:________.11.在同一平面内,有两条直线l1与l2.(1)若l1与l2没有公共点,则l1与l2________;(2)若l1与l2有且只有一个公共点,则l1与l2________;(3)若l1与l2有两个公共点,则l1与l2________.三、解答题12.如图1-1-7,在长方体中,A1B1∥AB,AD∥BC,你能找出图中的平行线吗?图1-1-713.如图1-1-8所示,点P在∠AOB的一边OA上,点Q在∠AOB的另一边OB上,按下列要求画图:(1)过点P,Q的直线;(2)过点P画平行于OB的直线;(3)过点Q画平行于OA的直线.图1-1-814.如图1-1-9,点P是∠ABC内一点.(1)过点P画一条直线平行于直线AB,且与BC交于点D;(2)过点P画一条直线垂直于直线BC,垂足为E;(3)过点P作直线AB的垂线段PF.图1-1-91.[实践操作题]如图1-1-10所示,D,E是线段AC的三等分点.(1)过点D作DF∥BC交AB于点F,过点E作EG∥BC交AB于点G;(2)量出AF,FG,GB的长度(精确到0.1cm),你有什么发现?(3)量出FD,GE,BC的长度(精确到0.1cm),你有什么发现?(4)根据(3)中发现的规律,若FD=1.5cm,则EG=________cm,BC=________cm.图1-1-102.[操作探究]我们知道在同一平面内,两条平行直线的交点有0个,两条相交直线的交点有1个,平面内三条平行直线的交点有0个,经过同一点的三条直线的交点有1个……(1)平面上有三条互不重合的直线,请画图探究它们的交点个数;(2)若平面内的五条直线恰有4个交点,请画出符合条件的所有图形;(3)在平面内画出10条直线,使它们的交点个数恰好是32.详解详析5【预习效果检测】1.[解析]C根据平行线的概念“在同一平面内,不相交的两条直线叫做平行线”即可得出答案.[点评]正确理解平行线的概念是解决本题的关键.学习此概念时,我们要特别注意“在同一平面内”“不相交”“直线”等关键词.2.解:如图所示.过点A作BC边的平行线,过点B作AC边的平行线,过点C作AB边的平行线,两两相交于点D,E,F,所以DE∥BC,EF∥AC,DF∥AB.3.[解析]D当点P在直线BC外时,根据“经过直线外一点,有且只有一条直线与这条直线平行”这个基本事实,可知有且仅有一条;但当点P在直线BC上时,就不存在这样的直线,故本题应选择D.【重难互动探究】例1[解析]由于直线AB,EF的位置关系已确定,AB与CD的位置关系也确定了,根据平行线的性质即可确定CD与EF的位置关系.解:直线CD与EF相交.因为AB∥EF,CD与AB相交于点P,而过点P只能作一条直线AB与EF平行,所以直线CD与EF相交.例2[解析]在同一平面内,两条不重合直线的位置关系只有两种:相交和平行.若在同一平面内有三条或三条以上直线,其位置关系就变得比较复杂,交点个数也不确定,因此需分类讨论进行探究.解:①如图①,三条直线互相平行,此时交点个数为0;②如图②,三条直线相交于一点,此时交点个数为1;③如图③,三条直线两两相交且不交于同一点,此时交点个数为3;④如图④,其中两条直线互相平行且都与第三条直线相交,此时交点个数为2.【课堂总结反思】[反思](1)不正确,理由:在同一平面内,不相交的两条直线叫做平行线.(2)不正确,理由:过直线外一点,有且只有一条直线与这条直线平行;过直线上一点,不能画已知直线的平行线.【作业高效训练】[课堂达标]1.A2.B3.D4.D5.C6.D7.A68.[答案]共线经过直线外一点,有且只有一条直线与这条直线平行9.[答案]GH∥MN,EF∥AB,CD∥PQ10.[答案]如双杠.两条笔直的铁轨等(答案不唯一,写出一个即可) 11.[答案](1)平行(2)相交(3)重合12.解:图中的平行线有AB∥DC∥D1C1∥A1B1,AD∥BC∥B1C1∥A1D1,AA1∥BB1∥CC1∥D D1.13.[解析]借助三角尺和直尺画平行线.用三角尺和直尺画图,其基本步骤如下:一落:三角尺的一边落在已知直线上;二靠:紧靠三角尺其余两边中的任意一边放上直尺;三移:三角尺沿直尺移动,使三角板尺的边经过已知点;四画:沿三角尺过已知点的一边画直线.解:如图所示.14.解:如图所示.[数学活动]1.解:(1)如图所示.(2)测量略,AF=FG=GB.(3)测量略,FD∶GE∶BC=1∶2∶3或FD+BC=2GE.(4)34.52.解:(1)如图所示.(2)如图所示.(3)如图所示.78。
浙教版七年级下册数学第一章 平行线含答案
浙教版七年级下册数学第一章平行线含答案一、单选题(共15题,共计45分)1、在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等2、如图,已知AD∥BC,∠B=32°,DB平分∠ADE,则∠DEC=()A.64°B.66°C.74°D.86°3、如图,已知AB∥CD,直线MN分别交AB、CD于点M、N,NG平分∠MND,若∠1=70°,则∠2的度数为()A.10°B.15°C.20°D.35°4、已知∠1和∠2是同旁内角,∠1=40°,∠2等于()A.160°B.140°C.40°D.无法确定5、如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正确的结论有()个A.1B.2C.3D.46、下列四个命题中,真命题有()两条直线被第三条直线所截,内错角相等;如果和是对顶角,那么;三角形的一个外角大于任何一个内角;若,则.A.1个B.2个C.3个D.4个7、如图,是的直径,,是上的两点,且平分,分别与,相交于点,,则下列结论不一定成立的是()A. B. C. D.8、如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A.30°B.20°C.10°D.40°9、下列四个命题中,其正确命题的个数是()①若ac>bc,则a>b;②平分弦的直径垂直于弦;③一组对角相等一组对边平行的四边形是平行四边形;④反比例函数y=.当k<0时,y随x的增大而增大A.1B.2C.3D.410、下列说法错误的是()A.经过平移,对应点所连的线段平行且相等B.经过平移,对应线段平行C.平移中,图形上每个点移动的距离可以不同D.平移不改变图形的形状和大小11、如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°12、如图,在△ABC中,点D是线段AB的中点,DC⊥BC,作∠EAB=∠B,DE∥BC,连接CE.若,设△BCD的面积为S,则用S表示△ACE的面积正确的是()A. B.3S C.4S D.13、如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4B.∠1+∠4=180°C.∠5=∠4D.∠1=∠314、如图,已知AB∥CD,∠B=60°,则∠1的度数是()A.60°B.100°C.110°D.120°15、如图,下列不能判定DF∥AC的条件是()A.∠A=∠BDFB.∠2=∠4C.∠1=∠3D.∠A+∠ADF=180°二、填空题(共10题,共计30分)16、完成下面的证明:已知:如图,AB∥DE,求证:∠D+∠BCD-∠B=180°,证明:过点C作CF∥AB.∵AB∥CF(已知),∴∠B=________ ( 依据:________).∵AB∥DE,CF∥AB( 已知 ) ,∴CF∥DE (依据:________)∴∠2+________=180°( 依据:________)∵∠2=∠BCD -∠1,∴∠D+∠BCD-∠B=180°.17、如图,a∥b,∠2=100°,则∠1的度数为________.18、如图,△AOB与△ACD均为正三角形,且顶点B、D均在双曲线y= (x>0)上,点A、C在x轴上,连接BC交AD于点P,则△OBP的面积=________.19、如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=________°.20、如图,直线a、b被第三条直线c所截,如果a∥b,∠1=50°,那么∠2=________。
七年级数学下册《平行线》练习题及答案(浙教版)
七年级数学下册《平行线》练习题及答案(浙教版)一、选择题1.如图,4根火柴棒形成象形“口”字,只通过平移火柴棒,原图形能变成的汉字是( )2.如图,下列各组角中,互为对顶角的是( )A.∠1和∠2B.∠1和∠3C.∠2和∠4D.∠2和∠53.如图,已知AB⊥BD,BC⊥CD,AD=a,CD=b,则BD的长的取值范围为()A.大于bB.小于aC.大于b且小于aD.无法确定4.如图,下列说法正确的是( )A.∠1和∠B是同旁内角B.∠1和∠C是内错角C.∠2和∠B是同位角D.∠3和∠C同旁内角5.如图,在下列条件中,能判断AD∥BC的是( )A.∠DAC=∠BCAB.∠DCB+∠ABC=180°C.∠ABD=∠BDCD.∠BAC=∠ACD6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则c、d的位置关系为( )A.互相垂直B.互相平行C.相交D.没有确定关系7.长方体的每一对棱相互平行,那么这样的平行棱共有( )A.9对B.16对C.18对D.以上答案都不对8.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为( )A.20° B.30° C.40° D.50°9.如图,如果AB∥CD,CD∥EF,那么∠BCE等于( )A.∠1+∠2B.∠2﹣∠1C.180°﹣∠2+∠1D.180°﹣∠1+∠210.如图,OA⊥OC,OB⊥OD,4位同学观察图形后分别说了自己的观点:甲:∠AOB=∠COD;乙:∠BOC+∠AOD=180°;丙:∠AOB+∠COD=90°;丁:图中小于平角的角有6个;其中正确的结论是( )A.1个B.2个C.3个D.4个11.将一副三角板按如图放置,则下列结论:①如果∠2=30°,则有AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,则有∠2=45°;④如果∠CAD=150°,必有∠4=∠C.其中正确的有()A.①②③B.①②④C.①③④D.①②③④12.学习了平行线后,小明想出了过已知直线外一点画这条直线的平行线的新方法,他是通过折一张半透明的纸得到的(如图①~④):从图中可知,小明画平行线的依据有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①②B.②③C.③④D.①④二、填空题13.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC ′=.14.如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是;若已知AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD= .15.如图所示,内错角共有____对.16.如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是.17.将如图1的长方形ABCD纸片沿EF折叠得到图2,折叠后DE与BF相交于点P.如果∠EPF=70°,则∠PEF的度数为_________ .18.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=_________.三、解答题19.如图,在Rt△ABC中,∠C=90°,AC=4cm ,BC=3cm ,将△ABC沿AB方向向右平移得到△DEF,若AE=8cm,DB=2cm.(1)求△ABC向右平移的距离AD的长.(2)求四边形AEFC的周长.20.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF;若∠AOE=40°,求∠BOD的度数.21.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?22.如图,△ABC中,∠ACB=90°,CD⊥AB,点D为垂足,点E,F分别在AC.AB边上且∠AEF=∠B.求证:EF∥CD.23.如图,BE平分∠ABD,DE平分∠BDC,DG平分∠CDF,且∠1+∠2=90°,试说明BE∥DG.24.如图1,已知△ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,将∠A 、∠B 、∠C 作等角代换,使各角之和恰为一平角,依辅助线不同而得多种证法. 证法1:如图1,延长BC 到D ,过C 画CE ∥BA .∵BA ∥CE (作图2所知)∴∠B=∠1,∠A=∠2(两直线平行,同位角、内错角相等).又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义)∴∠A+∠B+∠ACB=180°(等量代换).如图3,过BC 上任一点F ,画FH ∥AC ,FG ∥AB ,这种添加辅助线的方法能证明∠A+∠B+∠C=180°吗?请你试一试.25.已知AB ∥CD,∠ABE 与∠CDE 两个角的角平分线相交于点F.(1)如图1,若∠E =80°,求∠BFD 的度数.(2)如图2,若∠ABM =13∠ABF,∠CDM =13∠CDF,试写出∠M 与∠E 之间的数量关系并证明你的结论. (3)若∠ABM =1n ∠ABF,∠CDM =1n∠CDF,∠E =m °,请直接用含有n,m °的代数式表示出∠M.参考答案1.B2.A.3.C4.D5.A6.B7.C8.C9.C.10.C.11.D12.C13.答案为:5.14.答案为:垂直;90°.15.答案为:8.16.答案为:同位角相等,两直线平行.17.答案为:55°18.答案为:140°19.解:(1)3; (2)8+3+4+3=18.20.解:∵OA⊥OB(已知)∴∠AOB=90°(垂直的定义)∵∠AOE=40°(已知)∴∠BOE=∠AOB-∠AOE=90°-40°=50°∵OC平分∠AOF(已知)∴∠BOD=20°21.答案为:∠1和∠2是直线EF、DC被直线AB所截形成的同位角,∠1和∠3是直线AB、CD被直线EF所截形成的同位角.22.证明:∵∠ACB=90°∴∠B+∠A=90°∵CD⊥AB∴∠ADC=90°∴∠A+∠ACD=90°∴∠B=∠ACD∵∠AEF=∠B∴∠AEF=∠ACD∴EF∥CD.23.证明:∵∠1+∠2=90°(已知)∴△BDE中,∠E=180°-(∠1+∠2)=90°∵ DE平分∠BDC,DG平分∠CDF(已知)∴∠EDG=∠EDC+∠CDG=∴∠E=∠EDG(等量代换)∴ BE∥DG (内错角相等,两直线平行)24.证明:如图3∵HF∥AC∴∠1=∠C∵GF∥AB∴∠B=∠3∵HF∥AC∴∠2+∠AGF=180°∵GF∥AH∴∠A+∠AGF=180°∴∠2=∠A∴∠A+∠B+∠C=∠1+∠2+∠3=180°(等量代换).25.解:(1)如图,作EG∥AB,FH∥AB∵AB∥CD∴EG∥AB∥FH∥CD∴∠ABF=∠BFH,∠CDF=∠DFH,∠ABE+∠BEG=180°,∠GED+∠CDE=180°∴∠ABE+∠BEG+∠GED+∠CDE=360°∵∠BED=∠BEG+∠DEG=70°∴∠ABE+∠CDE=290°∵∠ABF和∠CDF的角平分线相交于E∴∠ABF +∠CDF =145°∴∠BFD =∠BFH +∠DFH =145°;(2)∵∠ABM =13∠ABF ,∠CDM =13∠CDF ∴∠ABF =3∠ABM ,∠CDF =3∠CDM∵∠ABE 与∠CDE 两个角的角平分线相交于点F ∴∠ABE =6∠ABM ,∠CDE =6∠CDM∴6∠ABM +6∠CDM +∠E =360°∵∠M =∠ABM +∠CDM∴6∠M +∠E =360°.(3)由(2)结论可得2n ∠ABN +2n ∠CDM +∠E =360°,∠M =∠ABM +∠CDM 解得:∠M =n2m 360︒-︒. 故答案为:∠M =n 2m 360︒-︒.。
浙教版数学 七年级下册 第一章平行线 同步练习 1.4 平行线的性质(一)
浙教版七年级下第一章平行线同步练习1.4平行线的性质(一)第Ⅰ卷(选择题)一.选择题(共10小题,3*10=30)1.如图,已知直线a∥b,∠1=70°,则∠2的度数是( ).A.100°B.110°C.120° D 150°.2.如图,直线a∥b,则∠A的度数是( ).A.38°B.48°C.42°D.39°3.如图,直线a∥b,且被直线c所截,已知∠1=110°,则∠2的度数为 ( ).A.108°B.72°C.70°D.60°4.如图,已知直线AB∥CD,直线EF与AB,CD相交于N,M两点,MG平分∠EMD,若∠BNE =30°,则∠EMG等于()A.15°B.30°C.75°D.150°5.如图,四条直线a,b,c,d,其中a∥b,∠1=30°,∠2=75°,则∠3等于() A.30°B.40°C.45°D.75°6.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是() A.20°B.30°C.35°D.50°7.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°8.如图,若AB∥CD,则( )A.∠B=∠1 B.∠A=∠2C.∠B=∠2 D.∠1=∠29.如图,若a∥b,c∥d,∠1=72°,则下列结论错误的是( ) A.∠2=108°B.∠3=72°C.∠4=108°D.∠5=72°10. 如图,将一块三角板的45°角的顶点放在直尺的一边上,当∠1=63°时,则∠2=( ) A.108°B.72°C.77°D.82°第Ⅱ卷(非选择题)二.填空题(共6小题,3*6=18)11.如图,将一块直角三角板的直角顶点放在直尺的一边上,若∠2=40°,则∠1的度数是_____.12.如图,直线a⊥m,直线b⊥m,若∠1=60°,则∠2的度数是_______.13.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1=______.14.如图,已知AE∥BC,∠B=50°,AE平分∠DAC,则∠DAC=_______.15.如图,在三角形ABC中,∠A=75°,∠B=45°,∠C=60°,P是三角形ABC内一点,过点P 作DE∥AB,分别交AC,BC于点D,E,作FG∥AC分别交AB,BC于点F,G,作HQ∥BC,分别交AB,AC于点Q,H,则∠1=_____,∠2=______,∠3=______.16.如图,直线a∥b,则∠A的度数是______.三.解答题(共7小题,52分)17.(6分)如图,a,b,c,d四条直线相交,∠1=70°,∠2=110°,∠4=80°,求∠3的度数.18.(6分) 如图,DE∥BC,BE平分∠ABC,试说明:∠1=∠3.19. (8分)如图,点D在AB上,过点D作DE∥BC交AC于点E,CF为BC的延长线.若∠ADE=50°,∠ACF=110°,求∠A的度数.20. (8分)如图,已知∠1=120°,∠2=120°,∠3=100°,求∠4的度数.21. (8分) 如图,若AB∥CD,且∠1=∠2,试判断AM与CN的位置关系,并说明理由.22.(8分)如图,已知AD⊥BC,FG⊥BC,垂足分别为点D,G,且∠1=∠2,猜想:∠BDE与∠C 有怎样的关系?说明理由.23.(8分)如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于点O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.参考答案1-5BBBAC6-10CBCCB11. 50°12. 120°13. 134°14. 100°15. 45°, 60°, 75°16. 48°17. 解:∵∠2=110°,∴∠5=180°-∠2=70°,∴∠1=∠5,∴c∥d,∴∠3=∠4=80°18.解:∵DE∥BC,∴∠2=∠3,∵BE平分∠ABC,∴∠1=∠2,∴∠1=∠319. 解:∵DE∥BC,∴∠ADE=∠B=50°,又∵∠ACF+∠ACB=180°,∴∠ACB=70°,∴∠A=180°-∠B-∠ACB=60°20. 解:∵∠1=∠2=100°,∴a∥b,∴∠3=∠5,又∠3=100°,∴∠5=100°,∴∠4=80°21. 解:AM∥CN,理由:∵AB∥CD,∴∠EAB=∠ACD,∵∠1=∠2,∴∠EAB-∠1=∠ACD -∠2,∴∠EAM=∠ACN,∴AM∥CN22. 解:∠BDE=∠C.理由:∵AD⊥BC,FG⊥BC,∴AD∥FG,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴DE∥AC,∴∠BDE=∠C23. 解:(1)∵AE∥OF,∴∠BOF=∠A=30°,∵OF平分∠BOC,∴∠COF=∠BOF=30°,∠DOF =180°-∠COF=150°(2)由(1)知∠COF=∠BOF=30°,∴∠BOC=60°,∠AOD=∠BOC=60°,∵OG⊥OF,∴∠BOG=90°-∠BOF=60°,∴∠DOG=180°-∠BOC-∠BOG=180°-60°-60°=60°,∴∠AOD=∠DOG=60°,∴OD平分∠AOG。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章平行线
1.1平行线
知识点1平行线的概念
在同一个平面内,不相交的两条直线叫做平行线.“平行”用符号“∥”表示,直线a 和b是平行线,记做a∥b,读做“a平行b”.
平行线的定义包含三层意思:(1)“在同一平面内”是前提条件;(2)“不相交”就是说两条直线没有交点;(3)平行线指的是“两条直线”,而不是“两条射线”或“两条线段”.1.下列说法正确的是( )
A.在同一平面内,不相交的两条线段是平行线段
B.不相交的两条直线是平行线
C.在同一平面内,不重合的两条直线的位置关系只有相交和平行两种
D.在同一平面内,不相交的两条射线是平行线
知识点2平行线的画法
用三角尺和直尺画平行线.
如图1-1-1所示,把三角尺的一边紧靠直线CD,用直尺紧靠三角板尺的另一边,沿直尺推动三角尺,然后过三角尺的一边画直线AB,这时就可画出CD的平行线AB.
图1-1-1
2.如图1-1-2所示,过三角形ABC的三个顶点分别作它对边的平行线,标出交点,并将平行线用“∥”符号表示出来.
图1-1-2
知识点3平行线的性质
过直线外一点只能画一条已知直线的平行线,过直线上一点不能画已知直线的平行线.3.先在纸上画三角形ABC,再任取一点P,过点P画一条直线与BC平行,则这样的直线( )
A.有且只有一条B.有两条
C.不存在D.有一条或不存在
探究一利用平行线的性质进行简单的推理
教材例题变式题在同一平面内,已知直线AB∥EF,直线CD与AB相交于点P,试问直线CD与EF相交吗?为什么?
[归纳总结] 由本题可以得出一个常用的结论:在同一平面内,如果一条直线与一组平行线中的一条相交,那么它必定与其余的直线都相交.
探究二平面内直线交点个数的探究
教材补充题已知平面内有三条互不重合的直线,请画图探究它们的位置关系并说出它们的交点个数.
[反思] 判断下列说法是否正确,并说明理由.
(1)不相交的两条直线叫做平行线;
(2)过一点有且只有一条直线与已知直线平行.
一、选择题
1.在同一平面内两条不重合直线的位置关系有( )
A.两种:平行或相交
B.两种:平行或垂直
C.三种:平行、垂直或相交
D.两种:垂直或相交
2.如图1-1-3,在同一平面内,过点C作线段AB的平行线,下列说法正确的是( )
图1-1-3
A.不能作B.只能作一条
C.能作两条D.能作无数条
3.下列关于平行的表示方法正确的是( )
A.a∥A B.AB∥cd
C.A∥B D.a∥b
4.下列四边形中,AB与CD不平行的是( )
图1-1-4
5.在同一平面内,有三条互不重合的直线,其中只有两条是平行的,那么交点有( ) A.0个B.1个
C.2个D.3个
6.下列结论正确的是( )
A.不相交的直线互相平行
B.不相交的线段互相平行
C.不相交的射线互相平行
D.有公共点的直线一定不平行
7.已知直线a,b在同一平面内且不相交,直线c也在这一平面内,且c与a相交,则( ) A.b与c相交
B.b与c平行
C.b与c平行或相交
D.b与c的位置关系不确定
二、填空题
8.如图1-1-5所示,AE∥BC,AF∥BC,则A,E,F三点________,理由是____________________.
图1-1-5
9.把图1-1-6中互相平行的线段一一写出来:
______________________________________.
图1-1-6
10.列举现实生活中体现平行的一个例子:________.
11.在同一平面内,有两条直线l1与l2.
(1)若l1与l2没有公共点,则l1与l2________;
(2)若l1与l2有且只有一个公共点,则l1与l2________;
(3)若l1与l2有两个公共点,则l1与l2________.
三、解答题
12.如图1-1-7,在长方体中,A1B1∥AB,AD∥BC,你能找出图中的平行线吗?
图1-1-7
13.如图1-1-8所示,点P在∠AOB的一边OA上,点Q在∠AOB的另一边OB上,按下列要求画图:
(1)过点P,Q的直线;
(2)过点P画平行于OB的直线;
(3)过点Q画平行于OA的直线.
图1-1-8
14.如图1-1-9,点P是∠ABC内一点.
(1)过点P画一条直线平行于直线AB,且与BC交于点D;
(2)过点P画一条直线垂直于直线BC,垂足为E;
(3)过点P作直线AB的垂线段PF.
图1-1-9
1.[实践操作题] 如图1-1-10所示,D,E是线段AC的三等分点.
(1)过点D作DF∥BC交AB于点F,过点E作EG∥BC交AB于点G;
(2)量出AF,FG,GB的长度(精确到0.1 cm),你有什么发现?
(3)量出FD,GE,BC的长度(精确到0.1 cm),你有什么发现?
(4)根据(3)中发现的规律,若FD=1.5 cm,则EG=________ cm,BC=________ cm .
图1-1-10
2.[操作探究] 我们知道在同一平面内,两条平行直线的交点有0个,两条相交直线的交点有1个,平面内三条平行直线的交点有0个,经过同一点的三条直线的交点有1个……
(1)平面上有三条互不重合的直线,请画图探究它们的交点个数;
(2)若平面内的五条直线恰有4个交点,请画出符合条件的所有图形;
(3)在平面内画出10条直线,使它们的交点个数恰好是32.
详解详析
教材的地位和作用
本节课是在学生对平行线的初步认识的基础上,认识平行线的主要特征及有关性质,教材给学生提供了生活中有关平行的实际情境,让学生通过直观感受,操作确认的实践活动,加强对平行线的认识和感受,深化概念识记,强调图形的区分,学会画平行线,让学生在画图过程中进一步体会平行的含
【预习效果检测】
1.[解析] C 根据平行线的概念“在同一平面内,不相交的两条直线叫做平行线”即可得出答案.
[点评] 正确理解平行线的概念是解决本题的关键.学习此概念时,我们要特别注意“在同一平面内”“不相交”“直线”等关键词.
2.解:如图所示.
过点A作BC边的平行线,过点B作AC边的平行线,过点C作AB边的平行线,两两相交于点D,E,F,所以DE∥BC,EF∥AC,DF∥AB.
3.[解析] D当点P在直线BC外时,根据“经过直线外一点,有且只有一条直线与这条直线平行”这个基本事实,可知有且仅有一条;但当点P在直线BC上时,就不存在这样的直线,故本题应选择D.
【重难互动探究】
例1[解析] 由于直线AB,EF的位置关系已确定,AB与CD的位置关系也确定了,根据平行线的性质即可确定CD与EF的位置关系.
解:直线CD与EF相交.因为AB∥EF,CD与AB相交于点P,而过点P只能作一条直线AB与EF平行,所以直线CD与EF相交.
例2[解析] 在同一平面内,两条不重合直线的位置关系只有两种:相交和平行.若在同一平面内有三条或三条以上直线,其位置关系就变得比较复杂,交点个数也不确定,因此需分类讨论进行探究.
解:①如图①,三条直线互相平行,此时交点个数为0;
②如图②,三条直线相交于一点,此时交点个数为1;
③如图③,三条直线两两相交且不交于同一点,此时交点个数为3;
④如图④,其中两条直线互相平行且都与第三条直线相交,此时交点个数为2.
【课堂总结反思】
[反思] (1)不正确,理由:在同一平面内,不相交的两条直线叫做平行线.(2)不正确,理由:过直线外一点,有且只有一条直线与这条直线平行;过直线上一点,不能画已知直线的平行线.
【作业高效训练】
[课堂达标]
1.A 2.B 3.D 4.D 5.C 6.D7.A
8.[答案] 共线经过直线外一点,有且只有一条直线与这条直线平行
9.[答案] GH∥MN,EF∥AB,CD∥PQ
10.[答案] 如双杠.两条笔直的铁轨等(答案不唯一,写出一个即可)
11.[答案] (1)平行(2)相交(3)重合
12.解:图中的平行线有AB∥DC∥D1C1∥A1B1,AD∥BC∥B1C1∥A1D1,AA1∥BB1∥CC1∥DD1.
13.[解析] 借助三角尺和直尺画平行线.
用三角尺和直尺画图,其基本步骤如下:
一落:三角尺的一边落在已知直线上;
二靠:紧靠三角尺其余两边中的任意一边放上直尺;
三移:三角尺沿直尺移动,使三角板尺的边经过已知点;
四画:沿三角尺过已知点的一边画直线.
解:如图所示.
14.解:如图所示.
[数学活动]
1.解:(1)如图所示.
(2)测量略,AF=FG=GB.
(3)测量略,FD∶GE∶BC=1∶2∶3或FD+BC=2GE.
(4)3 4.5
2.解:(1)如图所示.
(2)如图所示.
(3)如图所示.。