一元二次函数中考试题选编
中考数学专题题库∶一元二次方程的综合题含答案解析
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x ,根据题意得:10(1+x )2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y 万辆,根据题意得:2009年底汽车数量为14.4×90%+y ,2010年底汽车数量为(14.4×90%+y )×90%+y ,∴(14.4×90%+y )×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题2.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点.己知函数222(3)y x mx m =--+(m m 为常数). (1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为1x 和2x ,且121114x x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0和(2)见解析,2【解析】 【分析】 (1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根. 即无论m 取何值,该函数总有两个零点.(3)依题意有, 由解得.∴函数的解析式为. 令y=0,解得∴A(),B(4,0) 作点B 关于直线10y x =-的对称点B’,连结AB’,则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10).连结CB’,则∠BCD=45°∴BC=CB’=6,∠B’CD=∠BCD=45°∴∠BCB’=90°即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-,2即AM的解析式为112y x=--.3.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F 作FH ⊥AC 于点H ,设AD=x ,由②知DH=3,FH=,则HC=.在Rt △CFH 中,根据勾股定理,得. ∵以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形,且FC 为斜边, ∴,即,解得.④设AD=x ,易知,即. 而, 当时,;当时,. ∴△FCD 的面积s 的取值范围是. 考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.4.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m 时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.5.已知两条线段长分别是一元二次方程28120x x -+=的两根,(1)解方程求两条线段的长。
中考数学一元二次方程试题及答案
中考数学一元二次方程试题选择题- 一元二次方程X2-2X-1=0的根的情形为( )A・有两个相等的实数根B .有两个不相等的实数根C・只有一个实数根D・没有实数根2、若关于z的一元二次方程x2 -2x + /« = 0没有实数根,则实数m的取值范围是( )A. m<lB. ni>-lC. in>l D・ m<-l3、一元二次方程Q+x+2=0的根的情形是()A.有两个不相等的正根B.有两个不相等的负根C.没有实数根D.有两个相等的实数根4、用配方式解方程X2-4X +2=0,下列配方正确的是( )A. (X-2)2=2B. (X +2)2=2C. (x_2f=_2D. (X -2)2=6五.已知函数y = ax2+hx + c的图象如图(7)所示,那么关于兀的方程cix2+bx + c + 2 = 0的根的情形是()A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根识、(2007广州)关于x的方程x2 + px + q = 0的两根同为负数,贝IJ ()A. 〃〉0 且q〉0B. 〃>0 且(/ < 0C. /? < 0 且q> 0D. 且q〈07、若关于x的一元二次方程x2+lcx + 4k2-3 = 0的两个实数根别离是看宀•且知足召+吃=召•兀•则R的值为( )(A)33一1 或二(B) -1 (C) - (D)不存在44八、下列关于X的一元二次方程中,有两个不相等的实数根的方程是()(A) 2+4=0 (B) 4x2-4x+l=0 (C) x2+x+3=0 (D) x2+2x-l=0九、某商品原价2(H)元,持续两次降价a%后售价为148元,下列所列方程正确的是()A: 200(l+a%)2=148 B: 200(l-a%)2=148 C: 200(l-2a%)=148 D: 200(l-a2%)=14810、(2007湖北荆门)下列方程中有实数根的是( )(A) x2+2x+3=0 (B) x2+l=0 (C) x2+3x+l=0 (D) —^― = —!—X-l X-l1 一、已知关于X的一元二次方程-m = 2x有两个不相等的实数根,则m的取值范围是( )A. m> — \B. m<—2C. m NOD. m«)1二.(2007湖北武汉)若是2是一元二次方程F=c的一个根,那么常数c是()•仏2 B、-2 C、4 D、-4二、填空題一、已知一元二次方程2X2-3X-1 = 0的两根为x2,则"+£=____________________________二、方程(兀一1)2 =4的解为_______________ o3.已知禺是方程X2+6X +3= 0的两实数根,则匕■ +匕的值为4关于X的一元二次方程x2+bx+c=o的两个实数根别离为1和2,则b= ____________ : c= ______ •五、方程X2-2X = 0的解是 __________ .六、已知方程x2-3x+k= 0有两个相等的实数根,则£=________________7、方程X2+2X=0的解为_____八、已知方程X? + (" _ 3“ + 3 = 0在实数范围内恒有解,而且恰有一个解大于1小于2,则“的取值范围是_______________________x-3 5九. 已知X是一元二次方程X2+3X-I=O的实数根,那么代数式—^―-(X + 2-—-)的值为____________________3x 一6尤兀一210、已知x = -l是关于尤的方程2x2+ax-a2= 0的一个根,则^= ____________________ .1 一、(2007北京)若关于x的一元二次方程x2+2x-k= 0没有实数根,则&的取值范围是 ____________________ .13、已知2->/5是一元二次方程/—4x+c = 0的一个根,则方程的另一个根是 ________________ •三、解答題一.解方程:X2+4X- 1 = 0. 二.解方程:“+3=3匕+1)・2 >23、已知X=1是一元二次方程(IX2 +/7X-40 = 0的一个解,且a^b9求-------------- 的值.2a - 2b4.已知关于x的一元二次方程x2+4x+m—l=0.(打请你为m选取一个适合的整数,使取得的方程有两个不相等的实数根;⑵设5卩是(1冲你所取得的方程的两个实数根,求a2+p2+ap的值。
中考数学一元二次方程的综合题试题附答案解析
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的一元二次方程()2204m mx m x -++=.(1)当m 取什么值时,方程有两个不相等的实数根; (2)当4m =时,求方程的解.【答案】(1)当1m >-且0m ≠时,方程有两个不相等的实数根;(2)134x +=,2x =. 【解析】 【分析】(1)方程有两个不相等的实数根,>0∆,代入求m 取值范围即可,注意二次项系数≠0;(2)将4m =代入原方程,求解即可. 【详解】(1)由题意得:24b ac ∆=- =()22404mm m+->,解得1m >-. 因为0m ≠,即当1m >-且0m ≠时,方程有两个不相等的实数根.(2)把4m =带入得24610x x -+=,解得1x =,2x =. 【点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是加大本题的关键.2.用适当的方法解下列一元二次方程: (1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1x 2=-12)y 1=-14,y 2=32.【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1 ∴△=b 2-4ac=16+8=24>0∴=41222-=-±⨯∴x 1=-1+2,x 2=-1-2(2)(y +2)2-(3y -1)2=0 [(y+2)+(3y-1)][ (y+2)-(3y-1)]=0 即4y+1=0或-2y+3=0 解得y 1=-14,y 2=32.3.已知关于x 的一元二次方程x 2-(2k +1)x +k 2+2k =0有两个实数根x 1,x 2. (1)求实数k 的取值范围;(2)是否存在实数k ,使得x 1·x 2-x 12-x 22≥0成立?若存在,请求出k 的值;若不存在,请说明理由. 【答案】(1)当k≤14时,原方程有两个实数根(2)不存在实数k ,使得x 1·x 2-x 12-x 22≥0成立 【解析】试题分析:(1)根据一元二次方程根的判别式列出不等式,解之即可;(2)本题利用韦达定理解决. 试题解析:(1)∆= ()()2221420k k k +-+≥,解得14k ≤(2)由2212120x x x x --≥得 2121230x x x x ()-+≥, 由根与系数的关系可得:2121221,2x x k x x k k +=+=+代入得:22364410k k k k +---≥, 化简得:()210k -≤, 得1k =.由于k 的取值范围为14k ≤, 故不存在k 使2212120x x x x --≥.4.设m 是不小于﹣1的实数,关于x 的方程x 2+2(m ﹣2)x+m 2﹣3m+3=0有两个不相等的实数根x 1、x 2,(1)若x 12+x 22=6,求m 值; (2)令T=121211mx mx x x +--,求T 的取值范围.【答案】(1)2)0<T≤4且T≠2. 【解析】【分析】由方程方程由两个不相等的实数根求得﹣1≤m<1,根据根与系数的关系可得x1+x2=4﹣2m,x1•x2=m2﹣3m+3;(1)把x12+x22=6化为(x1+x2)2﹣2x1x2=6,代入解方程求得m的值,根据﹣1≤m<1对方程的解进行取舍;(2)把T化简为2﹣2m,结合﹣1≤m<1且m≠0即可求T得取值范围.【详解】∵方程由两个不相等的实数根,所以△=[2(m﹣2)]2﹣4(m2﹣3m+3)=﹣4m+4>0,所以m<1,又∵m是不小于﹣1的实数,∴﹣1≤m<1∴x1+x2=﹣2(m﹣2)=4﹣2m,x1•x2=m2﹣3m+3;(1)∵x12+x22=6,∴(x1+x2)2﹣2x1x2=6,即(4﹣2m)2﹣2(m2﹣3m+3)=6整理,得m2﹣5m+2=0解得m=;∵﹣1≤m<1所以m=.(2)T=+=====2﹣2m.∵﹣1≤m<1且m≠0所以0<2﹣2m≤4且m≠0即0<T≤4且T≠2.【点睛】本题考查了根与系数的关系、根的判别式,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.5.已知关于x的一元二次方程有两个实数x2+2x+a﹣2=0,有两个实数根x1,x2.(1)求实数a的取值范围;(2)若x12x22+4x1+4x2=1,求a的值.【答案】(1)a≤3;(2)a=﹣1.【解析】试题分析:(1)由根的个数,根据根的判别式可求出a的取值范围;(2)根据一元二次方程根与系数的关系,代换求值即可得到a的值.试题解析:(1)∵方程有两个实数根,∴△≥0,即22﹣4×1×(a﹣2)≥0,解得a≤3;(2)由题意可得x1+x2=﹣2,x1x2=a﹣2,∵x12x22+4x1+4x2=1,∴(a﹣2)2﹣8=1,解得a=5或a=﹣1,∵a≤3,∴a=﹣1.6.若关于x的一元二次方程x2﹣3x+a﹣2=0有实数根.(1)求a的取值范围;(2)当a为符合条件的最大整数,求此时方程的解.【答案】(1)a≤174;(2)x=1或x=2【解析】【分析】(1)由一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于a的不等式,即可求出a的取值范围;(2)根据(1)确定出a的最大整数值,代入原方程后解方程即可得.【详解】(1)∵关于x的一元二次方程x2﹣3x+a﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a﹣2)≥0,解得a≤174;(2)由(1)可知a≤174,∴a的最大整数值为4,此时方程为x2﹣3x+2=0,解得x=1或x=2.【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元. 【解析】 【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可 【详解】解:(1)设每次降价的百分率为 x . 40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y--⨯+= 解得:1y =1.5,2y =2.5, ∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元. 【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.8.某产品每件成本为20元,经过市场调研发现,这种产品在未来20天内的日销售量m (单位:件)是关于时间t (单位:天)的一次函数,调研所获的部分数据如下表:这20天中,该产品每天的价格y (单位:元/件)与时间t 的函数关系式为:1254y t =+(t 为整数),根据以上提供的条件解决下列问题:(1)直接写出m 关于t 的函数关系式;(2)这20天中哪一天的日销售利润最大,最大的销售利润是多少?(3)在实际销售的20天中,每销售一件商品就捐赠a 元(4a <)给希望工程,通过销售记录发现,这20天中,每天扣除捐赠后的日销利润随时间t 的增大而增大,求a 的取值范围.【答案】(1)2100m t =-+;(2)在第15天时日销售利润最大,最大利润为612.5元;(3)2.54a ≤<. 【解析】 【分析】(1)从表格可看出每天比前一天少销售2件,即可确定一次函数关系式;(2)根据日利润=日销售量×每件利润列出函数解析式,然后根据函数性质求最大值,即可确定答案;(3)根据20天中每天扣除捐赠后的日销售利润,根据函数性质求a 的取值范围 【详解】(1)设该函数的解析式为:m=kx+b 由题意得:98=k b94=3k b+⎧⎨+⎩解得:k=-2,b=100∴m 关于t 的函数关系式为:2100m t =-+. (2)设前20天日销售利润为W 元,由题意可知,()1210025204W t t ⎛⎫=-++- ⎪⎝⎭21151002t t =-++()2115612.52t =--+ ∵102<,∴当15t =时,612.5W =最大. ∴在第15天时日销售利润最大,最大利润为612.5元.(3)由题意得:()1210025204W t t a ⎛⎫=-++-- ⎪⎝⎭()211525001002t a t a =-+++-,∴对称轴为:152t a =+,∵每天扣除捐赠后的日销利润随时间t 的增大而增大,且120t ≤≤, ∴15220a +≥, ∴ 2.5a ≥, ∴2.54a ≤<.【点睛】本题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,掌握解决最值问题的方法是解答本题的关键.9.今年以来猪肉价格不断走高,引起了民众与区政府的高度关注,当市场猪肉的平均价格每 千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至 11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%.今年 11 月 10 日某市 民于 A 超市购买 5 千克猪排骨花费 350 元. (1)A 超市 11 月排骨的进货价为年初排骨售价的32倍,按 11 月 10 日价格出售,平均一天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加 20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的 售价定位为每千克多少元?(2)11 月 11 日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上下调 a %出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该天的两种猪排骨总销量比 11 月 10 日增加了 a %,且储备排骨的销量占总销量的57,两种排骨销售的总金额比 11 月 10 日提高了128a %,求 a 的值. 【答案】(1)售价为每千克65元;(2)a =35. 【解析】 【分析】(1)先根据题意计算出11月10的售价和11月的进货价,设每千克降价x 元,则每千克的利润为10-x 元,日销量为100+20x 千克,根据销量×单利润=总利润列出方程求解,并根据为了尽可能让顾客优惠,对所得的解筛选;(2)根据销售总金额=储备排骨销售单价×储备排骨销售数量+非储备排骨销售单价×非储备排骨销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论. 【详解】解:(1)11月10日的售价为350÷5=70元/千克 年初的售价为:350÷5÷175%=40元/千克, 11月的进货价为: 340602元/千克设每千克降价x 元,则每千克的利润为70-60-x=10-x 元,日销量为100+20x 千克 则(10020)(10)1000x x ,解得10x =,25x =因为为了尽可能让顾客优惠,所以降价5元,则售价为每千克65元. (2)根据题意可得52170(1%)100(1%)70100(1%)701001%7728a a a a ⎛⎫-++⨯+=⨯+ ⎪⎝⎭解得135a =,20a =(舍去) 所以a =35. 【点睛】本题考查一元二次方程的应用,(1)中理清销售量随着单价的变化而变化的数量关系是解题关键;(2)中在求解时有些难度,可先设令%a t =,解方程求出t 后再求a 的值.10.如图,在四边形 ABCD 中, AD //BC , C 90∠=︒ , BC 16=, DC 12= ,AD 21= ,动点P 从点D 出发,沿线段 DA 的方向以每秒2个单位长的速度运动;动点Q 从点 C 出发,在线段 CB 上以每秒1个单位长的速度向点 B 运动;点P ,Q 分别从点D ,C 同时出发,当点 P 运动到点 A 时,点Q 随之停止运动,设运动的时间为t 秒).(1)当 t 2=时,求 BPQ 的面积;(2)若四边形ABQP 为平行四边形,求运动时间 t . (3)当 t 为何值时,以 B 、P 、Q 为顶点的三角形是等腰三角形? 【答案】(1)S 84=;(2)t 5= ;(3)7t 2=或163. 【解析】 【分析】(1)过点P 作PM BC ⊥于M ,则PM=DC ,当t=2时,算出BQ ,求出面积即可;(2)当四边形ABQP 是平行四边形时,AP BQ =,即212t 16t -=-,解出即可;(3)以 B 、P 、Q 为顶点的三角形是等腰三角形,分三种情况,①PQ BQ =,②BP BQ =,③PB PQ =分别求出t 即可. 【详解】解 :(1)过点P 作PM BC ⊥于M ,则四边形PDCM 为矩形.∴PM DC 12==, ∵QB 16t =-, 当t=2时,则BQ=14, 则1S QB PM 2=⨯=12×14×12=84;(2)当四边形ABQP 是平行四边形时,AP BQ =, 即212t 16t -=-: 解得:t 5=∴当t 5=时,四边形ABQP 是平行四边形.(3)由图可知,CM=PD=2t ,CQ=t ,若以B 、P 、Q 为顶点的三角形是等腰三角形,可以分为以下三种情况:①若PQ BQ =,在Rt PMQ 中,222PQ 12t =+,由22PQ BQ =得()2221216t t +=- 解得:7t 2=; ②若BP BQ =,在Rt PMB 中,()222PB 16212t =-+,由22PB BQ ?=得()()222 1621216t t -+=- ,即2332t 1440t -+=,此时,()232431447040=--⨯⨯=-<△ , 所以此方程无解,所以BP BQ ≠ ;③若PB PQ =,由22PB PQ ?=得()2222 12162t 12t +=-+ , 得 1163t =,216t =(不合题意,舍去); 综上所述,当7t 2=或163时,以B 、P 、Q 为顶点的三角形是等腰三角形. 【点睛】本题是对四边形即可中动点问题的考查,熟练掌握动点中线段的表示、平行四边形和等腰三角形的性质及判断是解决本题的关键,难度适中.。
全国中考数学一元二次方程的综合中考真题汇总及详细答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.【答案】(1)123,4x x =-=(2)54a ≤(3)-4【解析】分析:(1)根据一元二次方程的解法即可求出答案;(2)根据判别式即可求出a 的范围;(3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.2.解方程:2332302121x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭. 【答案】x=15或x=1 【解析】【分析】 设321x y x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】 解:设321x y x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3,∴3121x x =--或3321x x =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.3.从图象来看,该函数是一个分段函数,当0≤x≤m 时,是正比例函数,当x >m 时是一次函数.【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.4.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.5.关于x 的方程()2204k kx k x +++=有两个不相等的实数根.()1求实数k 的取值范围;()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【解析】【分析】()1由于方程有两个不相等的实数根,所以它的判别式0>,由此可以得到关于k 的不等式,解不等式即可求出k 的取值范围. ()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.【详解】解:()1依题意得2(2)404k k k =+-⋅>, 1k ∴>-,又0k ≠,k ∴的取值范围是1k >-且0k ≠;()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程()2204k kx k x +++=的两根分别为1x ,2x , 由根与系数的关系有:1212214k x x k x x +⎧+=-⎪⎪⎨⎪=⎪⎩, 又因为方程的两个实数根之和等于两实数根之积的算术平方根,212k k +∴-=, 43k ∴=-, 由()1知,1k >-,且0k ≠,43k ∴=-不符合题意, 因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。
2024年全国各省市数学中考真题汇编 专题6一元二次方程及其应用(11题)含详解
专题06一元二次方程及其应用(11题)一、单选题1.(2024·四川自贡·中考真题)关于x 的一元二次方程220x kx +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.(2024·山东泰安·中考真题)关于x 的一元二次方程2230x x k -+=有实数根,则实数k 的取值范围是()A .98k <B .98k ≤C .98k ≥D .98k <-3.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .14.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13二、填空题5.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.6.(2024·四川巴中·中考真题)已知方程220x x k -+=的一个根为2-,则方程的另一个根为.7.(2024·甘肃临夏州·中考真题)若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.三、解答题8.(2024·黑龙江齐齐哈尔·中考真题)解方程:x 2﹣5x +6=09.(2024·安徽·中考真题)解方程:223x x -=10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.11.(2024·辽宁·中考真题)某商场出售一种商品,经市场调查发现,日销售量y (件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.专题06一元二次方程及其应用(11题)一、单选题1.(2024·四川自贡·中考真题)关于x 的一元二次方程220x kx +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根【答案】A【分析】本题考查的是一元二次方程根的判别式,熟知一元二次方程20(0)ax bx c a ++=≠中,当0∆>时,方程有两个不相等的实数根是解题的关键.根据一元二次方程根的判别式解答即可.【详解】解: △()2241280k k =-⨯⨯-=+>,∴方程有两个不相等的实数根.故选:A .2.(2024·山东泰安·中考真题)关于x 的一元二次方程2230x x k -+=有实数根,则实数k 的取值范围是()A .9k <B .98k ≤C .98k ≥D .98k <-【答案】B【分析】本题考查了判别式与一元二次方程根的情况,熟知一元二次方程有实数根的条件是解题的关键.根据一元二次方程有实数根的条件是0∆≥,据此列不等式求解即可.【详解】解:∵关于x 的一元二次方程2230x x k -+=有实数根,∴()2Δ3420k =--⨯≥,解得98k ≤.故选B .3.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .1【答案】D【分析】此题考查了根的判别式,根据根的情况确定参数k 的取值,解题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当方程有两个不相等的实数根时,0∆>;当方程有两个相等的实数根时,Δ0=;当方程没有实数根时,Δ0<.【详解】解:∵关于x 的一元二次方程2960x x c -+=有两个相等的实数根,∴()2Δ64936360c c =--⨯⨯=-=,解得:1c =,故选:D .4.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13【答案】C【分析】本题考查了解一元二次方程,等腰三角形的定义,三角形的三边关系及周长,由方程可得13x =,27x =,根据三角形的三边关系可得等腰三角形的底边长为3,腰长为7,进而即可求出三角形的周长,掌握等腰三角形的定义及三角形的三边关系是解题的关键.【详解】解:由方程210210x x -+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .二、填空题5.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.【答案】1【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.6.(2024·四川巴中·中考真题)已知方程220x x k -+=的一个根为2-,则方程的另一个根为.7.(2024·甘肃临夏州·中考真题)若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.【答案】-1【分析】根据关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根可知△=0,求出m 的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.三、解答题8.(2024·黑龙江齐齐哈尔·中考真题)解方程:x 2﹣5x +6=0【答案】x 1=2,x 2=3【分析】利用因式分解的方法解出方程即可.【详解】利用因式分解法求解可得.解:∵x 2﹣5x +6=0,∴(x ﹣2)(x ﹣3)=0,则x ﹣2=0或x ﹣3=0,解得x 1=2,x 2=3.【点睛】本题考查解一元二次方程因式分解法,关键在于熟练掌握因式分解的方法步骤.9.(2024·安徽·中考真题)解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.11.(2024·辽宁·中考真题)某商场出售一种商品,经市场调查发现,日销售量(件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.【答案】(1)100=-+y x ;(2)该商品日销售额不能达到2600元,理由见解析。
中考数学一元二次方程综合题附答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34 ;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.则x 1+x 2=2k-1,x 1•x 2=k 2+1,∵=== 32-, 解得:k=-1或k= 13-(舍去),∴k=﹣12.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n .【解析】【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解.【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=7,x 2=8.(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n.【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.3.关于x 的一元二次方程()22210x k x k +-+=有两个不等实根1x ,2x . (1)求实数k 的取值范围;(2)若方程两实根1x ,2x 满足121210x x x x ++-=,求k 的值.【答案】(1) k <14;(2) k=0. 【解析】【分析】(1)根据一元二次方程的根的判别式得出△>0,求出不等式的解集即可;(2)根据根与系数的关系得出x 1+x 2=-(2k-1)=1-2k ,x 1•x 2=k 2,代入x 1+x 2+x 1x 2-1=0,即可求出k 值.【详解】解:(1)∵关于x 的一元二次方程x 2+(2k-1)x+k 2=0有两个不等实根x 1,x 2, ∴△=(2k-1)2-4×1×k 2=-4k+1>0,解得:k <14, 即实数k 的取值范围是k <14; (2)由根与系数的关系得:x 1+x 2=-(2k-1)=1-2k ,x 1•x 2=k 2,∵x 1+x 2+x 1x 2-1=0,∴1-2k+k 2-1=0,∴k 2-2k=0∴k=0或2,∵由(1)知当k=2方程没有实数根,∴k=2不合题意,舍去,∴k=0.【点睛】本题考查了解一元二次方程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意用根与系数的关系解题时要考虑根的判别式,以防错解.4.已知关于x 的方程x 2﹣2x +m ﹣2=0有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为正整数,且该方程的根都是整数,求m 的值.【答案】(1)m <3;(2)m =2.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案.【详解】(1)∵方程有两个不相等的实数根.∴△=4﹣4(m ﹣2)>0.∴m <3;(2)∵m <3 且 m 为正整数,∴m =1或2.当 m =1时,原方程为 x 2﹣2x ﹣1=0.它的根不是整数,不符合题意,舍去;当 m =2时,原方程为 x 2﹣2x =0.∴x(x ﹣2)=0.∴x 1=0,x 2=2.符合题意.综上所述,m =2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m 的值和m 的范围是解此题的关键.5.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.【解析】【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.6.已知关于x 的方程x 2-(m +2)x +(2m -1)=0。
中考数学压轴题专题一元二次方程的经典综合题附答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.【答案】(1)123,4x x =-=(2)54a ≤(3)-4【解析】分析:(1)根据一元二次方程的解法即可求出答案;(2)根据判别式即可求出a 的范围;(3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.2.从图象来看,该函数是一个分段函数,当0≤x≤m 时,是正比例函数,当x >m 时是一次函数.【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.3.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.4.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n .【解析】【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解.【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=7,x 2=8.(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n.【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.5.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.5,2y =2.5,∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.6.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.【解析】【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.7.解方程:(x 2+x )2+(x 2+x )=6.【答案】x 1=﹣2,x 2=1【解析】【分析】设x 2+x =y ,将原方程变形整理为y 2+y ﹣6=0,求得y 的值,然后再解一元二次方程即可.【详解】解:设x 2+x =y ,则原方程变形为y 2+y ﹣6=0,解得y 1=﹣3,y 2=2.①当y =2时,x 2+x =2,即x 2+x ﹣2=0,解得x 1=﹣2,x 2=1;②当y =﹣3时,x 2+x =﹣3,即x 2+x+3=0,∵△=12﹣4×1×3=1﹣12=﹣11<0,∴此方程无解;∴原方程的解为x 1=﹣2,x 2=1.【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.8.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现: 当a >0,b >0时:∵)2=a ﹣b ≥0∴a +ba =b 时取等号.请利用上述结论解决以下问题:(1)请直接写出答案:当x >0时,x +1x 的最小值为 .当x <0时,x +1x 的最大值为 ; (2)若y =27101x x x +++,(x >﹣1),求y 的最小值; (3)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2;﹣2.(2)y 的最小值为9;(3)四边形ABCD 面积的最小值为25.【解析】【分析】(1)当x >0时,按照公式a +b ab a =b 时取等号)来计算即可;当x <0时,﹣x >0,1x->0,则也可以按公式a +b ab a =b 时取等号)来计算; (2)将y 27101x x x ++=+的分子变形,分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,由三角形面积公式可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可.【详解】(1)当x >0时,x 1x +≥1x x⋅=2; 当x <0时,﹣x >0,1x ->0.∵﹣x 1x -≥1x x ⎛⎫-⋅-= ⎪⎝⎭2,∴则x 1x +=-(﹣x 1x -)≤﹣2,∴当x >0时,x 1x +的最小值为 2.当x <0时,x 1x +的最大值为﹣2. 故答案为:2,﹣2.(2)∵x >﹣1,∴x +1>0,∴y 27101x x x ++=+()2(1)5141x x x ++++=+=(x +1)41x +++()411x x +⋅+5=4+5=9,∴y 的最小值为9. (3)设S △BOC =x ,已知S △AOB =4,S △COD =9 则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,∴x :9=4:S △AOD ,∴S △AOD 36x =,∴四边形ABCD 面积=4+9+x 36x +≥36x x⋅=25. 当且仅当x =6时,取等号,∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.9.解方程:x 2-2x =2x +1.【答案】x 1=2,x 2=2【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式x =求解即可. 试题解析:方程化为x 2-4x -1=0.∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x =42±=, ∴x1=2,x 2=210.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.。
中考数学一元二次方程专题(附答案)
中考数学一元二次方程专题(附答案)一、单选题(共12题;共24分)1.下列一元二次方程有两个相等实数根的是()A. x2﹣2x+1=0B. 2x2﹣x+1=0C. 4x2﹣2x﹣3=0D. x2﹣6x=02.方程=0有两个相等的实数根,且满足=,则的值是()A. -2或3B. 3C. -2D. -3或23.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个相等的实数根,则k的值是()A. ﹣1B. 0C. 1D. 24.若关于的一元二次方程有两个不相等的实数根,则一次函数的图象可能是:A. B. C. D.5.下列一元二次方程中,有两个相等实数根的是()A. x2﹣8=0B. 2x2﹣4x+3=0C. 9x2﹣6x+1=0D. 5x+2=3x26.已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于的一元二次方程的两个根,则k的值等于A. 7B. 7或6C. 6或D. 67.方程(x-1)•(x2+17x-3)=0的三根分别为x1,x2,x3 .则x1x2+x2x3+x1x3 =()A. 14B. 13C. -14D. -208.一元二次方程x2﹣4x+3=0的两个根分别是⊙O1和⊙O2的半径长,圆心距O1O2=4,则⊙O1和⊙O2的位置关系()A. 外离B. 外切C. 相交D. 内切9.已知关于的方程有两个实数根,则的取值范围是( )A. B. C. 且 D. 且10.设a、b、c和S分别为三角形的三边长和面积,关于x的方程b2x2+(b2+c2-a2)x+c2=0的判别式为Δ.则Δ与S的大小关系为( ).A. Δ=16S2B. Δ=-16S2C. Δ=16SD. Δ=-16S11.下列方程中,有两个不相等实数根的是().A. x2-4x+4=0B. x2+3x-1=0C. x2+x+1=0D. x2-2x+3=012.已知二次函数y=ax2+2ax+3a-2(a是常数,且a≠0)的图象过点M(x1,-1),N(x2,-1),若MN的长不小于2,则a的取值范围是()A. a≥B. 0<a≤C. - ≤a<0D. a≤-二、填空题(共6题;共12分)13.等腰三角形的腰和底边的长是方程x2-20x+91=0的两个根,则此三角形的周长为________.14.已知x=-1是方程x2+ax+4=0的一个根,则方程的另一个根为________ 。
备战中考数学专题训练---一元二次方程的综合题分类及答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34 ;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.则x 1+x 2=2k-1,x 1•x 2=k 2+1,∵=== 32-, 解得:k=-1或k= 13-(舍去),∴k=﹣12.已知为正整数,二次方程的两根为,求下式的值:【答案】【解析】由韦达定理,有,.于是,对正整数,有原式=3.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S的值为2∴S 的值能为2,此时k 的值为2.考点:一元二次方程根的判别式;根与系数的关系.4.沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A ,B 两个社区,B 社区居民人口数量不超过A 社区居民人口数量的2倍. (1)求A 社区居民人口至少有多少万人?(2)街道工作人员调查A ,B 两个社区居民对“社会主义核心价值观”知晓情况发现:A 社区有1.2万人知晓,B 社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A 社区的知晓人数平均月增长率为m %,B 社区的知晓人数第一个月增长了45m %,第二月在第一个月的基础上又增长了2m %,两个月后,街道居民的知晓率达到92%,求m 的值.【答案】(1)A 社区居民人口至少有2.5万人;(2)m 的值为50.【解析】【分析】(1)设A 社区居民人口有x 万人,根据“B 社区居民人口数量不超过A 社区居民人口数量的2倍”列出不等式求解即可;(2)A 社区的知晓人数+B 社区的知晓人数=7.5×92%,据此列出关于m 的方程并解答.【详解】解:(1)设A 社区居民人口有x 万人,则B 社区有(7.5-x )万人,依题意得:7.5-x ≤2x ,解得x ≥2.5.即A 社区居民人口至少有2.5万人;(2)依题意得:1.2(1+m %)2+1.5×(1+45m %)+1.5×(1+45m %)(1+2m %)=7.5×92%, 解得m =50答:m 的值为50.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.5.已知关于x 的一元二次方程()220x m x m -++=(m 为常数) (1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值及方程的另一个根.【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0.【解析】【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m 2+4,∵无论m 为何值时m 2≥0,∴m 2+4≥4>0,即△>0,所以无论m 为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t , ()220x m x m -++=根据题意得2+t=21m + ,2t=m , 解得t=0,所以m=0,即m 的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.6.关于x 的方程()2204k kx k x +++=有两个不相等的实数根. ()1求实数k 的取值范围;()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【解析】【分析】()1由于方程有两个不相等的实数根,所以它的判别式0>,由此可以得到关于k 的不等式,解不等式即可求出k 的取值范围. ()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.【详解】解:()1依题意得2(2)404k k k =+-⋅>, 1k ∴>-,又0k ≠,k ∴的取值范围是1k >-且0k ≠;()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程()2204k kx k x +++=的两根分别为1x ,2x , 由根与系数的关系有:1212214k x x k x x +⎧+=-⎪⎪⎨⎪=⎪⎩, 又因为方程的两个实数根之和等于两实数根之积的算术平方根,212k k +∴-=, 43k ∴=-, 由()1知,1k >-,且0k ≠,43k ∴=-不符合题意, 因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。
中考数学一元二次方程(大题培优 易错 难题)含详细答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数222(3)y x mx m =--+(m m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且121114xx +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0时,该函数的零点为6和6-. (2)见解析,(3)AM 的解析式为112y x =--. 【解析】 【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式 【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根.即无论m 取何值,该函数总有两个零点. (3)依题意有,由解得.∴函数的解析式为.令y=0,解得∴A(),B(4,0)作点B 关于直线10y x =-的对称点B’,连结AB’, 则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45° ∴∠BCB’=90° 即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.2.计算题(1)先化简,再求值:21x x -÷(1+211x -),其中x=2017.(2)已知方程x 2﹣2x+m ﹣3=0有两个相等的实数根,求m 的值. 【答案】(1)2018;(2)m=4 【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21x x -÷(1+211x -)=2221111x x x x -+÷-- =()()22111x x x x x +-⋅- =x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x 2﹣2x+m ﹣3=0有两个相等的实数根, ∴△=(﹣2)2﹣4×1×(m ﹣3)=0, 解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.3.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=0有两根α,β. (1)求m 的取值范围; (2)若111αβ+=-,则m 的值为多少?【答案】(1)14m ≥;(2)m 的值为3. 【解析】 【分析】(1)根据△≥0即可求解, (2)化简11αβ+,利用韦达定理求出α+β,αβ,代入解方程即可.【详解】解:(1)由题意知,(2m+3)2﹣4×1×m 2≥0, 解得:m≥-34; (2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m 2, ∵111αβ+=-,即αβαβ+=-1, ∴2m 3m2+﹣()=-1,整理得m 2﹣2m ﹣3=0解得:m 1=﹣1,m 1=3, 由(1)知m≥-34, ∴m 1=﹣1应舍去, ∴m 的值为3. 【点睛】本题考查了一元二次方程根的判别式以及韦达定理,对根进行判断是正确解题的关键.4.用适当的方法解下列一元二次方程: (1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1x 2=-12)y 1=-14,y 2=32.【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1 ∴△=b 2-4ac=16+8=24>0∴x=242b b c aa -±-=42461222-±=-±⨯ ∴x 1=-1+6,x 2=-1-6(2)(y +2)2-(3y -1)2=0 [(y+2)+(3y-1)][ (y+2)-(3y-1)]=0 即4y+1=0或-2y+3=0 解得y 1=-14,y 2=32.5.(问题)如图①,在a×b×c (长×宽×高,其中a ,b ,c 为正整数)个小立方块组成的长方体中,长方体的个数是多少? (探究)探究一:(1)如图②,在2×1×1个小立方块组成的长方体中,棱AB 上共有1+2=232⨯=3条线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为3×1×1=3. (2)如图③,在3×1×1个小立方块组成的长方体中,棱AB 上共有1+2+3=342⨯=6条线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为6×1×1=6. (3)依此类推,如图④,在a×1×1个小立方块组成的长方体中,棱AB 上共有1+2+…+a=()a a 12+线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为______. 探究二:(4)如图⑤,在a×2×1个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有1+2=232⨯=3条线段,棱AD 上只有1条线段,则图中长方体的个数为()a a 12+×3×1=()3a a 12+.(5)如图⑥,在a×3×1个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有1+2+3=342⨯=6条线段,棱AD 上只有1条线段,则图中长方体的个数为______. (6)依此类推,如图⑦,在a×b×1个小立方块组成的长方体中,长方体的个数为______.探究三:(7)如图⑧,在以a×b×2个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC 上有()b b 12+条线段,棱AD 上有1+2=232⨯=3条线段,则图中长方体的个数为()3a a 12+×()b b 12+×3=()()3ab a 1b 14++.(8)如图⑨,在a×b×3个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有()b b 12+条线段,棱AD 上有1+2+3=342⨯=6条线段,则图中长方体的个数为______.(结论)如图①,在a×b×c 个小立方块组成的长方体中,长方体的个数为______. (应用)在2×3×4个小立方块组成的长方体中,长方体的个数为______. (拓展)如果在若干个小立方块组成的正方体中共有1000个长方体,那么组成这个正方体的小立方块的个数是多少?请通过计算说明你的结论.【答案】探究一:(3)()a a12+;探究二:(5)3a(a+1);(6)()()ab a1b14++;探究三:(8)()()3ab a1b12++;【结论】:①()()()abc a1b1c18+++;【应用】:180;【拓展】:组成这个正方体的小立方块的个数是64,见解析.【解析】【分析】(3)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(5)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(6)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(8)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(结论)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(应用)a=2,b=3,c=4代入(结论)中得出的结果,即可得出结论;(拓展)根据(结论)中得出的结果,建立方程求解,即可得出结论.【详解】解:探究一、(3)棱AB上共有()a a12+线段,棱AC,AD上分别只有1条线段,则图中长方体的个数为()a a12+×1×1=()a a12+,故答案为() a a12+;探究二:(5)棱AB上有()a a12+条线段,棱AC上有6条线段,棱AD上只有1条线段,则图中长方体的个数为()a a12+×6×1=3a(a+1),故答案为3a(a+1);(6)棱AB上有()a a12+条线段,棱AC上有()b b12+条线段,棱AD上只有1条线段,则图中长方体的个数为()a a12+×()b b12+×1=()()ab a1b14++,故答案为()() ab a1b14++;探究三:(8)棱AB上有()a a12+条线段,棱AC上有()b b12+条线段,棱AD上有6条线段,则图中长方体的个数为()a a 12+ ×()b b 12+×6=()()3ab a 1b 12++,故答案为()()3ab a 1b 12++;(结论)棱AB 上有()a a 12+ 条线段,棱AC 上有()b b 12+条线段,棱AD 上有()c c 12+条线段,则图中长方体的个数为()a a 12+×()b b 12+×()c c 12+=()()()abc a 1b 1c 18+++,故答案为()()()abc a 1b 1c 18+++;(应用)由(结论)知,()()()abc a 1b 1c 18+++,∴在2×3×4个小立方块组成的长方体中,长方体的个数为()()()2342131418⨯⨯⨯+⨯+⨯+=180,故答案为为180;拓展:设正方体的每条棱上都有x 个小立方体,即a=b=c=x ,由题意得33(1)8x x +=1000, ∴[x (x+1)]3=203, ∴x (x+1)=20,∴x 1=4,x 2=-5(不合题意,舍去) ∴4×4×4=64所以组成这个正方体的小立方块的个数是64. 【点睛】解此题的关键在于根据已知得出规律,题目较好,但有一定的难度,是一道比较容易出错的题目.6.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【答案】共有35名同学参加了研学游活动. 【解析】试题分析:由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.试题解析:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设九(1)班共有x人去旅游,则人均费用为[100﹣2(x﹣30)]元,由题意得:x[100﹣2(x﹣30)]=3150,整理得x2﹣80x+1575=0,解得x1=35,x2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去.答:该班共有35名同学参加了研学旅游活动.考点:一元二次方程的应用.7.解方程:(x2+x)2+(x2+x)=6.【答案】x1=﹣2,x2=1【解析】【分析】设x2+x=y,将原方程变形整理为y2+y﹣6=0,求得y的值,然后再解一元二次方程即可.【详解】解:设x2+x=y,则原方程变形为y2+y﹣6=0,解得y1=﹣3,y2=2.①当y=2时,x2+x=2,即x2+x﹣2=0,解得x1=﹣2,x2=1;②当y=﹣3时,x2+x=﹣3,即x2+x+3=0,∵△=12﹣4×1×3=1﹣12=﹣11<0,∴此方程无解;∴原方程的解为x1=﹣2,x2=1.【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.8.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a元,在不考虑其他因素的条件下,当a定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元 【解析】 【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论. 【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩,解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件.()2当零售单价下降a 元/件时,每天可售出()5001000a +件, 根据题意得:()()250010001500a a -+=,整理得:22310a a -+=, 解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元. 【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.9.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元. (1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7. 【解析】 【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解. 【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克 (2)由题意得:()()()()410010214010960x x x x +-++-= 解之得:12x =,27x =经检验,12x =,27x =均符合题意 答:x 的值为2或7. 【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.10.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元; () 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游? 【答案】(1)2280;(2)15 【解析】 【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值. 【详解】 (1)2280()2因为1020020002625⨯=<.因此参加人比10人多,设在10人基础上再增加x 人,由题意得:()()1020052625x x +-=.解得 15x = 225x =,∵2005150x -≥,∴010x <≤,经检验 15x =是方程的解且符合题意,225x =(舍去).1010515x +=+=答:该单位共有15名员工参加旅游.【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.。
中考数学压轴题之一元二次方程(中考题型整理,突破提升)含答案
一、一元二次方程真题与模拟题分类汇编(难题易错题)1.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q 两点之间的距离是多少cm?(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C 同时出发,问经过多长时间P、Q两点之间的距离是10cm?(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?【答案】(1)PQ=62cm;(2)85s或245s;(3)经过4秒或6秒△PBQ的面积为12cm2.【解析】试题分析:(1)作PE⊥CD于E,表示出PQ的长度,利用PE2+EQ2=PQ2列出方程求解即可;(2)设x秒后,点P和点Q的距离是10cm.在Rt△PEQ中,根据勾股定理列出关于x的方程(16-5x)2=64,通过解方程即可求得x的值;(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.试题解析:(1)过点P作PE⊥CD于E.则根据题意,得EQ=16-2×3-2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴cm ;∴经过2s 时P 、Q 两点之间的距离是;(2)设x 秒后,点P 和点Q 的距离是10cm .(16-2x-3x )2+62=102,即(16-5x )2=64,∴16-5x=±8,∴x 1=85,x 2=245; ∴经过85s 或245sP 、Q 两点之间的距离是10cm ; (3)连接BQ .设经过ys 后△PBQ 的面积为12cm 2.①当0≤y≤163时,则PB=16-3y , ∴12PB•BC=12,即12×(16-3y )×6=12, 解得y=4;②当163<x≤223时, BP=3y-AB=3y-16,QC=2y ,则12BP•CQ=12(3y-16)×2y=12, 解得y 1=6,y 2=-23(舍去); ③223<x≤8时, QP=CQ-PQ=22-y ,则12QP•CB=12(22-y )×6=12, 解得y=18(舍去).综上所述,经过4秒或6秒△PBQ 的面积为 12cm 2.考点:一元二次方程的应用.2.解下列方程:(1)x 2﹣3x=1.(2)12(y+2)2﹣6=0.【答案】(1)12x x ==1222y y =-+=-- 【解析】试题分析:(1)利用公式法求解即可;(2)利用直接开方法解即可;试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0,∵b 2﹣4ac=13>0 ∴. ∴12313313,22x x +-==. (2)(y+2)2=12, ∴或, ∴12223,223y y =-+=--3.解方程:(x+1)(x ﹣3)=﹣1.【答案】x 13x 2=13【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x 2﹣2x=2,配方得:x 2﹣2x+1=3,即(x ﹣1)2=3,解得:x 13,x 2=134.解方程: 2212x x 6x 9-=-+()【答案】124x x 23==-, 【解析】试题分析:先对方程的右边因式分解,直接开平方或移项之后再因式分解法求解即可.试题解析:因式分解,得2212x x 3-=-()()开平方,得12x x 3-=-,或12x x 3-=--()解得124x x 23==-,5.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y(只)与销售单价x (元)之间的关系式为y =﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x ﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w 元,根据题意得:w =(x ﹣30)y =(x ﹣30)(﹣10x+700)=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000.∵a =﹣10<0,∴当x =50时,w 取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.6.已知关于x 的一元二次方程()2211204x m x m +++-=. ()1若此方程有两个实数根,求m 的最小整数值;()2若此方程的两个实数根为1x ,2x ,且满足22212121184x x x x m ++=-,求m 的值. 【答案】(1)m 的最小整数值为4-;(2)3m =【解析】【分析】(1)根据方程有两个实数根得0∆≥,列式即可求解,(2)利用韦达定理即可解题.【详解】(1)解:()22114124m m ⎛⎫∆=+-⨯⨯- ⎪⎝⎭22218m m m =++-+29m =+方程有两个实数根0∴∆≥,即290m +≥92m ∴≥- ∴ m 的最小整数值为4-(2)由根与系数的关系得:()121x x m +=-+,212124x x m =- 由22212121184x x x x m ++=-得:()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭13m ∴=,25m =- 92m ≥- 3m ∴=【点睛】本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.7.已知关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最小整数时,求此时方程的解.【答案】(1)k >﹣12;(2)x 1=0,x 2=﹣1. 【解析】【分析】 (1)由题意得△=(k +1)2﹣4×14k 2>0,解不等式即可求得答案; (2)根据k 取最小整数,得到k =0,列方程即可得到结论.【详解】 (1)∵关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根, ∴△=(k +1)2﹣4×14k 2>0, ∴k >﹣12; (2)∵k 取最小整数,∴k =0,∴原方程可化为x 2+x =0,∴x 1=0,x 2=﹣1.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.关于x 的一元二次方程x 2﹣2x ﹣(n ﹣1)=0有两个不相等的实数根.(1)求n 的取值范围;(2)若n 为取值范围内的最小整数,求此方程的根.【答案】(1)n >0;(2)x 1=0,x 2=2.【解析】【分析】(1)根据方程有两个不相等的实数根可知240b ac ∆=-> ,即可求出n 的取值范围; (2)根据题意得出n 的值,将其代入方程,即可求得答案.【详解】(1)根据题意知,[]224(2)41(1)0b ac n ∆=-=--⨯⨯-->解之得:0n >;(2)∵0n > 且n 为取值范围内的最小整数,∴1n =,则方程为220x x -=,即(2)0x x -=,解得120,2x x ==.【点睛】本题主要考查了一元二次方程根的判别式,明确和掌握一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=-的关系(①当>0∆ 时,方程有两个不相等的实数根;②当0∆= 时方程有两个相等的实数根;③当∆<0 时,方程无实数根)是解题关键.9.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.【解析】【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.10.如图,在△ABC 中,∠B =90°,AB =6 cm ,BC =8 cm ,若点P 从点A 沿AB 边向B 点以1 cm/s 的速度移动,点Q 从B 点沿BC 边向点C 以2 cm/s 的速度移动,两点同时出发.(1)问几秒后,△PBQ 的面积为8cm²?(2)出发几秒后,线段PQ 的长为cm ?(3)△PBQ 的面积能否为10 cm 2?若能,求出时间;若不能,请说明理由.【答案】(1) 2或4秒2 cm;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)设经过x秒后线段PQ的长为2cm,依题意得AP=x,BP=6-x,BQ=2x,利用勾股定理列方程求解;(3)将△PBQ的面积表示出来,根据△=b2-4ac来判断.【详解】(1)设P,Q经过t秒时,△PBQ的面积为8 cm2,则PB=6-t,BQ=2t,∵∠B=90°,∴12(6-t)× 2t=8,解得t1=2,t2=4,∴当P,Q经过2或4秒时,△PBQ的面积为8 cm2;(2)设x秒后,PQ=2 cm,由题意,得(6-x)2+4x2=32,解得x1=25,x2=2,故经过25秒或2秒后,线段PQ的长为2 cm;(3)设经过y秒,△PBQ的面积等于10 cm2,S△PBQ=12×(6-y)× 2y=10,即y2-6y+10=0,∵Δ=b2-4ac=36-4× 10=-4< 0,∴△PBQ的面积不会等于10 cm2.【点睛】本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.。
一元二次方程应中考题精选(含答案)
一元二次方程中考题精选1、(4-4一元二次方程·2013东营中考)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是( )A. 5个B. 6个C. 7个D. 8个.C.解析:设参赛球队有x 个,由题意得x(x-1)=21,解得,127,6x x ==-(不合题意舍去),故共有7个参赛球队.2、(2013年广东湛江)由于受H7N9禽流感的影响,今年4月份鸡的价格两次大幅下降,由原来每斤12元,连续两次下降%a 售价下调到每斤是5元,下列所列方程中正确的是( ).A ()2121%5a += .B ()2121%5a -=.C ()1212%5a -= .D ()2121%5a +=解析:考查一元二次方程的实际应用,由原来每斤12元,第一次下降%a售价为:()121%a -,再下降%a 售价为:()()121%1%a a --, ()2121%5a ∴+=,∴选B3、(2013年广东省8分、21)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?解析:4、(2013•鄂州)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x 元(x >40),请你分别用x 的代数式来表示销售量y 件和销售该品牌玩具获得利润w 元,并把结果填写在表格中:销售单价(元) x销售量y (件) 1000﹣10x销售玩具获得利润w(元)﹣10x2+1300x﹣30000(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?考点:二次函数的应用;一元二次方程的应用.分析:(1)由销售单价每涨1元,就会少售出10件玩具得y=600﹣(x﹣40)x=1000﹣x,利润=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣30000;(2)令﹣10x2+1300x﹣30000=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣30000转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.解答:解:(1)销售单价(元)x销售量y(件)1000﹣10x销售玩具获得利润w(元)﹣10x2+1300x﹣30000(2)﹣10x2+1300x﹣30000=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润,(3)根据题意得解之得:44≤x≤46w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250∵a=﹣10<0,对称轴x=65∴当44≤x≤46时,y随x增大而增大.∴当x=46时,W最大值=8640(元)答:商场销售该品牌玩具获得的最大利润为8640元.点评:本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.5、(2013泰安)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?考点:一元二次方程的应用.专题:销售问题.分析:根据纪念品的进价和售价以及销量分别表示出两周的总利润,进而得出等式求出即可.解答:解:由题意得出:200×(10﹣6)+(10﹣x﹣6)(200+50x)+[(4﹣6)(600﹣200﹣(200+50x)]=1250,即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1250,整理得:x2﹣2x+1=0,解得:x1=x2=1,∴10﹣1=9,答:第二周的销售价格为9元.点评:此题主要考查了一元二次方程的应用,根据已知表示出两周的利润是解题关键.6、(2013•衢州)如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用a ,b ,x 表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.考点: 一元二次方程的应用.专题: 几何图形问题.分析: (1)边长为x 的正方形面积为x 2,矩形面积减去4个小正方形的面积即可. (2)依据剪去部分的面积等于剩余部分的面积,列方程求出x 的值即可.解答: 解:(1)ab ﹣4x 2;(2分)(2)依题意有:ab ﹣4x 2=4x 2,(4分)将a=6,b=4,代入上式,得x 2=3,(6分)解得x 1=,x 2=﹣(舍去).(7分) 即正方形的边长为点评: 本题是利用方程解答几何问题,充分体现了方程的应用性.依据等量关系“剪去部分的面积等于剩余部分的面积”,建立方程求解.7、(绵阳市2013年)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具。
中考数学一元二次方程与分式方程专题练习含解析
一元二次方程与分式方程一、选择题1.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2﹣4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④D.只有②③④2.四边形ABCD中,AB∥CD,且AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,则四边形ABCD是()A.矩形B.平行四边形C.梯形D.平行四边形或梯形3.正比例函数y=(a+1)x的图象经过第二、四象限,若a同时满足方程x2+(1﹣2a)x+a2=0,则此方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定二、填空题4.已知方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,则m的取值范围是.5.已知关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,则k的取值范围是.6.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为.7.若关于x的方程有增根,则m的值是.8.方程的解是;若关于x的方程﹣1=0无实根,则a的值为.三、解答题9.阅读下列材料:关于x的方程:的解是x1=c,;(即)的解是x1=c;的解是x1=c,;的解是x1=c,;…(1)请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.10.已知:关于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m≠0)(1)若m=1,求出此时方程的实数根;(2)求证:方程总有实数根;(3)设m>0,方程的两个实数根分别为x1,x2(其中x1<x2)、若y是关于m的函数,且y=x2﹣2x1,求函数的解析式,并画出其图象.(画草图即可,不必列表)11.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于.12.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?13.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.14.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z 与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x 之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.15.要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.16.如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N 作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.一元二次方程与分式方程参考答案与试题解析一、选择题1.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2﹣4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④D.只有②③④【考点】抛物线与x轴的交点.【专题】压轴题.【分析】①②③小题利用移项与变形b2﹣4ac与0的大小关系解决;处理第④小题时不要疏忽二次函数y=ax2+bx+c与y轴的交点情况.【解答】解:①b2﹣4ac=(﹣a﹣c)2﹣4ac=(a﹣c)2≥0,正确;②若b>a+c,则△的大小无法判断,故不能得出方程有两个不等实根,错误;③b2﹣4ac=4a2+9c2+12ac﹣4ac=4(a+c)2+5c2,因为a≠0,故(a+c)2与c2不会同时为0,所以b2﹣4ac>0,正确;④二次函数y=ax2+bx+c与y轴必有一个交点,而这个交点有可能跟图象与x轴的交点重合,故正确.故选B.【点评】考查二次函数y=ax2+bx+c的图象与x轴交点的个数.2.四边形ABCD中,AB∥CD,且AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,则四边形ABCD是()A.矩形B.平行四边形C.梯形D.平行四边形或梯形【考点】根的判别式;梯形.【分析】AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,即判别式△=b2﹣4ac≥0,可得到AB与CD的关系,再判定四边形的形状.【解答】解:∵a=1,b=﹣3m,c=2m2+m﹣2∴△=b2﹣4ac=(﹣3m)2﹣4×1×(2m2+m﹣2)=(m﹣2)2+4>0∴方程有两个不相等的实数根.∴AB≠CD,∵AB∥CD,∴四边形ABCD是梯形.故选C.【点评】本题利用了一元二次方程的根的判别式与根的关系,梯形的判定求解.3.正比例函数y=(a+1)x的图象经过第二、四象限,若a同时满足方程x2+(1﹣2a)x+a2=0,则此方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【考点】根的判别式;正比例函数的性质.【分析】正比例函数的图象经过第二、四象限,则(a+1)<0,求出a的范围,结合一元二次方程的△,来判断根的情况.【解答】解:由题意知,(a+1)<0,解得a<﹣1,∴﹣4a>4.因为方程x2+(1﹣2a)x+a2=0的△=(1﹣2a)2﹣4a2=1﹣4a>5>0,所以方程有两个不相等的实数根.故选A.【点评】(1)正比例函数y=kx,当k<0,图象过二、四象限;k>0时,图象过一、三象限.(2)一元二次方程的△>0时,有两个不相等的实数根.(3)本题要会把a<﹣1转化为1﹣4a>5.二、填空题4.已知方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,则m的取值范围是m≠±2.【考点】一元二次方程的定义.【分析】根据一元二次方程成立的条件列出关于m的不等式,求出m的取值范围即可.【解答】解:∵方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,∴m2﹣4≠0,∴m≠±2.【点评】此题比较简单,考查的是一元二次方程的定义,即只含有一个未知数,且未知数的最高次数为2的整式方程.5.已知关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,则k的取值范围是0≤k≤1且k≠.【考点】根的判别式.【专题】压轴题.【分析】二次方程有实数根即根的判别式△≥0,找出a,b,c的值代入列出k的不等式,求其取值范围.【解答】解:因为关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,所以△=b2﹣4ac=(﹣2)2﹣4(1﹣2k)×(﹣1)=4﹣4k≥0,解之得,k≤1.又因为k≥0,1﹣2k≠0,即k≠,所以k的取值范围是0≤k≤1且k≠.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零和被开方数大于零这两个隐含条件.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为16.【考点】一元二次方程的应用;三角形三边关系;菱形的性质.【专题】几何图形问题;压轴题.【分析】边AB的长是方程x2﹣7x+12=0的一个根,解方程求得x的值,根据菱形ABCD 的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD 的周长.【解答】解:∵解方程x2﹣7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.【点评】由于菱形的对角线和两边组成了一个三角形,根据三角形两边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.7.若关于x的方程有增根,则m的值是2.【考点】分式方程的增根.【专题】计算题.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出未知字母的值.【解答】解:方程两边都乘(x﹣1),得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故答案为:2.【点评】增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.方程的解是x=0;若关于x的方程﹣1=0无实根,则a的值为±1.【考点】分式方程的解.【专题】计算题.【分析】本题考查解分式方程能力,观察可得方程最简公分母为2(x﹣2),去分母,化为整式方程求解.分式方程﹣1=0无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.【解答】解:方程两边同乘2(x﹣2),得2x﹣2=x﹣2,解得x=0.经检验x=0是原方程的根,故方程的解是x=0;(1)x=1为原方程的增根,此时有ax+1﹣(x﹣1)=0,即a+1﹣(1﹣1)=0解得a=﹣1.(2)方程两边都乘(x﹣1),得ax+1﹣(x﹣1)=0,化简得:(a﹣1)x=﹣2.当a=1时,整式方程无解.综上所述,当a=±1时,原方程无解.【点评】将分式方程化为整式方程的关键是确定最简公分母,要根据分式的分母确定最简公分母.分母是多项式能进行分解的要先进行分解,再去确定最简公分母.分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.三、解答题9.阅读下列材料:关于x的方程:的解是x1=c,;(即)的解是x1=c;的解是x1=c,;的解是x1=c,;…(1)请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.【考点】解分式方程.【专题】阅读型.【分析】此题为阅读分析题,解此题要注意认真审题,找到规律:x+=c+的解为x1=c,x2=,据规律解题即可.【解答】解:(1)猜想的解是x1=c,x2=.验证:当x=c时,方程左边=c+,方程右边=c+,∴方程成立;当x=时,方程左边=+c,方程右边=c+,∴方程成立;∴的解是x1=c,x2=;(2)由得,∴x﹣1=a﹣1,,∴x1=a,x2=.【点评】解此题的关键是理解题意,认真审题,寻找规律:x+=c+的解为x1=c,x2=.10.已知:关于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m≠0)(1)若m=1,求出此时方程的实数根;(2)求证:方程总有实数根;(3)设m>0,方程的两个实数根分别为x1,x2(其中x1<x2)、若y是关于m的函数,且y=x2﹣2x1,求函数的解析式,并画出其图象.(画草图即可,不必列表)【考点】根与系数的关系;解一元二次方程﹣公式法;解一元二次方程﹣因式分解法;根的判别式;待定系数法求反比例函数解析式.【专题】计算题;证明题.【分析】(1)把m的值,代入方程,解方程即可;(2)运用根的判别式判断,列出判别式的表达式,再变形成为非负数,得出△≥0即可;(3)可根据求根公式求出x1、x2,代入y=x2﹣2x1中,得出关于m的函数关系式,根据m>0,画出函数图象.【解答】解:(1)若m=1,方程化为x2﹣5x+4=0即(x﹣1)(x﹣4)=0,得x﹣1=0或x﹣4=0,∴x1=1或x2=4;证明:(2)∵mx2﹣(3m+2)x+2m+2=0是关于x的一元二次方程,∴△=[﹣(3m+2)]2﹣4m(2m+2)=m2+4m+4=(m+2)2∵m≠0,∴(m+2)2≥0,即△≥0∴方程有实数根;解:(3)由求根公式,得.∴或x=1∵=2+∵m>0,∴=2+>2∵x1<x2,∴x1=1,∴即为所求.此函数为反比例函数,其图象如图所示:即为所求.此函数为反比例函数,其图象如图所示:【点评】本题重点考查了反比例函数的性质(点评不合题意)及一元二次方程根的判别式和根与系数的关系(此题并没有设计,需要重新检查此题),是一个综合性的题目,也是一个难度中等的题目.11.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于75°或15°.【考点】等腰三角形的性质;三角形内角和定理.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,由已知可求得三角形的顶角为30°,则底角是75°;当高在三角形外部时,三角形顶角的外角是30°,则底角是15°;所以此三角形的底角等于75°或15°【点评】本题考查了等腰三角形的性质及三角形内角和定理;熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出75°一种情况,把三角形简单的化成锐角三角形.12.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?【考点】一次函数综合题.【专题】压轴题.【分析】(1)在解析式y=﹣x+4中,分别令y=0,x=0就可以求出与x,y轴的交点坐标;(2)根据MN∥AB,得到△OMB∽△OAB,根据相似三角形的对应边的比相等,就可以求出,用OM表示出来;(3)根据t的不同值,所对应的阴影部分的图形形状不同,因而应分2<t≤4和当0<t≤2两种个情况进行讨论.【解答】解:(1)当x=0时,y=4;当y=0时,x=4.∴A(4,0),B(0,4);(2)∵MN∥AB,,∴OM=ON=t,∴S1=OM•ON=t2;(3)①当2<t≤4时,易知点P在△OAB的外面,则点P的坐标为(t,t).理由:当t=2时,OM=2,ON=2,OP=MN==2,直角三角形AOB中,设AB边上的高为h,易得AB=4,则×4h=4×4×,解得h=2,故t=2时,点P在l上,2<t≤4时,点P在△OAB的外面.F点的坐标满足,即F(t,4﹣t),同理E(4﹣t,t),则PF=PE=|t﹣(4﹣t)|=2t﹣4,所以S2=S△MPN﹣S△PEF=S△OMN﹣S△PEF,=t2﹣PE•PF=t2﹣(2t﹣4)(2t﹣4)=﹣t2+8t﹣8;②当0<t≤2时,S2=t2,t2=,解得t1=﹣<0,t2=>2,两个都不合题意,舍去;当2<t≤4时,S2=﹣t2+8t﹣8=,解得t3=3,t4=,综上得,当t=或t=3时,S2为△OAB的面积的.【点评】本题主要考查了函数图象与坐标轴的交点的求法,以及利用三角形的相似的性质.是一个难度较大的综合题.13.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.【考点】一次函数的应用.【专题】压轴题.【分析】(1)由图知y是x的一次函数,设y=kx+b.把图象经过的坐标代入求出k与b 的值.(2)根据路程与速度的关系列出方程可解.(3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=﹣90x+300.设y=0时,求出x的值可知乙车到达终点所用的时间.【解答】解:(1)方法一:由图知y是x的一次函数,设y=kx+b.∵图象经过点(0,300),(2,120),∴解得,∴y=﹣90x+300.即y关于x的表达式为y=﹣90x+300.方法二:由图知,当x=0时,y=300;x=2时,y=120.所以,这条高速公路长为300千米.甲车2小时的行程为300﹣120=180(千米).∴甲车的行驶速度为180÷2=90(千米/时).∴y关于x的表达式为y=300﹣90x(y=﹣90x+300).(2)由(1)得:甲车的速度为90千米/时,甲乙相距300千米.∴甲乙相遇用时为:300÷(90+60)=2,当0≤x≤2时,函数解析式为s=﹣150x+300,2<x≤时,S=150x﹣300<x≤5时,S=60x;(3)在s=﹣150x+300中.当s=0时,x=2.即甲乙两车经过2小时相遇.因为乙车比甲车晚40分钟到达,40分钟=小时,所以在y=﹣90x+300中,当y=0,x=.所以,相遇后乙车到达终点所用的时间为﹣2=2(小时).乙车与甲车相遇后的速度a=(300﹣2×60)÷2=90(千米/时).∴a=90(千米/时).乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.【点评】本题以行程问题为背景,考查由一次函数图象求解析式.分析相遇问题,求相遇时间及速度,依据速度和时间画函数图象,重点考查学生的观察、理解及分析解决问题的能力.14.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z 与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x 之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.15.(2009•潍坊)要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.【考点】一元二次方程的应用;二元一次方程组的应用;相切两圆的性质.【专题】几何图形问题.【分析】(1)把P、Q合并成矩形得长为(60﹣3×硬化路面的宽),宽为(40﹣2×硬化路面的宽),由等量关系S P+S Q=S矩形ABCD÷4求得并检验.(2)两等量关系2×O1到AD的距离=40;2×圆的半径+2×圆心到边的距离=60,列方程组求出并检验.【解答】解:(1)设P、Q两块绿地周围的硬化路面的宽都为x米,根据题意,得:(60﹣3x)×(40﹣2x)=60×40×,解得,x1=10,x2=30,经检验,x2=30不符合题意,舍去.所以,两块绿地周围的硬化路面宽都为10米.(2)设想成立.设圆的半径为r米,O1到AB的距离为y米,根据题意,得:,解得:y=20,r=10,符合实际.所以,设想成立,则圆的半径是10米.【点评】分析图形特点,根据题意找出等量关系列出方程或方程组,解决问题并检验.16.如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N 作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.【考点】二次函数综合题.【专题】压轴题;动点型.【分析】(1)可在直角三角形CPN中,根据CN的长和∠CPN的正切值求出.(2)三角形MPA中,底边AM的长为3﹣x,关键是求出MA边上的高,可延长NP交AD于Q,那么PQ就是三角形AMP的高,可现在直角三角形CNP中求出PN的长,进而根据AB的长,表示出PQ的长,根据三角形的面积公式即可得出S与x的函数关系式.根据函数的性质可得出S的最大值.(3)本题要分三种情况:①MP=PA,那么AQ=BN=AM,可用x分别表示出BN和AM的长,然后根据上述等量关系可求得x的值.②MA=MP,在直角三角形MQP中,MQ=MA﹣BN,PQ=AB﹣PN根据勾股定理即可求出x的值.③MA=PA,不难得出AP=BN,然后用x表示出AM的长,即可求出x的值.【解答】解:(1);(2)延长NP交AD于点Q,则PQ⊥AD,由(1)得:PN=,则PQ=QN﹣PN=4﹣=x依题意,可得:AM=3﹣x,S=AM•PQ=(3﹣x)•=2x﹣x2=﹣(x﹣)2+∵0≤x≤1即函数图象在对称轴的左侧,函数值S随着x的增大而增大.∴当x=1时,S有最大值,S最大值=(3)△MPA能成为等腰三角形,共有三种情况,以下分类说明:①若PM=PA,∵PQ⊥MA,∴四边形ABNQ是矩形,∴QA=NB=x,∴MQ=QA=x,又∵DM+MQ+QA=AD∴3x=3,即x=1②若MP=MA,则MQ=3﹣2x,PQ=,MP=MA=3﹣x在Rt△PMQ中,由勾股定理得:MP2=MQ2+PQ2∴(3﹣x)2=(3﹣2x)2+(x)2,解得:x=(x=0不合题意,舍去)③若AP=AM,由题意可得:AP=x,AM=3﹣x∴x=3﹣x,解得:x=综上所述,当x=1,或x=,或x=时,△MPA是等腰三角形.【点评】本题是点的运动性问题,考查了图形面积的求法、等腰三角形的判定等知识.(3)题要按等腰三角形腰和底的不同分类讨论.。
2021年全国各省市数学中考真题分类汇编:一元二次方程 选择题
2021年全国各省市数学中考真题分类汇编:一元二次方程选择1.(2021•凉山州)函数y=kx+b的图象如图所示,则关于x的一元二次方程x2+bx+k ﹣1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定2.(2021•丽水)用配方法解方程x2+4x+1=0时,配方结果正确的是()A.(x﹣2)2=5 B.(x﹣2)2=3 C.(x+2)2=5 D.(x+2)2=3 3.(2021•泸州)关于x的一元二次方程x2+2mx+m2﹣m=0的两实数根x1,x2,满足x 1x2=2,则(x12+2)(x22+2)的值是()A.8 B.32 C.8或32 D.16或40 4.(2021•海南)用配方法解方程x2﹣6x+5=0,配方后所得的方程是()A.(x+3)2=﹣4 B.(x﹣3)2=﹣4 C.(x+3)2=4 D.(x﹣3)2=4 5.(2021•盐城)设x1、x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1+x2的值为()A.﹣2 B.﹣3 C.2 D.3 6.(2021•怀化)对于一元二次方程2x2﹣3x+4=0,则该方程根的情况为()A.没有实数根B.两根之和是3C.两根之积是﹣2 D.有两个不相等的实数根7.(2021•广安)关于x的一元二次方程(a+2)x2﹣3x+1=0有实数根,则a的取值范围是()A.a≤且a≠﹣2 B.a≤C.a<且a≠﹣2 D.a<8.(2021•武汉)已知a,b是方程x2﹣3x﹣5=0的两根,则代数式2a3﹣6a2+b2+7b+1的值是()A.﹣25 B.﹣24 C.35 D.36 9.(2021•台州)关于x的方程x2﹣4x+m=0有两个不相等的实数根,则m的取值范围是()A.m>2 B.m<2 C.m>4 D.m<4 10.(2021•眉山)已知一元二次方程x2﹣3x+1=0的两根为x1,x2,则x12﹣5x1﹣2x2的值为()A.﹣7 B.﹣3 C.2 D.5 11.(2021•邵阳)在平面直角坐标系中,若直线y=﹣x+m不经过第一象限,则关于x 的方程mx2+x+1=0的实数根的个数为()A.0个B.1个C.2个D.1或2个12.(2021•临沂)方程x2﹣x=56的根是()A.x1=7,x2=8 B.x1=7,x2=﹣8C.x1=﹣7,x2=8 D.x1=﹣7,x2=﹣8 13.(2021•南充)已知方程x2﹣2021x+1=0的两根分别为x1,x2,则x12﹣的值为()A.1 B.﹣1 C.2021 D.﹣2021 14.(2021•云南)若一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是()A.a<1 B.a≤1 C.a≤1且a≠0 D.a<1且a≠0 15.(2021•泰安)已知关于x的一元二次方程kx2﹣(2k﹣1)x+k﹣2=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣B.k<C.k>﹣且k≠0 D.k<且k≠0 16.(2021•赤峰)一元二次方程x2﹣8x﹣2=0,配方后可变形为()A.(x﹣4)2=18 B.(x﹣4)2=14 C.(x﹣8)2=64 D.(x﹣4)2=1 17.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定18.(2021•雅安)若直角三角形的两边长分别是方程x2﹣7x+12=0的两根,则该直角三角形的面积是()A.6 B.12 C.12或D.6或19.(2021•贵港)某蔬菜种植基地2018年的蔬菜产量为800吨,2020年的蔬菜产量为968吨,设每年蔬菜产量的年平均增长率都为x,则年平均增长率x应满足的方程为()A.800(1﹣x)2=968 B.800(1+x)2=968C.968(1﹣x)2=800 D.968(1+x)2=80020.已知关于x的一元二次方程x2﹣kx+k﹣3=0的两个实数根分别为x1,x2,且x12+x22=5,则k的值是()A.﹣2 B.2 C.﹣1 D.1 21.(2021•襄阳)随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是5000元,现在生产一吨药的成本是4050元.设生产成本的年平均下降率为x,下面所列方程正确的是()A.5000(1+x)2=4050 B.4050(1+x)2=5000C.5000(1﹣x)2=4050 D.4050(1﹣x)2=5000 22.(2021•长春)关于x的一元二次方程x2﹣6x+m=0有两个不相等的实数根,则m的值可能是()A.8 B.9 C.10 D.11 23.(2021•张家界)对于实数a,b定义运算“☆”如下:a☆b=ab2﹣ab,例如3☆2=3×22﹣3×2=6,则方程1☆x=2的根的情况为()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根24.(2021•宜宾)若m、n是一元二次方程x2+3x﹣9=0的两个根,则m2+4m+n的值是()A.4 B.5 C.6 D.12 25.(2021•通辽)随着互联网技术的发展,我国快递业务量逐年增加,据统计从2018年到2020年,我国快递业务量由507亿件增加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x,则可列方程为()A.507(1+2x)=833.6B.507×2(1+x)=833.6C.507(1+x)2=833.6D.507+507(1+x)+507(1+x)2=833.6参考答案1.【解答】解:根据图象可得k<0,b<0,所以b2>0,﹣4k>0,因为Δ=b2﹣4(k﹣1)=b2﹣4k+4>0,所以Δ>0,所以方程有两个不相等的实数根.故选:C.2.【解答】解:方程x2+4x+1=0,整理得:x2+4x=﹣1,配方得:(x+2)2=3.故选:D.3.【解答】解:由题意得△=(2m)2﹣4(m2﹣m)≥0,∴m≥0,∵关于x的一元二次方程x2+2mx+m2﹣m=0的两实数根x1,x2,满足x1x2=2,则x1+x2=﹣2m,x1•x2=m2﹣m=2,∴m2﹣m﹣2=0,解得m=2或m=﹣1(舍去),∴x1+x2=﹣4,(x12+2)(x22+2)=(x1x2)2+2(x1+x2)2﹣4x1x2+4,原式=22+2×(﹣4)2﹣4×2+4=32;故选:B.4.【解答】解:把方程x2﹣6x+5=0的常数项移到等号的右边,得到x2﹣6x=﹣5,方程两边同时加上一次项系数一半的平方,得到x2﹣6x+9=﹣5+9,配方得(x﹣3)2=4.故选:D.5.【解答】解:∵一元二次方程x2﹣2x﹣3=0的二次项系数是a=1,一次项系数b=﹣2,∴由韦达定理,得x+x2=2.1故选:C.6.【解答】解:∵a=2,b=﹣3,c=4,∴Δ=b2﹣4ac=(﹣3)2﹣4×2×4=﹣23<0,∴一元二次方程2x2﹣3x+4=0没有实数根.故选:A.7.【解答】解:∵关于x的一元二次方程(a+2)x2﹣3x+1=0有实数根,∴△≥0且a+2≠0,∴(﹣3)2﹣4(a+2)×1≥0且a+2≠0,解得:a≤且a≠﹣2,故选:A.8.【解答】解:∵a,b是方程x2﹣3x﹣5=0的两根,∴a2﹣3a﹣5=0,b2﹣3b﹣5=0,a+b=3,∴a2﹣3a=5,b2=3b+5,∴2a3﹣6a2+b2+7b+1=2a(a2﹣3a)+3b+5+7b+1=10a+10b+6=10(a+b)+6=10×3+6=36.故选:D.9.【解答】解:根据题意得△=(﹣4)2﹣4m>0,解得m<4.故选:D.10.【解答】解:∵一元二次方程x2﹣3x+1=0的两根为x1,x2,∴x12﹣3x1=﹣1,x1+x2=3,∴x12﹣5x1﹣2x2=x12﹣3x1﹣2(x1+x2)=﹣1﹣2×3=﹣7.故选:A.11.【解答】解:∵直线y=﹣x+m不经过第一象限,∴m≤0,当m=0时,方程mx2+x+1=0是一次方程,有一个根,当m<0时,∵关于x的方程mx2+x+1=0,∴△=12﹣4m>0,∴关于x的方程mx2+x+1=0有两个不相等的实数根,故选:D.12.【解答】解:∵x2﹣x=56,∴x2﹣x﹣56=0,则(x﹣8)(x+7)=0,∴x﹣8=0或x+7=0,解得x1=﹣7,x2=8,故选:C.13.【解答】解:方法一:∵方程x2﹣2021x+1=0的两根分别为x1,x2,∴x1+x2=2021,x12﹣2021x1+1=0,x22﹣2021x2+1=0,∵x2≠0,∴x2﹣2021+=0,∴﹣=x2﹣2021,∴﹣,∴x12﹣=2021x1﹣1+2021x2﹣20212=2021(x1+x2)﹣1﹣20212=20212﹣1﹣20212=﹣1.方法二:∵方程x2﹣2021x+1=0的两根分别为x1,x2,∴x1•x2=1,x12﹣2021x1+1=0,∴x12﹣2021x1=﹣1,∴x12﹣=x12﹣=x12﹣2021x1=﹣1.故选:B.14.【解答】解:∵一元二次方程ax2+2x+1=0有两个不相等的实数根,∴a≠0,Δ=b2﹣4ac=22﹣4×a×1=4﹣4a>0,解得:a<1,故选:D.15.【解答】解:根据题意得k≠0且△=(2k﹣1)2﹣4k•(k﹣2)>0,解得k>﹣且k≠0.故选:C.16.【解答】解:∵x2﹣8x﹣2=0,∴x2﹣8x=2,则x2﹣8x+16=2+16,即(x﹣4)2=18,故选:A.17.【解答】解:由数轴得m>0,n<0,m+n<0,∴mn<0,∴△=(mn)2﹣4(m+n)>0,∴方程有两个不相等的实数根.故选:A.18.【解答】解:∵x2﹣7x+12=0,∴x=3或x=4.①当长是4的边是直角边时,该直角三角形的面积是×3×4=6;②当长是4的边是斜边时,第三边是=,该直角三角形的面积是×3×=.故选:D.19.【解答】解:依题意得:800(1+x)2=968.故选:B.20.【解答】解:∵关于x的一元二次方程x2﹣kx+k﹣3=0的两个实数根分别为x1,x2,∴x1+x2=k,x1x2=k﹣3,∵x12+x22=5,∴(x1+x2)2﹣2x1x2=5,∴k2﹣2(k﹣3)=5,整理得出:k2﹣2k+1=0,解得:k1=k2=1,故选:D.21.【解答】解:设这种药品成本的年平均下降率是x,根据题意得:5000(1﹣x)2=4050,故选:C.22.【解答】解:根据题意得△=(﹣6)2﹣4m>0,解得m<9.故选:A.23.【解答】解:∵1☆x=2,∴1•x2﹣1•x=2,∴x2﹣x﹣2=0,∴Δ=(﹣1)2﹣4×1×(﹣2)=9>0,∴方程1☆x=2有两个不相等的实数根.故选:D.24.【解答】解:∵m、n是一元二次方程x2+3x﹣9=0的两个根,∴m+n=﹣3,mn=﹣9,∵m是x2+3x﹣9=0的一个根,∴m2+3m﹣9=0,∴m2+3m=9,∴m2+4m+n=m2+3m+m+n=9+(m+n)=9﹣3=6.故选:C.25.【解答】解:设我国2018年至2020年快递业务收入的年平均增长率为x,由题意得:507(1+x)2=833.6,故选:C.。
专题7一元二次方程及应用(共30题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期
2021年中考数学真题分项汇编【全国通用】(第01期)专题7一元二次方程及应用(共30题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·山东临沂市·中考真题)方程256x x -=的根是( )A .1278x x ==,B .1278x x ==-,C .1278x x =-=,D .1278x x =-=-, 【答案】C【分析】利用因式分解法解方程即可得到正确选项.【详解】解:∵256x x -=,∵2560x x --=,∵()()780x x +-=,∵x +7=0,x -8=0,∵x 1=-7,x 2=8.故选:C .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了.2.(2021·浙江丽水市·中考真题)用配方法解方程2410x x ++=时,配方结果正确的是( ) A .2(2)5x -=B .2(2)3x -=C .2(2)5x +=D .2(2)3x += 【答案】D【分析】先把常数项移到方程的右边,方程两边同时加上一次项系数一半的平方,然后把方程左边利用完全平方公式写成平方形式即可.【详解】解:2410x x ++=,241x x ∴+=-,24414x x ∴++=-+,2(2)3x ∴+=,故选:D .【点睛】本题考查利用配方法对一元二次方程求解,解题的关键是:熟练运用完全平方公式进行配方. 3.(2021·四川泸州市·中考真题)关于x 的一元二次方程2220x mx m m ++-=的两实数根12,x x ,满足122x x =,则2212(2)(2)x x ++的值是( )A .8B .16C . 32D .16或40【答案】C【分析】 根据一元二次方程根与系数的关系,即韦达定理,先解得2m =或1m =-,再分别代入一元二次方程中,利用完全平方公式变形解题即可.【详解】解:一元二次方程2220x mx m m ++-=21,2,a b m c m m ===-2122c m x am x ==-= 220m m --=(2)(1)0m m ∴-+=2m ∴=或1m =-当2m =时,原一元二次方程为2420x x ++=12=24b m ax x +-=-=-, 22221212122)+2((2)(2)()+4=x x x x x x +∴++,221212122=()2x x x x x x ++-221212212212)+(2)(2)=)(2(4+4x x x x x x x x -∴+++22=2+2(4)424⨯--⨯+32=当1m =-时,原一元二次方程为2220x x +=-2(2)41240∆=--⨯⨯=-<原方程无解,不符合题意,舍去,故选:C .【点睛】本题考查一元二次方程根与系数的关系,韦达定理等知识,涉及解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键.4.(2021·四川广安市·中考真题)关于x 的一元二次方程()22310a x x +-+=有实数根,则a 的取值范围是( )A .14a ≤且2a ≠-B .14a ≤C .14a <且2a ≠-D .14a < 【答案】A【分析】根据一元二次方程的定义和判别式的意义得到a +2≠0且∵≥0,然后求出两不等式的公共部分即可.【详解】解:∵关于x 的一元二次方程()22310a x x +-+=有实数根, ∵∵≥0且a +2≠0,∵(-3)2-4(a +2)×1≥0且a +2≠0,解得:a ≤14且a ≠-2, 故选:A .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与∵=b 2-4ac 有如下关系:当∵>0时,方程有两个不相等的两个实数根;当∵=0时,方程有两个相等的两个实数根;当∵<0时,方程无实数根. 5.(2021·湖南邵阳市·中考真题)在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个【答案】D【分析】直线y x m =-+不经过第一象限,则m =0或m <0,分这两种情形判断方程的根.【详解】∵直线y x m =-+不经过第一象限,∵m =0或m <0,当m =0时,方程变形为x +1=0,是一元一次方程,故有一个实数根;当m <0时,方程210mx x ++=是一元二次方程,且∵=2414b ac m -=-,∵m <0,∵-4m >0,∵1-4m >1>0,∵∵>0,故方程有两个不相等的实数根,综上所述,方程有一个实数根或两个不相等的实数根,故选D .【点睛】本题考查了一次函数图像的分布,一元一次方程的根,一元二次方程的根的判别式,准确判断图像不过第一象限的条件,灵活运用根的判别式是解题的关键.6.(2021·四川眉山市·中考真题)已知一元二次方程2310x x -+=的两根为1x ,2x ,则211252x x x --的值为( )A .7-B .3-C .2D .5【答案】A【分析】根据一元二次方程根的定义,得211310x x -+=,结合根与系数的关系,得1x +2x =3,进而即可求解. 【详解】解:∵一元二次方程2310x x -+=的两根为1x ,2x ,∵211310x x -+=,即:21131x x -=-,1x +2x =3,∵211252x x x --=2113x x --2(1x +2x )=-1-2×3=-7.故选A .【点睛】本题主要考查一元二次方程根的定义以及根与系数的关系,熟练掌握20ax bx c ++=(a ≠0)的两根为1x ,2x ,则1x +2x =b a -,1x 2x =c a,是解题的关键. 7.(2021·浙江杭州市·中考真题)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是( )A .212y x x =+和21y x =--B .212y x x =+和21y x =-+C .11y x=-和21y x =-- D .11y x =-和21y x =-+ 【答案】A【分析】根据题中所给定义及一元二次方程根的判别式可直接进行排除选项.【详解】解:当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,对于A 选项则有210m m +-=,由一元二次方程根的判别式可得:241450b ac -=+=>,所以存在实数m ,故符合题意;对于B 选项则有210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;对于C 选项则有110m m---=,化简得:210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意; 对于D 选项则有110m m --+=,化简得:210m m -+=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;故选A .【点睛】本题主要考查一元二次方程根的判别式、二次函数与反比例函数的性质,熟练掌握一元二次方程根的判别式、二次函数与反比例函数的性质是解题的关键.8.(2021·浙江台州市·中考真题)关于x 的方程x 2-4x +m =0有两个不相等的实数根,则m 的取值范围是( )A .m >2B .m <2C .m >4D .m <4【答案】D【分析】根据方程x 2-4x +m =0有两个不相等的实数根,可得()24410m ∆=--⨯⨯>,进而即可求解.【详解】解:∵关于x 的方程x 2-4x +m =0有两个不相等的实数根,∵()24410m ∆=--⨯⨯>,解得:m <4,故选D .【点睛】本题主要考查一元二次方程根的判别式,熟练掌握ax 2+bx +c =0(a ≠0)有两个不相等的实数根,则判别式大于零,是解题的关键.9.(2021·云南中考真题)若一元二次方程2210ax x ++=有两个不相等的实数根,则实数a 的取值范围是( )A .1a <B .1a ≤C .1a ≤且0a ≠D .1a <且0a ≠ 【答案】D【分析】根据一元二次方程的定义和判别式的意义得到a ≠0且∵=22-4a >0,然后求出两不等式的公共部分即可.【详解】解:根据题意得a ≠0且∵=22-4a >0,解得a <1且a ≠0.故选:D .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与∵=b 2-4ac 有如下关系:当∵>0时,方程有两个不相等的实数根;当∵=0时,方程有两个相等的实数根;当∵<0时,方程无实数根.10.(2021·山东泰安市·中考真题)已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k 的取值范围是( )A .14k >- B .14k < C .14k >-且0k ≠ D .14k <0k ≠ 【答案】C【分析】由一元二次方程定义得出二次项系数k ≠0;由方程有两个不相等的实数根,得出“∵>0”,解这两个不等式即可得到k 的取值范围.【详解】解:由题可得:()()2021420k k k k ≠⎧⎪⎨⎡⎤---->⎪⎣⎦⎩, 解得:14k >-且0k ≠; 故选:C .【点睛】本题考查了一元二次方程的定义和根的判别式,涉及到了解不等式等内容,解决本题的关键是能读懂题意并牢记一元二次方程的概念和根的判别式的内容,能正确求出不等式(组)的解集等,本题对学生的计算能力有一定的要求.11.(2021·四川南充市·中考真题)已知方程2202110x x -+=的两根分别为1x ,2x ,则2122021x x -的值为( )A .1B .1-C .2021D .2021-【答案】B【分析】根据一元二次方程解的定义及根与系数的关系可得21120211x x =-,121x x ⋅=,再代入通分计算即可求解. 【详解】∵方程2202110x x -+=的两根分别为1x ,2x ,∵211202110x x -+=,121x x ⋅=,∵21120211x x =-, ∵2122021x x -=21202112021x x --=1222220011222x x x x x -⋅-=22202112021x x ⨯--=22x x -=-1. 故选B .【点睛】本题考查了一元二次方程解的定义及根与系数的关系,熟练运用一元二次方程解的定义及根与系数的关系是解决问题的关键.12.(2021·四川凉山彝族自治州·中考真题)函数y kx b =+的图象如图所示,则关于x 的一元二次方程210x bx k ++-=的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定【答案】C【分析】 根据一次函数图象经过的象限找出k 、b 的正负,再结合根的判别式即可得出∵>0,由此即可得出结论.【详解】解:观察函数图象可知:函数y =kx +b 的图象经过第二、三、四象限,∵k <0,b <0.在方程210x bx k ++-=中,∵=()2241440b k b k --=-+>,∵一元二次方程210x bx k ++-=有两个不相等的实数根.故选:C .【点睛】本题考查了一次函数图象与系数的关系以及根的判别式,根据一次函数图象经过的象限找出k 、b 的正负是解题的关键.13.(2021·四川泸州市·中考真题)直线l 过点(0,4)且与y 轴垂直,若二次函数2222()(2)(3)2y x a x a x a a a =-+-+--+(其中x 是自变量)的图像与直线l 有两个不同的交点,且其对称轴在y 轴右侧,则a 的取值范围是( )A .a >4B .a >0C .0<a ≤4D .0<a <4【答案】D【分析】由直线l :y =4,化简抛物线2231212y x ax a a =-++,令22312124x ax a a -++=,利用判别式∆12480a =-+>,解出4a <,由对称轴在y 轴右侧可求0a >即可.【详解】解:∵直线l 过点(0,4)且与y 轴垂直,直线l :y =4,222222()(2)(3)231212y x a x a x a a a x ax a a =-+-+--+=-++,∵22312124x ax a a -++=,∵二次函数2222()(2)(3)2y x a x a x a a a =-+-+--+(其中x 是自变量)的图像与直线l 有两个不同的交点,∵()()221243124a a a ∆=--⨯⨯+-, 12480a =-+>,∵4a <,又∵对称轴在y 轴右侧,1212=20236a a x a --=-=->⨯, ∵0a >,∵0<a <4.故选择D .【点睛】本题考查二次函数与直线的交点问题,抛物线对称轴,一元二次方程两个不等实根,根的判别式,掌握二次函数与直线的交点问题转化为一元二次方程实根问题,根的判别式,抛物线对称轴公式是解题关键.二、填空题14.(2021·上海中考真题)若一元二次方程2230x x c -+=无解,则c 的取值范围为_________. 【答案】98c >【分析】根据一元二次方程根的判别式的意义得到()2342c =--⨯<0,然后求出c 的取值范围.【详解】解:关于x 的一元二次方程2230x x c -+=无解,∵2a =,3b =-,c c =,∵()2243420b ac c =-=--⨯<, 解得98c >, ∵c 的取值范围是98c >. 故答案为:98c >. 【点睛】 本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∵=b 2-4ac :当∵>0,方程有两个不相等的实数根;当∵=0,方程有两个相等的实数根;当∵<0,方程没有实数根.15.(2021·湖南岳阳市·中考真题)已知关于x 的一元二次方程260x x k ++=有两个相等的实数根,则实数k 的值为_______.【答案】9【分析】直接利用根的判别式进行判断即可.【详解】解:由题可知:“∵=0”,即2640k -=;∵9k =;故答案为:9. 【点睛】本题考查了用根的判别式判断一元二次方程根的情况,解决本题的关键是牢记:∵>0时,该方程有两个不相等的实数根;∵=0时,该方程有两个相等的实数根;∵<0时,该方程无实数根.16.(2021·江西中考真题)已知1x ,2x 是一元二次方程2430x x -+=的两根,则1212x x x x +-=______. 【答案】1 【分析】直接利用根与系数的关系求解即可. 【详解】解:∵1x ,2x 是一元二次方程2430x x -+=的两根, ∵124x x +=,123x x =, ∵1212431x x x x +-=-=. 故答案为:1. 【点睛】本题考查了一元二次方程的根与系数的关系,若12x x 、是方程20ax bx c ++=(0a ≠)的两根,则12b x x a +=-,12c x x a=.17.(2021·四川遂宁市·中考真题)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20 【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3++n =()12n n +,列一元二次方程求解可得.解:∵第1个图形中黑色三角形的个数1, 第2个图形中黑色三角形的个数3=1+2, 第3个图形中黑色三角形的个数6=1+2+3, 第4个图形中黑色三角形的个数10=1+2+3+4, ……∵第n 个图形中黑色三角形的个数为1+2+3+4+5++n =()12n n +,当共有210个小球时,()12102n n +=,解得:20n =或21-(不合题意,舍去), ∵第20个图形共有210个小球. 故答案为:20. 【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n .18.(2021·四川广安市·中考真题)一个三角形的两边长分别为3和5,第三边长是方程x 2-6x +8=0的根,则三角形的周长为_____. 【答案】12 【分析】先求方程x 2-6x+8=0的根,再由三角形的三边关系确定出三角形的第三边的取值范围,即可确定第三边的长,利用三角形的周长公式可求得这个三角形的周长. 【详解】∵三角形的两边长分别为3和5,∵5-3<第三边<5+3,即2<第三边<8, 又∵第三边长是方程x 2-6x+8=0的根,∵解之得根为2和4,2不在范围内,舍掉, ∵第三边长为4.即勾三股四弦五,三角形是直角三角形. ∵三角形的周长:3+4+5=12. 故答案为12.本题考查了解一元二次方程和三角形的三边关系.属于基础题型,应重点掌握.19.(2021·甘肃武威市·中考真题)已知关于x 的方程2x 2x m 0-+=有两个相等的实数根,则m 的值是_________. 【答案】1 【详解】试题分析:根据一元二次方程根的判别式,可由方程有两个相等的实数根可的∵=b 2-4ac=4-4m=0,解得m=1. 故答案为1.考点:一元二次方程根的判别式20.(2021·江苏连云港市·中考真题)已知方程230x x k -+=有两个相等的实数根,则k =____. 【答案】94【详解】试题分析:∵230x x k -+=有两个相等的实数根, ∵∵=0, ∵9-4k=0, ∵k=94. 故答案为94. 考点:根的判别式.21.(2021·四川成都市·中考真题)若m ,n 是一元二次方程2210x x +-=的两个实数根,则242m m n++的值是______. 【答案】-3. 【分析】先根据一元二次方程的解的定义得到2210m m +-=,则221m m ,根据根与系数的关系得出2m n +=-,再将其代入整理后的代数式计算即可.【详解】解:∵m ,n 是一元二次方程2210x x +-=的两个实数根, ∵2210m m +-=,2m n +=-∵221m m ,∵242m m n ++=2222m m m n=1+2×(-2) =-3故答案为:-3. 【点睛】本题主要考查了一元二次方程根与系数的关系:若12,x x 是一元二次方程20(a 0)++=≠ax bx c 的两根时,1212,b cx x x x a a+=-=,也考查了一元二次方程的解.22.(2021·浙江丽水市·中考真题)数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题: 已知实数,a b 同时满足2222,22a a b b b a +=++=+,求代数式b aa b+的值.结合他们的对话,请解答下列问题: (1)当a b =时,a 的值是__________. (2)当ab 时,代数式b aa b+的值是__________. 【答案】2-或1 7 【分析】(1)将a b =代入222a a b +=+解方程求出a ,b 的值,再代入222b b a +=+进行验证即可; (2)当a b 时,求出30++=a b ,再把b aa b+通分变形,最后进行整体代入求值即可. 【详解】解:已知222222a a b b b a ⎧+=+⎨+=+⎩①②,实数a ,b 同时满足∵,∵,∵-∵得,22330a b a b -+-=∵()(3)0a b a b -++= ∵0a b -=或30++=a b ∵+∵得,22+=4a b a b --(1)当a b =时,将a b =代入222a a b +=+得,220a a +-=解得,11a =,22a =- ∵11b =,22b =-把=1a b =代入222b b a +=+得,3=3,成立; 把=2a b =-代入222b b a +=+得,0=0,成立; ∵当a b =时,a 的值是1或-2 故答案为:1或-2; (2)当ab 时,则30++=a b ,即=3a b +-∵22+=4a b a b -- ∵22+=7a b∵222()=+2+9a b a ab b += ∵1ab =∵227=71b a a b a b ab ++== 故答案为:7. 【点睛】此题主要考查了用因式分解法解一元二次方程,完全平方公式以及求代数式的值和分式的运算等知识,熟练掌握运算法则和乘法公式是解答此题的关键.三、解答题23.(2021·四川南充市·中考真题)已知关于x 的一元二次方程22(21)0x k x k k -+++=.(1)求证:无论k 取何值,方程都有两个不相等的实数根.(2)如果方程的两个实数根为1x ,2x ,且k 与12x x 都为整数,求k 所有可能的值.【答案】(1)见解析;(2)0或-2或1或-1 【分析】(1)计算判别式的值,然后根据判别式的意义得到结论; (2)先利用因式分解法得出方程的两个根,再结合k 与12x x 都为整数,得出k 的值; 【详解】解:(1)22(21)0x k x k k -+++= ∵∵=[]()22(21)41k k k -+-⨯⨯+=224+1-4+4-4=10k k k k >∵无论k 取何值, 方程都有两个不相等的实数根. (2)∵22(21)0x k x k k -+++= ∵()()-1=0x k x k -- ∵=0-1x k x k --,=0∵1x k =,2=+1x k 或1+1x k =,2=x k 当1x k =,2=+1x k 时,121==1-+1+1x k x k k ∵k 与12x x 都为整数, ∵k =0或-2当1+1x k =,2=x k 时,∵12+11==1+x k x k k, ∵k 与12x x 都为整数, ∵k =1或-1∵k 所有可能的值为0或-2或1或-1【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当∵>0时,方程有两个不等的实数根”;(2)利用因式分解法求出方程的解.24.(2021·浙江嘉兴市·中考真题)小敏与小霞两位同学解方程()()2333x x -=-的过程如下框:你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程. 【答案】两位同学的解法都错误,正确过程见解析 【分析】根据因式分解法解一元二次方程 【详解】 解:正确解答:()()2333x x -=- 移项,得()()23330x x ---=, 提取公因式,得()()3330x x ⎡--⎤⎣⎦-=, 去括号,得()()3330x x --+=,则30x -=或60x -=, 解得13x =,26x =. 【点睛】本题考查因式分解法解一元二次方程,掌握因式分解的技巧准确计算是解题关键.25.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元? 【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元 【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M 元,结合题意,根据二次函数的性质,计算得利润最大值对应的x 的值,从而得到答案. 【详解】(1)由题意列方程得:(x +40-30) (300-10x )=3360 解得:x 1=2,x 2=18 ∵要尽可能减少库存, ∵x 2=18不合题意,故舍去 ∵T 恤的销售单价应提高2元; (2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=()210104000x --+ ∵当x =10时,M 最大值=4000元 ∵销售单价:40+10=50元∵当服装店将销售单价50元时,得到最大利润是4000元. 【点睛】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.26.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几; (2)若该景区仅有,A B 两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;①问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【答案】(1)20%;(2)∵798万元,∵当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元 【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,则四月份的游客为()41x +人,五月份的游客为()241x +人,再列方程,解方程可得答案;(2)∵分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;∵设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,再列出W 与m 的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案. 【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,由题意,得24(1) 5.76x +=()21 1.44,x ∴+=解这个方程,得120.2, 2.2x x ==-(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%.(2)∵由题意,丙种门票价格下降10元,得: 购买丙种门票的人数增加:0.6+0.4=1(万人), 购买甲种门票的人数为:20.6 1.4-=(万人), 购买乙种门票的人数为:30.4 2.6-=(万人), 所以:门票收入问;()()100 1.480 2.61601021⨯+⨯+-⨯+798=(万元)答:景区六月份的门票总收入为798万元.∵设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元, 由题意,得()()()()10020.068030.0416020.060.04W m m m m m =-+-+-++化简,得20.1(24)817.6W m =--+,0.10-<,∵当24m =时,W 取最大值,为817.6万元.答:当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元. 【点睛】本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键.27.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a%4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a ,这两种小面的总销售额在4月的基础上增加5%11a .求a 的值.【答案】(1)每份“堂食”小面价格是7元,“生食”小面的价格是5元.(2)a 的值为8.【分析】(1)设每份“堂食”小面和“生食”小面的价格分别是x 、y 元,根据题意列出二元一次方程组,解方程组即可;(2)根据题意列出一元二次方程,解方程即可.【详解】解:(1)设每份“堂食”小面和“生食”小面的价格分别是x 、y 元,根据题意列方程组得,3231433x y x y +=⎧⎨+=⎩,解得,75x y =⎧⎨=⎩, 答:每份“堂食”小面价格是7元,“生食”小面的价格是5元. (2)根据题意得,535450072500(1%)5(1%)(4500725005)(1%)2411a a a ⨯++⨯-=⨯+⨯+, 解得,10a =(舍去),28a =,答:a 的值为8.【点睛】本题考查了二元一次方程组的应用和一元二次方程的应用,解题关键是找准题目中的等量关系,列出方程,熟练运用相关知识解方程.28.(2021·四川乐山市·中考真题)已知关于x 的一元二次方程20x x m +-=.(1)若方程有两个不相等的实数根,求m 的取值范围;(2)二次函数2y x x m =+-的部分图象如图所示,求一元二次方程20x x m +-=的解.【答案】(1)14m >-;(2)11x =,22x =- 【分析】 (1)根据∵>0时,一元二次方程有两个不相等的实数根求解m 的取值范围即可;(2)根据二次函数图象与x 轴的交点的横坐标就是当y =0时对应一元二次函数的解,故将x =1代入方程中求出m 值,再代入一元二次方程中解方程即可求解.【详解】解:(1)由题知140m ∆=+>, ∵14m >-. (2)由图知20x x m +-=的一个根为1,∵2110m +-=,∵2m =,即一元二次方程为220x x +-=,解得11x =,22x =-,∵一元二次方程20x x m +-=的解为11x =,22x =-.【点睛】本题考查一元二次方程根的判别式、解一元一次不等式、解一元一次方程、解一元二次方程,会解一元二次方程,熟练掌握一元二次方程根的判别式与根的关系是解答的关键.29.(2021·重庆中考真题)某工厂有甲、乙两个车间,甲车间生产A 产品,乙车间生产B 产品,去年两个车间生产产品的数量相同且全部售出.已知A 产品的销售单价比B 产品的销售单价高100元,1件A 产品与1件B 产品售价和为500元.(1)A 、B 两种产品的销售单价分别是多少元?(2)随着5G 时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B 产品的生产车间.预计A 产品在售价不变的情况下产量将在去年的基础上增加a %;B 产品产量将在去年的基础上减少a %,但B 产品的销售单价将提高3a %.则今年A 、B 两种产品全部售出后总销售额将在去年的基础上增加2925a %.求a 的值. 【答案】(1)A 产品的销售单价为300元,B 产品的销售单价为200元;(2)20【分析】(1)设B 产品的销售单价为x 元,则A 产品的销售单价为(x +100)元,根据题意列出方程解出即可;(2)设去年每个车间生产产品的数量为t 件,根据题意根据题意列出方程()()()293001%20013%1%5001%25a t a t a t a ⎛⎫+⋅++⋅-=⋅+ ⎪⎝⎭解出即可; 【详解】解:(1)设B 产品的销售单价为x 元,则A 产品的销售单价为(x +100)元.根据题意,得()100500x x ++=.解这个方程,得200x =.则100300x +=.答:A 产品的销售单价为300元,B 产品的销售单价为200元.(2)设去年每个车间生产产品的数量为t 件,根据题意,得()()()293001%20013%1%5001%25a t a t a t a ⎛⎫+⋅++⋅-=⋅+ ⎪⎝⎭设a %=m ,则原方程可化简为250m m -=. 解这个方程,得121,05m m ==(舍去). ∵a=20.答:a 的值是20.【点睛】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元二次方程.30.(2021·四川泸州市·中考真题)一次函数y =kx +b (k ≠0)的图像与反比例函数m y x=的图象相交于A (2,3),B (6,n )两点(1)求一次函数的解析式(2)将直线AB 沿y 轴向下平移8个单位后得到直线l ,l 与两坐标轴分别相交于M ,N ,与反比例函数的图象相交于点P ,Q ,求PQ MN的值 【答案】(1)一次函数y=142x -+,(2)12PQ MN =. 【分析】(1)利用点A (2,3),求出反比例函数6y x=,求出 B (6,1),利用待定系数法求一次函数解析式; (2)利用平移求出y=142x --,联立1426y x y x⎧=--⎪⎪⎨⎪=⎪⎩,求出P (-6,-1),Q (-2,-3),在Rt ∵MON 中,由勾股定理MN=PQ=【详解】解:(1)∵反比例函数my x =的图象过A (2,3),∵m =6,∵6n =6,∵n =1,∵B (6,1)一次函数y =kx +b (k ≠0)的图像与反比例函数6y x =的图象相交于A (2,3),B (6,1)两点,∵6123k b k b +=⎧⎨+=⎩, 解得124k b ⎧=-⎪⎨⎪=⎩,一次函数y=142x -+,(2)直线AB 沿y 轴向下平移8个单位后得到直线l ,得y=142x --,当y =0时,1402x ,8x =-,当x =0时,y =-4,∵M (-8,0),N (0,-4),1426y x y x⎧=--⎪⎪⎨⎪=⎪⎩,消去y 得28120x x ++=,解得122,6x x =-=-,解得1123x y =-⎧⎨=-⎩,2261x y =-⎧⎨=-⎩,∵P (-6,-1),Q (-2,-3),在Rt ∵MON 中,∵MN =2245OM ON +=,∵PQ =()()22261325-++-+=, ∵251245PQ MN ==.【点睛】本题考查待定系数法求反比例函数解析式与一次函数解析式,利用平移求平移后直线l.,解方程组,一元二次方程,勾股定理,掌握待定系数法求反比例函数解析式与一次函数解析式,利用平移求平移后直线l.,解方程组,一元二次方程,勾股定理是解题关键.。
一元二次函数中考试题选编
1、二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,则下列四个结论错误..的是A .0c > B .20a b += C .240b ac -> D .0a b c -+>2、已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是( )A .①②B . ①③④C .①②③⑤D .①②③④⑤第2题 第3题 第4题3、二次函数)0(2≠++=a c bx ax y 的图象如图,下列判断错误的是( ) A .0<aB .0<bC .0<cD .042<-ac b4、二次函数c bx ax y ++=2的图象如图所示,则下列关系式中错误..的是( ) A .a <0 B .c >0 C .ac b 42->0 D .c b a ++>05、某校运动会上,某运动员掷铅球时,他所掷的铅球的高与水平的距离,则该运动员的成绩是( )A. 6mB. 10mC. 8mD. 12m 6、抛物线y =ax 2+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如表所示.给出下列说法:①抛物线与y 轴的交点为(0,6); ②抛物线的对称轴是在y 轴的右侧;③抛物线一定经过点(3,0); ④在对称轴左侧,y 随x 增大而减小.从表中可知,下列说法正确的个数有( ) A .1个 B .2个 C .3个 D .4个7、抛物线y =322+-x x 与坐标轴交点为 ( ) A .二个交点 B .一个交点 C .无交点 D .三个交点8、二次函数y =x 2的图象向下平移2个单位,得到新图象的二次函数表达式是( ) A .y =x 2-2 B .y =(x -2)2 C .y =x 2+2 D .y =(x +2)29、若二次函数y =2x 2-2mx +2m 2-2的图象的顶点在y 轴上,则m 的值是( ) B.±1 C.±2 D.±210、二次函数y=ax 2+bx+c 的图像如图所示,则关于此二次函数的下列四个结论①a<0②a>0③b 2-4ac>0④0<ab中,正确的结论有( ) 个 个 个 个11、抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为( )x … -3 -2 -1 0 1 …y … -6 04 6 6 … y x O 1 -1 11 1- O x yy –1 33O xP 1 A. 0 B. -1 C. 1 D. 212、已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下结论:①0<abc②当1x =时,函数有最大值。
专题09 一元二次方程及其应用(33题)(原卷版)--2024年中考数学真题分类汇编
专题09一元二次方程及其应用(33题)一、单选题1.(2024·吉林·中考真题)下列方程中,有两个相等实数根的是()A .()221x -=-B .()220x -=C .()221x -=D .()222x -=2.(2024·黑龙江绥化·中考真题)小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是2-和5-.则原来的方程是()A .2650x x ++=B .27100x x -+=C .2520x x -+=D .26100x x --=3.(2024·河北·中考真题)淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ()A .1B 21-C 21+D .1214.(2024·黑龙江大兴安岭地·中考真题)关于x 的一元二次方程()22420m x x -++=有两个实数根,则m的取值范围是()A .4m ≤B .4m ≥C .4m ≥-且2m ≠D .4m ≤且2m ≠5.(2024·黑龙江牡丹江·中考真题)一种药品原价每盒48元,经过两次降价后每盒27元,两次降价的百分率相同,则每次降价的百分率为()A .20%B .22%C .25%D .28%6.(2024·四川凉山·中考真题)若关于x 的一元二次方程()22240a x x a +++-=的一个根是0x =,则a 的值为()A .2B .2-C .2或2-D .127.(2024·四川眉山·中考真题)眉山市东坡区永丰村是“天府粮仓”示范区,该村的“智慧春耕”让生产更高效,提升了水稻亩产量,水稻亩产量从2021年的670千克增长到了2023年的780千克,该村水稻亩产量年平均增长率为x ,则可列方程为()A .()67012780x ⨯+=B .()26701780x ⨯+=C .()26701780x ⨯+=D .()6701780x ⨯+=8.(2024·北京·中考真题)若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为()A .16-B .4-C .4D .169.(2024·上海·中考真题)以下一元二次方程有两个相等实数根的是()A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=10.(2024·四川广安·中考真题)若关于x 的一元二次方程2(1)210m x x +-+=有两个不相等的实数根,则m 的取值范围是()A .0m <且1m ≠-B .0m ≥C .0m ≤且1m ≠-D .0m <11.(2024·四川内江·中考真题)某市2021年底森林覆盖率为64%,为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力发展植树造林活动,2023年底森林覆盖率已达到69%.如果这两年森林覆盖率的年平均增长率为x ,则符合题意得方程是()A .()0.6410.69x +=B .()20.6410.69x +=C .()0.64120.69x +=D .()20.64120.69x +=12.(2024·贵州·中考真题)一元二次方程220x x -=的解是()A .13x =,21x =B .12x =,20x =C .13x =,22x =-D .12x =-,21x =-13.(2024·四川乐山·中考真题)若关于x 的一元二次方程220x x p ++=两根为1x 、2x ,且12113x x +=,则p 的值为()A .23-B .23C .6-D .614.(2024·云南·中考真题)两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是()A .()280160x -=B .()280160x -=C .()80160x -=D .()801260x -=二、填空题15.(2024·山东·中考真题)若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为.16.(2024·广东深圳·中考真题)已知一元二次方程230x x m -+=的一个根为1,则m =.17.(2024·江苏连云港·中考真题)关于x 的一元二次方程20x x c -+=有两个相等的实数根,则c 的值为.18.(2024·四川凉山·中考真题)已知2220330y x x y x -=-+-=,,则x 的值为.19.(2024·湖南·中考真题)若关于x 的一元二次方程2420x x k -+=有两个相等的实数根,则k 的值为.20.(2024·河南·中考真题)若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为.21.(2024·重庆·中考真题)随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是.22.(2024·四川南充·中考真题)已知m 是方程2410x x -=+的一个根,则(5)(1)m m +-的值为.23.(2024·广东广州·中考真题)定义新运算:()()200a b a a b a b a ⎧-≤⎪⊗=⎨-+>⎪⎩例如:224(2)40-⊗=--=,23231⊗=-+=.若314x ⊗=-,则x 的值为.24.(2024·四川成都·中考真题)若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为.25.(2024·山东烟台·中考真题)若一元二次方程22410x x --=的两根为m ,n ,则2234m m n -+的值为.26.(2024·四川眉山·中考真题)已知方程220x x +-=的两根分别为1x ,2x ,则1211+x x 的值为.27.(2024·四川泸州·中考真题)已知1x ,2x 是一元二次方程2350x x --=的两个实数根,则()212123x x x x -+的值是.三、解答题28.(2024·上海·中考真题)解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②.29.(2024·四川凉山·中考真题)阅读下面材料,并解决相关问题:下图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n 行有n 个点……容易发现,三角点阵中前4行的点数之和为10.(1)探索:三角点阵中前8行的点数之和为_____,前15行的点数之和为______,那么,前n 行的点数之和为______(2)体验:三角点阵中前n 行的点数之和______(填“能”或“不能”)为500.(3)运用:某广场要摆放若干种造型的盆景,其中一种造型要用420盆同样规格的花,按照第一排2盆,第二排4盆,第三排6盆……第n 排2n 盆的规律摆放而成,则一共能摆放多少排?30.(2024·四川内江·中考真题)已知关于x 的一元二次方程210x px -+=(p 为常数)有两个不相等的实数根1x 和2x .(1)填空:12x x +=________,12x x =________;(2)求1211+x x ,111x x +;(3)已知221221x x p +=+,求p 的值.31.(2024·广东广州·中考真题)关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.32.(2024·四川南充·中考真题)已知1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根.(1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值.33.(2024·四川遂宁·中考真题)已知关于x 的一元二次方程()2210x m x m -++-=.(1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为12,x x ,且2212129x x x x +-=,求m 的值.。
九年级数学上册(中考题型专练)(人教版)二次函数与一元二次方程(五大类型)(原卷版)
专题07 二次函数与一元二次方程(五大类型)【题型1:二次函数与x轴交点问题】【题型2: 图像法确定一元二次方程的根】【题型3:已知函数值y求X的取值范围】【题型4:二次函数与不等式的关系】【题型5:二次函数综合】【题型1:二次函数与x轴交点问题】1.(2023•南充模拟)针对抛物线y=x2﹣(a+1)x+a与x轴公共点的情况,下列说法正确的是()A.有两个公共点B.有一个公共点C.一定有公共点D.可能无公共点2.(2023•许昌二模)若抛物线y=x2+4x+c与x轴没有交点,则c的值可以是()A.﹣4B.0C.4D.83.(2023•南充模拟)针对抛物线y=x2﹣(a+1)x+a与x轴公共点的情况,下列说法正确的是()A.有两个公共点B.有一个公共点C.一定有公共点D.可能无公共点4.(2023春•梅江区校级月考)二次函数y=x2﹣2x﹣1与x轴交点个数情况为()A.有两个不同的交点B.只有一个交点C.没有交点D.无法确定5.(2022秋•集贤县期末)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为()A.m=0或B.C.m=1或D.m=1或m=06.(2022秋•阜宁县期末)抛物线y=x2﹣bx﹣1与x轴交点的个数为()A.0个B.1个C.2个D.以上都不对7.(2022秋•新城区期末)二次函数y=x2﹣2x+1的图象与x轴的交点个数是()A.0个B.1个C.2个D.不能确定8.(2023•三江县校级一模)若二次函数y=ax2+bx+c的部分图象如图所示,则关于x的方程ax2+bx+c=0的解为()A.x1=﹣2,x2=3B.x1=﹣1,x2=3C.x1=0,x2=3D.x1=1,x2=3【题型2: 图像法确定一元二次方程的根】9.(2022秋•林州市期末)根据如表中代数式ax2+bx的取值情况,可知方程ax2+bx ﹣6=0的根是()x……﹣3﹣2﹣10123……ax2+bx……12620026……A.x1=0,x2=1B.x2=﹣1,x1=2C.x1=﹣2,x2=3D.x1=﹣3,x2=4 10.(2023•澄城县一模)若二次函数y=ax2+bx+c的图象经过点(﹣1,0),(2,0),则关于x的方程ax2+bx+c=0的解为()A.x1=﹣1,x2=2B.x1=﹣2,x2=1C.x1=1,x2=2D.x1=﹣1,x2=﹣211.(2022秋•宛城区期末)根据下表中代数式ax2+bx的取值情况,可知方程ax2+bx﹣6=0的根是()x…﹣3﹣2﹣10123…ax2+bx…12620026…A.x1=0,x2=1B.x1=﹣1,x2=2C.x1=﹣2,x2=3D.x1=﹣3,x2=4【题型3:已知函数值y求X的取值范围】12.(2022秋•长春期末)已知二次函数y=ax2+bx+c的部分图象如图所示,当y>0时,x的取值范围是()A.x>﹣3B.﹣3<x<1C.x<﹣3或x>1D.x<1 13.(2022秋•合肥月考)如图所示的是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5B.x>5C.x<﹣1且x>5D.x<﹣1或x>5 14.(2022•泸县校级一模)二次函数y=ax2+bx+c的部分图象如图所示,则关于x的不等式ax2+bx+c≥2的解集是()A.x≤2B.x≤0C.﹣3≤x≤0D.x≤﹣3或x≥0 15.(2022秋•萧山区月考)已知抛物线y=x2+bx的对称轴为直线x=3,则关于x的不等式x2+bx<﹣8的取值范围是()A.1<x<5B.2<x<4C.0<x<6D.﹣1<x<7 16.(2022秋•泰山区校级月考)二次函数y=a2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c<0的解集是()A.x>﹣3B.x<1C.﹣3<x<1D.x<﹣3或x>1 17.(2023•泸县校级一模)二次函数y=x2﹣2x﹣3.若y>﹣3,则自变量x的取值范围是()A.x<0或x>2B.x<1或x>3C.0<x<2D.1<x<3 18.(2022秋•金东区期末)已知抛物线y=﹣3x2+bx+c经过点A(0,2)、B (4,2),则不等式﹣3x2+bx+c<2的解集是.【题型4:二次函数与不等式的关系】19.(2022秋•同江市期末)如图,已知y1=ax2+bx+c(a≠0)与y2=kx+b(k≠0)相交于A(﹣1,0)、B(﹣4,3)两点,则y1>y2的x的取值范围是()A.x<﹣4B.﹣4<x<﹣1C.x>﹣1D.x<﹣4或x>﹣120.(2023•娄底模拟)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2﹣mx+c<n的解集为()A.x>﹣1B.x<3C.﹣1<x<3D.x<﹣3或x>1 21.(2022秋•保定期末)如图,已知抛物线y=ax2+bx+c与直线y=kx+m交于A(﹣3,﹣1),B(0,3)两点.则关,于x的不等式ax2+bx+c≤kx+m的解集是.22.(2022秋•番禺区校级期末)如图,直线y=x﹣1与抛物线y=x2﹣3x+2都经过点A(1,0)和B(3,2),则不等式x﹣1>x2﹣3x+2的解集是.23.(2022秋•市中区期末)如图,已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象交于点A(﹣1,3),B(4,2).如图所示,则能使y1<y2成立的x的取值范围是.【题型5:二次函数综合】24.(2022秋•武城县月考)如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A,B两点.(1)求A,B,C三点的坐标;(2)求经过A,B,C三点的抛物线的解析式.25.(2021秋•天津期末)如图,已知抛物线y=﹣x2+mx+3与x轴交于A、B两点,与y轴交于点C,点B的坐标为(3,0).(1)求m的值及抛物线的顶点坐标;(2)求△ABC的面积;(3)点P是抛物线对称轴1上的一个动点,当P A+PC的值最小时,求点P 的坐标.26.(2022秋•青龙县月考)如图,抛物线y=ax2﹣4ax+3(a≠0)的图象交直线l:y=x+1于A,B两点,与x轴的另一个交点为C,与y轴交于点D.(1)求抛物线的解析式;(2)连接AD,BD,求△ADB的面积;(3)若抛物线的对称轴上存在一动点E,使EA+ED的值最小,求点E的坐标.27.(2022秋•黔东南州月考)如图,抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0),B(1,0),与y轴相交于点C.(1)求抛物线的函数表达式;(2)在抛物线的对称轴上是否存在上点P,使得以点A、C、P为顶点的三角形是直角三角形,若存在,求出点P坐标若不存在,请说明理由.28.(2022秋•越秀区校级月考)抛物线y=﹣x2+2x+8与x轴交于A,B两点(A 在B的左侧),与y轴交于点C,点M是抛物线在x轴上方部分一动点,过点M作直线MH⊥y轴于H.(1)如图1,当HM=3时,求△ABM的面积;(2)如图2,若△MCO是以CO为底的等腰三角形,求点M的坐标.29.(2022秋•平桂区期末)如图,二次函数y=ax2+bx+5的图象经过点(1,8),且与x轴交于A、B两点,与y轴交于点C,其中点A(﹣1,0),M为抛物线的顶点.(1)求二次函数的解析式;(2)求△MCB的面积;(3)在坐标轴上是否存在点N,使得△BCN为直角三角形?若存在,求出点N的坐标;若不存在,请说明理由.30.(2022秋•萧山区期中)已知二次函数y=x2﹣2mx+2m2﹣2.(1)若m=2,则该抛物线的对称轴为;若A(m﹣2,y1),B(m+1,y2)两点在该二次函数图象上,则y1与y2的大小关系为;(2)若该函数图象的顶点到x轴的距离等于2,试求m的值;(3)若抛物线在1≤x≤3时,对应的函数有最大值3,求m的值.31.(2022秋•汉川市期中)在平面直角坐标系xOy中,抛物线与x 轴交于O,A两点,过点A的直线与y轴交于点C,交抛物线于点D.(1)直接写出点A,C,D的坐标;(2)如图1,点B是直线AC上方第一象限内抛物线上的动点,连接AB和BD,求△ABD面积的最大值;(3)如图2,若点M在抛物线上,点N在x轴上,当以A,D,M,N为顶点的四边形是平行四边形时,求点N的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次函数综合练习题21、二次函数y=ax +bx+c(a^O)的图象如图所示,对称轴是直线x=1 ,则下列四个结论错误.的是A. C . 0 B . 2a b=0 C . b -4ac 0 D . a -b c 02、已知二次函数y = ax2 bx - C的图象如图所示,有以下结论:① a b ^::0 :②a—b∙c 1 :③abc 0 :④4a -2b c < 0 :⑤c - a 1其中所有正确结论的序号是()A .①②B.①③④C.①②③⑤ D .①②③④⑤23、二次函数y =ax bx c(a = 0)的图象如图,下列判断错误的是()2A. a ::: 0 B . b :: 0 c. C :: 0 D . b -4ac :: 04、二次函数y =ax2 bx C的图象如图所示,则下列关系式中错误的是()A . a v 0B . c>0C . b2-4ac > 0D . abc > 0 5、某校运动会上,某运动员掷铅球时,他所掷的铅球的高丁;:与水平的距离、1 2 5- :■'■' ■,则该运动员的成绩是()]匚—•3A. 6mB. 10mC. 8mD. 12m […“”6、抛物线y = ax2+ bx+ C上部分点的横坐标X,纵坐标y的对应值如表所示.给出下列说法:①抛物线与y轴的交点为(0 , 6);②抛物线的对称轴是在y轴的右侧;③抛物线一定经过点(3 , 0); ④在对称轴左侧,y随X增大而减小.A. 1个B . 2个 C . 3个D . 4个27、抛物线y = x -2x 3与坐标轴交点为(X—3—2—101y—60466A.二个交点B . 一个交点C .无交点D .三个交点8、二次函数y = x2的图象向下平移2个单位,得到新图象的二次函数表达式是()2 2—2 2A . y = X —2B . y = (X —2)C . y= X + 2D . y = (X+ 2)9、若二次函数y = 2x2—2mx+ 2n i—2的图象的顶点在y轴上,则m的值是()A.0B. ± 1C. ± 2D. ± V 210、二次函数y=ax2+bx+c的图像如图所示,则关于此二次函数的下列四第2题2b个结论①a<0②a>0③b -4ac>0④:::0中,正确的结论有()aA.1个B.2 个C.3 个D.4 个11、抛物线y =aχ2∙ bx ∙ c(a 0)的对称轴是直线x =1 ,且经过点( A. 0 )B. C. 1 D. 212、 已知二次函数y = ax 2+ bx + c (a ≠ 0)的图象如图所示, ②当X =1时,函数有最大值。
③当 X 二-1或X = 3时, 4a 2b c :::0其中正确结论的个数是( ) A.1 B.2 C.3 D.413、 关于二次函数 y =ax 2+bx+c 的图象有下列命题:①当 . . 2原点;②当c >0时且函数的图象开口向下时, ax +bx+c=0必有两个不等实根; 2 数图象最高点的纵坐标是 4ac —b;④当b=0时, 函数的图象关于y 轴对称•其中 4a 正确的个数是( B A.1个 C 、3 个 D. 4 1 y3U给出以下结论:①abc ::: 0 函数y 的值都等于 0.④ c=0时,函数的图象经过 ③函 14、抛物线1y= _ X 2) 向左平移 8个单位,再向下平移 9个单位后, 所得抛物线的表 达式是( 1 2 A. y= (x+8) -9 B. y= 215、下列关于二次函数的说法错误的是(1(x-8) 2+9 C. y= 2 A 抛物线y=-2x 2+ 3x + 1的对称轴是直线 C 二次函数y=(x + 2) 2 - 2的顶点坐标是 16、二次函数 y = -X 2 1的图象与 1 (x-8) 2 ) 3 DX= ; B 4(-2 , -2); 2 . -9 D. y= 1 (x+8) 2+9 2 2 点A (3,0)不在抛物线y=x -2x-3 的图象上; 2D 函数 y=2x + 4x-3 X 轴交于A 、B 两点,与y 轴交于点C, 的图象的最低点在(-1 , -5 )下列说法错误的是( A.点C 的坐标是(0, 1) C.A ABC 是等腰直角三角形 .线段AB 的长为2 .当x>0时,y 随X 增大而增大 17、如图,点A ,B 的坐标分别为 2(1,4)和(4, 4)抛物线 y = a(x - m) + n 的顶点在线段 AB 上运动,与X 轴交于C 、D 两点(C 在D 的左侧),点 的横坐标最小值为 A . - 3 -3 ,则点D 的横坐标最大值为() B . 1 C . 5 D . 8C 18、已知二次函数 2 y =ax bx C 的图象如图所示,有以下结论: ① abc ::0 :② a-b e 1 :③ abc 0 :④ 4a -2b ■ c ::0 ; ⑤e -a 1其中所有正确结论的序 A.①② B.①③④ 号是( ) C.①②③⑤ D.①②③④⑤ 19、在同一直角坐标系中,函数 -mx 2 2x 2 (m 是常数,且m = O )的图象可能是( ) 20、若一次函数 y =(m 1)x m 的图象过第一、三、四象限,则函数y = mx 2 - mx ()A •有最大值4B.有最大值^4mC.有最小值一4D•有最小值诗21、 抛物线y =2χ2 ∙ 8x m 与X 轴只有一个公共点,则 m 的值为 ____________ . 22、 已知抛物线y =X 2 _2x_3 ,若点P ( _2 , 5)与点Q 关于该抛物线的对称轴对称,则点 Q 的坐标是 _______________ .23、 已知二次函数的图象经过点 A (-3,0), B (0,3), C ( 2, — 5),且另与X 轴交于D 点。
(1) 试确定此二次函数的解析式; (2)判断点P (— 2,3)是否在这个二次函数的图象上?如果在,请求出厶 PAD 的面积; 如果不在,试说明理由.1 225、已知二次函数 y = -一X 2 +bx+c 的图象经过 A (2, 0)、B (0,— 6)两点。
2(1) 求这个二次函数的解析式(2) 设该二次函数的对称轴与 X 轴交于点C ,连结BA 、BC ,求△ ABC 的面积。
26、如图,抛物线 y - -X 2 ∙ bx ∙ C 与X 轴交与A(1,0), B(- 3 , 0)两点,(1) 求该抛物线的解析式;(2)设(1)中的抛物线交y 轴与C 点,在该抛物线的对称轴上是否存在点Q 使得△ QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由•27、已知二次函数 y = X 2 + bx + c + 1的图象过点P( 2, 1). (1) 求证:c =— 2b —4;224、已知二次函数 y = -X 点坐标为(0, 3 )。
(1) 求此二次函数的解析式; (2) 根据图象,写出函数值3(3) 若二次函数的图象与X轴交于点A(xι, 0)、B(X2, 0) , △ ABP的面积是—,求b的值.28、某中学新校舍将于2011年1月1日动工。
在新校舍内将按如图所示设计一个矩形花坛,花坛的长、宽分别为200 m、120 m,花坛中有一横两纵的通道,横、纵通道的宽度分别为3x m、2x m. (1) 用代数式表示三条通道的总面积S;当通道总面积为花坛总面积的丄1时,求横、纵通道的宽分别是多少?125(2) 如果花坛绿化造价为每平方米3元,通道总造价为3168 X元, 那么横、纵通道的宽分别为多少米时,花坛总造价最低?并求出最低造价.(以下数据可供参考:852= 7225, 862= 7396 , 872= 7569)29、抛物线y=x2+4x+3交X轴于A、B两点,交y轴于点C, 抛物线的对称轴交X轴于点E.(1) 求抛物线的对称轴及点A的坐标;(2) 在平面直角坐标系xoy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;30、如图,已知二次函数y =ax2-4x C的图像经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P (m, m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到X轴的距离.1. (2011?成都)如图,在平面直角坐标系 Xoy 中,△ ABC 的A 、B 两个顶点在X 轴上,顶点C 在y 轴的负半轴上.已知2∣OA ∣: IOBI=1: 5, ∣OBl=IOCl , △ ABC 的面积S A ABC =15,抛物线 y=ax +bx+c ( a ≠0 经过 A 、B 、C 三点.(1) 求此抛物线的函数表达式; (2)设E 是y 轴右侧抛物线上异于点 B 的一个动点,过点 E 作X 轴的平行线交抛物线于另一点F ,过点F 作FG 垂直于 X轴于点G ,再过点E 作EH 垂直于X 轴于点H ,得到矩形EFGH .则在点E 的运动过程中,当矩形 EFGH 为正方形时, 求岀该正方形的边长;(3) 在抛物线上是否存在异于 B 、C 的点M ,使△ MBC 中BC 边上的高为错误!未找到引用源。
?若存在,求出点 M 的 坐标;若不存在,请说明理由.七、〔满分8分)22.抛物线y=a χ-^bx+c -U A 轴的交点为A (用一4Q) B(m,0)τ与直线尸r+尹相交于点A和点 C(2m -4,m -6)-(1)求抛物线的解析式;(2)若点P 在抛物线上*且以点P 和甩C 以及另一点Q 为顶点的平行阿边形ACQP 面积为12*求点RQ 的坐标;在(2)条件下,若点M 是X 轴手方抛物线上的动点.肖MPQM 的面积最大时’ 诸求出VPQM 的诫大面积及点M 的坐标n5 (眉山如图.在直角坐标系中,已知点A(Q . 1. ), B(-4 . 4).将点B绕点A顺时针方向旋转90°得到点C,顶点在坐标原点的抛物线经过点 B .(1) 求抛物线的解析式和点 C 的坐标;(2) 抛物线上一动点 P .设点P 到X 轴的距离为d 1 ,点P 到点A 的距离为d 2 ,试说明d^ d 1 1 ;(3) 在-(2)的条件下,请探究当点 P 位于何处时.△ PAC 的周长有最小值,并求出厶 PAC 的周长的最小 值。
^ax 2 2x c (a 0)图像的顶点M 在反比例函数y = 3上,且与X 轴X交于AB 两点。
宜宾)已知抛物线的顶点是 C (0, a) (a>0, a 为常数),并经过点(2a , 2a),点D (0, 2a )为一定点 (1)求含有常数a 的抛物线的解析式;⑵设点P 是抛物线任意一点,过 P 作PH 丄X 轴,垂足是H ,求证:PD = PH ; (3) 设过原点O 的直线I 与抛物线在第一象限相交于 源:学&科&网Z&X&X&K ][来源:学科网] 10.(达州) (10分)如图,已知抛物线与 X 轴交于A(1 , 0), B (- 3 , 0)两点,与y 轴交于点 C(0, 3),抛物线的顶点为 P ,连结AC . (1)求此抛物线的解析式;⑵在抛物线上找一点 D ,使得DC 与AC 垂直,且直线 DC 与X 轴交于点Q ,求点D 的坐标;(1) (2)1 X,试求a,c 的值;2在(1)的条件下求AB 的长;若二次函数的对称轴为 (3) 若二次函数的对称轴与 X 轴的交点为N,当NO+M 取最小值时,试求二 次函数的解析式。