实验2指导书 组合逻辑电路的设计
实验二 组合逻辑电路的设计
实验二组合逻辑电路的设计一、实验目的1.设计8段译码器、两路4位二进制比较器,并在实验装置上验证所设计的电路;2.学习用VHDL语句进行逻辑描述。
二、实验要求用VHDL设计8段译码器、两路4位二进制比较器,对CPLD器件进行配置及下载来验证自己的设计,验证电路的外围器件可选用按键输入、指示灯输出。
三、设计方案按键的状态作为输入,输出对应数字的编码,连接到数码管上面可以看到数码管显示对应的数值。
代码:LED.vhdlibrary ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity LED isport(number:in std_logic_vector(3 downto 0);ledout:out std_logic_vector(7 downto 0));end;architecture u1 of LED isbeginwith number selectledout<="00111111"when"0000", --0"00000110"when"0001", --1"01011011"when"0010", --2"01001111"when"0011", --3"01100110"when"0100", --4"01101101"when"0101", --5"01111101"when"0110", --6"00000111"when"0111", --7"01111111"when"1000", --8"01101111"when"1001", --9"01110111"when"1010", --A"01111100"when"1011", --B"00111001"when"1100", --C"01011110"when"1101", --D"01111001"when"1110", --E"01110001"when"1111"; --Fend;实验结果:按下试验箱的按键后,数码管显示按键的状态。
《VLSI设计》实验指导书
实验一简单组合逻辑电路的设计与仿真一、实验目的(1)初步掌握Verilog/VHDL程序的基本结构(2)学会编写简单的Verilog/VHDL程序(3)掌握用Modelsim软件进行RTL级代码的设计和仿真的基本方法(4)掌握基本组合逻辑电路的实现方法。
二、实验内容这是一个可综合的数据比较器,很容易看出它的功能是比较数据a与数据b,如果两个数据相同,则给出结果1,否则给出结果0。
在Verilog HDL中,描述组合逻辑时常使用assign 结构。
注意equal=(a==b)?1:0,这是一种在组合逻辑实现分支判断时常使用的格式。
设计模块://--------------- compare.v -----------------------module compare (equal,a,b);input a,b;output equal;assign equal=(a==b)?1:0; // a等于b时,equal输出为1;a不等于b时,equal输出为0。
endmodule测试模块用于检测模块设计得正确与否,它给出模块的输入信号,观察模块的内部信号和输出信号,如果发现结果与预期的有所偏差,则要对设计模块进行修改。
测试模块://--------------- test_compare.v-----------------module test_compare;reg a,b;wire equal;initial // initial常用于仿真时信号的给出。
begin a=0; b=0;#100 a=0; b=1;#100 a=1; b=1;#100 a=1; b=0;#100 $stop; // 系统任务,暂停仿真以便观察仿真波形。
endcompare compare1(.equal(equal),.a(a),.b(b)); // 调用模块。
endmodule仿真波形(部分):三、实验步骤1、产生一个工作库在对设计进行仿真之前,你首先需产生一个库,用于放置编译的源代码。
数字电子技术基础实验二 组合逻辑电路设计
数字电子技术基础实验报告题目:实验二组合电路设计小组成员:小组成员:1.掌握全加器和全减器的逻辑功能;2.熟悉集成加法器的使用方法;3.了解算术运算电路的结构;4.通过实验的方法学习数据选择器的结构特点、逻辑功能和基本应用。
二、实验设备1.数字电路实验箱;2.Quartus II 软件。
三、实验要求要求1:参照参考内容,调用MAXPLUSⅡ库中的组合逻辑器件74153双四数据选择器和7400与非门电路,用原理图输入方法实现一一位全加器。
(1)用 Quartus II波形仿真验证;(2)下载到 DE0 开发板验证。
要求2:参照参考内容,调用MAXPLUSⅡ库中的组合逻辑器件74138三线八线译码器和门电路,用原理图输入方法实现一位全减器。
(1)用 Quartus II 波形仿真验证;(2)下载到 DE0 开发板验证。
要求3:参照参考内容,调用MAXPLUSⅡ库中的组合逻辑器件74138三线八线译码器和门电路,用原理图输入方法实现一个两位二进制数值比较器。
(MULTISM仿真和FPGA仿真)。
1、74138三线八线译码器原理2、74153双四数据选择器原理3、全加器原理全加器能进行加数、被加数和低位来的进位信号相加,并根据求和的结果给出该位的进位信号。
图一图一是全加器的符号,如果用i A,i B表示A,B两个数的第i位,1i C 表示为相邻低位来的进位数,i S表示为本位和数(称为全加和),i C表示为向相邻高位的进位数,则根据全加器运算规则可列出全加器的真值表如表一所示。
表一可以很容易地求出S 、C 的化简函数表达式。
i i i-1i i i-1i i ()i i S A B C C A B C A B =⊕⊕=⊕+用一位全加器可以构成多位加法电路。
由于每一位相加的结果必须等到低一位的进位产生后才能产生(这种结构称为串行进位加法器),因而运算速度很慢。
为了提高运算速度,制成了超前进位加法器。
这种电路各进位信号的产生只需经历以及与非门和一级或非门的延迟时间,比串行进位的全加器大大缩短了时间。
实验2 组合逻辑电路的设计
4. 实验内容及要求 (1) 用与非门设计实现异或逻辑功能。 a) 按照组合逻辑电路的设计方法, 列出两输入异或逻辑函数的真值表, 写出最简 与或式、与非-与非式,画出与非门实现的逻辑电路图。 b) 使用集成电路芯片 74LS10 和 74LS20 中的与非门, 按照所设计的逻辑电路图连 接电路。 c) 选择使用数字电路实验装置中的逻辑电平输入开关和逻辑电平输出 LED 指示 灯,设计实验测试方案。 d) 记录并分析实验数据参考表 2-2, 说明所设计的电路是否实现预计的异或逻辑 功能。
以二值逻辑的 0、1 两种状态分别代表输入变量和输出变量的两种不同状态。这里 0 和 1 的具体含意完全是由设计者人为选定的。
3) 根据给定的因果关系列出逻辑真值表。 举例: “大月指示器”的逻辑功能如下:输入一年中的具体月份,电路能自动判别出“大月” 还是“小月” (大月有 31 天) 。 通过分析,逻辑抽象结果为:月份输入 ABCD 可以由 4 位二进制代码表示,例如 ABCD=0001 表示输入月份为 1 月, ABCD=0010 表示 2 月, ABCD=0011 表示 3 月,...... , ABCD=1100 表示 12 月;输出 Y 的逻辑值 1 或 0 分别表示信息“大月”或“小月” ,Y=1 表 示大月,Y=0 表示小月。列出真值表如表 2-1 所示。
得到最简与或式为选定器件的类型实际逻辑问题逻辑抽象逻辑函数化简变换表达画出逻辑连接电路实现为了实现最终的逻辑函数既可以用小规模集成门电路组成相应的逻辑电路也可以用中规模集成的常用组合逻辑器件或可编程逻辑器件等构成相应的逻辑电路
实验二 组合逻辑电路的设计
1. 实验目的 (1)熟练使用数字电路实验装置设计实验方案; (2)掌握用基本门电路实现组合电路的设计方法。 (3)掌握实现组合逻辑电路的连接及调试方法。 2. 实验仪器与材料 (1)数字电路实验装置 1 台; (2)双列直插集成电路芯片 74LS10、74LS20 各 1 片,导线若干。 3 . 知识要点 (一)组合逻辑电路的设计方法
组合逻辑电路的设计实验报告
竭诚为您提供优质文档/双击可除组合逻辑电路的设计实验报告篇一:数电实验报告实验二组合逻辑电路的设计实验二组合逻辑电路的设计一、实验目的1.掌握组合逻辑电路的设计方法及功能测试方法。
2.熟悉组合电路的特点。
二、实验仪器及材料a)TDs-4数电实验箱、双踪示波器、数字万用表。
b)参考元件:74Ls86、74Ls00。
三、预习要求及思考题1.预习要求:1)所用中规模集成组件的功能、外部引线排列及使用方法。
2)组合逻辑电路的功能特点和结构特点.3)中规模集成组件一般分析及设计方法.4)用multisim软件对实验进行仿真并分析实验是否成功。
2.思考题在进行组合逻辑电路设计时,什么是最佳设计方案?四、实验原理1.本实验所用到的集成电路的引脚功能图见附录2.用集成电路进行组合逻辑电路设计的一般步骤是:1)根据设计要求,定义输入逻辑变量和输出逻辑变量,然后列出真值表;2)利用卡络图或公式法得出最简逻辑表达式,并根据设计要求所指定的门电路或选定的门电路,将最简逻辑表达式变换为与所指定门电路相应的形式;3)画出逻辑图;4)用逻辑门或组件构成实际电路,最后测试验证其逻辑功能。
五、实验内容1.用四2输入异或门(74Ls86)和四2输入与非门(74Ls00)设计一个一位全加器。
1)列出真值表,如下表2-1。
其中Ai、bi、ci分别为一个加数、另一个加数、低位向本位的进位;si、ci+1分别为本位和、本位向高位的进位。
2)由表2-1全加器真值表写出函数表达式。
3)将上面两逻辑表达式转换为能用四2输入异或门(74Ls86)和四2输入与非门(74Ls00)实现的表达式。
4)画出逻辑电路图如图2-1,并在图中标明芯片引脚号。
按图选择需要的集成块及门电路连线,将Ai、bi、ci接逻辑开关,输出si、ci+1接发光二极管。
改变输入信号的状态验证真值表。
2.在一个射击游戏中,每人可打三枪,一枪打鸟(A),一枪打鸡(b),一枪打兔子(c)。
电子系统设计实验指导书(FPGA基础篇Vivado版)
实验指导书(FPGA 基础篇 Vivado 版)
东南大学 电子科学 ........................................................................................................................................................... 1
安全使用规范
东南大学 电子科学与工程学院
无论何时,外部电源供电与 USB 两种供电方式只能用其中一种,避免因为电压有所差别而烧坏电路板。 采用电压高于5.5V的任何电源连接器可能造成永久性的损害。 插拔接插件前请关闭电路板总开关,否则易损坏器件。 电路板应在绝缘平台上使用,否则可能引起电路板损坏。 不同编码机制不要混接。 安装设备需防止静电。 液晶显示器件或模块结雾时,不要通电工作,防止电极化学反应,产生断线。 遇到正负极连接时需谨慎,避免接反引起开发板的损坏。 保持电路板的表面清洁。 小心轻放,避免不必要的硬件损伤。
实验目的 ....................................................................................................................................................... 17 实验内容 ....................................................................................................................................................... 17 实验要求 ....................................................................................................................................................... 17 实验步骤 ....................................................................................................................................................... 17 实验结果 ....................................................................................................................................................... 22
实验二组合逻辑电路的设计与测试
实验二组合逻辑电路的设计与测试一、实验目的1、掌握组合逻辑电路的设计与测试方法2、设计半加器和全加器并测试其逻辑功能二.实验仪器及材料器件:74LS00 二输入端四与非门 1片74LS10 三输入端三与非门 1片74LS86 二输入端四异或门 1片三、实验原理1、设计组合电路的一般步骤如图2-1所示。
图2-1 组合逻辑电路设计流程图组合逻辑电路基本设计方法:(1)根据设计任务的要求建立输入、输出变量,并列出真值表。
(2)然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式。
并按实际选用逻辑门的类型修改逻辑表达式(3)根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。
(4)最后,用实验来验证设计的正确性。
2、 组合逻辑电路设计举例设计任务: 用“与非”门设计一个四个人的表决电路。
当四个输入端中有三个或四个为“1”时,输出端才为“1”。
(同意用"1"表示,反对用"0"表示;决议通过用"1"表示,不通过用"0"表示。
)设计步骤:(1)根据题意列出真值表如表2-1所示,再填入卡诺图表2-2中。
表2-2(2) 由卡诺图得出逻辑表达式,并演化成“与非”的形式 Z =ABC +BCD +ACD +ABD =ABC ACD BCD ABC ⋅⋅⋅(3)根据逻辑表达式画出用“与非门”构成的逻辑电路如图2-2所示。
图2-2 表决电路逻辑图(4)用实验验证逻辑功能A 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1B 0 0 0 0 1 1 11 0 0 0 0 1 1 1 1C 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Z 0 0 0 0 0 0 0 1 0 00 1 0 1 1 1 CD AB00 01 11 10 0001 111 1 1 110 1在实验装置适当位置选定三个14P插座,按照集成块定位标记插好集成块74LS20。
实验2组合逻辑电路设计(预习报告)
实验二组合逻辑电路的设计
一、实验目的
略
二、实验器件数据
Figure 1 74HC02N(或非)
Figure 2 74HC00(n),与非门74LS00
Figure 3 74HC86N(异或)74LS86
三、 实验原理
1. 二进制加法运算电路
二进制加法电路可以由一位全加器组合而成; 全加器逻辑表达式为:111()=('()')'n n n n n
n n n n n n n n n n D A B C C A B C A B A B C A B ---=⊕⊕⎧
⎨
=+⊕⊕⎩g g ()'
一位全加器电路实现如下:
图中,用74LS00D 代替74HC86N
如果要实现多为二进制的加法运算,可将多个全加器级联。
例如将两个全加器级联, 并且在最后输出接一个带解码器的数字显示管,就构成了一个两位二进制数相加的加法器,
如
下图
2.二进制减法运算电路
为了实现减法电路,引入了补码系统,求补码只需让输入取反并使最后一位来自低位进位置高电平,其中,取反可以通过与高电平做异或运算来实现,电路如下:
注意:此时图中电子管输出应该为减法答案的补码。
下面,将补码答案转换为原码。
有如下电路:
注意,通过对图中低电平/高电平的转换(低位的进位信息和补码的取反信息),该减法电路实际上可以变化为加法电路。
可以加入控制信号K,使其为1时电路执行减法,否则执行加法,电路如下:
四、实验内容
1.基本要求:
原码输出结果,并显示正负标志2.提高要求:略。
数电实验二 组合逻辑电路
实验二 组合逻辑电路一、实验目的1、熟悉组合逻辑电路的一些特点及一般分析、设计方法。
2、熟悉中规模集成电路典型的基本逻辑功能和简单应用设计。
二、实验器材1、直流稳压电源、数字逻辑电路实验箱、万用表、示波器2、74LS00、74LS04、74LS10、74LS20、74LS51、74LS86、74LS138、74LS148、74LS151、 74LS153三、实验内容和步骤 1、组合逻辑电路分析(1)图2-1是用SSI 实现的组合逻辑电路。
74LS51芯片是“与或非”门(CD AB Y +=), 74LS86芯片是“异或”门(B A Y ⊕=)。
建立实验电路,三个输入变量分别用三个 逻辑开关加载数值,两个输出变量的状态分别用两只LED 观察。
观察并记录输出变 量相应的状态变化。
整理结果形成真值表并进行分析,写出输出函数的逻辑表达式, 描述该逻辑电路所实现的逻辑功能。
(2)图2-2和2-3是用MSI 实现的组合逻辑电路。
图2-2中的74LS138芯片是“3-8译码 器”,74LS20芯片是“与非”门(ABCD Y =)图2-3中的74LS153芯片是四选一 数据选择器。
建立实验电路,对两个逻辑电路进行分析,列出真值表,写出函数的逻 辑表达式,描述逻辑电路所实现的功能。
图2-1:SSI 组合逻辑电路图2-2 :MSI 组合逻辑电路(74LS138)2、组合逻辑电路设计(1)SSI 逻辑门电路设计——裁判表决电路举重比赛有三名裁判:一个主裁判A 、两个副裁判B 和C 。
在杠铃是否完全举起裁 决中,最终结果取决于至少两名裁判的裁决,其中必须要有主裁判。
如果最终的裁决 为杠铃举起成功,则输出“有效”指示灯亮,否则杠铃举起失败。
(2)MSI 逻辑器件设计——路灯控制电路用74LS151芯片和逻辑门,设计一个路灯控制电路,要求能够在四个不同的地方都 能任意的开灯和关灯。
四、实验结果、电路分析及电路设计方案1、组合逻辑电路分析 (1)图2-1: 逻辑表达式:)()(11i i i i i i i i i i B A C S B A C B A C ⊕⊕=⊕+=--逻辑功能:实现A i 、B i 、C i-1三个一位二进制数 的加法运算功能,即全加器。
实验2组合逻辑电路的设计
实验2组合逻辑电路的设计实验2 组合逻辑电路的设计⼀、试验⽬的1、掌握组合逻辑电路的设计⽅法。
2、掌握组合逻辑电路的静态测试⽅法。
3、熟悉CPLD设计的过程,⽐较原理图输⼊和⽂本输⼊的优劣。
⼆、实验的硬件要求1、输⼊:按键开关(常⾼)4个;拨码开关4位。
2、输出:LED灯。
3、主芯⽚:Altera EPM7128SLC84-15。
三、实验内容1、设计⼀个四舍五⼊判别电路,其输⼊为8421BCD码,要求当输⼊⼤于或等于5时,判别电路输出为1,反之为0。
2、设计四个开关控制⼀盏灯的逻辑电路,要求改变任意开关的状态能够引起灯亮灭状态的改变。
(即任⼀开关的合断改变原来灯亮灭的状态)3、设计⼀个优先排队电路,其框图如下:排队顺序:A=1 最⾼优先级B=1 次⾼优先级C=1 最低优先级要求输出端最多只能有⼀端为“1”,即只能是优先级较⾼的输⼊端所对应的输出端为“1”。
四、实验连线1、四位拨码开关连D3、D2、D1、D0信号对应的管脚。
OUT输出信号管脚接LED灯。
2、四位按键开关分别连K1、K2、K3、K4信号对应的管脚。
OUT输出信号管脚接LED灯。
3、A、B、C信号对应管脚分别连三个按键开关。
输出A_Out、B_Out、C_Out信号对应的管脚分别连三个LED灯。
(具体管脚参数由底层管脚编辑决定)五、参考原理图1、①原理图,如图2-1所⽰:②VHDL硬件描述语⾔输⼊:library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_signed.all;entity bcd_pjq isport(din:in integer range 15 downto 0;dout:out std_logic);end;architecture a of bcd_pjq isbeginp1:processbeginif din<5 thendout<='0';elsedout<='1';end if;end process p1;end;2、①原理图,如图2-2所⽰:②VHDL硬件描述语⾔输⼊:library ieee; use ieee.std_logic_1164.all;entity led_control isport(k0,k1,k2,k3:in std_logic;y:out std_logic); 图2-1图2-2end ;architecture one of led_control is signal dz:std_logic_vector(3 downto 0); begindz<=k3&k2&k1&k0p1:process(dz)begincase dz iswhen "0000"=>y<='0';when "0001"=>y<='1';when "0011"=>y<='0';when "0010"=>y<='1';when "0110"=>y<='0';when "0111"=>y<='1';when "0101"=>y<='0';when "0100"=>y<='1';when "1100"=>y<='0';when "1101"=>y<='1';when "1111"=>y<='0';when "1110"=>y<='1';when "1010"=>y<='0';when "1011"=>y<='1';when "1001"=>y<='0';when "1000"=>y<='1';when others=>y<='X';end case;end process p1;end one;3、①原理图,如图2-3所⽰:②VHDL 硬件描述语⾔输⼊:library ieee;use ieee.std_logic_1164.all; entity queue_prior is图2-3port(a,b,c:in std_logic;aout,bout,cout:out std_logic); end ;architecture one of queue_prior is beginp1:processbeginif a='1' thenaout<='1';bout<='0';cout<='0';elsif b='1' thenaout<='0';bout<='1';cout<='0';elsif c='1' thenaout<='0';bout<='0';cout<='1';elseaout<='0';bout<='0';cout<='0';end if;end process p1;end one;六、实验报告要求1、对于原理图设计要求有设计过程。
电子系统设计实验指导书(FPGA基础篇Vivado版)
东南大学 电子科学与工程学院
安全使用规范
无论何时,外部电源供电与 USB 两种供电方式只能用其中一种,避免因为电压有所差别而烧坏电路板。 采用电压高于5.5V的任何电源连接器可能造成永久性的损害。 插拔接插件前请关闭电路板总开关,否则易损坏器件。 电路板应在绝缘平台上使用,否则可能引起电路板损坏。 不同编码机制不要混接。 安装设备需防止静电。 液晶显示器件或模块结雾时,不要通电工作,防止电极化学反应,产生断线。 遇到正负极连接时需谨慎,避免接反引起开发板的损坏。 保持电路板的表面清洁。 小心轻放,避免不必要的硬件损伤。
2
东南大学 电子科学与工程学院
assign c2=a|b; assign c3=~a; assign c4=~(a&b); assign c5=~(a|b); assign c6=a^b; endmodule 寄存器传输描述方式源程序: module gate(a,b,c1,c2,c3,c4,c5,c6); input a,b; output c1,c2,c3,c4,c5,c6; reg c1,c2,c3,c4,c5,c6; always@(a or b) begin case({a,b}) 2'b00: begin c1<=0;c2<=0;c3<=1;c4<=1;c5<=1;c6<=0; end 2'b01: begin c1<=0;c2<=1;c3<=1;c4<=1;c5<=0;c6<=1; end 2'b10: begin c1<=0;c2<=1;c3<=0;c4<=1;c5<=0;c6<=1; end 2'b11: begin c1<=1;c2<=1;c3<=0;c4<=0;c5<=0;c6<=0; end default: begin c1<=0;c2<=0;c3<=0;c4<=0;c5<=0; c6<=0; end endcase end endmodule (1) 进行语法检查和综合编译。 (2) 编写 testbench,进行时序仿真。
实验二组合逻辑电路的分析与设计
实验二:组合逻辑电路分析与设计姓名: 夕何【实验目的】1.掌握组合逻辑电路的分析方法,并验证其逻辑功能。
2.掌握组合逻辑电路的设计方法,并能用最少的逻辑门实现之。
3.熟悉示波器的使用。
【实验仪器及器件】【实验过程及结果分析】1.代码转换电路的设计已知4位输入8421码为表1,4位输出循环码如表2表1 BCD码表2 GRAY码D C B A0 0 0 00 0 0 1将表1中ABCD 作为自变量,表2中3G ~0G 各自作为因变量可得到四张真值表,即可得出3G ~0G 各自与ABCD 的逻辑函数式如下D G =3 (1)D C G ⊕=2 (2) C B G ⊕=1 (3)0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 11 0 0 11 0 1 01 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1113G2G1G0G0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 10 1 0 10 1 1 1 0 0 1 1B A G ⊕=0 (4)根据老师要求,将G 2和G 1的逻辑表达式变换为: G 2=((C’D)’(CD’)’)’ (5) G 1=((C’B)’(CB’)’)’ (6)由函数式(1)(5)(6)(4)可得如图(1)所示电路图:图(1)AltiumDesigner 本实验电路图2.实际电路图如图(2)所示图(2)实际电路图测试:将ABCD 分接逻辑开关的各输入端口,3G ~0G 接入“0-1”显示器检测,结果如表 3,实验结果:以10KHz 方波作为计数器的脉冲,一GO 位基准,得到各个端口的输出波形: (1)G0 与G1的波形如图(3)所示,其中上边的波形为G0,下边的波形为G1;(2)G2与G0的波形图如图(4)所示,其中上边为G2,下边为G0图(4)(3)G2与G3波形图对比如图(5)所示,其中上边的波形为G2,下边波形为G3。
实验二 组合逻辑电路
实验二组合逻辑电路一、实验目的1.掌握数据选择器的功能和应用方法;2.掌握显示译码器的功能和使用方法;3.掌握组合数字电路的设计和实现方法。
二、预习要求1.复习译码器和数据选择器的工作原理;2.复习有关组合电路设计方法的知识;3.阅读74LS138和74LS151的引脚排列图及功能表;4. 设计实验内容所要求的数据记录表格。
三、理论准备1.概述组合逻辑电路又称组合电路,组合电路的输出只决定于当时的外部输入情况,与电路过去状态无关。
因此,组合电路的特点是无“记忆性”。
在组成上组合电路的特点是由各种门电路连接而成,而且连接中没有反馈线存在。
所以各种功能的门电路就是简单组合逻辑电路。
组合逻辑电路的输入信号和输出信号往往不止一个,其功能描述方法通常有函数表达式、真值表、卡诺图和逻辑图等几种。
组合逻辑电路的分析与设计方法,是立足于小规模集成电路分析和设计基本方法之一。
2.组合逻辑电路的分析方法分析的任务是:对给定的电路求解其逻辑功能,即求出该电路的输出与输入之间的逻辑关系,通常是用逻辑式或真值表来描述,有时也加上必须的文字说明。
分析的步骤:(1)逐级写出逻辑表达式,最后得到输出逻辑变量与输入逻辑变量之间的逻辑函数式。
(2)化简。
(3)列出真值表。
(4)文字说明上述四个步骤不是一成不变的。
除第一步外,其它三步根据实际情况的要求而采用。
3.组合逻辑电路的设计方法设计的任务是:使用中、小规模集成电路来设计组合电路是最常见的逻辑电路,由给定的功能要求,设计出相应的逻辑电路。
设计的一般步骤如图3-1所示:根据设计任务的要求建立输入、输出变量,并列出真值表。
然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式。
并按实际选用逻辑门的类型修改逻辑表达式。
根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。
最后,用实验来验证设计的正确性。
需要注意的是,在使用中规模集成的组合逻辑电路设计时,需要把函数式变换成适当的形式(而不一定是最简式)。
实验二组合逻辑电路分析与设计
一.实验目的1.掌握小规模(SSI)组合逻辑电路的分析与设计方法。
2.熟悉常用中规模(MSI)组合逻辑部件的功能及其应用。
*3.观察组合电路的竞争-冒险现象,了解消除冒险现象的方法。
二.实验设备与器件双踪示波器:DS1062C 函数信号发生器:SG1651数字实验箱:THD-4 数字万用表:MS8222D实验器件:74LS00、74LS02、74LS20、74LS54、74LS83、74LS86、74LS138、74LS151三.实验内容(一) 组合逻辑电路的分析1.分析图16-1所示“一位数值比较器”电路的逻辑功能,说明其逻辑关系与实际意义,并将验证测试结果填入表16-1。
表16-1输入输出A B F 1 F 2 F 30 00 11 01 1*2.分析图16-2所示“四位二进制原码/反码转换”电路的逻辑功能,按照表16-2选取其中一位作出分析,并记录测试结果。
表16-2控制输入输出K A i Y i0 0 11 0 13.分析图16-3采用MSI芯片(3-8译码器)构成的组合逻辑电路,正确连接各引脚并供电,然后测试电路功能,结果填入表16-3。
表16-3输入输出A B C F0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1注:当、时,译码器输入输出逻辑关系为:m i 系A 2 A 1 A 0 的最小项(参见附录Ⅳ中74LS138真值表)。
*4.分析图16-4“8421BCD码-8421余3码转换电路”的逻辑功能,将测试结果填入表16-4。
注:74LS83资料见附录Ⅳ。
表16-4输入输出A 3 A 2 A 1 A 0 S 3 S 2 S 1 S 00 0 0 00 0 0 10 0 1 00 0 1 10 1 0 00 1 0 10 1 1 00 1 1 11 0 0 01 0 0 11 0 1 01 0 1 11 1 0 01 1 0 11 1 1 01 1 1 1(二) 组合逻辑电路的设计与测试1.逻辑函数为:,试用一片74LS54(四组输入与或非门)设计其组合逻辑电路。
实验二++组合逻辑电路的设计和测试
一、试验目旳
• 掌握组合逻辑电路旳设计与测 试措施
二、组合逻辑电路旳设计流程
三、试验设备与器件
• 1、电子技术试验箱 • 2、数字万用表 • 3、主要参照器件
74LS00×2、74LS20×3、 74LS86、74LS08、74LS51×2、 74LS32、74LS02 、74LS04
• 3、画出逻辑图
74LS00
• 用异或门、与门构成旳半加器 • 逻辑体现式:
• 逻辑图
74LS86 74LS08
• 二、全加器
• 1、列出全加器真值表
• 2、写出并化简体现式
• 3、画出逻辑图
74LS86 74LS08
74LS32
• 三、用试验验证上述电路旳逻辑功能
• 1、按设计旳逻辑电路图连线
• 2、按实际选用逻辑门旳类型,用逻辑代数和卡诺 图化简两种措施求出简化旳逻辑体现式
• 3、根据修改后旳体现式,画出用原则器件构成旳 逻辑电路图,并标注管脚号。
• 4、写出完整设计过程;熟练使用仿真软件,并进 行仿真(没学过仿真软件旳专业,能够不仿真)
• 思索题:5、怎样用最简朴旳措施验证与或非门旳 逻辑功能是否完好?
试验二、组合逻辑 电路旳设计及测试
• 试验内容:
• 1、设计用与非门及用 异或门、与门构成旳半加器(74LS00、 74LS86、74LS08)
• 2、设计一种一位全加器,要求用异或 门、与门及或门构成(74LS86、 74LS08、74LS32)
• 3、设计一位全加器,要求用与或非门 实现(74LS51)
四、试验内容
• 试验内容: • 1、设计用与非门,以及用异或门、与门构成
实验二-组合逻辑电路设计与实现-
思考题: 1. 采用74LS151八选一的数据选择器,重新设计实验内容2中的
②题 。 2. 通过具体的设计体验后,你认为组合逻辑电路设计的关键点 或关键步骤是什么?
13
输入
输出
s A1 A0
1×× 00 0 00 1 01 0 01 1
Q
0
D0
D1
D2
D3
7
实验二 组合逻辑电路设计与实现
(3)采用数据选择器实现逻辑函数 1)将双 4选1 数据
选择器 CT74LS153 扩 展成 8选1 数据选择器:
8
实验二 组合逻辑电路设计与实现
将双 4选1 数据选择器 CT74LS153 扩展成 8选1 数据选择器:
如使 F=1Y ,则令
A1A,A0=B
比较得:
V cc
+5V
B
16 15 14 13 12 11 10
9
V cc 2S A 0 2D 3 2D 2 2D 1 2D 0 Q
D0=0,D1=C,D2=C,D3=1
74LS153
1S A 1 1D 3 1D 2 1D 1 1D 0 Q G N D
12
345
9
实验二 组合逻辑电路设计与实现
2)用双4选1数据选择器 CT74LS153 实现逻辑函数
F A B C A B C AC B ABC 解: CT74LS153输出函数为:
1 Y A 1 A 0 1 D 0 A 1 AD 3
1
实验二 组合逻辑电路设计与实现
三. 实验原理
1、二进制译码器
如:2-4线译码器74LS139、 3-8线译码器74LS138 和 4-16线译码器74LS154。
答案数字逻辑实验指导书(multisim)答案
答案数字逻辑实验指导书(Multisim)答案本文档旨在为数字逻辑实验中使用Multisim软件的学生提供详细的步骤和答案解析。
以下是针对常见实验的答案。
实验一:简单门电路实验1. 题目描述设计一个两输入门电路,使用Multisim软件验证其功能。
2. 答案在Multisim软件中,选择“逻辑门”部分。
在工作区中拖动两个输入开关和一个输出指示灯到工作区。
在两个输入开关的属性设置中,将“初始状态”设置为1(ON)。
连接两个开关和输出指示灯,使电路完成。
3. 实验过程1.打开Multisim软件。
2.在组件库中找到“逻辑门”部分,并从中选择两个输入开关和一个输出指示灯。
3.拖动这些组件到工作区。
4.右键单击其中一个输入开关,选择属性编辑。
5.在属性编辑对话框中,将“初始状态”设置为1(ON),然后点击“确定”。
6.重复上一步,将另一个输入开关的属性也设置为1(ON)。
7.连接两个输入开关和输出指示灯,以完成电路。
8.在工具栏上点击“运行”按钮,观察输出指示灯的状态。
4. 实验结果在两个输入开关的状态均为1(ON)时,输出指示灯也将亮起。
实验二:组合逻辑电路实验1. 题目描述设计一个组合逻辑电路,使用Multisim软件验证其功能。
2. 答案在Multisim软件中,选择“逻辑门”部分。
在工作区中拖动两个输入开关和一个输出指示灯到工作区。
在两个输入开关的属性设置中,将“初始状态”设置为1(ON)。
连接两个开关和输出指示灯,使电路完成。
3. 实验过程1.打开Multisim软件。
2.在组件库中找到“逻辑门”部分,并从中选择两个输入开关和一个输出指示灯。
3.拖动这些组件到工作区。
4.右键单击其中一个输入开关,选择属性编辑。
5.在属性编辑对话框中,将“初始状态”设置为1(ON),然后点击“确定”。
6.重复上一步,将另一个输入开关的属性也设置为1(ON)。
7.连接两个输入开关和输出指示灯,以完成电路。
8.在工具栏上点击“运行”按钮,观察输出指示灯的状态。
实验二 组合逻辑电路分析与设计
实验二组合逻辑电路分析与设计一、实验目的1.掌握组合逻辑电路的分析方法与测试方法;2.掌握组合逻辑电路的设计方法。
二、实验预习要求1.熟悉门电路工作原理及相应的逻辑表达式;2.熟悉数字集成电路的引脚位置及引脚用途;3.预习组合逻辑电路的分析与设计步骤。
三、实验原理通常, 逻辑电路可分为组合逻辑电路和时序逻辑电路两大类。
电路在任何时刻, 输出状态只决定于同一时刻各输入状态的组合, 而与先前的状态无关的逻辑电路称为组合逻辑电路。
1.组合逻辑电路的分析过程, 一般分为如下三步进行:(1)由逻辑图写出输出端的逻辑表达式;(2)画出真值表;(3)根据对真值表进行分析, 确定电路功能。
2. 组合逻辑电路的一般设计过程为图实验2.1所示。
设计过程中, “最简”是指电路所用器件最少, 器件的种类最少, 而且器件之间的连线也最少.四、实验仪器设备1. TPE-ADⅡ实验箱(+5V电源, 单脉冲源, 连续脉冲源, 逻辑电平开关, LED显示, 面包板数码管等)1台;2. 四两输入集成与非门74LS00 2片;3. 四两输入集成异或门74LS86 1片;4. 两四输入集成与非门74LS20 3片。
五、实验内容及方法1. 分析、测试74LS00组成的半加器的逻辑功能。
(1)用74LS00组成半加器, 如图实验2.2所示电路, 写出逻辑表达式并化简, 验证逻辑关系。
Z1=AB;Z2= Z1A = ABA;Z3= Z1B = ABB;Si= Z2Z3 = ABA ABB = ABA+ABB = AB+ AB = A + B;Ci = Z1A = AB;(2)列出真值表。
(3)分析、测试用异或门74LS86与74LS00组成的半加器的逻辑功能, 自己画出电路, 将测试结果填入自拟表格中, 并验证逻辑关系。
评价: 通过这种方法获得测试结果和上述电路完全相同, 并且在有异或门的情况下实现较为简单, 所以我们应当在设计的时候在条件允许的情况实现最简。
实验二--组合逻辑电路的设计与测试
`实验二 组合逻辑电路的设计与测试一、实验目的1、 掌握组合逻辑电路的分析与设计方法。
2、 加深对基本门电路使用的理解。
二、实验原理1、 组合电路是最常用的逻辑电路,可以用一些常用的门电路来组合完成具有其他功能的门电路。
例如,根据与门的逻辑表达式Z= AB = 得知,可以用两个非门和一个或非门组合成一个与门,还可以组合成更复杂的逻辑关系。
2、 分析组合逻辑电路的一般步骤是:1) 由逻辑图写出各输出端的逻辑表达式; 2) ) 3) 化简和变换各逻辑表达式; 4) 列出真值表;4) 根据真值表和逻辑表达式对逻辑电路进行分析,最后确定其功能。
3、 设计组合逻辑电路的一般步骤与上面相反,是:1) 根据任务的要求,列出真值表;2) 用卡诺图或代数化简法求出最简的逻辑表达式;3) 根据表达式,画出逻辑电路图,用标准器件构成电路; 4) 最后,用实验来验证设计的正确性。
4、—5、组合逻辑电路的设计举例1) 用“与非门”设计一个表决电路。
当四个输入端中有三个或四个“1”时,输出端才为“1”。
设计步骤:表2-1 表决电路的真值表B A表2-2 表决电路的卡诺图然后,由卡诺图得出逻辑表达式,并演化成“与非”的形式:Z++=+ABCCDAABDBCD⋅=⋅ACDABCBCDABC⋅最后,画出用“与非门”构成的逻辑电路如图2-1所示::图2-1 表决电路原理图输入端接至逻辑开关(拨位开关)输出插口,输出端接逻辑电平显示端口,自拟真值表,逐次改变输入变量,验证逻辑功能。
三、实验设备与器材1.数字逻辑电路实验箱。
2.数字逻辑电路实验箱扩展板。
3.数字万用表。
4.芯片74LS00、74LS02、74LS04、74LS10、74LS20。
四、实验内容实验步骤1、完成组合逻辑电路的设计中的两个例子。
2、,3、设计一个四人无弃权表决电路(多数赞成则提议通过),要求用四2输入与非门来实现。
4、用与非门74LS00和异或门74LS86设计一可逆的4位码变换器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合逻辑电路的设计
一、实验目的
1.掌握组合逻辑电路设计的一般概念和方法。
2.掌握集成组合逻辑电路的使用和设计方法。
3.学习EDA软件Quartus II的基本使用方法。
二、实验预习
阅读《电工电子实验教程》第6.3节中组合逻辑电路的内容。
打印实验指导书,预习实验的内容。
查阅相关芯片的数据手册,了解芯片的逻辑功能、引脚排列及外形结构,完成实验电路设计,画出原理电路,标明芯片型号和引脚。
自拟实验步骤和数据表格。
三、实验设备与仪器
数字电路实验箱。
四、实验原理
使用中规模的集成电路设计组合逻辑电路的一般方法为:
第一步:从题目中完成逻辑抽象。
把实际问题转换为可行的逻辑设计要求。
第二步:根据逻辑设计的要求建立输入、输出变量,并列出真值表。
第三步:用逻辑代数或卡诺图化简法求出简化的逻辑表达式。
并按实际选用逻辑门的类型修改逻辑表达式。
不一定要最简形式,应以所要使用的中规模集成芯片的逻辑功能为依据,把要产生的逻辑函数变换为与器件的逻辑函数式类似的形式。
对于变换后的逻辑函数式与所选器件的逻辑函数式差别非常大的应考虑更换元器件类型。
第四步:根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。
第五步:用实验来验证设计的正确性。
设计组合逻辑电路的一般步骤如图1所示。
图1 组合逻辑电路设计流程图
五、实验内容
题目A:4人表决电路
设计一个4人表决电路,多数通过(即当四个输入端中有三个或四个为“1”时,输出端才能为“1”),用发光二极管显示表决结果,通过点亮,否决不亮。
(要求选用与非门电路实现,74LS10和/或74LS20)
题目B:大月指示器电路
设计一个大月(该月份天数为31)指示器,四个二进制输入变量表示月份,发光二极管表示输出,若该月份月份为大月,则发光二极管亮,其它情况发光二极管不亮(注意任意项的处理,要求使用74LS00和74LS151)。
六、实验要求
从实验内容所列的题目中选择一个题目进行设计,使用中规模集成电路芯片完成设计,具体方案不限。
要求确保电路可以完成题目功能,并使用尽可能少的器件。
列出真值表,写出逻辑表达式并根据设计要求进行化简(化简形式根据采用的器件逻辑功能自行决定),全部用门电路实现。
在数字实验系统中完成实际操作,利用实验箱上已连接好的开关电路获得所需的逻辑电平输入,LED指示灯电路完成结果显示。
自行设计测试表格,完成实际电路的测试。
实验室可提供的芯片有:74LS00、74LS10、74LS20、74LS151。
七、实验报告(本部分请附加空白页手写完成)
在实验报告中写出完整的设计思路和设计过程,越详细报告分数起评点越高,内容应包括建立逻辑变量、列真值表、逻辑化简、逻辑表达式变换、电路图设计等。
用要求的器件设计出电路,画出电路图。
列出元器件清单。
写出实验结果及分析。
写出实验体会总结。
有能力的同学可画出仿真电路图和仿真结果。