遥感图像的增强处理
第五章 遥感图像处理—图像增强
特征;其余三个分量与地物特征没有明确的对应关系。
七、多元信息复合
遥感图像信息融合(Fusion)是将多源遥感数据在统一的 地理坐标系中,采用一定的算法生成一组新的信息或合
其中:
k ( g 'max g 'min ) /( gmax gmin ) 255/ 52 4.9
b g 'ij kgij 0 49 49
2、非线性拉伸
(1)指数变换
xb be
(2)对数变换
axa
c
xb b度进行分层,每一层所包含的亮度值范围可以不
同。
图像密度分割原理可以按如下步骤进行:
(1)求图像的极大值dmax和极小值dmin; (2)求图像的密度区间ΔD = dmax-dmin + 1; (3)求分割层的密度差Δd =ΔD/n ,其中 n为需分割的层数;
(4)求各层的密度区间;
(5)定出各密度层灰度值或颜色。
减法运算可以增加不同地物间光谱反射率以及在 两个波段上变化趋势相反时的反差。不同时相同 一波段图像相减时,可以提取波段间的变化信息。
T M 4 影 像
T M 3 影 像
TM4-TM3影像
87 年 影 像
92 年 影 像 变化监测结果影像
(二)加法运算
B= i /m
i=1 m
加法运算可以加宽波段,如绿色波段和红色波 段图像相加可以得到近似全色图像;而绿色波 段,红色波段和红外波段图像相加可以得到全 色红外图像。
-1 -2 -1 0 0 0 1 2 1 1 2 0 -2 1 0 -1
遥感入门-遥感数字图像增强处理
或:
Lg g ( x, y ) f ( x, y ),
研究边缘灰度 级的变化,但 不受背景影响
只对边缘位置 感兴趣
f ( x, y ) g ( x, y ) Lb , L g ( x, y ) g Lb ,
直方图规定化
直方图规定化
T(xa)为原图像直方图均衡化的变换函 数,G(yc)为参考图像直方图均衡化的变换函 数,变换后的灰度值均为Zb,由上述可知
Z b T ( xa ) ha( xaj )
j 0 k k
Z b G ( yc ) hc( ycj )
j 0
yc G ( zb ) G [T ( xa )]
4
6 5 5 4 3 3
0.35
0.47 0.57 0.67 0.76 0.82 0.88
0.33
0.51 0.51 0.67 0.82 0.82 0.92
14 /16
15 /16 1
2
2 2
0.92
0.96 1
0.92
1.00 1.00
空域增强-邻域增强
• 邻域
对于图像中的某个像元f(x,y),把以像元为中心一定距 离内的像元集合Axy={x±p,y±q}(p,q取任意整数) 叫做该像元的邻域。
用这种非线性的滤波,比邻域平均法可以在很大的程 度上防止边缘的模糊。
3
5
10 12 16
2
5
4
6
8
8
10 5
3 7
4
3
6
7
45 8
10 19
30 8
试用1*3和3*3的窗口对此进行中值滤波
遥感图像增强处理
第八章(4) 遥感图像增强处理一、彩色增强处理彩色合成变换:加色法密度分割:单波段的彩色:密度分割IHS 变换(一)彩色合成多波段彩色合成:利用计算机将同一地区三个波段的影像,分别赋予红、绿、蓝三原色,进行单基色变换(色阶),然后使各影像准确套合叠置显示,依照彩色合成原理,构成彩色合成影像。
分类:假彩色合成、真彩色合成真彩色合成:当三幅影像的工作波段分别为红、绿、蓝时,同时分别对应赋予红色、绿色、蓝色,合成后的影像十分接近自然界的色彩,称为真彩色合成。
假彩色合成:(重点看)各工作波段被赋予的颜色,与波段所代表的真实颜色不同,合成色不是地物真实的颜色,因此这种合成叫做假彩色合成标准假彩色合成:1、近红外波段赋予红色、红光波段赋予绿色,绿光波段赋予蓝色。
2、针对TM 影像的7个波段:第2波段是绿色波段、第3波段是红色波段、第4波段是近红外波段当4、3、2波段分别赋予红、绿、蓝色时,这一合成方案称为标准假彩色合成(二)假彩色密度分割单波段的假彩色密度分割:将单波段影像的像元值从小到大按照某种标准划分等级,每一级别赋予一种颜色,最终影像表现为彩色,这些色彩是人为加上的,与地物的天然色彩不一定相同,称为假彩色密度分割。
等密度分割:对像元数值从小到大划分为n 级,各级内含有的像元数大致相等时,称为等密度分割。
(三)IHS 变换HSI 代表色调、饱和度和明度(hue ,saturation,intensity )。
色彩模式可以用近似的颜色立体来定量化。
定义:IHS 变换是RGB 颜色系统与HIS 颜色系统之间的变换。
具体方法 :令IRIGIB ,下标max 为R ,G ,B 中最大值,下标min 为R ,G ,B 中最小值, IRIGIB 和S均为0-1的实数,H为0-360的实数。
则有明度: 2/)(min max I I I +=饱和度:5.0≤I )/()(min max min max S S S S S +-=5.0>I )11/()(min max min max S S S S S -+--=色调:min max H H H -=∆如果max H H R =,则]/)[(60H H H H B G ∆-=,位于黄和品红之间如果max H H G =,则]/)(2[60H H H H R B ∆-+=,位于青和黄之间如果max H H B =,则 ]/)(4[60H H H H G R ∆-+=,位于品红和蓝之间二 、光谱增强处理(一)反差增强线性变换,非线性变换,直方图增强⏹ 通过修改各种像元值来改善影像对比度,从而改变影像质量的处理方法。
遥感图像处理的图像增强和特征提取方法
遥感图像处理的图像增强和特征提取方法遥感图像处理是利用遥感技术获取和处理地球表面信息的一种方法。
在遥感图像处理中,图像增强和特征提取是两个重要的步骤。
本文将探讨遥感图像处理的图像增强和特征提取方法,并介绍其在实际应用中的重要性和挑战。
一、图像增强方法图像增强是通过改善遥感图像的质量和清晰度来提取更多有用信息的过程。
在遥感图像处理中,常用的图像增强方法包括直方图均衡化、滤波和增强算法等。
1. 直方图均衡化直方图均衡化是一种通过调整图像的亮度分布来增强图像对比度的方法。
它通过将图像的亮度值映射到一个更均匀分布的直方图来使图像的细节更加清晰。
直方图均衡化能够有效地提高图像的视觉质量,但在某些情况下可能会导致过度增强和失真。
2. 滤波滤波是一种通过去除图像中的噪声和不必要的细节来改善图像质量的方法。
在遥感图像处理中,常用的滤波方法包括中值滤波、高斯滤波和小波变换等。
这些滤波方法能够有效地降低图像的噪声和模糊度,提高图像的清晰度和边缘保持能力。
3. 增强算法增强算法是一种通过对图像进行像素级别的调整和处理来增强图像质量的方法。
常用的增强算法包括灰度拉伸、对比度增强和边缘增强等。
这些算法能够根据图像的特点和需求来调整图像的亮度、对比度和细节等,从而提高图像的视觉效果和信息提取能力。
二、特征提取方法特征提取是通过从遥感图像中提取和表示有用的信息和模式来分析和识别图像内容的过程。
在遥感图像处理中,常用的特征提取方法包括纹理特征提取、频谱特征提取和形状特征提取等。
1. 纹理特征提取纹理特征提取是一种通过分析图像中的纹理信息来描述和表示图像内容的方法。
常用的纹理特征提取方法包括灰度共生矩阵、小波变换和局部二值模式等。
这些方法能够有效地提取图像中的纹理细节和结构特征,用于图像分类、目标检测和地物识别等应用。
2. 频谱特征提取频谱特征提取是一种通过分析图像的频域信息来描述和表示图像内容的方法。
常用的频谱特征提取方法包括傅里叶变换、小波变换和高斯金字塔等。
第四章3遥感图像处理图像增强
5.遥感图像多光谱变换(Ⅰ)——主成分分析(K—L变换)
② 就变换后的新波段主分量而言,K—L变换后的 新波段主分量包括的信息量不同,呈逐渐减少趋 势。其中,第一主分量集中了最大的信息量,常 常占80%以上,第二、第三主分量的信息量依次 快速递减,到第n分量信息几乎为0。由于K—L变 换对不相关的噪声没有影响,所以信息减少时, 便突出了噪声,最后的分量几乎全是噪声。所以 这种变换又可分离出噪声。
基于上述特点,在遥感数据处理时,常常用K— L变换作数据分析前的预处理(数据压缩和图像增
强)。举例P125
6.遥感图像多光谱变换(Ⅱ)——缨帽变换(K—T变换)
(1)K—T变换是Kauth—Thomas变换的简称,这种变换也是 一种线性组合变换,其变换公式为:Y=BX 这里X为变换前的多光谱空间的像元矢量,y为变换后的 新坐标空间的像元矢量,B为变换矩阵。这也是一种坐标 空间发生旋转的线性变换,但旋转后的坐标轴不是指向主 成分方向,而是指向了与地面景物有密切关系的方向。 1984年,Crist和Cicone提出TM数据在K—T变换时的B值: P126 在此,矩阵为6X6,主要针对TM的1至5和第7波段,低分 辨率的热红外(第6波段)波段不予考虑。
1.遥感图像增强(工)——对比度变化1
非线性变换
直方图均衡化(histogram equalization):把原图像的直方 图变换为灰度值频率固定的直方图,使变换后的亮度级 分布均匀,图像中等亮度区的对比度得到扩展,相应原 图像中两端亮度区的对比度相对压缩。
1.遥感图像增强(工)——对比度变化1
MN
r(i, j) (m, n)t(m, n) m1 n1
将计算结果放在窗口中心的像元位置,成为新像元的灰度 值。然后活动窗口向右移动一个像元,再做同样的运算。 P117说明
第四章 遥感图像处理—数字图像增强
同一景物不同波段图像之间的运算—识别地物
图像的差值运算有利于目标与背景反差较小 的信息提取。 如在红光波段,植被和水体难以区 分,在红外波段,植被和土壤难以区分,通过相 减,可以有效的区分出三种地物
2、比值运算 两幅同样行、列数的图像,对应像元的亮度值相除 (除数不为0)就是比值运算,即:
真彩色合成 假彩色合成
彩色合成的原理图
①真彩色合成
红光波段赋成红 绿光波段赋成绿 蓝光波段赋成蓝
真彩色合成 红光波段赋成红
真彩色合成 红光波段赋成红 绿光波段赋成绿
真彩色合成 红光波段赋成红 绿光波段赋成绿 蓝光波段赋成蓝
②假彩色合成 假彩色合成 近红外波段赋成红 红光波段赋成绿 绿光波段赋成蓝
1 图像卷积运算
数字图像的局部
模板
z1 z2 z3
z4 z5 z6 z7 z8 z9
w1 w2 w3 w4 w5 w6 w7 w8 w9
1/9
1/9 1/9
1/9 1/9 1/9 1/9 1/9 1/9
Replace with R
= w1z1 + w2z2 + ….. +w9z9
模板按像元依次向右移动,而后换行,直到整幅图 像全部处理完为止
对于亮点噪音,用中值滤波好
带有椒盐噪声的ikonos图像
中值滤波后的图像
均值平滑后的图像
3
图像锐化
(1)图像锐化的目的是突出图像中景物的边缘、线状目 标或某些亮度变化率大的部分。 (2)边缘或轮廓通常位于灰度突变或不连续的地方,具
有一阶微分最大值和二阶微分为0的特点;
锐化的方法很多,在此只介绍常用的几种:
遥感图像增强处理
第一部分图像锐化图像锐化是突出边缘信息、或图像中线状地物的信息。
本部分所用数据:ftp://redearth@210.27.226.200/dzja/digitalgraph/05%20遥感图像增强处理/文件夹下的“美国的空军基地.jpg”和“上海浦东.jpg”。
1、使用robert梯度进行图像锐化打开:上海浦东.jpg文件,在ENVI主菜单中,选择filter—convolutions and morphology察看robert梯度锐化的结果。
2、使用拉普拉斯算法进行图像锐化打开:上海浦东.jpg文件,在ENVI主菜单中,选择filter—convolutions and morphology察看拉普拉斯算子锐化的结果。
比较robert梯度和拉普拉斯算法锐化结果的异同;换幅影像(美国空军基地.jpg)锐化比较;尝试使用自定义算子锐化影像。
第二部分遥感数据融合数据融合是将多幅影像组合到单一合成影像的处理过程。
通常使用高分辨率的全色影像或单一波段的雷达影像来增强多光谱影像的空间分辨率。
本部分所用数据:ftp://redearth@210.27.226.200/dzja/digitalgraph/envidata/lontmsp/文件夹下的“lon_spot”(伦敦地区spot影像)和“lon_tm”(伦敦地区tm影像)。
方法1、ENVI中手动融合1、打开伦敦地区的TM和spot影像,并显示2、调整两幅影像大小一致,对tm影像乘以系数3、拉伸spot影像亮度由原来的0-1024到0-1,以适应HSV-RGB变换中v的取值要求。
4、将调整大小后的TM影像由RGB变换为HSV5、进行HSV至RGB的转换,其中H和S分别选RGB至HSV转换后的TM的H和S,V 选则拉伸后的SPOT影像。
6、将融合后的影像显示,并与融合前的TM影像和SPOT影像比较,看看其空间分辨率和光谱信息发生什么变化。
注意:在影像融合中,待融合影像的大小需要事先准备一致,如果待融合影像有地理参考该如何做?思考。
遥感图像的增强处理
目的:通过上机操作,掌握彩色变换增强,空间域增强,频率域增强,多光谱变换增强等几种遥感图像增强处理的过程和方法,加深对遥感图像增强处理的理解。
实验内容:彩色合成;对比度变换增强;空间滤波增强;频率域增强;图像运算;主成分变换。
一、彩色合成
根据加色法彩色合成原理,选择遥感图像的三个波段,分别赋予红、绿、蓝三种原色,然后将这三个波段叠加,构成彩色合成图像。
锐化:interpreter—spatical enhancement—convolution(索伯尔)以T1为例。 New为自己新定义一个模板,在Xsize与Ysize中定义,以默认的3为例,在窗口中的行列中输入T1(突出线状地物,为水平方向线性地物)点file中的librarian中的name中命名“suoboer”点save后close,发现自定义的suoboer已出现 在convolution窗口中的kernel下,点击suoboer,再在output file中命名。
(1)索伯尔梯度
1 2 1 -1 0 1
T1= 0 0 0 T2= -2 0 2
-1-2-1 -1 0 1
(2)拉普拉斯算法(有利于提取边缘信息)
0 1 0
T(m,n)=1-4 1(同时突出横、纵向,但边界是断断续续
标准假彩色合成:
TM2(绿波段)赋予蓝
TM3(红波段)赋予绿
TM4(近红外波段)赋予红;
步骤:配准--------合成
空间位置上配准(通过几何校正进行配准)
做一标准假彩色合成(选影像tm2、3、4)
首先将tm2、3、4打开看是否能直接合成(投影坐标是否一样,若不一样则需配准后才能合成)
3.遥感图像的增强与变换处理
图像增强处理是遥感图像数字处理的基本的方法之一。 将原来不清晰的图像变得清晰或把我们感兴趣的某些特征强调出来(同时抑制了不感兴趣的 特征)的图像处理方法称为图像增强。 图像增强的目的是为了提高解像力,提高图像的可解译性。 一、教学目的与要求 掌握遥感图像的增强与变换处理 二、重点难点 ⒈ ⒉ 三、教学内容 对比度增强、锐化与平滑处理、比值与差值处理、NDVI(归一化差值植被指数)、主成分分析 (K-L变换)、缨帽变换(K-T变换)和傅立叶变换(FFTFiltering)。
所需文件:TL、TL.HRD
实现步骤: 加载 TL,用 RGB Scale 打开。 Transforms > Tassled Cap ㈦傅立叶变换(FFT Filtering) 傅立叶分析是一种将图像分成空间上各种频率成分的数学方法。ENVI 中 FFT Filtering 包括 图像正向的 FFT、滤波器的应用,以及 FFT 向原始数据空间的逆变换。 Forward FFT (正向的 FFT)
⑵差值处理 所需文件:TL、TL.HRD 实现步骤: 加载 TL,用 RGB Scale 打开。 Basic Tools > Band Math.
“Enter an expression:” 的文本框内,输入变量名和所需要的数学运算符。
变量名必须以字符 “b” 或 “B” 开头,后面跟着 5 个以内的数字字符。 例:b7-b4 , b7-b5 , (b7-b4)/(b7+b5) , b1+sin(b2)
㈢比值与差值处理
比值法与差值法适用于对多波段图像或多时相图像进行增强处理,这是因为多波段之间的照 射条件及变化是一致的,对两个波段图像进行差值与比值运算,往往能减弱背景信息而突出局部 信息,就能达到图像增强的效果。
遥感图像增强
• E直方图均衡化模式
其中:
直方图均衡化模式代码
I = imread('tire.tif'); J = histeq(I); imshow(I) figure, imshow(J) figure,imhist(I,64) figure,imhist(J,64)
%另注:还有直方图规定化模式
• F图像间的代数运算模式
axis tight,xlabel('f'),ylabel('g')
X2=double(X1);
figure,imshow(mat2gray(g))
%变换矩阵中的每个元素
• b图像求反
EH如图
图像求反代码:
X1=imread('2zong.jpg'); figure,imshow(X1)
f1=200;%f1和 g1分别为f,g的最大值 g1=256;
for i=1:m for j=1:n f=X2(i,j); g(i,j)=0;
if (f>=0)&(f<=f1) g(i,j)=r1*f+b1; elseif (f>=f1)&(f<=f2) g(i,j)=r2*f+b2;
r1=(g1-g0)/(f1-f0);
elseif (f>=f2)&(f<=f3)
绿滤片:
绿无绿 无 黄 青无 无
蓝滤片:
蓝 无 无 蓝 无 青 品红 无
合成: 红 红 无 无 黄 无品红 无 绿 无 绿 无 黄 青 无 无
蓝 无 无 蓝 无 青品红 无
恢复原来色彩:白 红 绿 蓝 黄 青 品红 黑
一、遥感图像数字增强意义
envi遥感图像的处理之图像的增强
ENVI遥感图像处理之图像增强一、对比度增强1、快速拉伸步骤:打开数据—>加载图像到窗口—>图像主窗口Enhance菜单进入图像增强的菜单选项。
原始显示的影像:进行线性拉伸后的影像:进行高斯拉伸后的影像:说明:本菜单栏中包含的图像快速拉伸的功能还有0-255的线性拉伸(这应该是实际的遥感影像的灰度值,而刚开始说的那个原始影像实际上已经经过了2%的线性拉伸的)、均衡化拉伸、均方根拉伸等。
2、交互式拉伸步骤:选择图像主窗口中的Enhance菜单—>Interactive Stretching进入交互式拉伸的界面在Stretch_Type菜单下可以选择交互拉伸的类型,有线性拉伸、分段线性拉伸等。
可以在Stretch旁边的文本框中直接输入拉伸的图像的灰度范围,亦可以在input histogram窗体中用鼠标左键拖动两条竖直虚线进行拉伸范围的选择。
原始图像:交互式线性拉伸后的图像:分段线性拉伸后的影像:高斯拉伸后的影像:3、直方图匹配步骤:进行直方图匹配之前必须打开两个窗口显示两个波段或两幅影像。
在两窗口中显示两幅遥感影像—>在待匹配的遥感影像主窗口中选择Enhance菜单—>选择Histogram matching…进入直方图匹配的对话框—>选择匹配到的窗口和匹配的方式,点击OK完成直方图的匹配。
匹配前直方图:待匹配影像直方图:匹配到影像直方图:匹配后的直方图:匹配的交互式对话框:匹配前影像:匹配后影像:二、空间增强1、锐化步骤:打开窗口主菜单中的Enhance菜单—>选择Filter选项—>Sharpen即可对图像进行锐化。
锐化前影像:锐化后影像:2、平滑步骤:打开窗口主菜单中的Enhance菜单—>选择Filter选项—>Smooth(后面的3*3、5*5等代表的是模板的大小)即可对图像进行平滑。
平滑前影像:平滑后影像:3、中值步骤:打开窗口主菜单中的Enhance菜单—>选择Filter选项—>Median(后面的3*3、5*5等代表的是模板的大小)即可对图像进行中值化。
实验4 遥感图像的增强处理
实验4 遥感图像的增强处理1 实验的目的和任务1)理解遥感图像的增强处理的方法和原理;2)理解遥感图像彩色合成的原理,掌握遥感图像彩色合成的方法;3)掌握遥感图像的增强处理,包括对比度变换(直方图)、空间滤波、HLS变换、多光谱变换(K-L变换,即主成分分析,PCA;K-T变换,即缨帽变换)。
2 实验设备与数据:设备:遥感图像处理系统ENVI数据:焦作2004年3-7和4-8数据或者用软件自带数据3 实验内容与步骤:1)图像的彩色合成:真彩色是用3、2、1波段进行叠加合成,除真彩色之外都是假彩色,其中4、3、2波段合成标准假彩色。
真彩色:3、2、1波段合成假彩色:除真彩色之外都是假彩色,这里用3、4、5波段,可以发现,真彩色的遥感影像和实际地物地貌相一致,假彩色的图像和实际地物地貌不相一致。
因为传感器的获取的影像种类远多于人眼视觉,所以使用假彩色使人类看到看不见的辐射、或者突出某种特征,假彩色种类很多很灵活。
标准假彩色4、3、2真彩色和假彩色对比图2)直方图均衡化打开主影像窗口的enhance,如下图,用鼠标调整不同的波段范围,点击应用,可以更改颜色的表现方式可以看到,直方图均衡化后图像清晰度上升3)利用ENVI主菜单的transform菜单下的color transform进行彩色变换练习打开ENVI主菜单的transform菜单下的color transform,选择RGB to HSV,之后进行下图样式操作:选择文件保存路径后,得到一个影像文件,打开,如下图。
此外,还可以选择不同的色彩改善方式如下图,选择其他的方式,效果不同,当然选择打开的波段顺序不同,彩色合成的效果就不一样3)利用ENVI主菜单的transform菜单下的利用principalcomponent进行主成分分析练习选择Transform>principal components>Forward PC Rotation>Compute New Statistics and Rotate,打开3-7,点击OK。
遥感图像解译中的图像增强和分类技术介绍
遥感图像解译中的图像增强和分类技术介绍概述:遥感图像解译是指通过对遥感数据进行处理和解析,来获取地理信息的过程。
在这一过程中,图像增强和分类技术是至关重要的工具,可以提高图像质量和准确度。
本文将介绍遥感图像解译中的图像增强和分类技术的原理和应用。
一、图像增强技术图像增强技术是指通过对原始遥感图像进行处理,改善图像质量的方法。
1. 直方图均衡化直方图均衡化是通过变换图像的灰度级分布,增强图像的对比度和亮度。
该方法适用于单一场景中的图像。
通过对原始图像中每个像素的像素值进行统计,可以得到图像的灰度级分布。
根据统计分布,可以将原始图像中的灰度级重新映射,使得图像的灰度级分布更均匀。
这样可以增强图像的对比度,使得图像中的目标更加清晰可见。
2. 滤波技术滤波技术通过对图像进行空域或频域的滤波处理,来改善图像的质量。
常用的滤波方法包括线性滤波和非线性滤波。
线性滤波方法包括均值滤波、中值滤波等,主要用于降噪和平滑图像。
非线性滤波方法包括边缘增强滤波、退化滤波等,主要用于增强图像的边缘信息。
3. 多尺度分析多尺度分析是一种基于图像的不同尺度表示,来提取图像不同层次特征的方法。
常用的多尺度分析方法包括小波变换、尺度空间分析等。
通过对不同尺度下的图像进行处理和分析,可以获得更全面的图像信息。
这些信息可以用于图像分类和目标检测等应用。
二、图像分类技术图像分类技术是将遥感图像中的像素点或图像区域划分为不同的类别的过程。
图像分类是遥感图像解译的关键步骤,它可以帮助我们理解和分析图像中的地物信息。
1. 监督分类监督分类是一种通过人工标签指定不同类别的样本进行训练的分类方法。
在监督分类过程中,我们首先需要选择一种合适的分类算法,如支持向量机(SVM)、决策树、人工神经网络等。
然后,根据已标注的样本,使用分类算法进行训练和分类预测。
监督分类方法适用于有充足样本且具有明显特征的图像。
2. 无监督分类无监督分类是一种不依赖于人工标签的分类方法。
遥感图像增强实验报告
遥感图像增强实验报告引言遥感技术在地球科学和环境科学领域有着广泛的应用,其中图像增强是遥感图像处理的重要环节之一。
图像增强旨在改善遥感图像的视觉效果,使得图像的细节更加清晰、对比度更加鲜明,以便更好地进行地表特征的识别和分析。
在本次实验中,我们将探讨常用的图像增强方法,并且使用实际遥感图像进行增强实验。
实验目的1. 了解遥感图像增强的基本概念和方法。
2. 掌握常见的图像增强方法的实施过程。
3. 分析和比较不同图像增强方法的效果,选择最适合的增强方法。
实验步骤1. 数据准备:选择一张遥感图像作为实验数据,确保图像分辨率适中、含有一定的地表特征。
2. 灰度拉伸:使用灰度拉伸方法增强图像的对比度。
首先计算图像的最小灰度值(Min)和最大灰度值(Max),然后通过线性变换将灰度值映射到0-255的范围内。
3. 直方图均衡化:利用直方图均衡化方法增强图像的细节。
首先计算图像的灰度直方图,然后按照直方图均衡化的公式对每个灰度值进行调整。
4. 自适应直方图均衡化:对比直方图均衡化方法,自适应直方图均衡化能够避免对整个图像进行均衡化,而是通过使用局部领域内的信息来进行均衡化。
5. 对比度增强:使用对比度增强方法增强图像的对比度。
可以通过调整图像的亮度、对比度和饱和度来实现。
6. 结果分析:根据实验结果分析不同图像增强方法的效果,选择最佳的增强方法。
实验结果与分析经过实验,我们得到了经过不同图像增强方法处理后的图像。
通过对比实验前后的图像,我们可以得出以下结论:1. 灰度拉伸方法能够有效增强图像的对比度,使得图像的亮度范围更广,细节更加清晰。
2. 直方图均衡化方法能够增强图像的细节,特别是在暗部和亮部细节的表现上有显著提升。
3. 自适应直方图均衡化方法相比于普通直方图均衡化方法在处理具有大范围对比度差异的遥感图像时效果更好,避免了过度增强和信息损失。
4. 对比度增强方法可以通过调整图像的亮度、对比度和饱和度来增强图像的视觉效果,但对于某些场景可能会导致图像过度增强或过度饱和。
遥感数字图像处理-第四章_遥感数字图像增强处理(一)[研究材料]
计算方法:
Pi
mi M
M表示整幅图像的像元个数
M表示整幅图像的像元个数
Pi表示第i灰度级的像元比例频率
X和
调研学习
13
直方图的性质
(1)直方图反映了图像中的灰度分布规律,描述每个灰度 级具有的像元个数,但不包含这些像元在图像中的位置;
(2)任何图像有唯一的直方图,不同的图像可能有相同的 直方图;
六、图像运算 Image Calcu.
七、多光谱增强 M调u研l学ti习-spectral Enhancement
1
一、图像增强概述
➢ 什么是图像增强?
Image enhancement is the process of making an image more interpretable for a particular application ( Faust, 1989).
空间域增强:空间域是指图像平面所在的二维平面。 直接处理图像上的像素,主要对灰度进行操作;
1)点处理:每次对单个像元进行灰度增强的处理 2)邻域处理或模板处理:对一个像元及其周围的小区域子
图像进行处理
频率域增强:对图像经傅立叶变换后的频谱成分进 行操作,然后经傅立叶逆变换获得所需结果
调研学习
6
➢图像增强的分类
调研学习
2
➢ 图像增强的目的
主要目的:(1)采用一系列技术改善图像的视觉效 果,提高图像的清晰度;(2)将图像转换成一种 更适合于人或机器进行解译和分析处理的形式。
改变图像的灰度等级,提高图像的对比度; 消除边缘和噪声,平滑图像; 突出边缘和线状地物,锐化图像; 合成彩色图像; 压缩图像数据量,突出主要信息等。
第五章遥感图像增强
4、图像增强的方法
数字增强处理
采用数字图像计算机系统进行 优点:快速、功能全,能应用光学方法无法 进行的一些算法对图象增强。
光学增强 采用光学仪器进行
优点:直观、方便、快速、操作方法容易掌 握、耗资较少; 缺点:光学增强仪器对各种增强方法的适应 性比数字处理设备要差。
真彩色合成(true color composite) 合成结果为真彩色,符合人眼观察习惯;
假彩色合成(false color composite)
合成结果与实际景物颜色不对应或缺失某 一色光,彩色鲜明,特征突出。
真彩色合成
假彩色合成
3)彩色合成方法
按合成机制不同,分为: 加色法和减色法 二者均以色彩混合原理为依据。
例如:
y a ln(x 1) c ln b
用(x+1)是为了避免对0求对数
参数b用于改变对数的底
a和c用于调节数值范围。
对数扩展的效果:
➢ 着重扩展了亮度值低的部分
➢ 相对压缩了亮度值高的部分
(3) 指数扩展(exponent stretch)
指数扩展的一般形式: y=bax
其中:b为底,常用b=e。因x可能达 到127或255,故a须远小于1,否则y值可 能非常大。
大气散射作用又使影像的反差更为降低。 使得研究对象模糊不清。
3. 对比度增强分类
对比度增强可分为线性和非线性两种。
1)线性扩展(linear stretch)
将原始图象诸亮度值按线性关系进行扩 大,亮度范围可扩展为任意制定的范围。相 当于进行y=ax+b的变换。 (1)普通线性扩展
直接应用上述单一的线性关系。
envi遥感图像增强处理
任务五图像增强目录1.空间域增强处理 11.1卷积滤波 12.辐射增强处理 22.1交互式直方图拉伸 23.光谱增强处理 43.1波段比的计算 43.2色彩空间变换 53.3NDVI计算 64.傅里叶变换 64.1快速傅里叶变换 64.2定义FFT滤波器74.3反向FFT变换85.波段组合85.1RGB合成显示8图像增强的主要目的是提高图像的目视效果,以便处理结果图像比原图像更适合于特定的应用要求,方便人工目视解译、图像分类中的样本选取等。
ENVI图像增强的内容主要包括:空间域增强处理辐射增强处理光谱增强处理傅里叶变换波段组合1.空间域增强处理空间域增强处理是通过直接改变图像中的单个像元及相邻像元的灰度值来增强图像。
1.1卷积滤波卷积滤波是通过消除特定的空间频率来增强图像。
它们的核心部分是卷积核,ENVI提供很多卷积核,包括高通滤波、低通滤波、拉普拉斯算子、方向滤波、高斯高通滤波、高斯低通滤波、中值滤波、Sobel、Roberts,还可以自定义卷积核。
使用数据:lena.jpg具体操作:通过尝试ENVI提供的各种图像增强算子,观察比较图像增强的效果。
(1)打开图像文件lena.jpg。
(2)在主菜单中,选择Filter Convolutions and Morphology。
(3)在Convolutions and Morphology Tool中,选择Convolutions滤波类型。
(4)不同的滤波类型对应不同的参数,主要包括三项参数:Kernel Size(卷积核的大小)卷积核的大小,以奇数来表示,如3×3、5×5等,有些卷积核不能改变大小,包括Sobel和Roberts。
Image Add Back(输入加回值)将原始图像中的一部分“加回”到卷积滤波结果图像上,有助于保持图像的空间连续性。
该方法常用于图像锐化。
“加回”值是原始图像在结果输出图像中所占的百分比。
Editable Kernel(编辑卷积核中各项的值)在文本框中双击鼠标可以进行编辑,选择Kernel可以把卷积核保存为文件(.ker),选择Kernel可以打开一个卷积核文件。
遥感图像颜色增强处理(彩色变换)综述
1)RGB to HSV
2)HSV to RGB
3)RGB to HLS
4)RGB to HSV(USGS)
谢谢大家!
波 段 3-2-1
合 成
二.假彩色合成
由于多波段摄影中,一副图像多不是三原 色的波长范围内获得的,如采用人眼看不见的 红外波段等,因此由这些图像所进行的彩色合 成称假彩色合成。 假彩色增强目的: 使感兴趣的目标呈现奇异的彩色或置于奇特 的彩色环境中,从而更受人注目;
使景物呈现出与人眼色觉相匹配的颜色,以 提高对目标的分辨力。
图像颜色增强处理 (彩色变换)
彩色变换目的 :通过对图像色彩空间的变换,
突出图像的有用信息,扩大不同影像特征之间差别,
提高对图像的解译和分析能力。
彩色变换分类:
真彩色合成
假彩色合成
密度分割和伪彩色增强
色彩模型变换
一.真彩色合成
所谓真彩色合成就是在通过红、绿、 蓝三原色的滤光片而拍摄的同一地物的三 张图像上,若使用同样的三原色进行合成, 可得到接近天然色的颜色。
标准假彩色合成(4-3-2)Biblioteka 4-5-3波段合成的假彩色图像
三.密度分割和伪彩色增强
将一幅图像的整个亮度值变量,按照某 一定量分割为若干等量间隔,每一间隔赋予 一种颜色,以此控制成像系统的彩色显示, 就可得到一幅假彩色密度分割图像。
四.色彩模型变换
图像融合
Transform——ImagSharpening——HSV
如何进行遥感影像增强与处理
如何进行遥感影像增强与处理遥感影像是通过航空或卫星等方式获取的地球表面的图像数据。
由于拍摄条件、设备性能以及环境因素的限制,遥感影像常常存在一些问题,如图像模糊、噪声干扰等。
为了提高遥感影像的质量和准确性,需要进行增强和处理。
本文将介绍如何进行遥感影像增强与处理的方法和技巧。
一、图像增强的目的和方法图像增强是指通过一系列的处理方法,改善图像的视觉效果和质量。
其目的是提高图像的对比度,减少噪声,增强图像细节,以便更好地进行分析和解译。
1、直方图均衡化直方图均衡化是一种常用的图像增强方法。
它通过调整图像像素值的分布,使得图像的亮度和对比度得到均衡。
具体步骤是:首先计算图像的灰度直方图,然后根据直方图进行像素值的调整。
直方图均衡化能够有效地增强图像的细节和对比度,使得图像更易于解译。
2、滤波器增强滤波器增强方法主要是通过应用不同类型的滤波器来抑制图像中的噪声和其他干扰。
常用的滤波器有均值滤波器、中值滤波器和锐化滤波器等。
均值滤波器可以平滑图像,中值滤波器可以有效地去除椒盐噪声,而锐化滤波器可以增强图像的边缘。
3、多尺度分析多尺度分析是一种结合不同尺度的信息来进行图像增强的方法。
通过分析图像在不同尺度上的特征,可以更好地理解图像的内容。
常用的多尺度分析方法有小波变换和特征金字塔等。
小波变换能够将图像分解为不同频率的子图像,从而提取出图像的细节信息。
特征金字塔则是一种层次化的图像表示方法,可以在不同尺度上检测出图像的边缘和纹理等特征。
二、图像分割和分类的方法图像分割是指将图像分成若干个具有相同特征的区域的过程。
图像分类是指将图像分配到不同的类别或标签中的过程。
图像分割和分类是遥感影像处理中重要的一步,它可以用于自动提取和识别图像中的目标或区域。
1、基于颜色和亮度的分割方法基于颜色和亮度的分割方法是最常用的一种图像分割方法。
它通过分析图像中像素的颜色和亮度信息,将图像分成不同的区域。
常用的方法有阈值分割、区域生长和分水岭算法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三:遥感图像的增强处理
实验目的:通过上机操作,了解空间增强、辐射增强几种遥感图象增强处理的过程和方法,加深对图象增强处理的理解。
实验内容:卷积增强处理;直方图均衡化;主成份变换;色彩变换。
ERDAS IMAGE图像解译模块主要包括了图像的空间增强、辐射增强、光谱增强、高光谱工具、傅立叶变换、地形分析以及其他实用功能。
1、卷积增强(Convolution)
空间增强技术是利用像元自身及其周围像元的灰度值进行运算,达到增强整个图像之目的。
卷积增强(Convolution)是空间增强的一种方法。
卷积增强(Convolution)时将整个像元分块进行平均处理,用于改变图像的空间频率特征。
卷积增强(Convolution)处理的关键是卷计算子----系数矩阵的选择。
该系数矩阵又称卷积核(Kernal)。
ERDAS IMAGINE 将常用的卷计算子放在一个名为default.klb的文件中,分为3*3,5*5、7*7三组,每组又包括“EdgeDetect/Low Pass/Horizontal/Vertical/Summary”等七种不同的处理方式。
具体执行过程如下:
ERDAS图标面板菜单条:Main→Image Interpreter→Spatial enhancement→convolution→convolution对话框。
图3-1 Convolution对话框
几个重要参数的设置:
边缘处理方法:(Handle Edges by):Reflection
卷积归一化处理:Normalize the Kernel
2、直方图均衡化(Histogram Equalization)
直方图均衡化实质上是对图像进行非线性拉伸,重新分配图像像元值,是一定灰度范围内的像元数量大致相同。
这样,原来直方图中间的峰顶部分对比度得到增强,而两侧的谷底部分对比度降低,输出图像的直方图是一较平的分段直方图。
注意:认真对比直方图均衡化前后的图像差别,仔细观察直方图均衡化的效果。
图3-2直方图均衡化
3、主成分变换
主成分变换(Principal Component Analysis)是一种常用的数据压缩方法,它可以将具有相关性的多波段数据压缩到完全独立的较少的几个波段上,使图像数据更易于解译。
ERDAS IMAGE提供的主成分变换功能最多等对256个波段的图象进行转换压缩。
ERDAS 图标面板菜单条:Main →Image Interporeter→Spectral Enhancement →Principial Comp →Pincipal Components对话框。
(图3-3)
图3-3 Principal Component对话框
4、色彩变换(RGB to IHS)
色彩变换是将遥感图像从红(R)、绿(G)、兰(B)三种颜色组成的色彩空间转换到以亮度(I)、色度(H)、饱和度(S)作为定位参数的色彩空间,以便使图像的颜色与人眼看到得更接近。
其中,亮度表示整个图象的明亮程度,取值范围是0-1;色度代表像元的颜色,取值范围为0-360;饱和度代表颜色的纯度,取值范围是0-1。
图3-4 RGB to HIS对话框。