分式的乘除乘方混合运算

合集下载

1.2.2分式的乘方及乘除混合运算

1.2.2分式的乘方及乘除混合运算

gn
(n为正整数)
合作学习
一、知识点一:分式的乘方
例1.P10例3(1)(2)
1
x2 y
3
2
-
3xy 2 4z
2
练一练
注意:做乘方运算要先确定符号.
判断下列各式是否成立,并改正.
1
b3 2a
2
b5 2a2
;
解:(1)不成立,改正:
b3 2a
2

b6 4a2
;
2
3b 2a
2
9b2 4a2
知识回顾1:乘方的意义
an=a·a·a·…·a (n个a相乘)
知识回顾2:幂的运算
1、同底数幂相乘: am·an=am+n
2、幂的乘方: (am)n=amn
3、积的乘方: (ab)m=ambm
f g
自主学习
1、分式的乘方法则?用式子怎样表示?
分式的乘方是把分子、分母各自乘方.
(f ) n fn
g
的运算过程对吗?然后请你给他提出恰当的建议!
4
2 4x
x2
(
x
3)

x x
2 3
(2
2 x)2
(x
3) •
x x
2 3
2 x2
拓展提升
1、已知 x 4 (y 5)2 0,试求
( y x)2 •
xy
y x x2 4xy 4y2
( x y )2 x 2y
的值.
1
9
2.先化简 a2 4 ( a 1)2 a2 1 ,然后选取一个
;
(2)不成立,改正: -23ab
2
9b2 ; 4a2
3

2019秋人教版八年级数学上册教案:第15章5课题:分式的乘方及乘除、乘方混合运算

2019秋人教版八年级数学上册教案:第15章5课题:分式的乘方及乘除、乘方混合运算
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式乘方及乘除的基本概念。分式乘方是指分式的指数运算,它是我们解决实际问题时的一个重要工具。分式的乘除法则则是进行相关运算的基础,对于简化计算过程和提高解题效率具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何使用分式乘方及乘除法则来解决实际问题,以及这些规则如何帮助我们简化计算步骤。
(1)分式乘法法则;
(2)分式除法法则。
3.乘方混合运算:学会将分式的乘方与乘除进行混合运算,并能正确求解。
(1)乘方与乘法的混合运算;
(2)乘方与除法的混合运算。
4.应用练习:通过典型例题和练习题,巩固所学知识,提高解题能力。
二、核心素养目标
1.培养学生逻辑推理能力:通过分式的乘方及乘除、乘方混合运算的学习,使学生能够运用逻辑思维分析问题,推导出正确的运算步骤,提升推理能力。
-同底数分式乘方的运算,如(a/b)^n的简化方法;
-不同底数分式乘方的运算,如(a/b)^m * (c/d)^n的计算方法。
(2)分式乘除运算的符号处理:学生在进行分式乘除运算时,容易出错,特别是符号的处理。
-分式乘法中,符号变化的处理,如负数与正数相乘的结果;
-分式除法中,符号变化的处理,如负数与正数相除的结果。
其次,在新课讲授环节,我发现学生们对于分式乘方法则和分式乘除法则的理解程度不一。在讲解过程中,我尽量用简单的语言和具体的例子来说明,但仍有部分学生显得有些困惑。为了帮助这部分学生更好地掌握知识,我考虑在课后增加一些针对性的练习题,并对他们进行个别辅导。
在实践活动环节,学生们分组讨论和实验操作的表现让我印象深刻。他们能够积极思考、主动参与,这让我深感欣慰。但同时,我也注意到有些小组在讨论时,个别成员参与度不高。针对这个问题,我打算在以后的教学中,加强对小组讨论的引导,确保每个学生都能积极参与其中。

(完整版)分式加减乘除运算

(完整版)分式加减乘除运算

(三)分式 的运算知识点一:分式 的乘法 ---分式乘分式,用分子 的积作为积 的分子,分母 的积作为积 的分母23bc 2a b 4、 ;3a 16b4b 9a 24x y2b 2a 1、; 2、; 3、; 3y 2x 3 5a 2 2b5a 2 3c 22x 2 2x 2 4;x y x y ;x y x y3a 3b 25a b 396、; 7、5、a 2b 2x 2x x 3x210ab知识点二:分式 的乘方 ---要把分式 的分子、分母分别乘方 23222222 y 2x y 24a b a1 b 2a 2; 2、; 3、; 4、; 5、; 6、1、3y3x3zx y知识点四:分式 的除法 --分式除以分式,把除式 的分子、分母颠倒位置后,与被除式相乘2y 2 3x ab 22c 23a b 223x5y 220a y 4;3x512xy 5a28x y ;2、 3xy6xy16a y 321、;3、 ;4、 ;5、 4cd2x 2 y 2xyx 1 1 x x 2 4x 4 x 2;9、 x 4y 22x 2y2y x ;7、;8、6、x 2x xx 2xy y 2 2x 2xy2 2 x 1x 1知识点五:分式 的乘除混合运算322x 222322x 2 x x 2x x 21aab 2x y y 1、; 4、; 5、;2 x2b b4x2axay23232ab 3 6a 4 b 33c a b aba a ab 2;7、6、2b 22c db a1.下列各式计算结果是分式 的是( ). x 37x 2 n a m bn 3m m 2n(C) 3 5x x(A)(B)(D) 3y 24y32.下列计算中正确 的是().- 1(A)(-1)=- 1 (B)(- 1)=11 1 (C) 2a 33(D) ( a) ( a)72a 3a 43.下列各式计算正确 的是().1 (A) m ÷n · m =m (B) m nmn(C) 1 m m 1m (D) n ÷m · m =n).4.计算 ( a b )4 (a ) 5 的结果是 (ab a 1 a (A)-1(B)1(C) (D)aa b5.下列分式中,最简分式是( ).x 2xy y 2 2x y 2 2x 2y 221xy (A)(B)(C) (D) x yx y15 y 2x y2y 2 x x 9. ( ) ( )2 __________.3 10. [(x ) ]3 2__________.y 2 y知识点六:分式 的加减运算法则:①同分母分式相加减,分母不变,把分子相加减②异分母分式相加减,先通分,变为同分母 的分式,再加减x 1 1; 2、a 2a 3c117102;1、; 3、; 4、22c d 3cd 222xxabc abc abcx yz x y xyza 2a 3a3 8 11 x y y2x y ;y x; 6、 ; 7、 y x x y 5、 x 1 x 1 x 2 2 21b 1 b 1 b 1 1 y 1 2xy 3 2m n 8、; 9、; 10、;2x y x 2 y 222x y2m ny 2x2m n4 x 2 y 2 x 2 y 211、 a 2;12、 xy2 axy知识点 7:分式 的混合运算 2x y x 2y 2 x 11x a 1 2 a ; ;2、x1 ;3、 1、2x y 2 x a 2a 3 a 9 a2 2y1 1x y 1 x 2 y 21 3 x 5 4、5、x 22x 4x 2知识点 8:化简求值 ---化简求值问题 的解题步骤一般都是先对式子进行化简,再将已知值代入求值 2x 2 x 2 2x 11x 2x 2 2x 2 1、先化简,再求值: (2x 3xx 9,其中 x 2.2、先化简,再求值: 1)÷x ,其中 x=.x321 x 1 x 3 5 ),其中 x =- 4x 2x 3.4、先化简,再求值:2、先化简,再求值: 1,其中(x 2x 22x 4x 2a 1a 1a 1,其中aa 1 25、先化简,再求值:a 2 2a 1分式阶段水平测评(二)1.下列分式中是最简分式 的是( ).2x 4 x 1 1 x (D )x 1(A )(B )(C )22x 12xx 12.用科学记数法表示 0.000078,正确 的是().(A )7.8×10-5 (B )7.8×10-4 (C )0.78×10-3(D )0.78×10-41 3.下列计算:① ( 1)01;② ( 1) 1 1;③ 3a 35( x) ( x) 3 x 2.其;④3a 3中正确 的个数是().(A )4 (B )3(C )1( D )0 1 1 1(R 1 R ),则表示 R 的公式是( 4.已知公式1).2R R 1 R 2R 2 RRR 2RR 2 R( R R )2(A ) R 1(C ) R 1) .(D ) R 1() R 1B RR 2RR 2R 2RR 25.下列分式 的运算中,其中结果正确 的是(( a ) 231a 1 b2 a 3(A )( B )abaa 2b 2a 3a 2 6a 91 (C )a b( D )a b a 3a a ).a 24 a 2a6.化简 ( (A )-4的结果是().a 2(B ) 4 (C )2a(D)2a+4二、填空题(每小题 4分,计 16分)27.若 (a 1)0有意义,则 a ≠. 8.纳米是非常小 的长度单位, 1纳米 =0.000000001米,那么用科学记数法表示 1纳米 =米.x y y 1 2 x y9.如果= .,则 a b 2m dc10.若 a 、b 互为相反数, c 、d 互为倒数, m 的绝对值为 2,则 .a b c三、解答题11.计算化简(每小题 5分,计 20分)x 2 4x 2(x 9);( 1) 2 x x 2;(2)2x 3x2 3a 4 1 a 1;( 4) a(3) a 2 a 1.2a 4a 4 a 1 a 2 a 112.请将下面 的代数式尽可能化简,再选择一个你喜欢 的数(要合适哦! )代入求值:a 2 a 1 1.2a (a 1)2x 111 213.(10分)先化简,再求值,其中 x. 2x 2x 1 2x 2a x2bx 3 3 aba14.(10分)若关于 x 的方程的解是 x=2,其中 a b ≠ 0,求 的值. b快速练习21.①若 9x kxy 16y 2k =是一个完全平方式,则;2②若三项式 x 8xy m 是一个完全平方式,则 m = . 2.已知 a 2 ab 5,ab b 222,那么 a b 2.2x(x y 2 xy) y(x 2 x y) 2 34、 (3x 2y) (3x y)(3x y)5、211 2 23b c 27、 2m 26、 2a b 2ab c;2mnmn4 2228.已知 x y 3, xy 2,求 x 2 y ,x y的值。

八年级数学分式的乘方及乘除混合运算练习题.doc

八年级数学分式的乘方及乘除混合运算练习题.doc

【本文由书林工作坊整理发布,如有疑问可关注私信。

谢谢!】分式的乘方及乘除混合运算知识点1 分式的乘除混合运算1.(河北中考)下列运算结果为x -1的是(B )A .x 2-1x -1B .x 2-1x ·xx +1 C .x +1x ÷1x -1 D .x 2+2x +1x +12.计算:-n m 2÷n 2m 3÷mn 2=-n .3.计算:(1)2x 2y 3mn 2·5m 2n 4xy 2÷5xym 3n; 解:原式=2x 2y 3mn 2·5m 2n 4xy 2·3n 5xym =12y 2.(2)a +2a 2-1·a -1a 2+4a +4÷1a +2; 解:原式=a +2(a +1)(a -1)·a -1(a +2)2·(a +2)=1a +1.(3)3x 4x -3÷216x 2-9·x4x +3; 解:原式=3x 4x -3·(4x +3)(4x -3)2·x 4x +3=3x 22.(4)1x -1÷(x+2)·x -1x +2. 解:原式=1x -1·1x +2·x -1x +2=1(x +2)2.知识点2 分式的乘方运算4.在下列各式中:①(-2n a 2b )2;②-8m 4n 2a 2b ;③8m 4n 2a 5b ·an bm 2;④4n 2ab 2÷a 3,相等的两个式子是(B )A .①②B .①④C .②③D .③④ 5.计算:(2x 23y )2=4x 49y 2,(-y 22x 3)3=-y 68x 9.6.计算:(1)(-y 2x)2;解:原式=(-y 2)2x 2=y 4x 2.(2)(2a 2b c)3.解:原式=(2a 2b )3c 3=8a 6b3c 3.知识点3 分式乘方、乘除的混合运算 7.计算a 3·(1a)2的结果是(A )A .aB .a 5C .a 6D .a 88.计算x 2y ÷(-y x )·(y x)2的结果是(A )A .-xB .-x 2yC .x yD .x 2y 9.计算:(1)(-b 22a )÷(-b a 2)3÷(1ab)3;解:原式=(-b 22a )÷(-b 3a 6)÷1a 3b 3=b 22a ·a 6b 3·a 3b 3=a 8b 22.(2)m 2-n 2(m -n )2·(n -m mn )2÷m +nm; 解:原式=(m +n )(m -n )(m -n )2·(n -m )2m 2n 2·m m +n =m -n mn 2.(3)(x 2-y 2xy )2÷(x +y)2·(x x -y)3.解:原式=(x +y )2(x -y )2x 2y 2·1(x +y )2·x 3(x -y )3=x xy 2-y 3.02 中档题10.下列分式运算,正确的是(D )A .m 4n 5·n 3m 3=m nB .(3x 4y )3=3x 34y3C .(2a a -b )2=4a 2a 2-b 2 D .a b ÷cd =ad bc11.计算1÷1+m1-m·(m 2-1)的结果是(B )A .-m 2-2m -1B .-m 2+2m -1C .m 2-2m -1D .m 2-1 12.计算:(1)(2xy 3-z 2)2÷6x 2y3;解:原式=4x 2y 6z 4·y 36x 2=2y 93z 4.(2)(-a b )2·(-a b )3÷(-ab)4;解:原式=-a 2b 2·a 3b 3·1a 4b 4=-a b 9.(3)2x +y x -y ÷2x +yx 2-2xy +y 2·(x -y);解:原式=2x +y x -y ·(x -y )22x +y ·(x-y)=(x -y)2.(4)(x -2x )2÷x 2-4x 2+2x.解:原式=(x -2)2x 2·x (x +2)(x +2)(x -2)=x -2x.13.阅读下列解题过程,然后回答问题.计算:1x 2-6x +9÷x +3x -3·(9-x 2).解:原式=1(x -3)2÷x +3x -3·(3-x)(3+x) 第一步=1(x -3)2·x -3x +3·(3-x)(3+x) 第二步 =1. 第三步(1)上述计算过程中,第一步使用的公式用字母表示为a 2-2ab +b 2=(a -b)2,a 2-b 2=(a +b)(a -b);(2)第二步使用的运算法则用字母表示为A B ÷C D =A B ·DC ;(3)由第二步到第三步进行了分式的约分;(4)以上三步中,第三步出现错误,正确的化简结果是-1.14.(黄石中考)先化简,再求值:a 2-3a a 2+a ÷a -3a 2-1·a +1a -1,其中a =2 016.解:原式=a (a -3)a (a +1)·(a +1)(a -1)a -3·a +1a -1=a +1.当a =2 016时,原式=2 017.15.先化简,再求值:(2ab 2a +b )3÷(ab 3a 2-b 2)2·[12(a -b )]2,其a =-12,b =23.解:原式=(2ab 2)3(a +b )3·(a 2-b 2)2(ab 3)2·14(a -b )2=8a 3b 6(a +b )3·(a +b )2(a -b )2a 2b 6·14(a -b )2 =2a a +b. 当a =-12,b =23时,原式=2×(-12)-12+23=-6.03 综合题16.有这样一道题:“计算x 2-2x +1x 2-1÷x -1x 2+x ÷(1x )3的值,其中x =2”,小明同学把x =2错抄为x =-2,但是他计算的结果也是正确的,你说这是怎么回事?解:x 2-2x +1x 2-1÷x -1x 2+x ÷(1x )3=(x -1)2(x +1)(x -1)·x (x +1)x -1·x 3 =x 4.所以,当x =2或-2时,原式的值都等于16.。

人教版八年级上册1.分式的乘方及乘方与乘除的混合运算

人教版八年级上册1.分式的乘方及乘方与乘除的混合运算
1第1.2分分课式式时的的分乘分乘除除式式((的法22课课乘法的时时方则))及 .乘乘方方与乘运除的算混合这运算一课的教学先让学生回忆以前学过的分
2.运算中的注意事项.
数的乘方的运算方法,然后采用类比的方法让学生得出分 1第2分课式时的乘分除式(的2课乘时方)及乘方与乘除的混合运算
教2.材运第算14中6的页注习意题事15项. .
本例题是本节课运算题目的拓展,对于(1)指数为字母, 不过方法不变;(2)(3)是较复杂的乘除乘方混合运算,要进 一步让学生熟悉运算顺序,注意做题步骤.
教学设计
四、巩固练习 教材第139页练习第1,2题. 五、课堂小结 1.分式的乘方法则. 2.运算中的注意事项. 六、布置作业 教材第146页习题15.2第3题.
分第式2课的时除法分法式则的:乘分方式及除乘以方分与式乘,除把的除混式合的运分算子、分母颠倒位置后,与被除式相乘. 1第.2课分式时的分乘式除的法乘法方则. 及乘方与乘除的混合运算 第2课时 分式的乘方及乘方与乘除的混合运算 教分材式第 的1乘3法9页法练则习:第分1式,乘2题分.式,用分子的积作为积的分子,用分母的积作为积的分母. 第2课时 分式的乘方及乘方与乘除的混合运算
2x 3 x 教材第139页练习第1,2题. 解: ÷ · 2.理解分式乘方的原理,掌握乘方的规律,并能运2用乘方规律进行分式的乘方运算. 5x-3 25x -9 5x+3 1.分式的乘除法法则.
第1 2分课式时的分乘除式(的2课乘时方)及乘方与乘除的混合运算2
2x 25x -9 x 教材第139页练习第1,2题. = · · 第2课时 分式的乘方及乘方与乘除的混合运算 5x-3 3 5x+3 1.分式的乘除法法则.
(3)确定分式的符号,然后约分;

八年级上册数学15.2.1第2课时分式的乘方及乘除混合运算级

八年级上册数学15.2.1第2课时分式的乘方及乘除混合运算级

乘方
(x - y)2 x2 y2
(x2
y2)
(x
x3 - y)3
除法变乘法
(x - y)2 (x y)( x y) x3
x2 y2
(x - y)3
分解因式
x2 xy y2 .
乘法、约分
探索新知
知识点2 分式的乘方
含有乘方的分式乘除混合运算的步骤 (1)先算分式的乘方; (2)除法变乘法; (3)若分子或分母为多项式,要分解因式; (4)进行乘法运算,约分得到结果.
第十五章 分式
15.2.1 分式的乘除
第2课时 分式的乘方及乘除混合运算
学习目标-新课导入-探索新知-课堂小结-课堂练习
人教版·八年级上册
学习目标
1.进一步熟练分式的乘除法则,会进行乘、除法的混合运算.(重点) 2.了解并掌握分式的乘方法则.(重点) 3.能熟练运用分式的乘方法则进行计算,会进行含乘方的分式的乘 除混合运算.(难点)
(x
3)(x
3)
1.
课堂练习
7.(1)化简:a a
2 2
-
4 a
(
a -1 a2
)2
a a2
2 1 2a
.
解:原式 (a 2)(a 2) a(a 1)
a 12 a 22
a(a 2) (a 1)(a 1)
a a
2 1
.
1
(2)当a=5时,其结果为 2 .
(3)请你选择一个你喜欢的数作为a的值,则a不可以取 0,±1,-.2
(2)( 3xy 2 )3; 4z
解:(1)
( 2a2b )2 3c
( 2a 2b) 2 (3c)2
4a4b2 9c2
;

15.2.4分式的加减乘除乘方混合运算

15.2.4分式的加减乘除乘方混合运算

思维训练
1.老师布置了一道计算题:计算 (a 2 a2
b2 - b2

a a
b) b
2ab
÷(a - b)(a b)2 -(a+b)的值,其中a=2 014,
b=2 015.小明把a,b错抄成a=2 015,b=2 014,但老师 发现他的答案还是正确的,你认为这是怎么回事?说说 你的理由.
知识运用
解:(1)原式=
a-1-1 (a-2)2 a-1 (a 1)(a-1)

a a
-2 1
(a
1)(a (a 2)2
1)

a a

1 2
当a=-2时,原式=
-2 1 -2-2

1 4
.
(2)原式=
x2 1
xx 1

1 x 1

x 1x 1 x x 1x 1
(1)写出第n个式子. (2)利用(1)中的规律计算:
1 x(x
1) + (x

1 1)(x

2)
+…+ (x

1 2014)(x

2015)
.
智能解答
解:(1)
1 n(n
1) =
1 n
-
n
1
1
(n为正整数)
(2)
1 x(x
1) + (x

1 1)(x

2) +…
+ (x

1 2014)(x

2015)
=
1 x
-
x
1
1+
x
1
1-

沪教版七年级 分式的四则运算,带答案

沪教版七年级  分式的四则运算,带答案

分式的四则运算课时目标1.理解通分的意义,理解最简公分母的意义.2.理解分式乘、除法,乘方的法则,会进行分式乘除运算. 3.明确分式混合运算的顺序,熟练地进行分式的混合运算.知识精要1. 分式的乘除法法则a bcdacbd⋅=;abcdabdcadbc÷=⋅=当分子、分母是多项式时,则先分解因式,看能否约分,然后再相乘.2. 分式的加减法(1)同分母的分式加减法法则:acbca bc±=±.(2)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减. 3. 通分:根据分式的基本性质把几个异分母的分式分别化成与原来的分式相等的同分母的分式的过程.4. 求最简公分母的法则(1)取各分母系数的最小公倍数;(2)凡出现的字母(或含有字母的式子)为底的幂的因式都要取;(3)相同字母(或含有字母的式子)的幂的因式取指数最高的.5. 分式加减法的注意事项(1)通分的过程中必须保证化成的分式与其原来的分式相等,分式的分子、分母同时乘的整式是最简公分母除以分母所得的商;(2)通分后,当分式的分子是多项式时,应先添括号,再去括号合并同类项,从而避免符号错误.(3)分式的分子相加减后,若结果为多项式,应先考虑因式分解后与分母约分,将结果化为最简分式或整式.6. 分式乘方的法则:()a b a bn nn =(n 为正整数)注意:①分式的乘方,必须把分式加上括号.②在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算 乘、除,有多项式时应先分解因式,再约分.热身练习1. (-2b a)2n的值是( )A .222n n b a +B .-222n n b a +C .42n n b aD .-42nn b a2. 计算(2x y)2·(2y x )3÷ (-y x )4得( )A .x 5B .x 5yC .y 5D .x 153.计算(2x y )·(y x )÷(-y x )的结果是( )A .2x yB .-2x y C .x y D .-x y4.(-2b m)2n +1的值是( )A .2321n n b m ++B .-2321n n b m ++C .4221n n b m ++D .-4221n n b m ++5.化简:(3x y z )2·(xz y )·(2yzx )3等于( )A .232y z xB .xy 4z 2C .xy 4z 4D .y 5z6.计算(1) 322)23(c ab - (2)43222)()()(xym m y x xy m ÷-⋅-(3) 22222)(b a b a b a b a +-÷+- (4))4(3)98(23232b x b a xy y x ab -÷-⋅(5)22)2(4422-++---x x x x x x (6)6554651651222222-+-+-++--++x x x x x x x x x (7)()()222624x x x ---+ (8)223y xy xy xy x y x +-+++(9)545422++-+x x x (10)()2222222222945929y x xyy x y y x y x y x --+--+--精讲名题例1. 223342222333243)125()25(])4()8()4()2([xy y x xy y x y x xy --÷---⨯--例2. ()242223232222222+++++--+-a a a a a a a a例3. 计算:xx xx x x x x x x x 4122121035632222-+-++---+++例4. 已知0a b c ++=,求111111()()()a b c b c a c b a+++++的值例5.已知6112=++a a a ,试求1242++a a a 的值 例6. 1814121111842+-+-+-+--x x x x x例7. 计算 45342312+++++-++-++x x x x x x x x巩固练习类型一:分式的乘除运算(1)2222294255)23(m x m y x y x x m --⋅++- (2)xx x x x x x -++⋅+÷+--36)3(446222类型二:分式的加减运算(1) 2221311a a a a a ---+-- (2) 232a b c a b c b ca b c b c a c a b-+-+--++--+--(3)2422---x x x (4)22211y x xy x y x -+--+(5)224--+a a (6) 222244242x y y x y x y y x -+-++ (7) 已知y x a x y -=,y xb x y+=,求22a b -类型三:分式的混合运算(1)222244232n mn m n mn m n m n m +-+-+-- (2) 4222xx x x x x ⎛⎫+÷ ⎪-+-⎝⎭(3)245(3)33x x x x -÷----- (4)111111--++x x(5)2222222265232y x y x y xy x y x y xy x y xy x -+⋅---÷+++-(6)已知:,02=-y x 求()()323322y x y x y x y x +-÷+-类型四:化简求值类型题(1)13)11132(22--÷-+----x x x x x x x .其中x =2(2)232282x x x x x +-++÷(2x x -·41x x ++).其中x =-45.(3)当1x =时,226336x x x x x x --+⋅-+-的值为多少?类型五:分式的拆分 1.设n 为自然数,计算:)1(1431321211+++⨯+⨯+⨯n n .2.计算:)100)(99(1)2)(1(1)1(1++++++++x x x x x x .自我测试一、选择题2. 下列分式是最简分式的( ) A .ba a 232 B .aa a 32- C .22b a b a ++ D .222b a ab a --3. 化简)2()242(2+÷-+-m mm m 的结果是( )A .0B .1C .-1D .(m +2)24. 已知2111=-b a ,则b a ab -的值是( )A .21B .21- C .2 D .-25. 化简(x y -y x ) ÷x yx -的结果是( )A .1yB .x y y +C .x y y -D .y二、填空题6. 如果分式23273x x --的值为0,则x 的值应为 .7. 化简: aa 12-÷(1+a 1)= .8. 化简:4)222(2-÷--+x x x x x x 的结果为 .9. 若x 2-3x +1=0,则2421x x x ++的值为_________.10.化简12-a ·442++a a ÷2+a +12-a ,其结果是________.三、计算题 11. 计算(1) 22399xx x --- (2) x x x x x x x x x x 23832372325322222--+--+++--+ (3)()()3232x y xy y x yx -+- (4))50153050152(5015222+-++---+-x x x x x x x x(5)aaa a a a -÷+--36)33( (6)5132651813261522-+÷----⨯-+-x x x x x x x x12.化简求值 (1)aa -+-21442,并求时原式的值.(2)先化简,再求值:1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a .(3)按下列程序计算:答案平方−→−-−→−÷−→−+−→−−→−n n n n 填表并请将题中计算程序用代数式表达出来,并化简. 输入n 3… 输出答案 11分式的四则运算课时目标1.理解通分的意义,理解最简公分母的意义.2.理解分式乘、除法,乘方的法则,会进行分式乘除运算. 3.明确分式混合运算的顺序,熟练地进行分式的混合运算.知识精要1. 分式的乘除法法则a b c d ac bd ⋅=;a b c d a b d c adbc÷=⋅= 当分子、分母是多项式时,则先分解因式,看能否约分,然后再相乘. 2. 分式的加减法(1)同分母的分式加减法法则:a cbc a bc±=±.(2)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减. 3. 通分:根据分式的基本性质把几个异分母的分式分别化成与原来的分式相等 的同分母的分式的过程. 4. 求最简公分母的法则(1)取各分母系数的最小公倍数;(2)凡出现的字母(或含有字母的式子)为底的幂的因式都要取; (3)相同字母(或含有字母的式子)的幂的因式取指数最高的. 5. 分式加减法的注意事项(1)通分的过程中必须保证化成的分式与其原来的分式相等,分式的分子、 分母同时乘的整式是最简公分母除以分母所得的商;(2)通分后,当分式的分子是多项式时,应先添括号,再去括号合并同类项, 从而避免符号错误.(3)分式的分子相加减后,若结果为多项式,应先考虑因式分解后与分母约分, 将结果化为最简分式或整式.6. 分式乘方的法则:()a b a bn nn =(n 为正整数)注意:①分式的乘方,必须把分式加上括号.②在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算 乘、除,有多项式时应先分解因式,再约分.热身练习1. (-2b a)2n的值是( C )A .222n n b a +B .-222n n b a +C .42n n b aD .-42nn b a2. 计算(2x y)2·(2y x )3÷ (-y x )4得( A )A .x 5B .x 5yC .y 5D .x 153.计算(2x y )·(y x )÷(-y x )的结果是( B )A .2x yB .-2x y C .x y D .-x y4.(-2b m)2n +1的值是( D )A .2321n n b m ++B .-2321n n b m ++C .4221n n b m ++D .-4221n n b m ++5.化简:(3x y z )2·(xz y )·(2yzx )3等于( B )A .232y z xB .xy 4z 2C .xy 4z 4D .y 5z6.计算(1) 322)23(c ab - (2)43222)()()(x ym m y x xy m ÷-⋅-解: 原式=663827c b a - 解:原式=338ym x -(3) 22222)(b a b a b a b a +-÷+- (4))4(3)98(23232b x b a xy y x ab -÷-⋅ 解:原式=))(()(223b a b a b a +-+ 解:原式=32916ax b(5)22)2(4422-++---x xx x x x (6)6554651651222222-+-+-++--++x x x x x x x x x解:原式=21-+x x 解:原式=64+-x x (7)()()222624x x x ---+ (8)223y xy x y xy x y x +-+++ 解:原式=21-x 解:原式=xy x y -3(9)545422++-+x x x (10)()2222222222945929y x xyy x y y x y x y x --+--+-- 解:原式=)1)(5(24-+-x x x 解:原式=0精讲名题例1. 223342222333243)125()25(])4()8()4()2([xy y x xy y x y x xy --÷---⨯-- 解:原式=)55()2222(426912624242669661244yx y x y x y x y x y x -÷⋅=)1()(51022y x y x -⋅=361yx -例2. ()242223232222222+++++--+-a a a a a a a a 解:原式=326322=++a a例3. 计算:x x xx x x x x x x x 4122121035632222-+-++---+++解:原式=)2)(2(12)1)(2()1()2)(5()1)(5(2-++-+---+++x x x xx x x x x x x=)2)(2(122121-+++---+x x x x x x =)2)(2(126-++x x x=26-x例4. 已知0a b c ++=,求111111()()()a b c b c a c b a+++++的值解:由已知得:a c b b c a c b a -=+-=+-=+,,∴原式=a cb c c b a b c a b a +++++ =acb c b a b c a +++++ =-3例5.已知6112=++a a a ,试求1242++a a a 的值 解:由已知得:612=++a a a ,即611=++aa 51=+∴a a 232)1(1222=-+=+∴aa a a2411122224=++=++∴a a a a a 2411242=++∴a a a例6. 1814121111842+-+-+-+--x x x x x 解:原式=181412128422+-+-+--x x x x =181414844+-+--x x x =181888+--x x =11616-x例7. 计算 45342312+++++-++-++x x x x x x x x 解:原式=411311211111++++--+--++x x x x =41312111+++-+-+x x x x =)3)(2(52)4)(1(52+++-+++x x x x x x=24503510104234+++++x x x x x巩固练习类型一:分式的乘除运算(1)2222294255)23(m x m y x y x x m --⋅++- (2)xx x x x x x --+⋅+÷+--36)3(446222解:原式=)23(5--x m y x 解:原式=22--x类型二:分式的加减运算(1) 2221311a a a a a ---+-- (2) 232a b c a b c b c a b c b c a c a b-+-+--++--+-- 解:原式=2- 解:原式=0(3)2422---x x x (4)22211y x xy x y x -+--+ 解:原式=2+x 解:原式=yx +2(5)224--+a a (6) 222244242x y y x y x y y x -+-++ 解:原式=242++-a a 解:原式=yx x 22+(7) 已知y x a x y -=,y xb x y+=,求22a b - 解:原式=4)2(2))((-=-⋅=-+yxx y b a b a类型三:分式的混合运算(1)222244232n mn m n mn m n m n m +-+-+-- (2) 4222xx x x x x ⎛⎫+÷ ⎪-+-⎝⎭ 解:原式=nm nm 222-- 解:原式=)2(2+x x(3)245(3)33x x x x -÷----- (4)111111--++x x 解:原式=22+-x 解:原式=)2)(1()1)(2(-+-+x x x x(5)2222222265232y x yx y xy x y x y xy x y xy x -+⋅---÷+++- 解:原式=yx yx 26+-(6)已知:,02=-y x 求()()323322y x y x y x y x +-÷+- 解:原式=))(()())(()(223334y xy x y x y x y x y x y x +--+=+-+又x y 2=,代入得: 原式=-9类型四:化简求值类型题(1)13)11132(22--÷-+----x x x x x x x .其中x =2解:原式=34--x , 当x =2时,原式=4.(2)232282x x x x x +-++÷(2x x -·41x x ++).其中x =-45.解:原式=11+x , 当x =-45时,原式=5.(3)当1x =时,226336x x x x x x --+⋅-+-的值为多少? 解:原式=22-+x x , 当1x =时,原式=-3.类型五:分式的拆分1.设n 为自然数,计算:)1(1431321211+++⨯+⨯+⨯n n . 解:原式=11141313121211+-++-+-+-n n =111+-n =1+n n3.计算:)100)(99(1)2)(1(1)1(1++++++++x x x x x x . 解:原式=100199********+-++++-+++-x x x x x x =10011+-x x =)100(100+x x 自我测试一、选择题A. a +bB. a -bC. a 2-b 2D. 12. 下列分式是最简分式的( C )A .b a a232 B .a a a 32- C .22b a b a ++ D .222b a ab a -- 3. 化简)2()242(2+÷-+-m mm m 的结果是( B ) A .0B .1C .-1D .(m +2)2 4. 已知2111=-b a ,则b a ab -的值是( D ) A .21 B .21- C .2 D .-2 5. 化简(x y -y x ) ÷x y x -的结果是( B ) A . 1y B . x yy + C . x yy - D .y二、填空题6. 如果分式23273x x --的值为0,则x 的值应为 -3 . 7. 化简: aa 12-÷(1+a 1)= a -1 . 8. 化简:4)222(2-÷--+x x x x x x 的结果为 x -6 .10.化简122-+a a ·4412++-a a a ÷21+a +122-a ,其结果是11-a . 三、计算题11. 计算(1) 22399x x x --- (2)x x x x x x x x x x 23832372325322222--+--+++--+ 解:原式=31+-x 解:原式=(3)()()3232x y xy y x yx -+- (4))50153050152(5015222+-++---+-x x x x x x x x 解:原式=2)(y x xy - 解:原式=53-x (5)aa a a a a -÷+--36)33( (6)5132651813261522-+÷----⨯-+-x x x x x x x x 解:原式=aa a a a a a a 633633-⋅+--⋅- 解:原式=252-x =)3(6361+-+-a a =31+-a12.化简求值 (1)aa -+-21442,并求3-=a 时原式的值. 解:原式=21+-a 当3-=a 时,原式=1.(2)先化简,再求值:1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . 解:原式=22--a a由已知得:02=-a a∴原式=-2(3)按下列程序计算:答案平方−→−-−→−÷−→−+−→−−→−n n n n 填表并请将题中计算程序用代数式表达出来,并化简. 输入n3 … 输出答案 1 1解:12=-+n nn n。

八年级数学 15.2.2分式的混合运算

八年级数学 15.2.2分式的混合运算

b d b c bc
同分母加减:b c b c
加减法
aa a
异分母加减:b d bc ad bc ad
a c ac ac ac
一 新课讲解
2
问题:如何计算
2m

n


1 m-n
-
m n

n 4

请先思考这道题包含的运算,再确定运算顺 序,并独立完成.
b



a
1
b

a
1
b



a
1
b

a
1
b



a
1
b

a
1
b

2a
a2 b2
巧用公式
一 能力提升
例4.若
2 x2 1

A x 1
B ,求A、B的值. x 1
解析:先将等式两边化成同分母分式,然后对 照两边的分子,可得到关于A、B的方程组.
2.课本p146 习题15.2 第6题
一 课堂练习
1.
计算
1
3x 2y

3x 2y

2y 3x
的结果是( C

2 y 6xy
A. 9x2
2y 3x
B. 2y
3x 2y
C. 3x
3x
D. 2 y
2.
化简(
x y

y) x

x
x
y
的结果是
x y y.3.化简来自1x y x 3y
解:∵ A B x 1 x 1

分式的运算与分式方程

分式的运算与分式方程

分式的运算与分式方程一、分式的运算1、分式的乘除分式乘法法则:分式乘分式,分子的积作为积的分子,分母的积作为积的分母,即DB CA D CB A ⋅⋅=⋅分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即C BD A C D B A D C B A ⋅⋅=⋅=÷分式的乘方:b ab a n nn=)( ,此公式不仅要会正用,有时根据题目需要还要会逆用。

2、分式的加减运算的次序:(1)同级运算,应从左到右按顺序算。

(2)进行乘除与乘方的混合运算时,应先乘方后乘除。

(3)分式混合运算,先算乘除,再算加减。

例1、(1)化简:1112421222-÷+--⋅--a a a a a a (2)化简:2324324422222+⋅--+÷++-+x x x x x x x x (3)化简:()a b bba ab a -÷-⋅+222 (4)化简:())()(y x x y x xyyx-⋅+÷-2223例2、计算:(1)81385---+m m m (2)s s -++1312 (3)11122---x x x(4)969392222++-+++x xx x x x x (5)111+-+x x (6)242++-a a例3、(1)2121442-÷++-x x x )((2)x x x x x x x x 44412222-÷+----+)((3)12111222+-÷--+x xx x x例4、有这样一道题:“计算:xxx x x x x -+-÷-+-2221112的值,其中2007=x ”,某同学把2007=x 错抄成2008=x ,但它的结果与正确答案相同,你说这是怎么回事?例5、已知aba abb b a ab b ab a --⋅+÷-+2222的值为正整数,试求所有符合条件的a 的整数值.例6、已知:0132=+-a a ,试求)1)(1(22aa a a --的值.例7、求待定字母的值(1)若111312-++=--x Nx M x x ,试求N M ,的值. (2)已知:121)12)(1(45---=---x Bx A x x x ,试求A 、B 的值.例8、若.1111的值,求++++++++=c ca cb bc b a ab a abc二、整数指数幂两个规定:(1)当100=≠a a 时,;(2)当aa a nn 1,0=≠-时.由此我们可以将正整数数幂推广到全体整数。

2024年人教版八年级上册第十五章 分式分式的运算

2024年人教版八年级上册第十五章 分式分式的运算

15.2.1 分式的乘除 第1课时 分式的乘除课时目标1.通过类比分数的乘除法法则得出分式的乘除法法则,从中体会“数式通性”和类比转化的思想方法,发展学生的抽象能力.2.使学生经历分式的乘除运算规律的发现过程,培养学生自主探索、自主学习、自主归纳知识的意识,进一步提高学生的运算能力.3.通过运用分式的乘除法法则进行运算,解决一些与分式乘除法有关的实际问题,使学生养成理论联系实际的习惯,发展实践能力,培养应用意识. 学习重点运用分式的乘除法法则进行运算. 学习难点分子、分母为多项式的分式的乘除运算. 课时活动设计回顾引入大家之前学习过分数的乘除法法则,现在是否还有印象?师生活动:教师在黑板列出2道分数乘除法的题目,并请两位学生上台板书. 计算:(1)23×56; (2)23÷56.解:(1)23×56 = 2×53×6 = 59. (2)23÷56 = 23×65= 2×63×5 = 45.设计意图:通过回顾分数的乘除法法则引入新课,为学习分式的乘除法法则作铺垫.探究新知问题1:一个长方体容器的容积为V ,底面的长为a ,宽为b ,高为h ,当容器内的水占容积的mn 时,水高多少?解:水高=h ×mn =Vab ×m n =Vmabn.问题2:大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?解:倍数=大拖拉机的工作效率小拖拉机的工作效率=a m ÷b n =a m ×n b =an bm.问题3:观察下列运算.23×45=2×43×5;57×29=5×27×9;23÷45=23×54=2×53×4;57÷92=5×27×9.猜一猜:a b ×dc =?b a ÷dc =? 解:a b ×d c =a×db×c , b a ÷d c =b a ·c d =b×ca×d.类比分数的乘除法法则,你能说出分式的乘除法法则吗?师生活动:通过教学活动1中的具体例子,引导学生回忆前面学过的分数的乘除法法则,利用类比的方法得出分式的乘除法法则.乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 用式子表示为:a b ·c d =a·c b·d ,a b ÷c d =a b ·d c =a·db·c.设计意图:以此活动激活学生原有的知识体系,充分体现学生的学习是在原有知识的基础上自我生成的一个过程,有利于让学生更好地掌握类比的学习方法.典例精讲 例1 计算:(1)4x3y ·y2x 3; (2)ab 32c 2÷-5a 2b 24cd .解:(1)原式= 4xy6x 3y = 23x 2.(2)原式=ab 32c 2·4cd-5a 2b 2=-4ab 3cd10a 2b 2c 2=-2bd5ac .例2 计算:(1)a 2-4a+4a 2-2a+1·a -1a 2-4; (2)149−m 2÷1m 2-7m .解:(1)原式=(a -2)2(a -1)2·a -1(a -2)(a+2)=(a -2)2(a -1)(a -1)2(a -2)(a+2) =a -2(a -1)(a+2). (2)原式=1(7+m)(7-m)×m(m -7)1=-m7+m .例3 如图,“丰收1号”小麦的试验田是边长为a m 的正方形去掉一个边长为1 m 的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a -1)m 的正方形,两块试验田的小麦都收获了500 kg .(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?解:(1)“丰收1号”小麦的试验田面积是(a 2-1)m 2,单位面积产量是500a 2-1 kg/m 2; “丰收2号”小麦的试验田面积是(a -1)2 m 2,单位面积产量是500(a -1)2 kg/m 2. ∵a >1,∴(a -1)2>0,a 2-1>0.∵(a -1)2-(a 2-1)=2-2a <0,∴(a -1)2<a 2-1. ∴500a 2-1<500(a -1)2.所以“丰收2号”小麦的单位面积产量高. (2)500(a -1)2÷500a 2-1=500(a -1)2·a 2-1500=(a+1)(a -1)(a -1)2=a+1a -1.所以“丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位面积产量的a+1a -1倍.设计意图:通过例题,使学生掌握分式的乘除法法则,引导学生用分式的乘除法解决生活中的实际问题,提高“用数学”的意识,让学生感受到学以致用,体会到能够完整解决问题的喜悦,同时训练学生的书面表达能力,培养学生解决问题的能力.巩固训练 1.计算:(1)3a 5b ·2b6a 2; (2)2x5mn ÷y4x .解:(1)原式=3a·2b5b·6a 2=15a .(2)原式= 2x5mn ×4xy = 2x·4x5mn·y = 8x 25mny . 2.计算:(1)a -b2ab ·3a 2b3a 2-3b 2; (2)9y 2-x 2x 2+2x+1÷2x -6yx+1. 解:(1)原式= (a -b)·3a 2b2ab·3(a+b)(a -b) = a2a+2b . (2)原式= 9y 2-x 2x 2+2x+1·x+12x -6y=(3y -x)(3y+x)·(x+1)(x+1)2·2(x -3y)=-3y+x2x+2.设计意图:通过巩固训练,及时巩固本节课所学知识,帮助学生熟练掌握分式的乘除法法则.课堂小结1.本节课探究了分式的哪些问题?2.分式的乘法法则:a b ·c d =a·cb·d .3.分式的除法法则:a b ÷c d =a b ·d c =a·d b·c.设计意图:通过课堂小结,回顾本节课所学知识,及时查漏补缺.课堂8分钟.1.教材第138页练习第2,3题,第146页习题15.2第1,2题.2.七彩作业.第1课时 分式的乘除一、分式的乘除法法则:分式的乘除{乘法法则:a b ·cd =a·cb·d ;除法法则:a b ÷c d =a b ·d c =a·d b·c .二、例题讲解.注意:1.运用法则时注意符号的变化; 2.因式分解在分式乘除法中的应用; 3.结果要化成最简分式或整式. 三、课堂评价.教学反思第2课时 分式的乘方及乘除混合运算课时目标1.让学生经历分式的乘方法则的生成过程,培养学生自主探索、自主学习、交流合作的意识,提高学生的总结归纳能力.2.运用分式的乘除法法则、分式的乘方法则解决数学问题,让学生感受到数学知识的应用过程,培养学生的应用意识,提高学生的运算能力.3.类比分数的乘除法、乘方混合运算,进行分式的乘除法、乘方混合运算,让学生体会数与式的发展过程,感悟数与式在运算法则及运算顺序上的高度统一,培养学生的类比意识,发展学生的抽象能力. 学习重点会进行分式的乘方运算,分式的乘除法、乘方混合运算. 学习难点分式的乘除法、乘方混合运算以及运算中符号的确定. 课时活动设计回顾引入引导学生用自己的语言描述分式的乘除法法则. 教师在黑板上列出分式的乘除法法则: 分式的乘法法则:a b ·cd = a·cb·d ;分式的除法法则:a b ÷cd=a·d b·c.设计意图:通过回顾分式的乘除法法则,来确认学生是否掌握了分式的乘法、除法运算,为本节课的学习打好基础.探究新知问题1:计算:2x5x -3÷325x 2-9·x5x+3.解:原式=2x 5x -3·25x 2-93·x5x+3=2x 23.问题2:计算下列各题:(1)(a b )2; (2)(a b )3; (3)(a b )4; (4)(a b )n.(n 为正整数) 解:(1)原式=a b ·a b =a·a b·b =a 2b 2.(2)原式=a b ·a b ·a b =a·a·a b·b·b =a 3b 3.(3)原式=a b ·a b ·a b ·a b =a·a·a·a b·b·b·b =a 4b 4.师生活动:教师引导学生观察前三个小问中等式两边有怎样的联系,再根据乘方的意义和分式乘法的法则推导出分式乘方的运算法则:(a b )n =ab ×ab ×…×a b ⏟ n 个=a×a×…×a⏞ n 个b×b×…×b ⏟ n 个=a n b n,即(a b )n =a nb n .(n 为正整数) 教师引导学生用文字描述分式乘方的运算法则:分式乘方要把分子、分母分别乘方.设计意图:先引导学生观察若干特例,再归纳出分式乘方的运算法则.在这个过程中学生可以通过比较、联想、探索,从直观中归纳出理性的规律,促使学生学习从特殊到一般的认识事物的思维方法.典例精讲 例 计算: (1)(-2a 2b 3c)2; (2)(a 2b-cd 3)3÷2a d 3·(c2a)2.解:(1)原式=(-2a 2b)2(3c)2=4a 4b 29c 2.(2)原式= a 6b 3-c 3d 9 ÷2a d 3·c 24a 2 = a 6b 3-c 3d 9·d 32a ·c 24a 2= -a 3b 38cd 6.设计意图:引导学生回忆前面学过的分数的乘除法、乘方混合运算,利用类比的方法进行分式的乘除法、乘方混合运算,体会数与式的发展过程,感悟数与式在运算法则及运算顺序上的高度统一,培养学生的类比意识,提高学生的运算能力.巩固训练 1.计算:(1)2x 2-3y 2·-5y6x ÷10y-21x 2; (2)a 2-1a 2-4a+4÷a+12−a ·2+a1−a ;(3)(-x 2y )2·(-y 2x)3÷(-y x )4.解:(1)原式=2x 2-3y 2·-5y 6x ·-21x 210y =-7x 36y 2.(2)原式=(a+1)(a -1)(a -2)2·-(a -2)a+1·a+2-(a -1)=a+2a -2.(3)原式=x 4y 2·(-y 6x 3)·x 4y4=-x 5. 2.先化简,再求值:a -1a+2·a 2-4a 2-2a+1÷1a 2-1,其中a 满足a 2-a =0. 解:原式=a -1a+2·(a+2)(a -2)(a -1)2·(a +1)(a -1)=(a -2)(a +1)=a 2-a -2=-2.设计意图:通过巩固训练,让学生自主探索、充分交流,在运算的过程中使学生掌握基础知识、基本的运算方法,体会运算法则和运算顺序,内化自身的运算认知,在循序渐进的运算中,提高自己的运算能力,同时通过具体的解题步骤,让学生感受到数学的严谨性,规范解题步骤和书写格式.课堂小结1.本节课探究了分式的哪些问题?2.分式乘方的运算法则:分式乘方要把分子、分母分别乘方.3.分式的乘除混合运算.设计意图:通过课堂小结,回顾本节课所学知识,为接下来的学习打好基础.课堂8分钟.1.教材第139页练习第1,2题,第146页习题15.2第3题.2.七彩作业.第2课时 分式的乘方及乘除混合运算一、分式的乘除法运算.分式的乘除法运算归根结底是乘法运算. 二、分式的乘方:(a b )n =a nb n ,即分式乘方要把分子、分母分别乘方. 三、例题讲解. 四、课堂评价.教学反思15.2.2分式的加减第1课时分式的加减课时目标1.让学生经历分式的加减法法则的生成过程,培养学生自主探索、自主学习、自主归纳知识的意识,提高学生知识的类比迁移能力.2.运用分式的加减法法则解决数学问题,让学生感受到数学知识的应用过程,培养学生的应用意识,提高学生的运算能力.3.类比分数的加减法运算,进行分式的加减法运算,让学生体会数与式的发展过程,感悟数与式在运算法则及运算顺序上的高度统一,培养学生的类比意识,发展学生的抽象能力.学习重点运用分式的加减运算法则进行运算.学习难点异分母分式的加减运算.课时活动设计情境引入甲工程队完成一项工程需n天,乙工程队要比甲队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?教师引导分析,学生思考、交流.解:甲工程队一天完成这项工程的1n ,乙工程队一天完成这项工程的1n+3,两队共同工作一天完成这项工程的(1n +1n+3).设计意图:通过具体问题情境导入新课,让学生感受到分式的加减运算是由实际需要产生的,激发学生的学习兴趣,提高学生的学习效率.探究新知问题1:2009年、2010年、2011年某地的森林面积(单位:km 2)分别是S 1,S 2,S 3,2011年与2010年相比,森林面积增长率提高了多少?学生小组讨论,选取两名学生分别列出2010年、2011年的森林面积增长率: 解:2010年的森林面积增长率是S 2-S 1S 1,2011年的森林面积增长率是S 3-S 2S 2.根据2010年、2011年的森林面积增长率,得出结论: 解:2011年与2010年相比,森林面积增长率提高了S 3-S 2S 2-S 2-S 1S 1.教学中讨论这两个问题时,重点放在列出算式,为引出分式的加减法法则做准备.问题2:请同学们先填空,再观察下列分数加减运算的过程:15+25= (35),15-25 = (-15); 12+13=(36)+(26)=(56),12-13=(36)-(26)=(16). 追问:你能根据上面的式子,类比分数加减法法则,得出分式的加减法法则吗? 师生活动:学生先观察分数加减运算的过程,然后选一名学生用符号总结前两个分数加减运算的规律:a c ±bc = a±b c;再选一名学生用符号总结后两个分数加减运算的规律:a b ±cd = ad bd ±bcbd=ad±bc bd .教师引导学生用文字表述分式的加减法法则: 同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.设计意图:从学生已有的数学经验出发,建立新旧知识之间的联系.类比同分母与异分母分数的加减,学生很容易归纳出同分母分式与异分母分式加减的方法,培养学生交流合作能力和创新实践能力.典例精讲 例 计算: (1)m+n n+m -n n; (2)a 2a -b -b 2a -b ; (3)5x+3y x 2-y 2-2xx 2-y 2.解:(1)原式=(m+n)+(m -n)n=2mn . (2)原式=a 2-b 2a -b =(a+b)(a -b)a -b =a +b. (3)原式=3x+3yx 2-y2=3(x+y)(x+y)(x -y)=3x -y.设计意图:设置一组同分母分式的加减法运算,目的是让学生掌握同分母分式加减法法则:同分母分式相加减,分母不变,把分子相加减,同时内化运算法则,提升运算能力.巩固训练 1.计算: (1)a 2b 2ab-ab -b 2ab -a2; (2)a 2+b 2a -b-a -b ; (3)12p+3q +12p -3q.解:(1)原式=ab -b(a -b)a(b -a)=ab +b a =a 2b+ba.(2)原式=a 2+b 2-(a -b)(a+b)a -b=2b 2a -b .(3)原式=2p -3q+2p+3q(2p+3q)(2p -3q)=4p4p 2-9q 2.2.观察下列分式的加减的运算过程是否正确,如果不正确,请把正确的运算过程写下来.(1)a 2+b 2ab -a 2-b 2ab =a 2+b -a 2-b2ab =0;(2)x 2x -1-x -1=x 2x -1-x -11=x 2-(x -1)2x -1=2x -1x -1.解:(1)不正确,a 2+b 2ab -a 2-b 2ab =a 2+b -a 2+b2ab=2b 2ab =1a .(2)不正确,x 2x -1-x -1=x 2x -1-x+11=x 2-(x -1)(x+1)x -1=x 2-x 2+1x -1==1x -1.设计意图:通过设置巩固训练,巩固本节课所学知识,及时查漏补缺.课堂小结1.本节课探究了分式的哪些问题?2.分式的加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.设计意图:通过课堂小结,回顾本节课所学知识,为接下来的学习打好基础.课堂8分钟.1.教材第141页练习第1,2题,第146页习题15.2第4,5题.2.七彩作业.第1课时分式的加减一、分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,用式子表示为ac ±bc=a±bc;异分母分式相加减,先通分,变为同分母的分式,再加减,用式子表示为ab ±cd=adbd±bcbd=ad±bcbd.二、例题讲解:(1)分式加减运算的结果要化成最简分式或整式;(2)同分母分式相加减时要注意:“把分子相加减”就是把各个分式的分子“整体”相加减,在这里要注意分数线的括号作用;(3)异分母分式加减法的一般步骤:①通分;②加减;③合并;④约分;(4)整式可以看成是分母为1的分式.三、课堂评价.教学反思第2课时分式的混合运算课时目标1.通过类比分数的混合运算顺序,归纳得出分式的混合运算顺序,体会数与式的发展过程,感悟数与式在运算法则和运算顺序上的高度统一,培养学生的类比意识,发展学生的抽象能力.2.通过运用分式的混合运算解决数学问题,让学生感受到数学知识的应用过程,培养学生的应用意识,提高学生的实践能力.3.通过使学生经历分式混合运算的过程,培养学生积极思考、自主探索、合作交流和辨析提高的学习意识,提高学生的运算能力.学习重点熟练地进行分式的混合运算.学习难点熟练地进行分式的混合运算及化简求值问题.课时活动设计情境引入有一财主死后,他的两个儿子高兴地打开父亲留下的藏宝地图,看到上面有一段文字记录:计算x 2-2x+1x2-1÷x-1x2+x-x的值,就是我留给你们的全部宝物.老大拿出纸笔一算,一气之下将藏宝图一把扔了,老二连忙捡起,经过仔细思考算出后,生气地一把火烧掉了它.财主忘记了写x的值,两个儿子是怎么计算出宝物的情况的呢?财主到底留下了多少宝物呢?通过本节课的学习,你就会明白其中的道理了.设计意图:设置故事情境引入新课,让枯燥的计算问题变得更具吸引力,调动起学生学习的积极性,激发他们的求知欲.探究新知 问题1:计算:(x 2-4x+4x 2-4-x x+2)÷x -1x+2.解:原式=[(x -2)2(x -2)(x+2)-xx+2]·x+2x -1=(-2x+2)·x+2x -1=-2x -1.教师引导学生类比分数的混合运算顺序,总结分式的混合运算顺序: 先乘方,再乘除,最后算加减,有括号的先算括号里面的. 教师针对这类题目给学生提供以下建议:(1)一般按分式的运算顺序进行计算,但恰当地使用运算律会使运算更简便; (2)计算乘除时,要随时对分子、分母进行因式分解; (3)注意括号的“添”或“去”; (4)结果要化为最简分式或整式.设计意图:从学生已有的数学经验出发,建立新旧知识之间的联系.学生通过类比、思考,激活原有知识,让学生感悟自己的学习是在原有知识的基础上自我生成的过程.典例精讲 例 计算:(1)(2a b )2·1a -b -a b ÷b4; (2)(m +2+52−m )·2m -43−m ;(3)(x+2x 2-2x -x -1x 2-4x+4)÷x -4x .解:(1)原式=4a 2b 2·1a -b -a b ·4b =4a 2b 2(a -b)-4ab 2=4a 2b 2(a -b)-4a(a -b)b 2(a -b)=4a 2-4a 2+4ab b 2(a -b)=4ab b 2(a -b)=4aab -b 2.(2)原式=(m +2+52−m )·2m -43−m =9−m 22−m ·2(m -2)3−m=(3-m)(3+m)2−m·-2(2-m)3−m=-2(m +3)=-2m -6.(3)原式=[x+2x(x -2)-x -1(x -2)2]·xx -4=(x+2)(x -2)-(x -1)x x(x -2)2·xx -4 =x 2-4-x 2+x(x -2)2(x -4)=1(x -2)2.设计意图:设置这一组分式的混合运算的例题,目的是让学生进一步掌握分式混合运算时的运算顺序,培养学生良好的运算习惯,让学生在运算的过程中体会运算顺序和各项法则,内化自身的运算认知,在循序渐进的运算中,提高自己的运算能力.巩固训练 1.计算:(1)x 2x -1-x -1; (2)(1−2x+1)2÷x -1x+1;(3)2ab(a -b)(a -c)+2bc(a -b)(c -a); (4)(1x -y +1x+y )÷xyx 2-y 2.解:(1)原式=x 2x -1-(x+1)(x -1)x -1=x 2-x 2+1x -1=1x -1.(2)原式=(x+1x+1-2x+1)·x+1x -1=x -1x+1·x+1x -1=1.(3)原式=2ab -2bc(a -b)(a -c)=2b(a -c)(a -b)(a -c)=2ba -b . (4)原式=[x+y(x -y)(x+y)+x -y(x+y)(x -y)]·(x+y)(x -y)xy=2x(x+y)(x -y)]·(x+y)(x -y)xy=2y .2.先化简再求值:1x+1-1x 2-1·x 2-2x+1x+1,其中x =√2-1. 解:原式=1x+1-1(x+1)(x -1)·(x -1)2x+1 =1x+1-x -1(x+1)2=x+1−(x -1)(x+1)2=2(x+1)2.当x =√2-1时,原式=(√2-1+1)2=(√2)2=22=1. 设计意图:通过巩固训练,及时巩固本节课所学知识,帮助学生更好地掌握分式的乘除法法则,熟练地进行分式的混合运算.课堂小结1.本节课探究了分式的哪些问题?2.分式的混合运算顺序:先乘方,再乘除,最后算加减,有括号的先算括号里面的.3.进行分式的混合运算时注意的问题:(1)一般按分式的运算顺序进行计算,但恰当地使用运算律会使运算更简便;(2)计算乘除时,要随时对分子、分母进行因式分解;(3)注意括号的“添”或“去”;(4)结果要化为最简分式或整式.设计意图:通过课堂小结,回顾本节课所学知识,及时查漏补缺.课堂8分钟.1.教材第142页练习第2题,第146页习题15.2第6题.2.七彩作业.第2课时分式的混合运算一、分式的混合运算顺序:先乘方,再乘除,最后算加减,有括号的先算括号里面的.二、例题讲解:(1)一般按分式的运算顺序进行计算,但恰当地使用运算律会使运算简便;(2)计算乘除时,要随时对分子、分母进行因式分解;(3)注意括号的“添”或“去”;(4)结果要化为最简分式或整式.三、课堂评价.教学反思15.2.3整数指数幂第1课时整数指数幂的运算性质课时目标1.让学生经历负整数指数幂运算性质的得出过程,提高学生归纳、类比和抽象的能力,培养学生的创新意识.2.通过经历整数指数幂的获得过程,让学生感受到数学知识间合理的内在逻辑,培养学生的合情推理,提高学生的推理能力.3.让学生在运用整数指数幂的运算性质进行计算的过程中逐步内化自身的认知,提高学生的运算能力.学习重点掌握整数指数幂的运算性质.学习难点负整数指数的性质的理解和应用.课时活动设计复习回顾我们知道,当n是正整数时,a n=a·a·a·…·a⏟n个.回忆正整数指数幂的运算性质:(1)a m·a n=a m+n(m,n是正整数);(2)a m÷a n=a m-n(a≠0,m,n是正整数,并且m>n);(3)(a m)n=a mn(m,n是正整数);(4)(ab)n=a n b n(n是正整数);(5)(ab )n=anb n(n是正整数);(6)a 0= 1 (a ≠0).a m 中的指数m 可以是负整数吗?如果可以,那么负整数指数幂a m 表示什么? 设计意图:引导学生回忆正整数指数幂的运算性质,温故而知新,唤醒学生已有的知识体系,通过复习正整数指数幂和0指数幂的性质,引入负整数指数幂,为新知识的合理介入指明了方向,有利于学生知识的完整构建,为本节课的学习作铺垫.探究新知用正整数指数幂的运算性质(2)(将m >n 这一条件去掉)和分式的约分两种方式计算52÷55,并观察两种方式的计算结果,你能有什么发现?学生自己独立完成计算,分小组交流讨论,教师给出完整的计算过程并总结. 52÷55=52-5=5-3,52÷55=5255=153.观察这两个式子可以发现5-3=153.学生通过上面的内容可以得到a m ÷a n =a m -n 这条性质也适用于像52÷55这样的情形.一般地,当n 是正整数时,a -n =1a n (a ≠0).这就是说,a -n (a ≠0)是a n 的倒数. 引入负整数指数和0指数后,a m ·a n =a m +n (m ,n 是正整数)这条性质能否推广到m ,n 是任意整数的情形?教师通过以下计算过程引导学生发现规律,并进行总结. a 3·a -5=a3a 5=1a 2=a -2=a 3+(-5),即a 3·a -5=a 3+(-5);a -3·a -5=1a 3·1a 5=1a 8=a -8=a (-3)+(-5),即a -3·a -5=a (-3)+(-5); a 0·a -5=1·1a 5=1a 5=a -5=a 0+(-5),即a 0·a -5=a (0)+(-5). 归纳:1.a m ·a n =a m +n 这条性质对于m ,n 是任意整数的情形仍然适用; 2.随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质也推广到整数指数幂.设计意图:按照从特殊到一般、从具体到抽象的认识过程,让学生类比发现,自己总结结论,实现学生主动参与、探究新知识的目的,从而培养学生归纳、类比和抽象的能力.典例精讲例计算:(1)a-2÷a5;(2)(b 3a2)-2;(3)(a-1b2)3;(4)a-2b2·(a2b-2)-3.解:(1)a-2÷a5=a-2-5=a-7=1a7.(2)(b 3a2)-2=b-6a-4=a4b-6=a4b6.(3)(a-1b2)3=a-3b6=b 6a3 .(4)a-2b2·(a2b-2)-3=a-2b2·a-6b6=a-8b8=b 8a8.提醒:(1)解题时应直接运用这些性质,而不要急于转化为分式形式;(2)整数指数幂的运算性质也可以逆向进行;(3)通常计算的最后结果要写成分式的形式.设计意图:这是一组直接运用整数指数幂的运算性质进行计算的题目,通过例题使学生掌握指数由正整数拓展到整数后的新情形,熟练使用运算方法,掌握运算技能,提高运算能力.归纳总结根据整数指数幂的运算性质,当m,n为整数时,a m÷a n=a m-n,a m·a-n=a m+(-n)=a m-n,因此a m÷a n=a m·a-n,即同底数幂的除法a m÷a n可以转化为同底数幂的乘法a m·a-n,特别地,ab =a÷b=a·b-1,所以(ab)n=(a·b-1)n,即商的乘方(ab)n可以转化为积的乘方(a·b-1)n,这样,整数指数幂的运算性质可以归纳为:(1)a m÷a n=a m+n(m,n是整数);(2)(a m)n=a mn(m,n是整数);(3)(ab)n=a n b n(n是整数).设计意图:类比负数的引入可以使减法转化为加法,得到负指数幂的引入可以使幂的除法转化为幂的乘法、商可以转化为积这个结论,从而使分式的运算与整式的运算统一起来,将整数指数幂的运算性质进行总结.课堂8分钟.1.教材第145页练习第1,2题,第147页习题15.2第7题.2.七彩作业.第1课时整数指数幂的运算性质一、正整数指数幂的运算性质.二、负整数指数幂的运算性质.三、例题讲解.四、整数指数幂的运算性质.教学反思第2课时科学记数法课时目标1.让学生经历小于1的正数的科学记数的获得过程,感受数学知识之间的内在联系,提高学生的归纳、类比和抽象能力.2.通过对小于1的正数的科学记数的过程,让学生感受到数学知识的本质所在,培养学生观察、分析和总结的能力.学习重点会用科学记数法表示小于1的正数.学习难点知道用科学记数法表示小于1的正数时,a×10-n形式中n的取值与小数中左起第一个非0数字前0的个数的关系.课时活动设计回顾引入1.用科学记数法表示745 000,2 930 000.2.大于10的数用a ×10n 表示时,a ,n 应满足什么条件?3.负整数指数幂的公式是什么?学生自主交流,讨论.思考:我们已经学会了用科学记数法表示一些较大的数,你能用科学记数法表示较小的数吗?设计意图:引导学生完成上述问题,温故而知新,唤醒学生已有的知识体系,为本节课的学习作铺垫.同时,提出新的问题,为新知识的学习明确了方向.探究新知1.填空:10-1=110= 0.1 ;10-2=1102= 0.01 ;10-3=1103= 0.001 ;…;10-n = 110n = .反过来:0.1=110=1×10-1;0.01=1102= 1×10-2 ;0.001=1103= 1×10-3 ;…;=110n = 1×10-n .2.解决问题:(1)0.000 025=2.5× 1105 = 2.5×10-5 ;(2)0.000 000 025 7=2.57× 1108 = 2.57×10-8 .运用由特殊到一般和类比的数学思想归纳出=10-n ,让学生看到可以利用10的负整数次幂,用科学记数法表示一些小于1的正数,即将它们表示成a ×10-n 的形式,其中n 是正整数,1≤a <10.设计意图:让学生通过这种亲自参与、探索研究数学知识获得的过程,感受数学知识之间的密切联系,深化自己的认知,从而构建科学记数法的完整知识体系.典例精讲例纳米(nm)是非常小的长度单位,1 nm=10-9 m.把1 nm3的物体放到乒乓球上,就如同把乒乓球放到地球上.1 mm3的空间可以放多少个1 nm3的物体(物体之间的间隙忽略不计)?解:1 mm=10-3 m,1 nm=10-9 m.(10-3)3÷(10-9)3=10-9÷10-27=10-9-(-27)=1018.所以1 mm3的空间可以放1018个1 nm3的物体.1018是一个非常大的数,它是1亿(即108)的100亿(即1010)倍.设计意图:运用数学知识解决实际问题是学习数学的重要目标,让学生在学习知识的过程中解决实际问题,体会数学的“学以致用”.巩固训练计算(结果用科学记数法表示):(1)(3×10-5)×(5×10-3);(2)(3×10-15)÷(5×10-4);(3)(1.5×10-16)×(-1.2×10-3); (4)(-1.8×10-10)÷(9×108).解:(1)1.5×10-7;(2)6×10-12;(3)-1.8×10-19;(4)-2×10-19.设计意图:设置这类计算题,不仅是为了巩固本节课的所学知识,还为了通过做题让学生意识到用科学记数法表示数能使运算更简便.课堂小结1.如何用科学记数法表示大于10的数?2.如何用科学记数法表示小于1的正数?设计意图:让学生自己总结本节课的内容,帮助学生巩固新的知识,培养学生的总结概括能力.课堂8分钟.1.教材第145页练习第1,2题,第147页习题15.2第8,9题.2.七彩作业.第2课时科学记数法一、大于10的数的科学记数:N=a×10n(其中n是正整数,1≤a<10).二、小于1的正数的科学记数:N=a×10-n(其中n是正整数,1≤a<10).三、例题讲解.教学反思。

分式的乘方及乘方与乘除的混合运算 优质课获奖课件

分式的乘方及乘方与乘除的混合运算   优质课获奖课件
15.2
15.2.1
分式的运算
分式的乘除(2课时)
第2课时 分式的乘方及乘方与乘除的混合运算
1 . 进一步熟练分式的乘除法法则 , 会进行分式的乘、 除法的混合运算. 2 . 理解分式乘方的原理 , 掌握乘方的规律 , 并能运用
乘方规律进行分式的乘方运算.
重点
分式的乘方运算,分式的乘除法、乘方混合运算.
3.目前为止,正整数指数幂的运算法则都有什么? (1)an·an=am n;(2)am÷an=am n; (3)(am)n=amn;(4)(ab)n=anbn; a n an (5)(b) =bn. 三、举例分析 例 2 计算:
+ -
-2a2b 2 (1)( 3c ) ;
a2b 3 2a c 2 (2)( 3) ÷ 3 ·( ) . d 2a -cd
a2-b2 a-b 2 x2 2 y2 3 y4 (3)(- y ) ·(- x ) ÷(-x) ; (4) 2 ÷( ). a +b2 a+b
(-2a2b)2 4a4b2 解:(1)原式= 2 ; 2 = 9c (3c) a6b3 d3 c2 a3b3 (2)原式= 3 9· · 2=- 6; 8cd -c d 2a 4a x4 y6 x4 5 (3)原式=y2·(-x3)· 4=-x ; y (a+b)(a-b) (a+b)2 (4) 原 式 = · = a2+b2 (a-b)2 (a+b)3 . (a-b)(a2+b2)
(2)同理: a 3 a a a a3 (b) =b· b· b=b3; a·a·…·an个 an an aa a (b) =b· …· b· bn 个=b·b·…·bn个 =bn. 2.分式乘方法则: a n an 分式:(b) =bn.(n 为正整数) 文字叙述:分式乘方是把分子、分母分别乘方.

八年级数学上册《分式的乘方及乘方与乘除的混合运算》教案、教学设计

八年级数学上册《分式的乘方及乘方与乘除的混合运算》教案、教学设计
(2)运用启发式教学,引导学生自主探究分式乘方及乘除混合运算的规律,培养学生发现问题、解决问题的能力。
(3)采用分组合作学习,让学生在交流互动中,共同探讨解决问题的方法,提高团队协作能力。
2.教学步骤:
(1)导入:通过一个简单的实际问题,引出分式乘方及乘除混合运算的概念。
(2)新课:讲解分式乘方的定义、运算规则,结合实例进行分析,让学生理解并掌握分式乘方的运算方法。
(3)激发学生学习兴趣,为后续学习打下基础。
2.教学过程:
(1)引导学生回顾本节课所学内容,总结知识点。
(2)强调重难点,提醒学生注意运算顺序和简化方法。
(3)鼓励学生积极参与课堂,培养良好的学习习惯和兴趣。
五、作业布置
为了巩固学生对分式乘方及乘除混合运算的理解和应用,特布置以下作业:
1.基础练习题:设计一些具有代表性的基础题目,让学生掌握分式乘方的定义、运算规则以及分式乘除混合运算的顺序和简化方法。旨在巩固学生的基本知识,提高运算能力。
例题:计算以下分式的乘方及乘除混合运算:
(1)(3/4)^2 ÷ (2/3)^3
(2)(5x^2/6y) × (3y/4x^3) ÷ (9/2x^2y^2)
2.提高题:布置一些具有一定难度的题目,旨在培养学生分析问题、解决问题的能力,同时拓展学生的思维。
例题:已知a、b、c为实数,且a^2 - b^2 = 4,b^2 - c^2 = 3,c^2 - a^2 = 2,求代数式(a+b+c)^2 ÷ (a-b-c)^2的值。
(3)实物教具:准备一些实物教具,帮助学生形象地理解分式乘方及乘除混合运算的概念。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
在课堂开始时,我将以一个与学生生活息息相关的问题作为导入:假设我们班要组织一次秋游,已知一辆大客车的租金是每人100元,如果租用的时间是原来的平方,那么租金是多少?通过这个问题,引导学生思考如何计算原来的租金的平方,从而引出分式乘方的概念。

人教版八年级上册数学:分式的乘方及乘方与乘除的混合运算

人教版八年级上册数学:分式的乘方及乘方与乘除的混合运算
人教版 九年义务教育 数学八年级(上)
西关中学数学组 教师:吕海霞
一般地,当n为正整数时,
a
n
b
n
a a a b bb
a a a b b b
an bn
n
n
即:
a n :
分式乘方要把分子、分母分别乘方
探究、归纳
分式的乘方法则:
分式乘方要把分子、分母分别乘方
即:
a
n
b
an bn
优秀学案展示
寇微
李佳然
田心语
.赵安琪
表扬
陈薇 雷宏毅 王文睿 冯 壮云 田文慧 段琪凯 王雅捷 薛婉婧 李瑄 张 灿 何昕 任益佳 宋鲜利 王熙蕊
回望目标:
1、经历 探索分式的乘方过程,并
结合具体情境说明其合理性.
2、会 进行简单分式的乘除乘方的
混合计算,具有一定的化归能力.
分享你我收获
对自己说,你有什么收获? 对老师说,你有什么疑惑? 畅所欲言哦 对同学说,你有什么温馨提 示?
欢迎各位老师 提出宝贵意见, 谢谢!

人教版数学八年级上册15.2.1.3《分式的乘方及乘方与乘除混合运算》教学设计

人教版数学八年级上册15.2.1.3《分式的乘方及乘方与乘除混合运算》教学设计

人教版数学八年级上册15.2.1.3《分式的乘方及乘方与乘除混合运算》教学设计一. 教材分析人教版数学八年级上册15.2.1.3《分式的乘方及乘方与乘除混合运算》这一节主要介绍了分式的乘方运算以及乘方与乘除混合运算的法则。

学生需要掌握分式乘方的概念,了解分式乘方的运算规则,并能灵活运用到实际问题中。

教材通过具体的例题和练习,帮助学生理解和掌握分式乘方的运算方法,培养学生的数学思维能力和解决问题的能力。

二. 学情分析学生在学习这一节内容前,已经学习了分式的基本概念和运算规则,对分式的加减乘除有一定的了解。

但是,对于分式的乘方运算,学生可能还存在一定的困惑和难度。

因此,在教学过程中,需要引导学生将已知的分式运算规则与乘方运算相结合,通过实例和练习,让学生逐步理解和掌握分式的乘方运算方法。

三. 教学目标1.了解分式的乘方概念,掌握分式乘方的运算规则。

2.能够运用分式乘方的运算规则,解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.分式的乘方概念的理解和掌握。

2.分式乘方运算规则的应用和实际问题的解决。

五. 教学方法1.讲授法:通过讲解和解释,让学生理解和掌握分式的乘方概念和运算规则。

2.案例分析法:通过具体的例题和练习,让学生将分式乘方的运算规则应用到实际问题中,培养学生的解决问题的能力。

3.小组合作学习法:学生进行小组讨论和合作,共同解决问题,培养学生的团队合作能力和交流能力。

六. 教学准备1.教材和教案。

2.投影仪和幻灯片。

3.练习题和答案。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考和讨论分式的乘方问题,激发学生的学习兴趣和思考能力。

2.呈现(10分钟)讲解和解释分式的乘方概念,引导学生理解和掌握分式乘方的运算规则。

通过具体的例题,让学生观察和分析分式乘方的运算过程,总结和归纳运算规则。

3.操练(10分钟)让学生进行一些分式乘方的练习题,巩固学生对分式乘方运算规则的理解和掌握。

分式的乘方及乘方与乘除的混合运算课件

分式的乘方及乘方与乘除的混合运算课件

符号的处理
在进行分式的乘方运算时 ,应注意符号的变化,特 别是负数的偶次幂和奇次 幂。
运算顺序
在进行分式的乘方与乘除 混合运算时,应遵循先乘 除后乘方的原则,同时注 意运算的优先级。
防止运算错误
在进行分式的乘方运算时 ,应仔细核对每个步骤, 确保运算的正确性,避免 因疏忽导致错误。
CHAPTER 02
分式乘方运算还可以与其他数学工具结合使用,例如微积 分和线性代数。通过将分式乘方运算与其他数学工具结合 使用,可以更深入地探索数学的本质和应用。
CHAPTER 04
练习与巩固
分式乘方的例题解析
总结词
掌握分式乘方的运算规则
详细描述
通过例题解析,让学生理解分式乘方的运算规则,掌握分式乘方的计算方法,例如:$frac{a^m}{b^n} = frac{a^{m times k}}{b^{n times k}}$。
乘方与乘除混合运算的例题解析
总结词
掌握乘方与乘除混合运算的运算顺序
详细描述
通过例题解析,让学生理解乘方与乘除 混合运算的运算顺序,掌握先进行乘方 运算,再进行乘除运算的计算方法,例 如:$a^m times a^n = a^{m+n}$, $a^m div a^n = a^{m-n}$。
分式乘方运算的习题集
总结词
通过习题练习巩固分式乘方的计算能 力
详细描述
提供一系列分式乘方的习题,让学生 通过练习巩固分式乘方的计算能力, 提高解题速度和准确性。
THANKS FOR WATCHING
ቤተ መጻሕፍቲ ባይዱ感谢您的观看
分式乘方的运算规则
01
02
03
分子乘方的规则
分子乘方时,应先单独对 分子进行乘方运算,再将 结果与分母进行除法运算 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




2 x 5 x 3 5 x 3 3 5 x 3 5 x 3 2 x2 3
2
(3)能约分的要约分; (4)最后结果是分式 的为最简分式。
注:乘除混合运算可以统一为乘法运算。 乘除混合运算要 从左到右.
课堂 练习
m n (n m) mn 2 2 2 (m n) mn m
4 m 4 m 2 m 4 m 2 解:原式 2 m4 m2 4 m 2 2 4 m 4 m m 2 2 4 m m 4 m 2 2 m 2
m2 2 m 4 2m 4 (或 ) m2 m2
2 2
2
3
4
4 x 8 y x 解:原式= 2 4 3 y 27 x 16 y
4 6 4
2x = 27
5
课堂 练习
a a 1 a 1 2 解:原式= 2 a, a1 a 2a 1
2 2
a2 1 a 1 .. 先化简再求值: 2 , 3 2 a 2a 1 a a 其中a= 3 .
2 2 2
课堂 练习
计算:
16 a a4 a2 2 a 8a 16 2a 8 a 2
2
4 a 4 a 2 a 4 a 2 解:原式= a4 a2 a 4
2
2 a 4 = a2
课堂 练习
计算
2x 2 y 2 y (1) ; y 3x x
1、老师布置了一道作业 题,“计算
x x x 1 1 x 2 3 x 2 x 1 (x 1) 1 x
2
其中 x =2013.”小明错把x=2013错 抄成 x =2031,但他的计算结果也是 正确的,请你分析一下原因。
2、已知 a² +3a+1=0,求:
1 1 2 () 1 a (2)a 2 a a 1 4 ( 3)a 4 a
3 5x 3 ;(2) 2 25x 9 x

复习巩固:
3a 9a (1) 4b 16b
3a 16b 解:原式 2 4b 9a 48ab 36a 2b 4 3a
2
计算:
x 2 x 9 解:原式 x 3 x 2 x 2 x 3 x 3 x 3 x 2
a c ac b d bd
a c a d ad b d b c bc
a n a ( ) n b b
n
复习引入
• 注意: 做乘方运算要先确定符号
正确运用幂的运算法则
数与式有相同的混合运算顺序:
(2)同级运算从左到右 (1)先乘方,再乘除。
2x 3 计算: (1) 2 5x 3 25x 9
化简求值
1 a a 1 已知 a 5 ,求 的值。 2 a a
4 2
课堂小结: 本节课你学到了哪些知识?
1、分式的乘方:要把分子、分母分别乘方 2、分式乘除乘方混合运算:先确定符号,再进行计算 (2)同级运算要从左到右 (1)先算乘方,再算乘除; (3)能约分的先约分; (4)有多项式的能分解的要分解因式 (5)最后结果是分式的一定要是最简分式 3、负分式的偶次方结果符号为正,负分式的奇次方结果 符号为负. 4、数与式有相同的乘除乘方混合运算的运算顺序,统 一为乘法运算。
分式的乘除乘 方混合运算
1、公式回顾:
a (1)a a _________; (2) a
m n n
m n

n
2
m n
a ________;
mn
mn
ab a (3)ab _______; (4)a a ________
n n
m
(a b)(a b___ ) a(b c) (6)a b __________ (5)ab ac _________;
2
2 aa 2 3 a 3 a 3 3 a
2 a 2 a 9 (a 2) 2a a3
2

课堂 练习
x3 x2 1.要使分式 有意义,则x的取值为 _______ . x 3 x 4 t 2 1 t 1 1 t 2.化简 , 并取一个你喜欢的数代入 2 1 2t t t 1 1 t 计算这个代数式的值.
2 1 4 2 当 m 1 时, 原式= 1 2 3
下面的计算是否正确,若不正确,请指出哪一步 有错误并加以改正:
a 2 a 3a 3 ① 解:原式 a 32 a 2 2 a 2 a 2 1 a 3 a 3 ② a 3 a 3 2 2a a 3 a 2
将 a=
原式=
3
3
代入,
2
3.
课堂 练习
b b 2 a b ( ) ( ) 2 a b a b a ab
2
2
其中
1 a , b 3 2
课堂 练习
计算:
a2 4 a2 a2 (2) 2 a 4a 4 2a 4 a 2
a 2 a 2 2a 4 a 2 2 解:原式 a2 a2 a 2
2
x 2 x2 9 ( 2) x3 x2
分式乘除运算法则: x 源自3(1)分式乘法分子、分母分别相乘;除法转化为乘法; (2)能约分的要约分;(3)有多项式的要因式分解;
(4)最后结果是分式的一定要是最简分式。
计算
2x 3 x 归纳: 2 5 x 3 25 x 9 5 x 3 2 2x x 25 x 9 (1)除法转化为乘法; 解:原式 5 x 3 5x 3 3 (2)有多项式的能分 2 x2 5x2 9 解的要因式分解; 3 5x 3 5x 3
2
(7)a 2ab b
2
2
a b (8)a _______;
2
2
a b 2ab b _______
2
2
复习引入
分式的乘除法及乘方法则:
乘法法则:分式乘分式,用分子的积作为积的分子, 分母的积作为积的分母. 除法法则:分式除以分式,把除式的分子、分母颠倒 位置后,与被除式相乘. 乘方法则:分式乘方要把分子、分母分别乘方.
a 2 a 2 2 a 2 2 2 a 2 a 2
2
2 a 2 a2
2a 4 a2
课堂 练习
16 m 2 m4 m2 m 1 其中 2 16 8m m 2m 8 m 2 m 的值代入上式求值 m 的值, 请任意选一个你比较喜欢且恰当的 请在-4、-2、2、4几个数中任选一个作为
相关文档
最新文档