电路 含有耦合电感的电路
10章 含有耦合电感的电路
jω L2 (支路 支路3)L ± 同侧取 同侧取“ 支路 3=±M(同侧取“+”,异 异
R2
侧取“ 侧取“-”) (支路 1’=L1 m M,M前所取符 支路1)L 支路 , 前所取符 号与L 号与 3中的相反 (支路 2’=L2 m M,M前所取 支路2)L 支路 , 前所取 符号与L 符号与 3中的相反
反相串联无互感等效电路
R1 u1 u M L1 R1 L1-M u1 R2 u2 L2 u R2 L2-M u2
Z = Z1 + Z 2 = R1 + R2 + jω ( L1 + L2 − 2 M )
R1
L1 u1
2、顺向串联 、 每一耦合电感支路的阻抗为: 每一耦合电感支路的阻抗为:
Z1 = R1 + jω ( L1 + M )
两个耦合线圈的磁通链可表示为: 两个耦合线圈的磁通链可表示为:
ψ 1 = ψ 11 ± ψ 12
= L1i1±Mi2
ψ 2 = ±ψ 21 + ψ 22
= ±Mi1+L2i2 上式表明, 上式表明 , 耦合线圈中的磁通链与施感电流 线性关系 关系, 成 线性 关系 , 是各施感电流独立产生的磁通链叠 加的结果。 加的结果。
di di u2 = R2i + ( L2 −M ) dt dt di = R2i + ( L2 − M ) dt
无互感等效电路
R1 u1 u M L1 R1 L1-M u1 R2 u2 L2 u R2 L2-M u2
di u = u1 + u 2 = ( R1 + R2 )i + ( L1 + L2 − 2 M ) dt
L1 N1 L2 N2
电路第十章含有耦合电感的电路
.. . . .. .. . . .. 一致,故1,4是同名端,(不2是,同名端,1,4是同名端,
3也是同名i1 端) i2 (2,3也是同名端i1 ) i2
1 23 4
1 23 4
同名端只与线圈的绕向有关,与电流方向无关。 只要知道线圈的绕向,就能标出同名端。
L L1L2 M2 L1 L2 2M
M2 L1L2
M L1L2 M L1 L2
2
几何平均值(小) 算术平均值(大)
除非两电感相同,一般:几何平均值< 算术平均值
∴用几何平均值求M更严格
∴互感M必须满足 M L1L2 的要求 ∴ M的最大值 Mmax L1L2
3.耦合系数 k M M max
最大值
i(t)
••
u ( t ) L1 L2
i(t)
u(t)
L1 -
di
M
dt +
L2
+
M
di
- dt
utL1d d ti Md d ti L2d d ti Md dti
L1
L2
2Mdi
dt
L
di dt
反接时,串联电感值为
LL1L22M
电感贮能 WL 12LiL2 0
即L一定为正值
L1L22M
M L1 L2 2
实际值
M L1 L 2
0k1
k 反应了磁通相耦合的程度
k=1 k→1 k<0.5 k=0
全耦合
线圈中电流产生的磁通全部与另一个线 圈交链达到使M无法再增加
紧耦合,强耦合
松耦合,弱耦合
无耦合
4.耦合电感的T型等效
第十章含有耦合电感的电路-精选文档
d di u L dt dt
+
u _
在此电感元件中,磁链Ψ和感 应电压u均由流经本电感元件的电 流所产生,此磁链感应电压分别称 为自感磁链和自感电压。
2、互感:如图所示表示两个耦合电感,电流i1在线 圈1和2中产生的磁通分别为Φ11和Φ21,则Φ21≤Φ11。 这种一个线圈的磁通交链于另一线圈的现象,称为 磁耦合。电流i1称为施感电流。Φ11称为线圈1的自感 磁通,Φ21称为耦合磁通或互感磁通。如果线圈2的 匝数为N2,并假设互感磁通Φ21与线圈2的每一匝都 交链,则互感磁链为Ψ21=N2Φ21。
§10-1 互感
耦合电感:耦合元件,储能元件,记忆元件。
一、耦合电感:为互感线圈的理想化电路模型
1 、自感:对于线性非时变电感元件,当电流的 参考方向与磁通的参考方向符合右螺旋定则时, 磁链Ψ与电流I满足Ψ=Li,L为与时间无关的正实 常数。
根据电磁感应定律和线圈的绕向,若电压的参考 正极性指向参考负极性的方向与产生它的磁通的参 考方向符合右螺旋定则时,也就是在电压和电流关 联参考方向下,则
输入阻抗Z为
Z Z Z ( 8 j 4 ) 8 . 94 26 . 57 1 2
为: 50 0 V 令U ,解得 I
50 0 I U / Z A 5 . 59 26 . 57 A 8 . 94 26 . 57
第十章 含有耦合电感的电路
内容提要
本章主要介绍耦合电感中的磁耦合 现象、互感和耦合因数、耦合电感的同 名端和耦合电感的磁通链方程、电压电 流关系;还介绍含有耦合电感电路的分 析计算及空心变压器、理想变压器的初 步概念。
§10-1 互感 §10-2 含有耦合电感电路的计算 §10-3 空心变压器
电路原理第十章含耦合电感电路
•
•
•
•
U R1 I1 +j L1 I1 -j M I 2
•
•
•
•
U R 2 I 2 +j L2 I 2 -j M I1
•
•
•
I I1 I2
根据前面的电路图,列写方程:
U (R1 jL1)I1 jMI2 Z1I1 ZM I2
U (R2 jL2 )I2 jMI1 Z2I2 ZM I1
Ψ21 Ψ22
Ψ11 Ψ12
Ψ21 Ψ22
i1 a + u1
i2
-b
c+
u2
d
i1 *a + u1 -b
i2 c + u2 -d *
(a)
(b)
说明耦合线圈的伏安关系用图
Ψ1=Ψ11 +Ψ12 Ψ2=Ψ22 +Ψ21
Ψ1=Ψ11 -Ψ12 Ψ2=Ψ22 -Ψ21
11
21
N1 i1
N2
+ u11 – + u21 –
同名端与两个线圈的绕向和相对位置有关。
11
s
0
N1 i1 * •
+ u11 –
N2
N3
*
•
+ u21 – – u31 +
i
1*
*2
1•*
2
3
1'
2'
1'
2'*
3' •
两个以上线圈彼此耦合时,同名端应一对一对加以标记。 如果每个电感都有电流时,每个电感的磁通链等于自感磁 通链和所有互感磁通链的代数和。
通链Ψ22 。22 部分或全部与线圈1相链,产生线圈2对线圈
第十章含耦合电感的电路
r R
E
(a)
r R
E
(b)
直接连接
P
I
2
R
E R
r
2
R
8
6 100
2
8
25mW
用匝比为n = 3的变压器耦合
扬声器的反射阻抗
R'
N1 N2
2
R
300 100
i1 * N1
n :1
i2
பைடு நூலகம்
+
N2
u2
*
-
实际变压器与理想变压器近似的条件
变压器原、副边线圈自电感 :L1、L2 耦合电感 : M k L1L2 近似条件: k M 1 L1、L2很大
L1L2
n n1 n2
例题
一个理想变压器的额定值是2400V/120V,9.6kVA且 在次级有50匝。计算:(a)匝数比,(b)初级的匝 数,(c)初级绕组和次级绕组的额定电流值。
原、副边匝比: 初级匝数:
n V1 2400 20 V2 120
n1 n 50 2050 1000 匝
初级绕组和次级绕组的额定电流值
I1
9600 V1
9600 2400
4A
I2
9600 V2
9600 120
80A
例题
求负载的端电压 U 2。
副边电压、电流关系。 配合电阻元件等,可模拟实际变压器
电工原理之含有耦合电感电路介绍课件
频率响应分析:通过分析频 率响应曲线,可以了解电路 的滤波特性、增益、相位等 参数,从而优化电路设计。
频率响应的应用:耦合电感 电路的频率响应分析在电子 技术、通信工程、电力电子 等领域具有广泛的应用。
3
耦合电感电路 的应用实例
耦合电感电路在滤波器中的应用
01 滤波器类型:低通滤波器、高通 滤波器、带通滤波器等
03
耦合电感的大小与线圈的几何形状、相对位 04
耦合电感在电路中起到能量传递、信号处
置、绕线方式等因素有关。
理等作用。
耦合电感的作用
1
耦合电感是电 路中两个或多 个电感之间的
相互影响
3Байду номын сангаас
耦合电感可以 减小电路的噪
声干扰
2
耦合电感可以 增强电路的滤
波性能
4
耦合电感可以 提高电路的功
率传输效率
耦合电感的分类
电工原理之含有 耦合电感电路介 绍课件
目录
01. 耦合电感电路的基本概念 02. 耦合电感电路的分析方法 03. 耦合电感电路的应用实例
1
耦合电感电路 的基本概念
耦合电感的定义
01
耦合电感是两个或多个电感线圈之间通过
02
耦合电感是电路中一种重要的元件,常用于
磁场相互影响的现象。
滤波、调谐、阻抗匹配等电路中。
自感耦合:两个电感线圈之 间通过磁场相互耦合
变压器耦合:两个电感线圈 之间通过变压器相互耦合
互感耦合:两个电感线圈之 间通过电流相互耦合
电容耦合:两个电感线圈之 间通过电容相互耦合
2
耦合电感电路 的分析方法
电路分析的基本方法
电路图分析:了
1 解电路的结构和 功能
第11章 含有耦合电感的电路
耦合电感电压方程的相量形式:
3. 耦合电感的T型去耦等效电路(互感化除法)
1、互感线圈的一对同名端连在一起:
三支路共一节点、其中有两条支路存在互感。
di1 di1 di1 di2 u1 L1 M M M dt dt dt dt
di1 d i1 i2 L1 M M dt dt
di 2 di1 M u1 L1 dt dt
di1 di 2 M u2 L2 dt dt
用实验方法确定同名端:
开关闭和,电压表正向偏转,c点电位高, 则a,c为同名端;若反向偏转,a,d为同名端。
3. 耦合电感电压方程的相量形式:
i1
+ * u1
L1
M
i2 + *
L2
u2
-
-
di1 di2 u1 L1 M dt dt di2 di1 u 2 L2 M dt dt
求: I1、 U 2 (直接用网孔法求)
jωM
I2
jωL2
jωL1
解:
U jMI (R1 R2 jL1) I 1 R2 I 2 S 2 jMI (RL R2 jL2) I 2 R2 I 1 1
4. 有互感电路的计算 (1) 在正弦稳态情况下,有互感的电路的计算 仍应用前面介绍的相量分析方法。
线圈 2
定义互感系数 Mutual inductance :
左式:线圈1对线圈2的互感系数M21,等于穿 越线圈2的互感磁链与激发该磁链的线圈1中的 电流之比。
可以证明: M21=M12=M
单位:henry(H)
∵Φ21≤Φ11 ,Φ12≤Φ22
含有耦合电路要点
第10章 含有耦合电感的电路(小结)1、 耦合电感的概念理解耦合电感是线性电路中一种重要的多端元件。
分析含有耦合电感元件的电路问题,重点是掌握这类多端元件的特性,即耦合电感的电压不仅与本电感的电流有关,还与其它耦合电感的电流有关,这种情况类似于含有电流控制电压源的电路。
2、 含有耦合电感电路的分析分析含有耦合电感的电路一般采用的方法有列方程分析和应用等效电路分析两类。
考虑到耦合电感的特性,在分析中要注意以下特殊性:(1) 耦合电感上的电压、电流关系式的形式与其同名端位置有关,与其上电压、电流参考方向有关。
认识到这一点是正确列写方程及正确进行去耦等效的关键。
(2) 由于耦合电感上的电压是自感电压和互感电压之和,因此列方程分析这类电路时,如不采用去耦等效,则多采用网孔法回路法,不宜直接应用结点电压法。
(3) 应用戴维宁定理(或诺顿定理)分析时,等效内阻抗应按含受探源电路的内阻抗求解法。
但当负载与有源两端网络内部有耦合电感存在时,戴维宁定理(或诺顿定理)不便使用。
3、 理想变压器的三个理想化条件理想变压器是在耦合电感元件基础上加进3个理想化条件而抽象出的一类多端元件。
这3个理想化条件是:(1)全耦合,即耦合系数k=1;(2)参数无穷大,即L1,L2,M →∞,但满足L1/L2=常数;(3)无损耗。
4、 理想变压器的主要性能在满足上述三个理想化条件下,具有如下性能:(1) 变电压。
即元件的初、次级电压满足代数关系22211nu u N N u ±=±=(n 为初次级线圈匝数比)。
(2) 变电流。
即元件的初、次级电流满足代数关系211i n i ±=。
(3) 变阻抗。
即由理想变压器初级端看进去的输入阻抗为L in Z n Z 2=。
(4) 理想变压器在任何时刻吸收的功率为零,是不储能、不耗能、只起能量传输作用的无记忆元件。
5、 理想变压器在应用上述性能时需注意以下事项:(1) 理想变压器的变压关系式u 1、u 2的参考极性及同名端位置有关。
电路原理 第8章 含有耦合电感的电路
耦合电感元件的伏安关系为
di d i2 1 u1 L1 M dt dt 1 u L d i2 M d i 2 2 dt dt
同名端 :当电流分别从两个线圈各自的某个端钮流 入(或流出)时,若两者在同一线圈上产生的磁 通方向一致,则称这两个端钮互为同名端,用“· ” 或“* ”表示。
K的大小由两个线圈的结构、相互位置及线圈 周围的磁介质等决定。显然,K 1 。若 K 1, 则称两个线圈为全耦合,若 K 1 ,则称两个线圈 为紧耦合,若 K 1,则称两个线圈为松耦合。
8.2 含有耦合电感元件的正弦稳态电路分析
找耦合电感元件的相量模型 ,再用相量法分析和计算
8.2-1 耦合电感元件的相量模型: I2 电流、电压都用相量 I 1 I1 jω M a + 、 、 表示 I2 U1 U 2 jω L2 jω L1 U1 耦合电感元件伏安关系 的相量形式 -
对于线性自感L1和线性互感M12,由叠加定理可 得,自感L1上的总感应电压等于自感电压和互感 电压的代数和,即
u1 u11 u12
di1 di2 L1 M 12 dt dt
同样地,对于线圈L2,它的感应电压也由两部分组 成,即自感电压和互感电压,总的感应电压为:
di2 di1 u 2 u 22 u 21 L2 M 21 dt dt 可以证明 M12 M 21 M
L L1 L2 2M
二、耦合电感并联的去耦等效
a + U
I I1
jω L1
jω M
I2
jω L2
a + U
I I1
jω L1
jω M
I2
jω L2
电路PPT课件第10章含有耦合电感的电路
由同名端及u、i参考方向确定互感线圈的特性方程
有了同名端,以后表示两个线圈相互作用,就不再考虑实际绕向,而只画 出同名端及参考方向即可。
M
*
*
i1
+ u21 –
M
*
*
i1
– u21 +
u21
M
di1 dt
u21
M
di1 dt
例
i1
M
i2
+*
*+
u1 L1 _
L2 u2 _
u1
L1
di1 dt
M
di2 dt
u
L1
L2
–
i1
M
i2
+
**
+
u
L1
L2
u
–
–
•
I
jM
j(L1-M)
•
•
I1 I2
j(L2-M)
•
I1
j(L1-M)
•
I2
j(L2-M)
jM
4. 受控源等效电路
i1
M
i2
+
**
+
u
L1
L2 u
–
–
•
I1
+
j L1
•
U1
+
•
jM
–
I–2
•
I2
+
j L2
•
+
U2
•
jMI 1
–
–
•
•
•
U 1 jL1 I 1 jM I 2
US
j (L1 L3 2M31)
10.2含有耦合电感的电路
1. 耦合电感的串联
i (1) 顺接串联 + + R1 L1 u1 M – +* u i + R u L – L2 R2 u2 – –
*
u = R i + L di + M di + L2 di + M di + R2i 1 1 dt dt dt dt = ( R + R2 )i + (L + L2 + 2M) di 1 1 dt = Ri + L di dt
求图示电路的开路电压。 例2 求图示电路的开路电压。
& I1 R1 • L1
∆
M12 L2 • *
解1
+
& US
+ _
M31
L3 M23 ∆ *
& Uoc
_
& US I1 = R + jω(L + L3 − 2M31) 1 1 & & & & & U0c = jωM12I1 − jωM23I1 − jωM31I1 + jωL3I1
•
I1
jω M * *
•
•
•
I2
2 jωL2
I1
I2
2 jω(L2-M) jωM 3
•
1 jω(L1-M)
1 jωL1
•
3
•
I
• • •
I
•
U13 = jωL I1 + jωM I 2 = jω L − M) I1 + jωM I ( 1 1 U23 = jωL2 I 2 + jωM I1 = jω L2 − M) I 2 + jωM I (
电路第10章---含有耦合电感的电路讲解
§10.1 互感耦合电感元件属于多端元件,在实际电路中,如收音机、电视机中的中周线圈、振荡线圈,整流电源里使用的变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含这类多端元件的电路问题的分析方法是非常必要的。
1. 互感两个靠得很近的电感线圈之间有磁的耦合,如图10.1所示,当线圈1中通电流 i 1 时,不仅在线圈1中产生磁通f 11,同时,有部分磁通 f 21 穿过临近线圈2,同理,若在线圈2中通电流i 2 时,不仅在线圈2中产生磁通f 22,同时,有部分磁通 f 12 穿过线圈1,f 12和f 21称为互感磁通。
定义互磁链:图 10.1ψ12 = N 1φ12 ψ21 = N 2φ21当周围空间是各向同性的线性磁介质时,磁通链与产生它的施感电流成正比,即有自感磁通链:互感磁通链:上式中 M 12 和 M 21 称为互感系数,单位为(H )。
当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁链的代数和:需要指出的是:1)M 值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关,因此,满足M12 =M21 =M2)自感系数L 总为正值,互感系数 M 值有正有负。
正值表示自感磁链与互感磁链方向一致,互感起增助作用,负值表示自感磁链与互感磁链方向相反,互感起削弱作用。
2. 耦合因数工程上用耦合因数k 来定量的描述两个耦合线圈的耦合紧密程度,定义一般有:当k =1 称全耦合,没有漏磁,满足f11 = f21,f22 = f12。
耦合因数k 与线圈的结构、相互几何位置、空间磁介质有关。
3. 耦合电感上的电压、电流关系当电流为时变电流时,磁通也将随时间变化,从而在线圈两端产生感应电压。
根据电磁感应定律和楞次定律得每个线圈两端的电压为:即线圈两端的电压均包含自感电压和互感电压。
在正弦交流电路中,其相量形式的方程为注意:当两线圈的自感磁链和互感磁链方向一致时,称为互感的“增助”作用,互感电压取正;否则取负。
含有耦合电感的电路计算
THANKS
感谢观看
互感系数
定义
互感系数是衡量两个线圈之间磁耦合强度的物理量,用符 号M表示。
计算公式
互感系数M与线圈的匝数、线圈之间的距离、线圈的相对位 置等因素有关,计算公式为M=k*sqrt(L1*L2)。
应用
互感系数在含有耦合电感的电路计算中具有重要意义,是 计算感应电动势和磁能量传递的关键参数。
02
含有耦合电感的电路分析
VS
磁路平衡方程
在含有耦合电感的电路中,磁路平衡方程 是描述磁场能量守恒的方程。对于两个串 联耦合电感,其磁路平衡方程为:$H = NPhi$,其中H是磁场强度,N是线圈匝数, $Phi$是磁通量;对于两个并联耦合电感, 其磁路平衡方程为:$B = mu H$,其中B 是磁感应强度,$mu$是磁导率,H是磁场 强度。
01 总结词
直接计算法是一种基本的电路 计算方法,适用于简单的电路 系统。
02
详细描述
直接计算法是根据电路的基本 定律(如基尔霍夫定律)和元 件的特性方程,直接求解电路 变量的方法。对于含有耦合电 感的电路,可以通过建立和解 决相应的方程组来找到电流和 电压。
03
适用范围
04
适用于耦合系数较小、电路结构 简单的系统。
ERA
在电力系统的应用
用于实现高压输电的变压器
耦合电感在电力系统中主要用于实现高压输电。通过变压器,可以将低电压转换 为高电压,以减少电流的损失,从而降低线路损耗。
在通信系统的应用
用于信号传输和接收的设备
在通信系统中,耦合电感常用于信号传输和接收设备,如无线电和电视接收器。通过调整耦合电感的参数,可以控制信号的 传输和接收质量。
8-含有耦合电感的电路
(L2M)dd2itMddti
i = i1 +i2
i -M
画等效电路:
+
i1
i2
u (L1L2 M2) di L1L2 2Mdt
u –
L1+M
L2+M
三.去耦等效法(消耦法)
M 同正异负
3
M
3
使用条
件:三
L1
L2
L1M
L2M 端联接
同减异加
的两个
1
2
12
耦合电
M
感必须
3
3
有一侧
R1 M
R2
* L1 * L2
②施感电流i1、i2的流入端与另一线圈的端口电压u2、u1
的正极性端是同名端时互感电压u12、u21取正,否则取
负。
2.相量形式:在正弦交流电路中,其相量形式的方程为:
•
•
•
U1 jL1I1jMI2
•
•
•
U2 jL2I2jMI1
应用举例
例:8-1 写出图中各电路的电压、电流关系式。
i1 M i2
+• u_1 L1
第8章 含有耦合电感的电路
本章内容
8.1
互感
8.2 含有耦合电感电路的计算
8.3
空心变压器
8.4
理想变压器
佳木斯大学信息电子技术学院
本章学习目的及要求
耦合电感在工程中有着广泛的应用。 本章主要介绍了磁耦合现象、互感和互感 电压、有互感电路的计算、空心变压器和 理想变压器的电压电流关系。重点: 1.互感和互感电压的概念及同名端的含义; 2.含有互感电路的计算; 3.含有空心变压器和理想变压器的电路的
第四章含有耦合电感的电路
N 1 12
L1 L2
M2
L
2 2
(
N
i2 2
22
)2
( N1 )2, N2
i2
令: n N 1 , 则: L 1 n 2 ,
N2
L2
n L1 , L2
M L1L2 L2 1 ,
L1
L1
L1 n
1 M L 1 n nL 2
2020/3/20
• §4.理想变压器 • 1.理想变压器元件模型及参数 • 在全耦合(K=1)基础上,无损耗 • (即L1、L2→,但其比值为一常数)。
2020/3/20
• 5.自耦变压器
2020/3/20
作业9-9:已知:U=100V,UC=173V,XC=173Ω, ZX的阻抗角|φX|=60°,
求: ZX和电路的输入阻抗.
2020/3/20
解: I U C 100 3 1A, X C 100 3
设: Z X R jX R 2 ( X X C )2 100 2 tg 1 x 60 0
第四章 含有耦合电感的电路
• §1.互感 • 载流线圈之间通过彼此的磁场相互联
系的物理现象称磁耦合或互感。 • 1.互感系数
2020/3/20
• 2.耦合系数 • 描述两个耦合线圈的耦合紧疏程度.
2020/3/20
• 3.互感电压
• 4.同名端 • 为了解决如实绘图不方便而人为约定 反向串联
2020/3/20
• 2.互感线圈的并联 • 1).同名端同侧并联
• 2).同名端异侧并联
2020/3/20
• 例:已知:L1=1H,L2=2H,M=0.5H,R1=R2=1KΩ,
•
us=141.4cos200πt v,
第十章--含有耦合电感的电路
正值表示自感磁链与互感磁链方向一致,互感起
增助作用,负值表示自感磁链与互感磁链方向相 反,互感起削弱作用。
2024年7月17日星期
11
三
3. 同名端的概念及其判断方法!
通过线圈的绕向、 位置和施感电流的
F12
参考方向,用右手
螺旋法则,就可以 F11 判定互感是“增助”
还是“削弱” 。
但实际的互感线圈 往往是封闭的,看 不出绕向;
三
§10-1 互感
1. 互感的概念 一个电感线圈的情况
L1 N1
i1产生的磁通为F11。
i1与F11的参考方向符 F11
合右手螺旋法则,为
关联的参考方向。
i1
1' -
u11
1 +
F11穿越自身线圈时,
产生的自感磁通链用
若u11与i1取关联参考方向
Y11表示:Y11= L1i1
当i1变化时,将产生 自感电压u11。
第十章 含有耦合电感的电路
学习要点 熟练掌握互感的概念; 具有耦合电感电路的计算方法:
①直接列写方程的支路法或回路法。 ②受控源替代法。 ③互感消去法。 掌握空心变压器和理想变压器的应用。
2024年7月17日星期
1
三
重点
互感和互感电压的概念及同名端的含义; 含有互感电路的计算; 空心变压器和理想变压器的电路模型。
名端要用不同的符号一对一对标记。
L2
M
L1 *
* L2
2'பைடு நூலகம்
1 i1
+
M
i2 2
+
M
L3 M
u1
-
L1
1'
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U 13 j (L2 M )I2 j M I (4)
根据(3), (4)式, 作出去耦等效电路
异侧联接
1 I
I1
M
*
I2
L1
L2
*
2
3
I1
L1M
1 I
M
I2
L2 M
2
3
1 I
I1
M
I2
L1 *
* L2
2
3
1 I
I1
M
*
I2
L1
L2
*
2
3
I1
L1 M
(R2 jL2 jL3 R3) Ib (R3 jL3) Ia jM 23Ia jM 23Ib jM12Ia jM 23Ib jM31Ia US 2
此题可先作出去耦等效电路,再列方程(一Hale Waihona Puke 一对消):M12 L1
L2
*
–M12
L1
L2
I1
Z2 ZM
Z1Z2
Z
2 M
U
,
I2
Z1 ZM
Z1Z2
Z
2 M
U
I
I1
I2
Z1 Z2 2ZM
Z1Z2
Z
2 M
U
1 I
M
+
* I1
I 2
U
L1
L2
*
R1 R2
2 异侧并联
U (R j L1 )I1 j M I2
Z1
ZM
3
j7.5 8.0868.2
(b)去耦等效:
M
R1 L1
L2
R2
R1 L1 M L2 M M
R2
Zi j(L2 M ) [R1 j(L1 M )](R2 jM ) R1 j(L1 M ) R2 jM
j5 6 j5 3 j7.5 2
讨论:
(1) 含互感电路写方程时,首先要写全,不遗漏互感电压 其次要注意互感电压前的正负号。这一点尤为重要。
(2) 利用去耦等效电路,包括用受控源(CCVS)表示互感, 对电路进行预处理,使之转化为无耦合电路写方程。 在写结点方程时必须如此。
(3) 将本例中L1,L2之间的互感改在L1和L3之间,方程会发 生什么变化?
di1 dt
( M di2 ) dt
L1
di1 dt
M
di2 dt
即
u1
L1
di1 dt
M
di2 dt
u2
L2
di2 dt
M
di1 dt
当互感电压的“+”极性端与施感电流的进端互为同名端时,
上式中M前取“+”号, 反之取“-”号.
例1
M * L1 i1
* L2 i2
u2 u22 u21
I1
j M
I2
+
*
U1
j L1
+
*
j L2
U2
_
_
U 1 jωL1 I1 jωMI2 U 2 jωMI1 jωL2 I2
I1
+
*
j L1
U1
+
_
j
M
I
2_
I2
*
+
j L2
+
U2
_
j
M
I1
_
小结: 1.互感原理 2. 同名端 √ 3. 互感电压 √ 4. 耦合系数 5. 用受控源表示的互感电压
去耦等效电路:
I R L1 + L2 2M
1
2
“容性” 效 应
2. 并联电路
1 I
M
+
* I1 * I2
U
L1
L2
R1 R2
U (R j L1 )I1 j M I2
Z1
ZM
U jMI1 (R2 jL2 )I2
ZM
Z2
解方程得:
2 同侧并联
§10. 1 互感
自感和自感电压 N
i +u
iL
u
i N i 变化 磁通变化磁链变化
在线圈两端产生感应电压u,
u d
dt
对于线性电感 =Li ,L称为自感系数
则 u L di dt
1.互感原理
N1 11
N2
11 11 N111
21
i1
互感的性质 ① 对于线性电感 M12=M21=M ② 互感系数 M 只与两个线圈的几何尺寸、匝数 、 相互
位置和周围的介质磁导率有关。
4. 耦合系数 反映两个耦合线圈紧疏程度的物理量
def
k
21 12 11 22
又:Y11= N1F11 ,Y22 = N2F22 |Y21|= N2|F21| , |Y12|= N2|F12|
U jMI1 (R2 jL2 )I2
ZM
Z2
I1
Z2 ZM
Z1Z2
Z
2 M
U
,
I2
Z1 ZM
Z1Z2
Z
2 M
U
解方程得:
I
I1
I2
Z1 Z2 2ZM
Z1Z2
Z
2 M
U
3. 去耦等效电路
1 I
同侧联接
I1
M
I2
L1 *
* L2
二线圈周围空间是各向 同性的线性磁介质时
11=L1i1 ,21=M21i1 22=L2i2 , 12=M12i2
可以证明,M12=M21=M, 称为二线圈的互感
1= L1i1 Mi2
2. 同名端
2= L2i2 Mi1
概念: i1, i2 分别从二 线圈的两个端子流进, 它们 产生的磁通是相
3.
+
U S1
_
M12
R1 L1
L2 R2
*
Ia
M31 L3 M23 *
Ib
R3
+
U S 2
_
回路法:
(R1 jL1 jL3 R3) Ia (R3 jL3) Ib jM31Ia jM31Ib jM12Ib jM31Ia jM 23Ib US1
L2 R2 I2
+
U S1
_
Ia
L3
Ib
R3 I3
+
U S 2
_
回路电流法:(1) 不考虑互感 (2) 考虑互感 (3) 合并同类项
(R1 jL1 R3 jL3 )Ia (R3 jL3 )Ib jMIb U S1 (R3 jL3 )Ia (R2 jL2 R3 jL3 )Ib jMIa U S 2
L2
di2 dt
M
di1 dt
同理, 有
u1
u11
u12
d 11
dt
d 12
dt
L1
di1 dt
M
di2 dt
如果取 u1, i1为关联参考方向, u11, u12与u1同方向; u2, i2为关联参考方向, u22, u21与u2同方向,
则有
u1
u11 u12
L1
去耦等效电路:
I R 1
L1 + L2+2M 2
M
反接:
I R1 1
L1 *
R2 * L2
2
U 1
U 2
U
U U 1 U 2 ,
又
U 1 R1I jL1I jMI U 2 R2 I jL2 I jMI
所以
U [( R1 R2 ) j (L1 L2 2M )]I
§10. 2 含有耦合电感电路的计算
• 1.直接列写方程 具有耦合电感的电路与一般电路相比,列写方程 时,必须考虑其互感电压,并注意其极性。
• 2.受控源替代法 可用受控源替代互感电压,这与直接列写方程的 效果相同。这种方法实际上是将互感电压明确地 画到电路中去。
• 3.去耦法(互感消去法) 根据电路结构和互感的相互作用形式,画出互感 电路的去耦等效电路,再按常规电路求解。
S
求内阻:Zi
Zi U S / I
(a)列回路电流方程
( R1 R2 jL1 ) Ia R2 Ib jM Ib 0
( R2 jL2 ) Ib R2 Ia jM Ia U S
I
Ib
3
U S j7.5
,
Zi
U S I
i1 M i2
+* u_1 L1
+
L2 *
_u2
u1
L1
di1 dt
M
di2 dt
u2
L2
di2 dt
M
di1 dt
在正弦交流电路中,其相量形式的方程为
时域形式
I1
j M
I2
+
*
U1
j L1
+
*