次函数与分段函数
分段函数与二次函数
问题背景:有A 、B 两家水果店,两家的西瓜销售价格如下:提问:买x 斤西瓜应该付多少钱?归纳:在自变量的不同取值范围内,有不同的对应法则,需要用不同的解析式来表示.三.分段函数1.概念:在函数的定义域内,对于自变量的不同取值范围,有着不同的解析式, 这样的函数叫做分段函数2.定义域:分段函数的定义域是自变量的各段取值范围的并集3.函数值:求分段函数的函数值()0f x时,应该首先判断0x 所属的取值范围,然后再把0x 代入到相应的解析式中进行计算.4.函数图像:分段函数的图像是各段上图像的和 (一)、分段函数——例题讲解:例1.如图所示,是某分段函数y=f (x )的图像, 试求其定义域、值域。
思考:画出函数2y x =+的图像,并求f (2)、f (-2)(二) 、分段函数的应用——生活中的分段函数出租车计价问题某市出租汽车收费标准如下:在3km 已内(含3km 已内)路程按起步价12元收费,超过3km 以外的路程按2.1元/km 收费.试写出收费额y 关于路程x 的函数解析式.小结:1. 分段函数的概念2. 分段函数的函数值3. 分段函数图像的作法4. 分段函数的解析式的一般步骤:确定自变量和它的取值范围。
对自变量的取值范围进行分段。
分段写出函数解析式。
(从前到后)1、设()1232,2()log 1,2x e x f x x x -⎧<⎪=⎨-≥⎪⎩,则((2))f f 的值为( ) A.0 B.1 C.2 D.32、(2009山东卷)定义在R 上的函数)(x f 满足)(x f =⎩⎨⎧>---≤-0),2()1(0),4(log 2x x f x f x x ,则)3(f 的值为( )A .1- B. 2- C. 1 D. 22643、给出函数⎪⎩⎪⎨⎧<+≥=)4()1()4()21()(x x f x x f x ,则=)3(log 2f ( )A.823-B. 111C. 191 D. 241 4、函数21sin(),10,(),0.x x x f x e x π-⎧-<<⎪=⎨≥⎪⎩,若()()21=+a f f ,则a 的所有可能值为( )A.1B.2-C.1,- D.15、(2009天津卷)设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f ,则不等式)1()(f x f >的解集是( )A.),3()1,3(+∞⋃-B.),2()1,3(+∞⋃-C.),3()1,1(+∞⋃-D.)3,1()3,(⋃--∞6、设函数10221,0,()()1,0x x f x f x x x -⎧-≤⎪=>⎨⎪>⎩若,则0x 的取值范围是( ) A .)1,1(- B .),1-(+∞C .),0()2,(+∞--∞D .),1()1,(+∞--∞ 7、已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是(A )(0,1) (B )1(0,)3(C )11[,)73(D )1[,1)78、(2010天津卷)设函数⎪⎩⎪⎨⎧<->=)0()(log )0(log )(212x x x xx f ,若)()(a f a f ->,则实数a 的取值范围是( )A .)1,0()0,1( -B .),1()1,(+∞--∞C .),1()0,1(+∞-D .)1,0()1,( --∞9、(2010全国卷)已知函数⎪⎩⎪⎨⎧>+-≤<=)10(,621)100(,lg )(x x x x x f ,若c b a ,,互不相等,且)()()(c f b f a f ==,则实数abc 的取值范围是( )A .)10,1(B .)6,5(C .)12,10(D .)24,20( 10、(2010天津卷)设函数)(2)(2R x x x g ∈-=,⎩⎨⎧≥-<++=)(,)()(,4)()(x g x x x g x g x x x g x f ,则)(x f 的值域是( )A .),1(]0,49[+∞-B .),0[+∞C .),49[+∞- D .),2(]0,49[+∞-11、设⎩⎨⎧>-≤-=-)0)(1()0(3)(x x f x a x f x ,若x x f =)(有且仅有三个解,则实数a 的取值范围是( )A .]2,1[B .()2,∞-C .[)+∞,1D .(]1,∞-12、函数2x +2x-3,x 0x)=-2+ln x,x>0f ⎧≤⎨⎩(的零点个数为 ( ) A .0B .1C .2D .313.函数2441()431x x f x x x x -≤⎧=⎨-+>⎩, ,,的图象和函数2()log g x x =的图象的交点个数是( ) A .4 B .3C .2D .114、设函数3,(10)()((5)),(10)x x f x f f x x -≥⎧=⎨+<⎩,则(5)f = 。
湘教版数学八年级下册《4.5分段函数》说课稿2
湘教版数学八年级下册《4.5分段函数》说课稿2一. 教材分析湘教版数学八年级下册《4.5分段函数》这一节,是在学生学习了函数、自变量与因变量、一次函数、二次函数等知识的基础上进行的一节内容。
本节课的主要内容是分段函数的概念、性质和图象。
分段函数是一种常见的函数形式,它在实际生活中的应用非常广泛,如物价、税率等往往都是分段函数。
通过学习本节课,使学生能理解和掌握分段函数的概念、性质和图象,提高学生分析和解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经学习了函数、自变量与因变量、一次函数、二次函数等知识,对这些知识有一定的理解和掌握。
但分段函数相对于一次函数和二次函数来说,其概念和性质较为复杂,学生理解和掌握起来可能会有一定的困难。
因此,在教学过程中,需要针对学生的实际情况,采取适当的教学方法和手段,帮助学生理解和掌握分段函数的知识。
三. 说教学目标1.理解分段函数的概念,掌握分段函数的性质。
2.能画出分段函数的图象,并能根据图象理解分段函数的性质。
3.能运用分段函数解决实际问题,提高学生的应用能力。
四. 说教学重难点1.分段函数的概念和性质。
2.分段函数图象的画法。
3.运用分段函数解决实际问题。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生通过自主学习、合作学习,探究分段函数的知识。
2.使用多媒体教学手段,如PPT、网络资源等,帮助学生直观地理解分段函数的图象和性质。
3.结合实际例子,让学生通过动手操作,实践分段函数的应用。
六. 说教学过程1.导入:通过一个实际例子,如一条河流的水位变化,引出分段函数的概念。
2.自主学习:让学生通过自学教材,理解分段函数的概念和性质。
3.合作学习:学生分组讨论,探究分段函数的图象和性质。
4.讲解与演示:教师讲解分段函数的概念和性质,并用多媒体演示分段函数的图象。
5.实践操作:学生动手实践,画出一些分段函数的图象,并分析其性质。
6.应用拓展:结合实际例子,让学生运用分段函数解决实际问题。
高中数学函数知识点总结
函数一、函数的定义:1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.(1)其中,x叫做自变量,x的取值X围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.函数的三要素:定义域、值域、对应法则3.函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。
(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。
4、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2) 画法A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。
(3)函数图像平移变换的特点:1)加左减右——————只对x2)上减下加——————只对y3)函数y=f(x) 关于X轴对称得函数y=-f(x)4)函数y=f(x) 关于Y轴对称得函数y=f(-x)5)函数y=f(x) 关于原点对称得函数y=-f(-x)6)函数y=f(x) 将x轴下面图像翻到x轴上面去,x轴上面图像不动得函数y=| f(x)|7)函数y=f(x) 先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)二、函数的基本性质1、函数解析式子的求法(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)、求函数的解析式的主要方法有:1)代入法:2)待定系数法:3)换元法:4)拼凑法:2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
一次函数(分段函数)
月份 3
4
用水量(m3) 水费(元)
5
7.5
Hale Waihona Puke 927课堂练习
该市某户今年3、4月份的用水量和水费如下表所示:
月份 3
4
用水量(m3) 水费(元)
5
7.5
9
27
设某户每月用水量为x(立方米),应交水费为y(元)。 求:(1)a、c的值
(2)并写出用水不超过6立方米和超过6立方米时,y与x 之间的函数关系式;
小明全家当天17:00到家。
(3)本题答案不唯一,只要合理即可,但需注意合理性, 主要体现在:
①9:30前必须加一次油;
②若8:30前将油箱加满,则当天在油用完前的适当时 间必须第二次加油;
③全程可多次加油,但加油总量至少为25升。
试一试:近几年来,由于经济和社会发展迅速,用电矛盾 越来越突出。为缓解用电紧张,某电力公司特制定了新的 用电收费标准,每月用电量x(度)与应付电费y(元)的关 系如图所示。
y= 300 (5≤x≤15)
上述函数,称为分段函数。
{ 20x+200 (0≤x<5)
y= 300 (5≤x≤15)
议一议
• 我们周围的还存在哪 些分段函数的实例。
如:出租车计费问题, 阶梯水费、电费, 个人所得税, 邮资等等
分段函数的解析式
例 2:从广州市向北京市打长途电话,按时间收费, 3 分钟内收费 2.4 元,每加 1 分钟收费 0.5 元, 求时间 t(分)与电话费 y(元)之间的函数解析式, 并画出函数的图象.
y/千米
2 1.1
1.小明从家里出发去菜地浇水, 又去玉米地锄草,然后回家,其 中x表示时间,y表示小明离他家 的距离。
12.2 一次函数(3)---分段函数
9
10
11
12
13
14
15
4.作出函数 y = |x|的图象 x ( x ≥0 ) 解:函数可变为: y = -x (x < 0 )
{
分别作出 y = x (x≥0)及y = - x (x<0)的图象
即得 y = 的图象
{ -x
x
( x ≥0 ) (x < 0 )
1.某市出租车的计价方式为:开始3km内收费6
3.如图中折线表示一骑车人离家的距离y与时间x之间的关系, 骑车人9:00离开家,15:00回家,请你根据这个折线图回答下 列问题: (1)这个人什么时间离家最远?这时他离家多远? (2)何时他开始第一次休息?休息多长时间?这时他离家多远? (3)11:00~12:30他骑了多少千米? (4)他在9:00~10:30和10:30~12:30的平均速度各是多少? (5)他返家时的平均速度是多少? (6)14:00时他离家多远?何时他距家10千米?
900÷12=75(km/h)
当慢车行驶4h时,慢车和 快车相遇,两车行驶的路程 之和为900km,所以慢车和 快车行驶的速度之和为:
C B
O
4
12 x/h
900÷4=225(km/h) 所以快车的速度为225-75=150(km/h)
2.一列快车从甲地驶往乙地,一列慢车从乙地驶往
甲地,两车同时出发,设慢车行驶的时间为x(h),两 车之间的距离为y(km),图中的折线表示y与x之间的函 y/km 数关系. (4)求线段BC所表示的 y 900 A D 与 x之间的函数关系式, 并 写出自变量的取值范围; C 根据题意,快车行驶900km到达
解:跑步的速度 y (米/分)随跑步时间 x (分钟)变化的函数关系 式为: y=
函数必备【二级结论】和知识点
1函数知识必备1、函数的三要素:定义域、对应关系、值域. (1)定义域: ①x 的取值范围;②基本初等函数的定义域:分式中分母不等于零即AB中0B ≠;偶次根式被开方式大于或等于00a ≥; 零指数幂0x 中{}|0x x ≠;对数中真数大于0即log a b 中0b >.正切函数tan y x =中ππ,2x x k k ⎧⎫≠+∈⎨⎬⎩⎭Z .③抽象函数的定义域:定义域是x 的取值范围;括号里的范围是相同的. ④定义域取交集:若()f x ,()g x 的定义域分别为f D 、g D ,则()()()F x f x g x =±的定义域F f g D D D =I .(2)值域:①y 的取值范围,分段函数中值域取并集; ②求值域的几种方法:1)直接法(利用基本初等函数的值域);2)配方法(二次函数或可转化为二次函数的函数); 3)单调性法(判断函数的单调性);4)分离常数(分式型函数,分子分母为一次函数形式);(3)分段函数:对于自变量x 的不同的取值范围,有着不同的对应法则,分段函数是一个函数; ①注意分界点,画图时找到临界值; ②写分段函数时,定义域不重不漏; ③带解析式时,注意定义域满足的条件.2、函数的四性:单调性、奇偶性、对称性、周期性. (1)单调性:①定义:()()()1212,x x f x f x f x >>⇒单调递增; 等价变形:()()()()12120x x f x f x f x −−>⇒⎡⎤⎣⎦单调递增;()()()12120f x f x f x x x −>⇒−单调递增;(联想)()()0f x f x '>⇒单调递增.②定义:()()()1212,x x f x f x f x ><⇒单调递减; 等价变形:()()()()12120x x f x f x f x −−<⇒⎡⎤⎣⎦单调递减;()()()12120f x f x f x x x −<⇒−单调递减;(联想)()()0f x f x '<⇒单调递减.③在公共区间上:增+增为增;减+减为减;增-减为增;减-增为减. ④复合函数的增减性:“同增异减”.⑤特殊函数的增减性:()()()()f x f x ↑↓⇒−↓↑;()()())()0f x f x ↑↓⇒≥↑↓;()()()()()()()100f x f x f x f x ↑↓⇒↓↑><或.⑥“脱掉、脱掉(脱掉f )”:(抽象函数的单调性)若()f x 为增函数,即函数值大的自变量也大,即()()12f x f x >时,脱掉f ,不等号方向不变,也就是12x x >;若()f x 为减函数,即函数值大的自变量反而小,即()()12f x f x >时,脱掉f ,不等号方向改变,也就是12x x <;31a >单调递增区间为()0,+∞幂函数y x α=0α<在()0,+∞上递减0α= 没有单调性 0α>在[)0,+∞上递增7)对勾函数:()0,0by ax a b x=+>>的单调性与极值点b a ±有关.8)绝对值函数:y a x k =−(0a ≠)1a>10<a<1y=log a xyx O 0<α<1α<0α>1α=1α=011y=x αOyx5(2)奇偶性:①前提:定义域关于原点对称(若区间(),a b 上是奇函数或者偶函数,则0a b +=;若定义域不关于原点对称,则函数是非奇非偶函数); ②定义:奇函数:(一看定义,二看图象)1)x D ∀∈,有()()f x f x −=−,则()f x 为奇函数(()()0f x f x −+=);2)图象关于原点对称;3)在对称区间内,单调性相同;4)若定义域内含有0,则()00f =. 偶函数:(一看定义,二看图象)1)x D ∀∈,有()()f x f x −=,则()f x 为偶函数(()()0f x f x −−=); 2)图象关于y 轴对称;3)在对称区间内,单调性相反. 注意:利用定义判断函数奇偶性的步骤:③基本初等函数的奇偶性: 函数参数取值奇偶性 一次函数()0y kx b k =+≠0b = 奇函数 0b ≠非奇非偶函数 二次函数()20y ax bx c a =++≠0b = 偶函数 0b ≠ 非奇非偶函数 反比例函数()0ky k x=≠ − 奇函数 指数函数xy a =(0a >且1a ≠) −非奇非偶函数对数函数log a y x =(0a >且1a ≠)−非奇非偶函数幂函数y x α= α为奇数 奇函数 α为偶数偶函数④结论:1)函数()0f x =即是奇函数也是偶函数; 2)偶函数有()()()()f x f x f x f x =−==−; 3)奇偶性的运算规律:(1)奇函数±奇函数=奇函数;(2)偶函数±偶函数=偶函数;(3)奇函数⨯奇函数=偶函数; (4)偶函数⨯偶函数=偶函数;(5)奇函数⨯偶函数=奇函数;(6)奇±偶=非奇非偶(即奇函数中不含偶函数的项,偶函数中不含奇函数的项); 4)x 的奇数次幂是奇函数,x 的偶数次幂是偶函数;5)若()()f x g x c =+(()g x 为奇函数),则()()2f a f a c +−=. 6)常见奇、偶函数:奇函数:xxy a a −=−;)ln y x =;x x x xa a y a a −−−=+.偶函数:+x xy a a −=;2y x a x =+.(3)对称性:①关于点对称:(横坐标和定,纵坐标和定)()f x 关于点()0,0对称,可得()()0f x f x −+=;()f x 关于点(),a b 对称,可得()()2f x a f x a b −+++=;或者()()22,f x f x a b −++=L ;若()f x 满足()()22f x f x a b +−+=,则()f x 关于点(),a b 对称.②关于轴对称:(横坐标和定,纵坐相等)()f x 关于0x =(y 轴)对称,可得()()f x f x −=;()f x 关于x a =对称,可得()()f x a f x a −+=+;或者()()2,f x f x a −=+L ;若()f x 满足()()2f x f x a =−+,则()f x 关于x a =对称.(4)周期性:(横坐标差定,纵坐相等)①定义:存在非零常数T ,对于()f x 定义域内的任意一个x ,()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (), 0k k ∈≠Z 也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期.②周期性的重要结论:1)()()f a x f b x +=+,T b a =−;2)()()f a x f b x +=−+,2T b a =−,特别地,()()f a x f x +=−,2T a =,则()()()()2f x a f x a a f x a f x +=++=−+=⎡⎤⎣⎦.3)()()1f a x f x +=±,2T a =;则()()()()12f x a f x a a f x f x a +=++==⎡⎤⎣⎦+. 4)如果)(x f y =是R 上的周期函数,且一个周期为T ,那么))(()(Z n x f nT x f ∈=±.75)函数图像关于b x a x ==,轴对称)(2b a T −=⇒. 6)函数图像关于()()0,,0,b a 中心对称)(2b a T −=⇒.7)函数图像关于a x =轴对称,关于()0,b 中心对称)(4b a T −=⇒.3、基本初等函数的图象:指、对、幂函数的特点. (1)指数函数: 指数运算:①正整数指数幂:n a a a a =⋅⋅⋅L ;②负整数指数幂:1n n a a−=(0a ≠,*n ∈N );③零指数幂:01a =(0a ≠);④正分数指数幂:mna =0a >,m ,*n ∈N ,(),1m n =);⑤负分数指数幂:1m n m n a a −=(0a >,m ,*n ∈N ,(),1m n =);⑥指数幂的运算性质:①r s r s a a a +=;②r r s sa a a−=;③()r r rab a b =;④()()s r r s a a =.指数函数图象与性质: ①定义域:R ; ②值域:()0,+∞;③过定点:()0,1,过点()1,a ;④单调性:01a <<时,指数函数为减函数;1a >时,指数函数为增函数;⑤渐近线:x 轴(图象上下平移时,渐近线也要一同平移;图象上下翻折时渐近线也要进行翻折).指数函数知识拓展:①指数函数xy a =与1xx y a a −⎛⎫== ⎪⎝⎭的图象关于y 轴对称;②判断底数大小:令1x =,与图象交点的纵坐标为底数;③比较大小:同底、同指、或者和0、1比较,或者和中间值比较;④解指数不等式:化同底,根据单调性去底(底数1a >,去底不等号的方向不改变;底数01a <<,去底不等号的方向改变).(2)对数函数: 对数运算:①对数定义:一般地,若ba N =,则log ab N =(0a >,且1a ≠),读作“以a 为底N 的对数”.②常见的对数符号:常用对数,把10log N 记为lg N ;自然对数,把e log N 记为ln N ,其中e 2.71828=L . ③对数恒等式:1)log 10a =;2)log 1a a =;3)log a Na N =;4)log N a a N =;④对数的运算性质:1)()log log log a a a M N M N ⋅=+;2)log log log a a a M M N N =−;3)log log a a M M αα=;4)log log log a b a NN b=(换底公式).⑤有用结论:1)1log log a b b a =;2)log log m n a a n b b m=.对数函数图象及性质: ①定义域:()0,+∞; ②值域:R ;③过定点:()1,0,过点(),1a ;④单调性:01a <<时,对数函数为减函数;1a >时,对数函数为增函数; ⑤渐近线:y 轴(图象左右平移时,渐近线也要一同平移). 对数函数与指数函数的关系注:同底的对数函数与指数函数互为反函数,二者的图象关于y x =对称.对数函数知识拓展:①对数函数log a y x =与11log log log a aay x x x ==−=的图象关于x 轴对称; ②判断底数大小:令1y =,与图象交点的横坐标为底数;③比较大小:同底、同真、或者和0、1比较,或者和中间值比较;④解对数不等式:化同底,根据单调性去底(底数1a >,去底不等号的方向不改变;底数01a <<,去底不等号的方向改变).⑤求复合函数的单调性时,满足两点: 1)真数部分要大于0;2)根据复合函数的“同增异减”来求函数的单调区间.9(3)幂函数:①概念:形如()y x αα=∈R 的函数称为幂函数.②常见幂函数的图象将函数y x =,2y x =,3y x =,1y x=,12y x =的图象画在同一坐标系中,如下图所示:③幂函数的性质1)所有幂函数在()0, +∞上都有定义;2)0α>时,幂函数过原点,且在[)0,+∞上单调递增;0α<时,幂函数在()0, +∞上单调递减;3)设mnα=,m ∈Z ,*n ∈Z ,(),1m n =,当n 是偶数,则幂函数既不是奇函数也不是偶函数;当n 是奇数,则当m 为奇数时幂函数是奇函数,m 为偶数时幂函数是偶函数.4)当01α<<时,函数是上凸函数,且12,x x ∀满足()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭;当1α>时,函数是下凸函数,且12,x x ∀满足()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭. 5)幂函数的图象根据奇偶性进行补全即可.4、函数零点 (1)零点定义:①对于函数()()y f x x D =∈,把使()0f x =成立的实数x 叫做函数()()y f x x D =∈的零点;②零点的意义:函数()y f x =的零点就是方程()0f x =实数根,亦即函数()y f x =的图象与x 轴交点的横坐标.即:方程()0f x =有实数根⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点; ③函数的零点与方程根的关系:函数()()()F x f x g x =−的零点就是方程()()f x g x =的根,即函数()y f x =的图象与函数()y g x =的图象交点的横坐标.④三个等价关系(三者相互转化)(2)零点存在性定理:①函数()f x 在区间[],a b 上是连续不断的; ②()()0f a f b <;③则函数()y f x =在区间(),a b 内有零点,即至少存在(),c a b ∈,使得()0f c =,这个c 就是方程()=0f x 的根(即是函数()f x 的零点). 注意以下两点:①满足条件的零点可能不唯一; ②不满足条件时,也可能有零点.③由函数()y f x =在闭区间[],a b 上有零点不一定能推出()f a ·()f b 0<,如图所示.所以()f a ·()f b 0<是()y f x =在闭区间[],a b 上有零点的充分不必要条件.(3)零点唯一的条件:函数()f x 在区间(),a b 上连续不断,满足()()0f a f b <,且函数()f x 在区间(),a b 上单调,则函数()f x 有唯一零点.。
二次函数(分段函数)
⼆次函数(分段函数)⼆次函数(分段函数)⼀、根据⽂字表达式获取分段函数信息例1 在黄州服装批发市场,某种品牌的时装当季节即将来临时,价格呈上升趋势,设这种时装开始时定价为20元,并且每周(7天)涨价2元,从第6周开始保持30元的价格平稳销售;从第12周开始,当季节即将过去时,平均每周减价2元,直到第16周周末,该服装不再销售.试建⽴销售价y 与周次x 之间的函数关系式.分析:本题要善于从⽂字信息中提炼出函数关系,可先采⽤列表法找出周次x 和销售解:依题意,可建⽴的函数关系式为:()()()()()≤≤--≤≤≤≤-+=16121123011630611220x x x x x y ;即()()()≤≤+-≤≤≤≤+=16125221163061182x x x x x y ⼆、根据已知分段函数解析式求解例2 ⼼理学家研究发现,⼀般情况下,学⽣的注意⼒随着教师讲课时间的变化⽽变化,讲课开始时,学⽣的注意⼒逐步增强,中间有⼀段时间学⽣的注意⼒保持较为理想的状态,随后学⽣的注意⼒开始分散,经过实验分析可知,学⽣的注意⼒y 随时间t 的变化规律有如下关系式:≤+-≤≤++-=)4020(3807)2010(240)100(100242t t t t t t y (1)讲课开始后第5分钟时与讲课开始后第25分钟时⽐较,何时学⽣的注意⼒更集中?(2)⼀道数学难题,需要讲解24分钟,为了效果较好,要求学⽣的注意⼒最低达到180,那么经过适当安排,⽼师能否在学⽣注意⼒达到所需的状态下讲解完这道题⽬?解:(1)当x=5时,代⼊y=-t 2+24t+100中,得y=195;当x=25时,代⼊y=-7t+24t+100中,得y=205.∴讲课开始后第25分钟时学⽣的注意⼒⽐讲课开始后第5分钟时更集中.(2)当0<t≤10时,令y=-t 2+24t+100=180,得t=4;当10<t≤20时,y=240;当20<t≤40时,y=-7t+380=180,得t=28.57.所以学⽣注意⼒在180以上的持续时间为28.57-4=24.57(分钟).∴⽼师可以经过适当安排,能在学⽣注意⼒达到所需的状态下讲解完这道题⽬. 4⼀蔬菜基地种植的某种绿⾊蔬菜,根据今年的市场⾏情,预计从五⽉⼀⽇起的50天内,它的市场售价y 1与上市时间x 的关系可⽤图1的⼀条线段表⽰:它的种植成本y 2与上市时间x 的关系,可⽤图2中抛物线的⼀部分来表⽰。
分段函数在初中教学中的应用
■ 黄 国金
分段 函数有 一次函数 的分 段函数 、 反 比例 函数 的分段函数 和二 次函数 中的分段 函数 。分段 函数是 高 中重点内容 , 但现 已向初中渗透这方面内容 , 并成 为 中 考 的热 点题 型 。
一 一
、
次 函数 中 的分 段 函数
次函数 的分段数 函数有分段计费 问题 、行程 中的分段 函数 和几何 图形 的分段 函数 。学习这类函 数 须注意 : ( 1 ) 注意 自变量变化 范围 , 在解析式 和 图 形 上都要反 映 自变量 的取值范 围。 ( 2 ) 函数 图像有几 条 线段 ( 或射线 ) 或点组成 , 其 中每条线段 ( 射线 ) 或 点代表不 同阶段情况 。 ( 3 ) 分段 函数 图像要结合实际 背景 , 尤其注意折线 中横纵坐标的意义 。 例1 小明从家骑 自行车出发 , 沿一条直路到相 距2 4 0 0 m的邮局办事 , 小明出发 的同时 , 他 的爸 爸以 9 6 米, 秒速度从 邮局沿 同一条 道路 步行 回家 , 小 明在 邮局停 留2 秒后沿原路以原速度返 回 , 设他们出发后 在返 回途中经过t 秒时, 小 明与家之 间的距 离为S n l , 小 明 的 爸 爸 与 家 之 间 的距 离 为 S 2 m,图 中折 线 O A B D、 线段 盼 别 表示 . s , 、 S 与t 之 间的函数关 系的 图像 。求S , 与t 之 间的函数关系式 。
三、 与 二 次 函数 有 关 的分 段 函数
分析 : 函数 图像是表示变量 之 间关 系 的一种 重 要方法 ,从 函数 图像上可 以清楚地了解函数变化规 律和某些性质 , 能否正确解读 函数 图像 , 是本题 解题
的关 键 。
解: ・ . 卟 明的爸爸 以9 6 米, 秒 速度从 邮局沿 同一 条道路步行 回家 ,
初中所有函数知识点归纳
初中所有函数知识点归纳函数是数学中的一种基本概念,也是初中数学中非常重要的内容。
在初中阶段,学生主要学习了一次函数、二次函数和分段函数等几种常见类型的函数,下面对这些内容进行归纳。
一、一次函数:1. 函数的定义:一次函数是指函数表达式为 y = kx + b 的函数,其中 k 和 b 是常数,且k ≠ 0。
2.函数图像:一次函数的图像是一条直线,通过其中两个点就能确定这条直线。
3.函数性质:一次函数是一个线性函数,特点是斜率恒定,即直线的倾斜度保持一致。
4.斜率:斜率是一次函数的重要特征,用来描述函数图像的倾斜程度。
二、二次函数:1. 函数的定义:二次函数是指函数表达式为 y = ax^2 + bx + c 的函数,其中 a、b 和 c 是常数,且a ≠ 0。
2.函数图像:二次函数的图像是一个抛物线,开口方向由a的正负确定。
3.函数性质:二次函数的最高次项是二次的,代表抛物线的弯曲程度。
4.零点和顶点:二次函数的零点即方程的根,顶点是抛物线的顶点,二次函数的顶点坐标为(-b/2a,f(-b/2a))。
三、分段函数:1.函数的定义:分段函数是指在不同的区间采用不同的函数表达式来定义的函数。
2.函数图像:分段函数的图像是由不同的线段或抛物线拼接而成。
3.区间和定义域:分段函数的定义域是所有给定函数的定义域的并集,区间是定义域的数据范围。
四、函数的运算:1.函数的加减法:两个函数的加减法运算规则是将对应的x值代入函数表达式后进行运算得到对应的y值,即(f+g)(x)=f(x)±g(x)。
2.函数的乘法:两个函数的乘法运算是将对应的x值代入函数表达式后进行运算得到对应的y值,即(f*g)(x)=f(x)*g(x)。
3.函数的除法:两个函数的除法运算是将对应的x值代入函数表达式后进行运算得到对应的y值,即(f/g)(x)=f(x)/g(x)。
五、函数的应用:1.函数的问题解决:函数在数学中有很多实际应用,如利用函数关系解决实际问题,通过函数图像分析问题等。
高一函数知识点总结归纳
高一函数知识点总结归纳高中数学的学习难度主要在于概念的深入和方法的抽象。
高一是数学学习的起步阶段,更是重中之重。
今天小编在这给大家整理了高一函数知识点总结,接下来随着小编一起来看看吧!高一函数知识点总结1高一数学函数知识点归纳1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。
2、函数定义域的解题思路:⑴ 若x处于分母位置,则分母x不能为0。
⑵ 偶次方根的被开方数不小于0。
⑶ 对数式的真数必须大于0。
⑷ 指数对数式的底,不得为1,且必须大于0。
⑸ 指数为0时,底数不得为0。
⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。
⑺ 实际问题中的函数的定义域还要保证实际问题有意义。
3、相同函数⑴ 表达式相同:与表示自变量和函数值的字母无关。
⑵ 定义域一致,对应法则一致。
4、函数值域的求法⑴ 观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。
⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。
⑶ 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。
⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。
5、函数图像的变换⑴ 平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。
⑵ 伸缩变换:在x前加上系数。
⑶ 对称变换:高中阶段不作要求。
6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y 与之对应,那么就称对应f:A→B为从集合A到集合B的映射。
⑴ 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。
高中数学函数知识点总结
函数一、函数的定义:1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.函数的三要素:定义域、值域、对应法则3.函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。
(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。
4、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.Cxx每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在Cxx .(2) 画法A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。
(3)函数图像平移变换的特点:1)加左减右——————只对x2)上减下加——————只对y3)函数y=f(x) 关于X轴对称得函数y=-f(x)4)函数y=f(x) 关于Y轴对称得函数y=f(-x)5)函数y=f(x) 关于原点对称得函数y=-f(-x)6)函数y=f(x) 将x轴下面图像翻到x轴上面去,x轴上面图像不动得函数y=| f(x)|7)函数y=f(x) 先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)二、函数的基本性质1、函数解析式子的求法(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)、求函数的解析式的主要方法有:1)代入法:2)待定系数法:3)换元法:4)拼凑法:2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
高中数学 14种函数图像和性质知识解析 新人教A版必修1
高中数学 14种函数图像和性质知识解析新人教A版必修1高中不得不掌握的函数图像与常用性质高中常用函数有14种,它们是:1.正比例函数;2.反比例函数;3.根式函数;4一次函数;5.二次函数;6双勾函数.;7..双抛函数;8.指数函数;9对数函数;10.三角函数;11分段函数.;12.绝对值函数;13.超越函数;14.抽象函数。
而函数的性质常见的有:1.定义域;2.值域;3.单调性;4.奇偶性;5.周期性;6.对称性;7.有界性;8.反函数;9.连续性.高中都是从函数解析式入手画出函数图像,再利用函数图像研究其性质,下面我们就函数的图像和性质做归纳总结。
1.正比例函数解析式图像定义域:值域:单调性:奇偶性:反函数:2.反比例函数解析式图像性质定义域:值域:单调性:奇偶性:反函数:对称性:定义域:值域:单调性:对称性:3根式函数解析式图像定义域:值域:单调性:奇偶性:反函数:4一次函数解析式图像定义域:值域:1 性质性质性质用心爱心专心单调性:反函数:5二次函数解析式图像定义域:值域:单调性:对称性:定义域:值域:单调性:对称性:6.双勾函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:值域:单调性:奇偶性:对称性:7.双抛函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:性质性质性质用心爱心专心值域:单调性:奇偶性:对称性:8.指数函数解析式图像定义域:值域:单调性:9.对数函数解析式图像定义域:值域:单调性:10.三角函数解析式图像单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:11.分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。
其图像的画法是按定义域的划分分别作图。
一次函数的应用(分段函数)教学实录
k
师: 因此 , 5 X≤ 1 这个 范 围 内的解 析式 在 < 5
k
k m
可表示 为 : Y一 3 0 教师 板 书) 0( 生 :疑 惑 , 纷议论 ) 不是 用含 X的代 数式 ( 纷 这 去表 示 Y的呀 , 它是 一个 函数 的解 析式 吗?
们来 到 了同一 个地 方 同时起 跑 , 多一 会 , 子将 不 兔
乌龟 甩下 很 远 , 它想 , 龟 跑 得 也 太 慢 了 吧 , 来 乌 我 睡一 觉它 也跑 不 赢我 , 于是 就 呼呼 的睡 了起 来 . 但
小芳 以 2 0m/分 钟 的速度 起跑 后 , 0 先匀 加 速 跑 5分钟 , 每分 钟速 度提 高 2 分 钟 , 0m/ 又匀 速 跑 了1 0分钟 . 写 出这段 时 间里她 的跑 步 速度 ( 试 单 位 : 分 )随时间 z 单 位 : m/ ( 分钟 ) 变化 的 函数关 系
的合 作精 神 和创 新 能 力 ; 通过 教 师 的引导 与点 拨 ,
形 成 热 烈 而 有 序 的 师 :动 场 面 . { 1 创 设 情 景 , 入 新 课 导
( 计 意 图 : 过讲 故事 来 加 强对 学 生的 思想 设 通
道德 教 育 , 同时 复 习 了正 比例 函数 的 图像 ; 通过 对
师 : 这 个 必 要 把 每分 钟 的速 度 分 别 求 出来 有
吗?
段 , 是正 比例 函数 图像 的一 部分 ; 它 乙是 以原 点 为
生 1: 0 没有 , 为在 前 5分 钟 , 分 钟 提 高 的 因 每 速度 都是 2 可 以用 含 有 z的代 数 式去 表示 Y, 0m,
马上 就要 到终 点 , 它赶 快 追 也来 不及 了 , 最终 乌
函数定义域,值域求法以及分段函数
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(二)映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B 为从集合A到集合B的一个映射(mapping).记作“f:A→B”说明:(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述.(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。
1.例题分析:下列哪些对应是从集合A到集合B的映射?(1)A={P | P是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;(2)A={ P | P是平面直角体系中的点},B={(x,y)| x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应;(3)A={三角形},B={x | x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)A={x | x是新华中学的班级},B={x | x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.思考:将(3)中的对应关系f改为:每一个圆都对应它的内接三角形;(4)中的对应关系f 改为:每一个学生都对应他的班级,那么对应f: B→A是从集合B到集合A的映射吗?(三)函数的表示法常用的函数表示法:(1)解析法;(2)图象法;(3)列表法.三、典例解析1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义,∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ? ⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ? 2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37-或 x>37- ∴定义域为:}37|{-≠x x 例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[?1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六讲:分段函数与二次函数第一部分:分段函数6. 设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g ?x ?+x +4,x <g ?x ?,g ?x ?-x ,x ≥g ?x ?,则f (x )的值域是__________.答案 [-94,0]∪(2,+∞)1.(2014·山西四校联考)定义在R上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(8-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (3)的值为( ) A .1 B .2 C .-2 D .-32.(2015·全国Ⅱ卷)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )3.(2014·新课标全国Ⅰ卷)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.(-∞,8]4.(2014·上海卷)设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]5.(2015·福建卷)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.(1,2]6.(2014·浙江卷)设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是________.(-∞,2]7.(2015·山东卷)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 取值范围是( )B.[0,1]D.[1,+∞)8.【2015高考北京,理14】设函数()()()2142 1.x a x f x x a x a x ⎧-<⎪=⎨--⎪⎩‚‚‚≥①若1a =,则()f x 的最小值为;1②若()f x 恰有2个零点,则实数a 的取值范围是.112a ≤<或2a ≥. 9.函数⎩⎨⎧>≤+=)0(,log )0(,1)(2x x x x x f ,则函数1)]([-=x f f y 的零点个数是 .7.10.已知函数222(1)(0)()4(3)(0)x k a x f x x x a x ⎧+-≥=⎨-+-<⎩,其中R a ∈. 若对任意的非零实数1x ,存在唯一的非零实数212()x x x ≠,使得12()()f x f x =成立,则k 的取值范围为 A .0k ≤ B .8k ≥ C .08k ≤≤ D .0k ≤或8k ≥11.已知函数f (x )=mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点右侧,则实数m的取值范围是________.(-∞,1] 第二部分:二次函数1.是否存在这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上恒有一个零点,且只有一个零点若存在,求出a 的取值范围;若不存在,说明理由.解 令f (x )=0,则Δ=(3a -2)2-4(a -1)=9a 2-16a +8=9⎝ ⎛⎭⎪⎫a -892+89>0恒成立,即f (x )=0有两个不相等的实数根,∴若实数a 满足条件,则只需f (-1)·f (3)≤0即可.f (-1)·f (3)=(1-3a +2+a -1)·(9+9a -6+a -1)=4(1-a )(5a +1)≤0,∴a ≤-15或a ≥1.检验:(1)当f (-1)=0时,a =1,所以f (x )=x 2+x .令f (x )=0,即x 2+x =0,得x =0或x =-1.方程在[-1,3]上有两个实数根,不合题意,故a ≠1.(2)当f (3)=0时,a =-15,此时f (x )=x 2-135x -65.令f (x )=0,即x 2-135x -65=0,解得x =-25或x =3.方程在[-1,3]上有两个实数根,不合题意,故a ≠-15.综上所述,a 的取值范围是⎝⎛⎭⎪⎫-∞,-15∪(1,+∞). 2.已知f (x )=x 2+(a 2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围.则有f (1)<0,(-2,1)7. 设函数f (x )=3ax 2-2(a +c )x +c (a >0,a ,c ∈R ).(1)设a >c >0.若f (x )>c 2-2c +a 对x ∈[1,+∞)恒成立,求c 的取值范围; (2)函数f (x )在区间(0,1)内是否有零点,有几个零点为什么解 (1)因为二次函数f (x )=3ax 2-2(a +c )x +c 的图象的对称轴为x =a +c3a,由条件a >c >0,得2a >a +c ,故a +c 3a <2a 3a =23<1,即二次函数f (x )的对称轴在区间[1,+∞)的左边,且抛物线开口向上,故f (x )在[1,+∞)内是增函数.若f (x )>c 2-2c +a 对x ∈[1,+∞)恒成立,则f (x )min =f (1)>c 2-2c +a ,即a -c >c 2-2c +a ,得c 2-c <0,所以0<c <1.(2)①若f (0)·f (1)=c ·(a -c )<0,则c <0,或a <c ,二次函数f (x )在(0,1)内只有一个零点. ②若f (0)=c >0,f (1)=a -c >0,则a >c >0.因为二次函数f (x )=3ax 2-2(a +c )x +c 的图象的对称轴是x =a +c3a. 而f ⎝ ⎛⎭⎪⎫a +c 3a =-a 2+c 2-ac 3a <0, 所以函数f (x )在区间⎝⎛⎭⎪⎫0,a +c 3a 和⎝ ⎛⎭⎪⎫a +c 3a ,1内各有一个零点,故函数f (x )在区间(0,1)内有两个零点.3.若关于x 的方程22x+2xa +a +1=0有实根,求实数a 的取值范围. 解 法一 (换元法)设t =2x (t >0),则原方程可变为t 2+at +a +1=0,(*) 原方程有实根,即方程(*)有正根.令f (t )=t 2+at +a +1.①若方程(*)有两个正实根t 1,t 2,则⎩⎪⎨⎪⎧Δ=a 2-4(a +1)≥0,t 1+t 2=-a >0,t 1·t 2=a +1>0,解得-1<a ≤2-22;②若方程(*)有一个正实根和一个负实根(负实根,不合题意,舍去),则f (0)=a +1<0,解得a <-1;③当a =-1时,t =1,x =0符合题意.综上,a 的取值范围是(-∞,2-22].法二 (分离变量法)由方程,解得a =-22x+12x +1,设t =2x(t >0),则a =-t 2+1t +1=-⎝ ⎛⎭⎪⎫t +2t +1-1=2-⎣⎢⎡⎦⎥⎤(t +1)+2t +1,其中t +1>1, 由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2. 综上,a 的取值范围是(-∞,2-22].4.已知函数f (x )=4x +m ·2x+1有且仅有一个零点,求m 的取值范围,并求出该零点. 解 ∵f (x )=4x +m ·2x +1有且仅有一个零点,即方程(2x )2+m ·2x+1=0仅有一个实根. 设2x =t (t >0),则t 2+mt +1=0.当Δ=0,即m 2-4=0,∴m =-2时,t =1;m =2时,t =-1(不合题意,舍去),∴2x=1,x =0符合题意. 当Δ>0,即m >2或m <-2时,t 2+mt +1=0有两正根或两负根,即f (x )有两个零点或没有零点.∴这种情况不符合题意.综上可知,m =-2时,f (x )有唯一零点,该零点为x =0.5.已知a 是正实数,函数f (x )=2ax 2+2x -3-a .如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.解 f (x )=2ax 2+2x -3-a 的对称轴为x=-12a .①当-12a ≤-1,即0≤a ≤12时,须使⎩⎪⎨⎪⎧f ?-1?≤0,f ?1?≥0,即⎩⎪⎨⎪⎧a ≤5,a ≥1,∴a 的解集为?.②当-1<-12a <0,即a >12时,须使⎩⎪⎨⎪⎧f ?-12a ?≤0,f ?1?≥0,即⎩⎪⎨⎪⎧-12a -3-a ≤0,a ≥1,解得a ≥1,∴a 的取值范围是[1,+∞).第三部分:解答题1.已知函数kx x x x f ++-=221)(.(1)若对于区间()0,+∞内的任意x ,总有()0f x ≥成立,求实数k 的取值范围; (2)若函数()f x 在区间()2,0内有两个不同的零点21,x x ,求:①实数k 的取值范围; ②2111x x +的取值范围. 试题解析:(1,易知()g x 在上(]0,1递增,在 ()1,+∞上递减,∴()max ()11g x g ==-,∴1k ≥-即可(2)①ⅰ)10≤<x 时,方程0)(=x f 化为01=+kx ,0=k 时,无解;0≠k 时,kx 1-=; ⅱ)21<<x 时,方程0)(=x f 化为0122=-+kx x ,482+±-=k k x ,而其中04482≤--<+--k k k k ,故0)(=x f 在区间()2,1内至多有一解482++-=k k x ; 综合ⅰ)ⅱ)可知,0≠k ,且10≤<x 时,方程0)(=x f 有一解kx 1-=,故1-≤k ;21<<x 时,方程0)(=x f 也仅有一解482++-=k k x ,令24812<++-<k k ,得127-<<-k ,所以实数k 的取值范围是127-<<-k ; 9分 ②方程0)(=x f 的两解分别为k x 11-=,4822++-=k k x ,8411221+-=++-+-=+k k k k x x 2.设函数)且10()1()(≠>--=-a a a k a x f xx 是定义域为R 的奇函数.(Ⅰ)求k 的值; (Ⅱ)若23)1(=f ,且)(2)(22x mf a a xg xx -+=-在[)+∞,1上的最小值为2-,求m 的值. 解析:(Ⅰ)由题意,对任意R x ∈,,)()(x f x f -=-,即x x x xa k a a k a ---+-=--)1()1(,0))(2(=+--x x a a k 因为x 为任意实数 所以2=k .(Ⅱ)由(1)xx a a x f --=)(,因为23)1(=f ,所以231=-a a ,解得2=a 故x x x f --=22)(,)22(222)(22x x x x m x g ----+=,令x x t --=22,则由[)+∞∈,1x ,得⎪⎭⎫⎢⎣⎡+∞∈,23t ,2222)(22)()(m m t mt t t h x g -+-=+-==,⎪⎭⎫⎢⎣⎡+∞∈,23t 当23<m 时,)(t h 在⎪⎭⎫⎢⎣⎡+∞,23上是增函数,则2)23(-=h ,22349-=+-m ,解得1225=m (舍去).当23≥m 时,则2)(-=m f ,222-=-m , 解得2=m ,或2-=m (舍去).4.(2015·雅安模拟)已知函数f (x )=3ax 2+2bx +c ,a +b +c =0,且f (0)·f (1)>0. (1)求证:-2<ba<-1;(2)若x 1、x 2是方程f (x )=0的两个实根,求|x 1-x 2|的取值范围. (1)证明 当a =0时,f (0)=c ,f (1)=2b +c ,又b +c =0,则f (0)·f (1)=c (2b +c )=-c 2<0与已知矛盾,因而a ≠0,则f (0)·f (1)=c (3a +2b +c )=-(a +b )(2a +b )>0即⎝ ⎛⎭⎪⎫ba +1⎝ ⎛⎭⎪⎫b a+2<0,从而-2<b a<-1.(2)解 x 1、x 2是方程f (x )=0的两个实根,则x 1+x 2=-2b 3a ,x 1x 2=-a +b 3a,那么(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-2b 3a 2+4×a +b 3a =49·⎝ ⎛⎭⎪⎫b a 2+4b 3a +43=49⎝ ⎛⎭⎪⎫b a +322+13. ∵-2<b a <-1,∴13≤(x 1-x 2)2<49,∴33≤|x 1-x 2|<23,即|x 1-x 2|的取值范围是⎣⎢⎡⎭⎪⎫33,23.5.已知函数()22f x x x x a =+-,其中a R ∈.(1)求函数()f x 的单调区间;(2)若不等式()416f x ≤≤在[]1,2x ∈上恒成立,求a 的取值范围.解析:(1)由()()()()2222333x a a x a f x a a x x a ⎧--+≤⎪=⎨⎛⎫-->⎪ ⎪⎝⎭⎩,故当0a ≥时,()f x 在(),a -∞和(),a +∞上递增,又∵()2f a a =,∴()f x 在R 上递增,当0a <时,()f x 在(),a -∞和,3a ⎛⎫+∞⎪⎝⎭上递增,在,3a a ⎛⎫⎪⎝⎭上递减;(2)由题意只需()()min max 4,16f x f x ≥≤,首先,由(1)可知,()f x 在[]1,2x ∈上恒递增,则()()min 11214f x f a ==+-≥,解得12a ≤-或52a ≥,其次,当52a ≥时,()f x 在R 上递增,故()()max 24416f x f a ==-≤,解得552a ≤≤,当12a ≤-时,()f x 在[]1,2x ∈上递增,故()()max 212416f x f a ==-≤,解得112a -≤≤-,综上112a -≤≤-或552a ≤≤.。