最新人教部编版七年级下册数学《频率的稳定性》教案

合集下载

北师大版数学七年级下册6.2《频率的稳定性》说课稿2

北师大版数学七年级下册6.2《频率的稳定性》说课稿2

北师大版数学七年级下册6.2《频率的稳定性》说课稿2一. 教材分析《频率的稳定性》是北师大版数学七年级下册第6.2节的内容,本节课主要让学生通过大量的实验和数据分析,了解频率的稳定性特点,培养学生运用统计方法处理数据的能力。

教材从生活实例出发,引导学生探究频率与概率之间的关系,进而引导学生认识频率的稳定性。

教材内容由浅入深,循序渐进,符合学生的认知规律。

二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,对随机事件有一定的认识。

但学生在运用统计方法处理数据方面还较为薄弱,因此,在教学过程中,教师需要关注学生的实际情况,引导学生通过实验、观察、分析等方法,深入理解频率的稳定性特点。

三. 说教学目标1.知识与技能:让学生了解频率的稳定性特点,学会运用统计方法处理数据。

2.过程与方法:培养学生动手实验、观察分析、归纳总结的能力。

3.情感态度与价值观:培养学生对数学的兴趣,增强学生的数据处理能力,提高学生在实际生活中的应用能力。

四. 说教学重难点1.教学重点:让学生通过实验和数据分析,理解频率的稳定性特点。

2.教学难点:如何引导学生运用统计方法处理数据,以及如何让学生理解频率与概率之间的关系。

五. 说教学方法与手段1.教学方法:采用实验教学法、案例教学法、分组讨论法、引导发现法等。

2.教学手段:利用多媒体课件、实验器材、统计图表等辅助教学。

六. 说教学过程1.导入新课:通过生活实例,引导学生思考频率与概率之间的关系。

2.实验探究:让学生分组进行实验,观察并记录实验结果,培养学生动手实验的能力。

3.数据分析:引导学生对实验数据进行处理和分析,归纳总结频率的稳定性特点。

4.知识拓展:通过案例分析,让学生了解频率稳定性在实际生活中的应用。

5.课堂小结:对本节课的内容进行总结,强化学生对频率稳定性的认识。

6.布置作业:让学生运用所学的统计方法处理实际问题,提高学生的应用能力。

七. 说板书设计板书设计要清晰、简洁,突出频率稳定性的核心概念。

七年级数学下册第六章频率初步2频率的稳定性6.2.1频率的稳定性教学设计新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.1频率的稳定性教学设计新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.1频率的稳定性教学设计新版北师大版一. 教材分析本节课的内容是北师大版七年级数学下册第六章频率初步的2频率的稳定性6.2.1频率的稳定性。

这部分内容是学生在学习了频率的概念和性质之后,进一步探究频率的稳定性。

教材通过具体的案例和实验,让学生感受频率的稳定性,并学会如何用频率来估计事件的概率。

二. 学情分析学生在学习本节课之前,已经掌握了频率的概念和性质,能够理解频率是事件发生的次数与总次数的比值。

但是,对于频率的稳定性,可能还存在一定的疑惑。

因此,在教学过程中,需要通过具体的案例和实验,让学生感受频率的稳定性,并引导学生运用频率来估计事件的概率。

三. 教学目标1.让学生理解频率的稳定性,学会用频率来估计事件的概率。

2.培养学生的观察能力和实验能力,提高学生的数学思维能力。

3.通过对频率稳定性的学习,激发学生对数学的兴趣和好奇心。

四. 教学重难点1.教学重点:让学生理解频率的稳定性,学会用频率来估计事件的概率。

2.教学难点:如何引导学生理解和感受频率的稳定性。

五. 教学方法1.采用问题驱动的教学方法,通过提问引导学生思考和探究频率的稳定性。

2.利用具体的案例和实验,让学生感受频率的稳定性。

3.采用小组合作的学习方式,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备具体的案例和实验材料,如硬币、骰子等。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备学习任务单,引导学生进行自主学习和合作学习。

七. 教学过程1.导入(5分钟)通过提问引导学生回顾频率的概念和性质,为新课的学习做好铺垫。

2.呈现(15分钟)利用具体的案例和实验,呈现频率的稳定性。

例如,抛硬币实验,让学生观察和记录硬币正面朝上的频率,并进行数据分析,引导学生发现频率的稳定性。

3.操练(15分钟)让学生进行小组合作,运用频率来估计事件的概率。

例如,掷骰子实验,让学生计算各种情况下的频率,并尝试用频率来估计事件的概率。

北师大版数学七年级下册6.2《频率的稳定性》教案1

北师大版数学七年级下册6.2《频率的稳定性》教案1

北师大版数学七年级下册6.2《频率的稳定性》教案1一. 教材分析《频率的稳定性》是北师大版数学七年级下册第6.2节的内容。

本节主要让学生通过大量实验数据,探究随机事件发生的频率稳定性,从而引入概率的概念。

教材通过具体的实验现象,引导学生发现频率的稳定性,进一步理解概率的意义。

二. 学情分析学生在学习本节内容前,已经学习了概率的基本概念,对随机事件有一定的认识。

但学生对频率稳定性这一概念可能较难理解,需要通过大量的实验数据和分析,来引导学生发现频率的稳定性,从而进一步理解概率的意义。

三. 教学目标1.让学生通过实验观察和数据分析,发现随机事件发生的频率稳定性。

2.引导学生理解频率稳定性与概率之间的关系。

3.培养学生的实验操作能力、数据处理能力和逻辑思维能力。

四. 教学重难点1.重点:让学生发现随机事件发生的频率稳定性。

2.难点:引导学生理解频率稳定性与概率之间的关系。

五. 教学方法1.实验法:让学生通过实验观察随机事件的发生频率。

2.数据分析法:引导学生对实验数据进行处理和分析。

3.讨论法:让学生通过讨论,发现频率稳定性与概率之间的关系。

六. 教学准备1.实验器材:准备足够数量的实验材料,如骰子、卡片等。

2.教学工具:准备多媒体教学设备,用于展示实验现象和分析数据。

3.教学资源:收集相关的实验数据和案例,用于分析和讨论。

七. 教学过程1.导入(5分钟)通过一个简单的实验,如抛硬币实验,让学生观察和记录硬币正反面出现的频率。

引导学生思考:为什么硬币正反面出现的频率会稳定在一定的范围内?2.呈现(15分钟)呈现多个实验数据,如抛骰子、抽卡片等实验,让学生观察和记录实验结果的频率。

引导学生发现:不同实验中,随机事件发生的频率都会稳定在一定的范围内。

3.操练(10分钟)让学生分组进行实验,自己设计实验方案,进行实验操作,并记录实验数据。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)让学生根据自己收集的实验数据,进行数据分析,发现随机事件发生的频率稳定性。

七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教案新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教案新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教案新版北师大版一. 教材分析本节课为人教版七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性。

这部分内容是在学生已经掌握了频率的概念和计算方法的基础上进行教学的。

本节课主要让学生了解概率的稳定性,理解概率与频率之间的关系,并通过实例让学生体会概率的稳定性在实际问题中的应用。

二. 学情分析学生在学习本节课之前,已经掌握了频率的概念和计算方法,对实验结果的波动性也有了一定的了解。

但学生在理解概率与频率之间的关系,以及如何运用概率的稳定性解决实际问题方面还有一定的困难。

因此,在教学过程中,需要结合具体实例,引导学生理解概率的稳定性,并学会运用概率的稳定性解决实际问题。

三. 教学目标1.让学生了解概率的稳定性,理解概率与频率之间的关系。

2.培养学生运用概率的稳定性解决实际问题的能力。

3.培养学生进行合作交流,发展学生的数学思维。

四. 教学重难点1.重点:概率的稳定性,概率与频率之间的关系。

2.难点:如何运用概率的稳定性解决实际问题。

五. 教学方法采用问题驱动法,结合具体实例,引导学生探究概率的稳定性,并通过小组合作交流,让学生体会概率的稳定性在实际问题中的应用。

六. 教学准备1.准备相关实例,用于讲解概率的稳定性。

2.准备练习题,用于巩固所学知识。

3.准备PPT,用于辅助教学。

七. 教学过程1.导入(5分钟)通过一个简单的实验,让学生观察实验结果的波动性,引出概率的稳定性。

2.呈现(15分钟)呈现相关实例,引导学生探究概率的稳定性。

通过实例让学生理解概率与频率之间的关系。

3.操练(15分钟)让学生进行小组讨论,运用概率的稳定性解决实际问题。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)出示练习题,让学生独立完成,巩固所学知识。

教师选取部分学生的作业进行点评。

5.拓展(10分钟)让学生结合生活实际,寻找其他概率稳定性的事例,并进行交流分享。

北师大版数学七年级下册6.2《频率的稳定性》教案

北师大版数学七年级下册6.2《频率的稳定性》教案

北师大版数学七年级下册6.2《频率的稳定性》教案一. 教材分析北师大版数学七年级下册6.2《频率的稳定性》是统计学的一个基本概念。

本节内容通过具体实例让学生了解频率的稳定性,掌握频率稳定性概念,并能够运用频率稳定性分析实际问题。

教材通过生活中的实例,引导学生探究频率的稳定性,培养学生的统计观念和数据分析能力。

二. 学情分析学生在学习本节内容前,已经学习了数据的收集、整理和表示方法,对统计学有了一定的了解。

但学生对频率稳定性的理解可能存在一定的困难,需要通过具体实例和活动让学生感受和理解频率的稳定性。

三. 教学目标1.让学生了解频率的稳定性概念,理解频率稳定性在实际问题中的应用。

2.培养学生收集、整理、分析数据的能力,发展学生的统计观念。

3.培养学生通过实例分析问题、解决问题的能力。

四. 教学重难点1.重点:频率稳定性的概念及其在实际问题中的应用。

2.难点:频率稳定性的理解和运用。

五. 教学方法1.采用问题驱动法,让学生在解决问题的过程中理解频率稳定性。

2.采用实例分析法,通过具体实例让学生感受频率稳定性。

3.采用小组合作学习法,培养学生的团队协作能力。

六. 教学准备1.准备相关的生活实例和数据,用于引导学生探究频率稳定性。

2.准备教学课件,用于辅助教学。

七. 教学过程1.导入(5分钟)教师通过引入生活中的一些实例,如抛硬币、掷骰子等,引导学生思考:在这些实验中,结果出现的频率是否会发生变化?从而引出频率稳定性的概念。

2.呈现(10分钟)教师呈现一些具体实例,如大量抛硬币实验的数据,让学生观察和分析频率的稳定性。

学生通过观察数据,发现频率在大量实验中趋近于一个稳定的值。

3.操练(10分钟)教师学生进行小组合作学习,让学生自己设计实验,收集数据,分析频率的稳定性。

学生通过自主探究,加深对频率稳定性的理解。

4.巩固(10分钟)教师提出一些问题,让学生回答,以巩固对频率稳定性的理解。

如:频率稳定性是什么意思?为什么频率会趋近于一个稳定的值?频率稳定性在实际问题中的应用等。

北师大版数学七年级下册6.2《频率的稳定性》(第1课时)教案(3)

北师大版数学七年级下册6.2《频率的稳定性》(第1课时)教案(3)

数学史实介绍
人们在长期的实践中发现,在随机试验中,由于
众多微小的偶然因素的影响,每次测得的结果虽不
尽相同,但大量重复试验所得结果却能反应客观规
律.
频率稳定性定理是由瑞士数学家雅可比·伯努
利最早阐明的,他还提出了由频率可以估计事件发
生的可能性大小. 雅可比·贝努利( Jokob
1Bernoulli , 1654 -1705) ,十七世纪瑞士著名数
学家。

年青时根据父亲的意愿学习神学,曾获巴塞尔
大学文学硕士和神学硕士学位,同时怀着浓厚的兴趣研习数学和天文学。

1687 年起任巴塞尔大学教授,在多方面作出重要贡献。

对概率论也有深入研究,建立了描述独立试验序列的“贝努利概型”,提出并证明了“贝努利大数定律”。

历史上有许多著名学者做过频率稳定性的试验。

例如,德·摩根(De Morgan) ,蒲丰(Buffon) ,皮尔逊(Pearson) 等人都做过大量的投掷硬币的试验,发现正面出现的频率稳定在0.5 左右。

大量地观察并统计婴儿的出生,发现男孩出生的频率稳定在0.513 左右。

十八世纪,法国数学家拉普拉斯(Laplace) 对伦敦、彼得堡、柏林和整个法国的广大人口资料进行了研究,得出那些地区的男孩出生频率约等于22/43 。

又有人统计过某个国家无法投递的信件数,多年统计的结果发现,这类信件数在全部信件中的比例几乎保持不变,在百万分之五十左右。

在讲数学课的同时,介绍一些数学史是非常必要的,这既可以增加学生的知
识面,扩大学生的视野,还可以从这些史实中,了解相关的数学知识与方法产生的历史背景,体会其中的思想、方法和创立一门新学科的艰辛.。

北师大版七年级下册数学说课稿:第六章6.2.2《频率的稳定性》

北师大版七年级下册数学说课稿:第六章6.2.2《频率的稳定性》

北师大版七年级下册数学说课稿:第六章6.2.2《频率的稳定性》一. 教材分析《频率的稳定性》是北师大版七年级下册数学的第六章6.2.2节内容。

本节课的主要内容是让学生理解频率的稳定性概念,掌握频率稳定性的性质和应用。

教材通过具体的实例,引导学生探究频率的稳定性,培养学生的动手操作能力和逻辑思维能力。

二. 学情分析面对的是一群七年级的学生,他们已经掌握了概率基础知识,对于频率有一定的了解。

但是,对于频率的稳定性概念和性质,可能还存在一定的困惑。

因此,在教学过程中,需要通过具体的实例和活动,帮助学生理解和掌握频率的稳定性。

三. 说教学目标1.知识与技能目标:让学生理解频率的稳定性概念,掌握频率稳定性的性质和应用。

2.过程与方法目标:通过具体的实例和活动,培养学生的动手操作能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极探究的精神。

四. 说教学重难点1.教学重点:频率的稳定性概念,频率稳定性的性质和应用。

2.教学难点:频率稳定性的理解和应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作法。

2.教学手段:利用多媒体课件和实物教具进行教学。

六. 说教学过程1.导入:通过一个具体的实例,引导学生思考频率的稳定性问题。

2.探究:让学生分组进行动手操作,通过实际操作和观察,总结频率稳定性的性质。

3.讲解:教师根据学生的探究结果,进行讲解和总结,让学生理解频率稳定性的概念和性质。

4.应用:让学生通过具体的实例,应用频率稳定性的知识解决问题。

5.总结:教师引导学生进行总结,巩固所学知识。

七. 说板书设计板书设计要清晰、简洁,能够突出频率稳定性的概念和性质。

可以设计成以下形式:频率稳定性:1.概念:……2.性质:……3.应用:……八. 说教学评价教学评价可以从学生的学习效果和教学目标达成情况两个方面进行。

对于学生的学习效果,可以通过课堂表现、作业完成情况和课后反馈来进行评价。

《频率的稳定性》教案

《频率的稳定性》教案

频率的稳定性教学目标(一)知识认知要求1.如何收集与处理数据.2.会绘制频数分布直方图及折线图.3.了解频数分布的意义,会得出一组数据的频数分布.(二)能力训练要求1.初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2.通过经历调查、统计、研讨等活动,发展学生实践能力与合作意识.(三)情感与价值观要求通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.教学难点1.决定组距与组数.2.数据分布规律.教学过程一、导入新课请大家一起回忆一下,我们如何收集与处理数据.1.首先通过确定调查目的,确定调查对象.2.收集有关数据.3.选择合理的数据表示方式统计数据.4.根据所收集的数据进行数据计算.根据特征数字,估计总体情况,设计可行的计划与方案,并不断实施与改进方案.这位同学总结得很好.你能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少?首先应开展调查.统计一下李大爷每天卖出的A、B、C、D、E五个牌子雪糕的数量. 二、讲授新课这是小丽统计的最近一个星期李大爷平均每天能卖出的A、B、C、D、E五个牌子雪糕的数量.(投影)根据上表绘制一张频数分布直方图.(如下)根据小丽的统计结果,请你为李大爷设计一个进货方案. A、B两种雪糕卖出的较多,可以多进些,D种雪糕卖出的少,可以少进些.A多进多少?B多进多少?D进多少?如何通过比例确定?A占总数的25%,B占总数的35%,C占总数的13%,D占总数的8%,E占总数的19%.如何确定进货的总数,还应考虑哪些因素?2.做一做例:学校要为同学们订制校服,为此小明调查了他们班50名同学的身高,结果(单位cm).如下:(投影)141 165 144 171 145 145 158150 157 150 154 168 168 155155 169 157 157 157 158 149150 150 160 152 152 159 152159 144 154 155 157 145 160160 160 158 162 155 162 163155 163 148 163 168 155 145 172(表一)填写下表,并将上述数据用适当的统计图表示出来.想一想,你同父母一起去商店买衣服时,衣服上的号码都有哪些,标志是什么?我看到有些衣服上标有M、S、L、XL、XXL等号码.但我不清楚代表的具体范围.适合什么人穿.但肯定与身高、胖瘦有关.这位同学很善动脑,也爱观察. S代表最小号,身高在150~155 cm的人适合穿S号.M 号适合身高在155~160 cm的人群着装…….厂家做衣服订尺寸也并不是按所有人的尺寸定做,而是按某个范围分组批量生产.如何确定组距与组数呢?分组组数的确定,不仅与数据多少有关,还与数据的取值情况有关.在实际决定组数时,常有一个尝试过程:先定组距,再计算出相应的组数.看看这个组数是否大致符合确定组数的经验法则.在尝试中,往往要比较相应于几个组距的组数,然后从中选定一个较为合适的组数.我们一起看下表:小亮的做法.144 cm以下145~149 cm 150~154 cm3 6 9155~159 cm 160~164 cm 165~169 cm16 9 5170 cm以上2 小亮是怎么做的?先分组,再得到相应各组的学生人数.根据上表绘制统计图(如下)(投影)图5-3当收集的数据连续取值时,我们通常将数据分组,然后再绘制频数分布直方图.注:数据越多,分的组数也应越多,当数据在100以内时,通常按照数据的多少,分成5~12组.为了更好地刻画数据的总体规律,我们还可以在得到的频数分布直方图上取点、连线,得到如下的频数分布折线图.(投影)图5-4比较一下各种统计图各自的优缺点.表一是没有经过整理的数据.数据多,而且数量表示上不简单、不直观.各个数据所占人数多少也没有直接给出,还需要计算.表二,优点:数量表示上确切.即准确表示出各个数据所占的人数.缺点:不能直观反映数据的总体规律.数据也较多.图5-3、图5-4能直观形象地将数据表示出来,而且能刻画出数据的总体规律.中间人数较集中,两边较少.我们在收集到一些数据后,一定要选择合理的表示方式表示所收集的数据.常用表格与图表两种方式.何时用哪种方式,应根据我们研究问题的侧重点来定.具体问题具体分析.不要生搬硬套,应多总结、提炼研究问题的思想和方法.不要一味去模仿.只要多动脑去思考.我相信同学们会创新出更好的方法.三、课堂练习见书本四、课时小结1.如何整理所收集的数据.2.将数据用适当的统计图表示出来.(1)表格形式.(2)频数分布直方图(3)频数分布折线图.3.各种统计图、表的优缺点.4.根据统计图表信息,提出合理化建议.今后我们还要学习一些统计知识,一些图表的制作.如频率分布直方图及它的意义.五、课后作业习题5.3。

北师大版七年级数学下册《频率的稳定性》教案及教学反思

北师大版七年级数学下册《频率的稳定性》教案及教学反思

北师大版七年级数学下册《频率的稳定性》教案及教学反思一、教学目标1.理解频率的概念,能正确区分频率与概率。

2.掌握随机事件的频率稳定性和随机性。

3.理解大数定律及其应用,能够运用大数定律解决实际问题。

二、教学重难点重点1.频率的概念及其求解2.频率的稳定性难点1.大数定律的理解和运用2.随机事件的概念及随机性的理解三、教学准备1.教材:北师大版七年级数学下册2.教具:黑板、白板、笔记本电脑、投影仪、绘图工具等3.学生教具:练习册、笔、草稿纸等四、教学过程1. 导入(5分钟)老师通过引入感性数据,让学生了解频率、随机性和不确定性,激发学生的学习兴趣。

1.介绍频率的定义和概念,让学生了解频率与概率之间的区别。

2.通过实际例子引入频率的求解以及如何判断频率是否稳定。

3. 频率的稳定性(15分钟)1.探讨频率的稳定性问题,引入大数定律。

2.利用实例说明随机事件在一定条件下频率稳定的特点和不稳定的特点。

3.教师带领学生运用多次试验的方法,演示频率不稳定的过程。

4.引导学生思考:在什么情况下,频率才能够表现出稳定的特点?4. 常见问题的解决(15分钟)1.给学生提供常见问题,让学生自己思考如何解决。

2.老师针对学生的问题进行解释和演示,帮助学生掌握解决随机事件频率不稳定性的方法。

5. 实际应用(25分钟)1.利用上一课的内容,通过实例引入实际问题。

2.教师结合实际情境,让学生在小组内讨论如何运用所学知识解决问题。

3.每个小组选派一名同学上台介绍组内讨论结果和解决方案。

4.教师对各组解决方案进行点评和总结,强化学生对所学知识的理解和应用。

学生通过本课学习,应该对频率、概率、随机事件及其稳定性等知识有了基本的了解和掌握。

教师接着从课堂上的实例入手,对本节课的关键知识进行简单的归纳,确定下一步教学的方向和内容。

五、教学反思本次上课,教师依托多种教学手段,如教材的解读、实际操作练习、小组讨论和组内讲解等,使学生更好地掌握频率的概念和计算方法,理解随机事件的频率稳定性和随机性,以及应用大数定律解决实际问题的方法。

新教材人教版高中数学必修第二册 10.3.1频率的稳定性(教案)

新教材人教版高中数学必修第二册 10.3.1频率的稳定性(教案)

第十章概率10.3.1频率的稳定性一、教学目标1.通过实验能让学生理解当试验次数较大时,实验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率.2.通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.3.通过对频率的稳定性的学习,培养学生数学抽象、数学运算、数学建模等数学素养。

二、教学重难点1.理解频率和概率的区别和联系.2. 大量重复实验得到频率的稳定值的分析.三、教学过程:(1)创设情景阅读课本,完成下列填空:一般地,随着试验次数n的增大,频率偏离概率的幅度会_________,即事件A发生的频率fn(A)会逐渐_________事件A发生的概率P(A).我们称频率的这个性质为频率的稳定性.因此,我们可以用频率fn(A)估计概率P(A).(2)新知探究问题1:小组合作探究概率与频率的区别与联系学生回答,教师点拨并提出本节课所学内容(3)新知建构概率与频率的区别:频率反映了一个随机事件发生的频繁程度,是随机的;概率是一个确定的值,它反映随机事件发生的可能性的大小概率与频率的联系:频率是概率的估计值,随着试验次数的增加,频率会越来越接近概率(4)数学运用例1.给出下列说法:①频数和频率都能反映一个对象在试验总次数中的频繁程度;②每个试验结果出现的频数之和等于试验的样本总数;③每个试验结果出现的频率之和不一定等于1;④频率就是概率.其中正确的是()A.①B.①②④C.①②D.③④【答案】C【解析】对于①,根据频数和频率的定义知,频数和频率都能反映一个对象在试验总次数中的频繁程度,所以①正确;对于②,每个试验结果出现的频数之和等于试验的样本总数,所以②正确;对于③,每个试验结果出现的频率之和一定等于1,所以③错误;对于④,频率是一个实验值,是随实验结果变化的,概率是稳定值,是不随实验结果变化的,所以④错误.综上知,正确的命题序号是①②.故选:C.变式训练1:(多选)下列说法正确的有()A.概率是频率的稳定值,频率是概率的近似值;B.一次试验中不同的基本事件不可能同时发生;C.任意事件A发生的概率P(A)总满足0<P(A)<1;D.若事件A的概率趋近于0,即P(A)→0,则事件A是不可能事件.【答案】AB【解析】频率是较少数据统计的结果,是一种具体的趋势和规律.在大量重复试验时,频率具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增加,这种摆动幅度越来越小,这个常数叫做这个事件的概率.∴随机事件A的概率是频率的稳定值,频率是概率的近似值.∴A正确.∵基本事件的特点是任意两个基本事件是互斥的,∴一次试验中,不同的基本事件不可能同时发生.∴B正确.∵必然事件的概率为1,不可能事件的概率为0,随机事件的概率大于0,小于1,∴任意事件A发生的概率P(A)满足0≤P(A)≤1,∴C错误.若事件A的概率趋近于0,则事件A是小概率事件,∴D错误∴说法正确的有两个,故选:AB.变式训练2:(多选)给出下列四个命题,其中正确的命题有( )A.做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正直朝上的概率是51 100B.随机事件发生的频率就是这个随机事件发生的概率C.抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是9 50D.随机事件发生的频率不一定是这个随机事件发生的概率【答案】CD【解析】对于A,混淆了频率与概率的区别,故A错误;对于B,混淆了频率与概率的区别,故B错误;对于C,抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是950,符合频率定义,故C正确;对于D,频率是概率的估计值,故D正确. 故选:CD.例2.有一个转盘游戏,转盘被平均分成10等份(如图所示),转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下三种方案中选一种:A.猜“是奇数”或“是偶数”B.猜“是4的整数倍数”或“不是4的整数倍数”C.猜“是大于4的数”或“不是大于4的数”请回答下列问题:(1)如果你是乙,为了尽可能获胜,你将选择哪种猜数方案,并且怎样猜?为什么?(2)为了保证游戏的公平性,你认为应制定哪种猜数方案?为什么?(3)请你设计一种其他的猜数方案,并保证游戏的公平性.【答案】(1) 应选方案B ,猜“不是4的整数倍数”;(2) 应当选择方案A;(3) 可以设计为:猜“是大于5的数”或“不是大于5的数”【解析】 (1)如题图,方案A中“是奇数”或“是偶数”的概率均为=0.5;方案B中“不是4的整数倍数”的概率为=0.8,“是4的整数倍数”的概率为=0.2;方案C中“是大于4的数”的概率为=0.6,“不是大于4的数”的概率为=0.4.乙为了尽可能获胜,应选方案B,猜“不是4的整数倍数”.(2)为了保证游戏的公平性,应当选择方案A.因为方案A猜“是奇数”或“是偶数”的概率均为0.5,从而保证了该游戏是公平的.(3)可以设计为:猜“是大于5的数”或“不是大于5的数”,此方案也可以保证游戏的公平性.变式训练:某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100名顾客的相关数据,如下表所示:已知这100位顾客中一次性购物超过8件的顾客占55%.(1)求x,y的值;(2)求一位顾客一次购物的结算时间超过2分钟的概率.【答案】(1)x=15,y=20;(2)0.3.【解析】(1)由已知得2510553045yx++=⎧⎨+=⎩,,所以x=15,y=20.(2)设事件A为“一位顾客一次购物的结算时间超过2分钟”,事件A1为“一位顾客一次购物的结算时间为2.5分钟”,事件A2为“一位顾客一次购物的结算时间为3分钟”,所以P(A)=P(A1)+P(A2)=20100+10100=0.3.例3:2020年新型冠状病毒席卷全球,美国是疫情最严重的国家,截止2020年6月8日美国确诊病例约为200万人,经过随机抽样,从感染人群中抽取1000人进行调查,按照年龄得到如下频数分布表:(Ⅰ)求a 的值及这1000例感染人员的年龄的平均数;(同一组中的数据用该组区间的中点值作代表)(Ⅱ)用频率估计概率,求感染人群中年龄不小于60岁的概率.【答案】(Ⅰ)250a =,平均数为52.2;(Ⅱ)0.38.【解析】(Ⅰ)由题意知50320300801000a ++++=,∴250a =,年龄平均数1050302505032070300908052.21000⨯+⨯+⨯+⨯+⨯==. (Ⅱ)1000人中年龄不小于60岁的人有380人, 所以年龄不小于60岁的频率为3800.381000=, 用频率估计概率,所以感染人群中年龄不小于60岁的概率为0.38.四、小结:1.频率的稳定性2.概率与频率的区别:频率反映了一个随机事件发生的频繁程度,是随机的;概率是一个确定的值,它反映随机事件发生的可能性的大小概率与频率的联系:频率是概率的估计值,随着试验次数的增加,频率会越来越接近概率五、作业:习题10.3.1。

七年级数学频率的稳定性(1

七年级数学频率的稳定性(1

“频率的稳定性(1)”教学设计一、教学目标1.知识与技能: 通过掷图钉活动,经历猜测、试验和收集试验数据、分析试验结果、验证猜测等活动过程,初步了解在试验次数很大时,随机事件发生的频率具有稳定性.2.过程与方法: 通过探究活动,培养动手能力和处理数据的能力,发展实事求是的探索精神和合作意识.3.情感与态度:通过对实际问题的分析,进一步提高“用数学”的意识与能力,体会数学的价值发展.二、教学重难点教学重点:通过试验让学生理解当试验次数较大时,实验的频率具有稳定性,并据此能初步估计出某一事件发生的可能性大小.教学难点:对大量重复试验得到的数据进行统计分析.三、教学过程第一环节情境引入,激发兴趣创设情景对话:小明和小军利用周末时间在家制作照片墙,但是图钉不够用,派谁去买呢?于是小明提出掷图钉的建议:掷一枚图钉,落地后会出现两种情况,如果钉尖朝上,小军去;如果钉尖朝下,小明去.引出钉尖朝上和钉尖朝下的可能性不同的猜测,小军说:“直觉告诉我,任意掷一枚图钉,钉尖朝上和钉尖朝下的可能性是不相同的.”小明说:“其实我的直觉和你一样,但我不知道对不对.”进而产生通过试验验证的想法.设计意图:从生活中的常见问题出发,让学生合理猜测游戏结果.让学生体验到并非所有事件的概率都可以通过理论计算得到.我们所学到的很多知识,都是先猜测,再经过多次的试验得出来的.由此引导学生通过大量的试验来验证.培养学生猜测结果的能力,并初步体会试验结果可能性有可能不同.第二环节新知探究,合作试验活动内容:(一)猜测让学生讨论,猜想钉尖朝上和钉尖朝下的可能性是否相同(二)试验和收集试验数据(1)拿出准备好的图钉,两人一组做20次掷图钉游戏,并将数据记录在下表中:试验总次数钉尖朝上的次数钉尖朝下的次数钉尖朝上的频率()介绍频率定义:在n 次重复试验中,不确定事件A 发生了m 次,则比值n m 称为事件A 发生的频率.(2)累计全班同学的试验结果,并将试验数据汇总填入下表: 设计意图:通过分组试验让学生体验随机事件的可能性,验证猜测.当试验的次数较少时,规律不明显,甚至与有的学生的猜测有矛盾,从而让学生思考造成这种结果的原因是试验的次数不够,培养学生发现问题、解决问题的能力.进而学生有目的地把全班试验的结果都统计出来,体会试验和收集试验数据的过程,领会数学是来源于生活,培养学生的合作精神和实事求是的探索意识,激发学生探索随机事件规律的兴趣.第三环节 探索交流,验证猜测(三)分析试验数据(3)请同学们根据上表,完成折线统计图:(4)观察折线统计图,钉尖朝上的频率的变化有什么规律?钉尖朝下的频率()试验总次数n20 40 80 120 160 200 240 280 320 360 400 钉尖朝上次数m钉尖朝上频率钉尖朝上的频率 1.0 0.80.6 0.40.2得出结论:在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性.设计意图:教师引导在学生探索的过程中,利用Excel表格协助统计,绘制折线统计图.使学生在探索的过程中感受计算机对数据的处理有巨大作用.学生通过观察形象直观的统计图,进行分析,引导学生用自己的语言进行描述,如有的学生发现“一开始的时候频率相差较大,随着试验次数越来越多,频率相差的值越来越小.”有的学生发现“试验的次数较小时,折线上下摆动的幅度可能比较大;但当试验的次数很大时,折线的波动幅度越来越小,频率越来越稳定”.进而得出结论在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性.(四)验证猜测学生分组讨论议一议的两个问题,进一步加深对频率稳定性的认识,初步体会用频率可以估计事件发生的可能性的大小.通过数学史实的介绍,让学生了解数学知识产生的背景,增长见闻,培养学习数学的兴趣.第四环节随堂练习巩固新知1.某位篮球爱好者进行了三轮投篮试验,结果如下表:轮数投球数命中数命中率第一轮1080.8第二轮15100.67第三轮1290.75 A.0.8B.0.75C.0.67D.不能确定2.为了看图钉落地后钉尖着地的频率有多大,小明做了大量重复试验,发现钉尖着地的次数是实验总次数的40%,下列说法错误的是( )A.钉尖着地的频率是0.4B.前20次试验结束后,钉尖着地的次数一定是8次C.随着试验次数的增加,钉尖着地的频率稳定在0.4附近D.钉尖着地的可能性小于钉尖朝上的可能性3.一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜色,…,甲同学反复大量实验后,根据白球出现的频率绘制了如图所示的统计图,则下列说法正确的是()A. 袋子一定有三个白球B. 袋子中白球占小球总数的十分之三C. 再摸三次球,一定有一次是白球D. 再摸1000次,摸出白球的次数会接近330次4.某射击运动员在同一条件下进行射击,结果如下表所示:射击总次数n1020501002005001000击中靶心的次数m9164188168429861击中靶心的频率(1)完成上表;(2)根据上表,画出该运动员击中靶心的频率的折线统计图;(3)观察画出的折线统计图,击中靶心的频率的变化有什么规律?5.一粒木质中国象棋棋子“車”,它的正面雕刻一个“車”字,它的反面是平的,将棋子从一定高度下抛,落地反弹后可能是“車”字面朝上,也可能是“車”字朝下.由于棋子的两面不均匀,为了估计“車”字朝上的机会,某实验小组做了棋子下抛实验,并把实验数据整理如下:实验次数20406080100120140160“車”字朝上的频数14183847527788相应的频率0.70.450.630.590.520.550.56(1)请将表中数据补充完整,并画出折线统计图中剩余部分.(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的机会,请估计这个机会约是多少?设计意图:随堂练习第1-3题为简单基础的选择题,主要是让学生感受随机事件的可能性有大有小,不能用“一定”及“肯定”来描述随机事件.通过大量的试验,频率都会在一个常数附近摆动,具有稳定性.因此大量的试验能帮助我们推测事件的可能性大小.随堂练习第4、5题则是练习学生处理数据,绘制折线统计图的能力,其中第5题给出折线统计图的一部分进行补充,节省了学生答题的时间,提高了课堂教学的效率.本环节可以采用抢答的形式或“击鼓传花”进行,题目浅显易做,适合学生独立完成,有利于活跃课堂气氛,激发学习兴趣.第五环节课堂小结感悟升华1.在n次重复试验中,事件A发生了m 次,则比值称为事件A发生的频率.2.当试验次数很大时,钉尖朝上的频率,都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性.设计意图:通过回顾本节课各项环节,师生互相交流如何通过试验的方法来确定频率的稳定性,及用频率来估计事件发生的可能性的大小.同时总结活动体验,有利于学生积累活动经验,形成良好的数学思考过程.第六环节课后作业综合提升教材142页习题6.21.对某批产品的质量进行随机抽查,结果如下表所示:随机抽取的产品数n1020501002005001000合格的产品数m9194793187467935合格率(1)完成上表;(2)根据上表,画出产品合格率变化的折线统计图;(3)观察画出的折线统计图,产品合格率的变化有什么规律?2.数学理解抛一个如图所示的瓶盖,盖口向上或盖口向下的可能性是否一样大?怎样才能验证自己结论的正确性?设计意图:让学生学以致用,通过综合题和实践运用提升学生动手能力和分析数据的能力,进一步提高“用数学”的意识与能力,体会数学的价值发展.四、教学设计反思学生通过一节课时间经历“猜测—实验和收集实验数据—分析试验结果—验证猜测”的过程,探索大量重复试验中不确定事件发生的频率会稳定在一个常数附近.领会数学来源于生活,服务于生活.整个课堂要体现学生为主体,教师重在做好引导,操作时要提醒学生注意图钉不要扎到手,可以设计学生提醒准备一个盒子,扔到盒子里,或用书本围成一块空处进行投掷.数据处理时如果班级学生人数较多,数据也较多,计算可能较为复杂,教师也做好Excel表格进行协助,微课中有具体表格操作指导,快速得到折线统计图,方便学生观察,也有利于教学过程顺利进展,促进教学目的达成.议一议环节有助于学生各抒己见,将本节课的猜测进行验证,推向内容的高潮.随堂练习可采取一些活动,激发学生兴趣,有助于推动课堂氛围.整个课堂激发了学生的竞争意识、合作意识、动手操作意识等,极大地调动学生的学习的积极性。

北师大版七年级下册(新)第六章《6.2频率的稳定性》优秀教学案例

北师大版七年级下册(新)第六章《6.2频率的稳定性》优秀教学案例
4.反思与评价的环节:在教学过程中,我鼓励学生进行反思和评价,让学生思考自己的学习过程和合作能力,同时也让我根据学生的反馈进行教学调整,提高教学效果。
5.作业小结的布置:通过布置相关的作业,让学生进一步巩固所学知识,并能够运用到实际问题中,培养了学生的应用能力,同时也让我了解学生的学习情况,为下一步的教学做好准备。
在学生对频率稳定性产生兴趣的基础上,我会正式引入频率稳定性的概念。我会讲解频率稳定性是指在大量重复实验中,某个事件发生的频率趋近于一个固定的数值。同时,我会强调频率稳定性是概率理论的一个重要基础,它帮助我们理解和预测随机事件的发生。
(三)学生小组讨论
我会将学生分成若干小组,每组学生将会共同进行一个实验,即模拟抽奖活动。每组学生将会记录抽奖结果,并计算每个结果出现的频率。在实验过程中,我会引导学生观察频率的变化,并思考频率稳定性与实验次数的关系。学生将会发现,随着实验次数的增加,频率越来越稳定,趋近于一个固定的数值。
四、教学内容与过程
(一)导入新课
我会以一个生活中的抽奖活动为例,展示抽奖箱和彩球,并邀请几名学生上台进行抽奖。学生将会看到,尽管每次抽奖的结果是随机的,但是在多次重复抽奖的过程中,某些结果出现的频率会逐渐稳定下来。我会引导学生思考,为什么会出现这种现象,并激发他们对频率稳定性的好奇心。
(二)讲授新知
(三)小组合作
在探究频率稳定性的过程中,我会组织学生进行小组合作。每组学生将会共同观察和记录抽奖活动中的频率变化,并共同分析频率的稳定性特点。通过小组合作,学生能够培养团队合作能力和沟通能力,同时也能够互相学习和分享彼此的想法和经验。
(四)反思与评价
在教学过程中,我会鼓励学生进行反思和评价。学生思考自己在探究频率稳定性过程中的观察、分析和结论是否合理,并评价自己的合作能力和解决问题的能力。同时,我也会进行教学反思,评估学生的学习效果和教学目标的达成情况,并根据需要进行教学调整。通过反思与评价,学生能够更好地理解和掌握频率的稳定性,并提高他们的自我评估和自我改进能力。

七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教案新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教案新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教案新版北师大版一. 教材分析本节课的主要内容是频率的稳定性,这是学生在掌握了概率的基础上进一步深入理解概率特性的重要内容。

通过本节课的学习,学生能够理解频率稳定性概念,了解概率与频率之间的关系,能够运用频率稳定性分析实际问题。

二. 学情分析学生在进入七年级之前,已经初步掌握了概率的基本概念和方法,对于概率的计算和应用已经有了一定的了解。

但是,对于频率稳定性这一概念,学生可能比较陌生,需要通过具体的实例和活动来帮助学生理解和掌握。

三. 教学目标1.知识与技能:学生能够理解频率稳定性的概念,能够运用频率稳定性分析实际问题。

2.过程与方法:通过具体实例和活动,学生能够体验频率稳定性,培养学生的数据处理和分析能力。

3.情感态度价值观:学生能够认识到数学与实际生活的紧密联系,增强学生学习数学的兴趣和信心。

四. 教学重难点1.重点:频率稳定性的概念和运用。

2.难点:频率稳定性的理解和运用。

五. 教学方法采用问题驱动法和案例教学法,通过具体的实例和活动,引导学生探究频率稳定性,培养学生的数据处理和分析能力。

六. 教学准备1.教师准备:准备好相关的实例和活动,制作好PPT。

2.学生准备:学生需要预习相关内容,了解概率的基本概念和方法。

七. 教学过程1.导入(5分钟)通过一个简单的抛硬币实验,引导学生思考:抛硬币实验中,正面朝上的概率是多少?引导学生回顾概率的概念和方法。

2.呈现(10分钟)教师通过PPT呈现频率稳定性的事例,如掷骰子实验、抽奖活动等,引导学生观察和分析频率稳定性。

3.操练(10分钟)学生分组进行实践活动,每组选择一个事例,进行频率稳定性实验,记录数据,分析频率稳定性。

4.巩固(10分钟)教师通过PPT呈现一些实际问题,引导学生运用频率稳定性进行分析,巩固学生对频率稳定性的理解和运用。

5.拓展(10分钟)学生分组讨论:如何运用频率稳定性解决实际问题?每组选择一个实际问题,进行讨论和展示。

2_频率的稳定性_课时1_教案1

2_频率的稳定性_课时1_教案1

6.2 频率的稳定性(一)教学设计一、教学目标教科书基于学生对大量重复试验事件发生频率的认识,提出了本课的具体学习任务:使学生经历“猜测—实验和收集实验数据—分析试验结果—验证猜测”的过程,探索大量重复试验中不确定事件发生的频率会稳定在一个常数附近。

频率、概率是新课程标准第三学段“统计与概率”中的两个重要概念。

通过这部分内容的学习可以帮助学生,进一步理解试验频率和理论概率的辨证关系,同时亦为学生体会概率和统计之间的联系打下基础。

让学生经历数据收集、整理与表示、数据分析以及做出推断的全过程,发展学生的统计意识,同时也应力图在学习中逐步达成学生的有关情感态度目标。

为此,本节课设计了以下目标:教学目标:1.知识与技能: 通过试验让学生理解当试验次数较大时,试验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率。

2.过程与方法: 在活动中进一步发展学生合作交流的意识与能力,发展学生的辩证思维能力。

3.情感与态度:通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值;进一步体会“数学就在我们身边”,发展学生的应用数学的能力教学重点:通过试验让学生理解当试验次数较大时,实验的频率具有稳定性,并据此能初步估计出某一事件发生的可能性大小。

教学难点:大量重复试验得到频率的稳定值的分析.学习方式:学生在教师指导下进行“猜想→实验→分析→交流→发现→应用”的一系列活动,积极思考,独立探索,自己发现并掌握相应的规律。

教学方式:通过具体的现实情境,从学生已有的生活经验出发,通过“猜想→实验→分析→交流→发现→应用”,经历自主探索、分组实验、合作交流等活动形式,以学生为主体,教师创设和谐,愉悦的环境,辅以适当的引导。

同时利用计算机演示教学内容,提高教学的交互性与直观性,打破教学常规,提高课堂效率。

二、教学过程分析本节课设计了七个教学环节:课前准备;创设情境,激发兴趣;分组试验,获取数据;合作交流,探究新知;巩固训练,发展思维;归纳小结;布置作业。

《频率的稳定性》教案 (公开课)2022年北师大版数学

《频率的稳定性》教案 (公开课)2022年北师大版数学

6.2频率的稳定性1.理解频率和概率的意义;2.了解频率与概率的关系,能够用频率估计某一事件的概率.(重点,难点)一、情境导入养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?二、合作探究探究点一:频率的稳定性在一个不透明的布袋中装有红色、白色玻璃球共60个,除颜色外其他完全相同.小明通过屡次摸球试验后发现,其中摸到红色球的频率稳定在25%左右,那么口袋中红色球可能有()A.5个B.10个C.15个D.45个解析:∵摸到红色球的频率稳定在25%左右,∴口袋中红色球的频率为25%,故红球的个数为60×25%=15(个).应选C.方法总结:频率在一定程度上可以反映随机事件发生的可能性的大小,在大量重复试验的条件下才可以近似地作为这个事件的概率.解题时由“频数=数据总数×频率〞计算即可.探究点二:用频率估计概率【类型一】用频率估计概率为了看图钉落地后钉尖着地的概率有多大,小明做了大量重复试验,发现钉尖着地的次数是实验总次数的40%,以下说法错误的选项是()A.B.随着试验次数的增加,C.D.前20次试验结束后,钉尖着地的次数一定是8次解析:A.,故此选项说法正确;B.随着试验次数的增加,,故此选项说法正确;C.∵,∴钉尖着地的概率大约是,故此选项说法正确;D.前20次试验结束后,钉尖着地的次数应该在8次左右,故此选项说法错误.应选D.【类型二】利用频率估计球的个数王老师将1个黑球和假设干个白球放入一个不透明的口袋并搅匀,让假设干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据(结果保存两位小数):(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是________;(2)估算袋中白球的个数.解析:(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)根据概率公式列出方程求解即可.解:(1)251÷1000≈0.25.∵,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x 个,11+x,x =3.答:估计袋中有3个白球.方法总结:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn.【类型三】 利用频率折线图估计概率一粒木质中国象棋棋子“車〞,它的正面雕刻一个“車〞字,它的反面是平的,将棋子从一定高度下抛,落地反弹后可能是“車〞字面朝上,也可能是“車〞字朝下.由于棋子的两面不均匀,为了估计“車〞字朝上的时机,某实验小组做了棋子下抛实验,并把实验数(1)请将表中数据补充完整,并画出折线统计图中剩余局部;(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的概率,请估计这个概率约是多少?解析:(1)根据表中信息,用频数除以实验次数,得到频率,由于试验次数较多,可以用频率估计概率.描点连线,可得折线图;(2)根据表中数据,,,,,,,,,即可估计概率的大小.解:(1)120×0.55=66,88÷160,故所填数字为66;补全折线图如下;(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的概率,这个概率约是0.55.方法总结:用频率估计概率时,一般观察所计算的各频率数值的变化趋势,即观察各数值主要接近在哪个数附近,这个常数就是所求概率的估计值.【类型四】 利用概率解决实际问题(1)(2)这批篮球优等品的概率估计值是多少?解析:(1)根据表中信息,用优等品频数m 除以抽取的篮球数n 即可;(2)根据表中数据,,,,,,,即可估计这批篮球优等品的概率.解:(1)570600,744800,9401000,11281200,; (2)这批篮球优等品的概率估计值是0.94.三、板书设计1.频率及其稳定性:在大量重复试验的情况下,事件的频率会呈现稳定性,即频率会在一个常数附近摆动.随着试验次数的增加,摆动的幅度有越来越小的趋势.2.用频率估计概率:一般地,在大量重复实验下,随机事件A 发生的频率会稳定到某一个常数p ,于是,我们用p 这个常数表示随机事件A 发生的概率,即P (A )=p .教学过程中,学生通过比照频率与概率的区别,体会到两者间的联系,从而运用其解决实际生活中遇到的问题,使学生感受到数学与生活的紧密联系第2课时 三角形的三边关系1.掌握三角形按边分类方法,能够判定三角形是否为特殊的三角形;2.探索并掌握三角形三边之间的关系,能够运用三角形的三边关系解决问题.(难点)一、情境导入数学来源于生活,生活中处处有数学.观察下面的图片,你发现了什么?问:你能不能给三角形下一个完整的定义? 二、合作探究探究点一:三角形按边分类以下关于三角形按边分类的集合中,正确的选项是( )解析:三角形根据边分类⎩⎪⎨⎪⎧不等边三角形等腰三角形⎩⎪⎨⎪⎧只有两边相等的三角形三边相等的三角形〔等边三角形〕应选D.方法总结:三角形按边分类,分成不等边三角形与等腰三角形,知道等边三角形是特殊的等腰三角形是解此题的关键.探究点二:三角形中三边之间的关系【类型一】 判定三条线段能否组成三角形以以下各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,5cm B .5cm ,6cm ,10cm C .1cm ,1cm ,3cm D .3cm ,4cm ,9cm解析:选项A 中2+3=5,不能组成三角形,故此选项错误;选项B 中5+6>10,能组成三角形,故此选项正确;选项C 中1+1<3,不能组成三角形,故此选项错误;选项D 中3+4<9,不能组成三角形,故此选项错误.应选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】 判断三角形边的取值范围一个三角形的三边长分别为4,7,x ,那么x 的取值范围是( ) A .3<x <11 B .4<x <7 C .-3<x <11 D .x >3解析:∵三角形的三边长分别为4,7,x ,∴7-4<x <7+4,即3<x A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.【类型三】 三角形三边关系与绝对值的综合假设a ,b ,c 是△ABC 的三边长,化简|a -b -c |+|b -c -a |+|c +a -b |.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a -b -c <0,b -c -a <0,c +a -b >0.∴|a -b -c |+|b -c -a |+|c +a -b |=b +c -a +c +a -b +c +a -b =3c +a -b .方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计1.三角形按边分类:有两边相等的三角形叫做等腰三角形,三边都相等的三角形是等边三角形,三边互不相等的三角形是不等边三角形.2.三角形中三边之间的关系:三角形任意两边之和大于第三边,三角形任意两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形〞引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系〞.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既增加了学习兴趣,又增强了学生的动手能力。

6.2频率的稳定性(教案)

6.2频率的稳定性(教案)
1.数据分析观念:使学生能够理解并运用频率概念,从实验数据中提取信息,培养数据分析的初步意识;
2.逻辑推理能力:通过观察频率随实验次数的变化,引导学生发现规律,提高逻辑推理能力;
3.问题解决能力:培养学生运用频率稳定性原理解决实际问题的能力,增强数学应用意识;
4.数学思维:激发学生对数据变化趋势的好奇心,发展数学思维和探究精神;
最后,我意识到在课程的总结回顾环节,需要更加注重学生对知识点的反馈。我会鼓励学生们提出疑问,并及时解答,确保他们能够真正理解并吸收课堂内容。
我还观察到,在实践活动中的实验操作环节,一些学生动手能力较弱,对实验步骤的掌握不够熟练。这可能影响了他们对频率稳定性原理的理解。针对这个问题,我计划在下次课中增加一个简短的实验操作培训,确保每个学生都能够熟练地进行实验操作。
此外,我发现学生们在解决实际问题时,有时候会忽略频率稳定性的应用,而是直接给出一个主观的概率估计。这可能是由于他们对频率稳定性在实际中的应用还不够熟悉。为了改善这一点,我打算在接下来的课程中,引入更多贴近生活的案例,让学生们看到频率稳定性在现实世界中的具体应用。
1.频率的定义与计算;
2.实验探究:抛硬币、摸球等实验,记录数据并计算频率;
3.频率稳定性:观察实验次数增加时,频率的变化趋势;
4.频率与概率的关系:运用频率估计概率,分析数据;
5.实际问题:运用频率稳定性解决简单实际问题。
二、核心素养目标
本节课的核心素养目标旨在培养学生的数据分析观念、逻辑推理能力以及问题解决能力。通过以下方式实现:
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与频率稳定性相关的实际问题,如购物抽奖活动中奖概率的分析。
2.实验操作:为了加深理解,我们将进行抛硬币实验。这个操作将演示频率稳定性的基本原理。

北师大版七下数学第6章频率初步6.2.1频率的稳定性教案

北师大版七下数学第6章频率初步6.2.1频率的稳定性教案

北师大版七下数学第6章频率初步6.2.1频率的稳定性教案一. 教材分析北师大版七下数学第6章频率初步6.2.1频率的稳定性教案主要讲述了频率的稳定性概念。

通过本节课的学习,学生能够了解频率稳定性的含义,掌握频率稳定性的判断方法,并能够运用频率稳定性解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了概率基础知识,对频率有一定的了解。

但学生对频率稳定性的理解可能存在一定的困难,需要通过实例和练习来加深对频率稳定性的认识。

三. 教学目标1.知识与技能目标:学生能够理解频率稳定性的概念,掌握频率稳定性的判断方法。

2.过程与方法目标:学生能够通过实例分析和练习,运用频率稳定性解决实际问题。

3.情感态度与价值观目标:学生能够培养对数学的兴趣,提高解决问题的能力。

四. 教学重难点1.重点:频率稳定性的概念及判断方法。

2.难点:频率稳定性在实际问题中的应用。

五. 教学方法1.情境教学法:通过实例分析,引导学生理解频率稳定性的概念。

2.实践教学法:通过练习和问题解决,让学生掌握频率稳定性的判断方法。

3.互助合作学习:学生分组讨论,共同解决问题,培养团队合作精神。

六. 教学准备1.教学素材:准备相关实例和练习题,以便进行教学分析和练习。

2.教学工具:准备黑板、粉笔等教学用具,以便进行板书和讲解。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,例如:“在一个袋子里有5个红球和4个蓝球,随机取出一个球,取出红球的频率是否稳定?”引导学生思考频率稳定性的概念。

2.呈现(15分钟)讲解频率稳定性的概念,并用实例进行说明。

例如,抛硬币实验中,硬币正反面出现的频率在大量实验中趋于稳定。

引导学生理解频率稳定性的含义。

3.操练(15分钟)让学生进行一些练习题,以加深对频率稳定性的理解。

例如,让学生计算一些简单事件的频率,并判断频率是否稳定。

4.巩固(10分钟)通过一些实际问题,让学生运用频率稳定性进行解决问题。

频率的稳定性(教学设计)

频率的稳定性(教学设计)

一、内容和内容解析内容:频率的稳定性.内容解析:本节课选自《普通高中课程标准数学教科书必修第二册》(人教A版)第十章第3节第1课时的内容.事件的概率越大,意味着事件发生的可能性越大,在重复实验中,相应的频率一般也越大;事件的概率越小,则事件发生的可能性越小,在重复实验中,相应的频率一般也越小.而本节课研究的就是频率与概率之间的关系.通过探究频率与概率的关系,进一步让学生体会概率与统计的思想,发展学生的直观想象、逻辑推理、数学建模的核心素养.二、目标和目标解析目标:(1)通过实验让学生理解当试验次数较大时,实验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率.(2)通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.目标解析:(1)概率的稳定性是概率论的理论基础,用频率估计概率是获得随机事件概率的方法之一,也是一种重要的概率思想,只有深刻理解概率与频率的关系,才能更好理解概率的意义.(2)让学生经历重复试验,收集、整理试验数据,利用图表表示试验数据,通过观察、比较发现频率的特征,提升直观想象和数据分析素养.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在本节课的教学中,用前面所学的概率统计的知识解决是进行数学建模教学的好机会.基于上述分析,本节课的教学重点定为:通过实验让学生理解当试验次数较大时,实验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率.三、教学问题诊断分析1.教学问题一:频率与概率的关系,学生在初中时对此已有初步认识,但理解不够深刻,如何进一步加深理解是本节课的第一个教学问题.解决方案:结合具体的随机试验,通过具体的试验来认识频率与概率的关系.2.教学问题二:对频率的稳定性的理解是本节课的第二个教学问题.这不仅是本节课的重点,也是教学难点.解决方案:让学生经历重复试验,收集、整理试验数据,利用图表表示试验数据,通过观察、比较发现频率的特征,提升直观想象和数据分析素养.3.教学问题三:如何用频率估计概率是第三个教学问题.解决方案:结合例题,让学生体会用试验验证概率模型的合理性,或通过试验发现规律从而建立概率理论模型的思想.基于上述情况,本节课的教学难点定为:大量重复实验得到频率的稳定值的分析.四、教学策略分析本节课的教学目标与教学问题为我们选择教学策略提供了启示.为了让学生通过观察、比较得到频率与概率的区别和联系,能用频率去估计概率,应该为学生创造积极探究的平台.因此,在教学过程中结合具体的随机试验,用事实说话,可以让学生从被动学习状态转到主动学习状态中来.在教学设计中,采取问题引导方式来组织课堂教学.问题的设置给学生留有充分的思考空间,让学生围绕问题主线,通过自主探究达到突出教学重点,突破教学难点.在教学过程中,重视对频率稳定性规律的理解,具体的试验或计算机模拟试验其实就是数学模型的建立与应用的典范.因此,本节课的教学是实施数学具体内容的教学与核心素养教学有机结合的尝试.五、教学过程与设计字1,2,3,4,5,6,7的两个转盘(如图所示),设计了一种游戏方案:两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时(1)班代表获胜,否则(2)班代表获胜.该方案对双方是否公平?为什么?课堂小结升华认知[问题5]通过这节课,你学到了什么知识?在解决问题时,用到了哪些数学思想?[课后练习]1.抛掷一枚硬币100次,正面向上的次数为48次,下列说法正确的是( )A.正面向上的概率为0.48C.正面向上的频率为0.482.设某厂产品的次品教师11:提出问题5.学生10:学生10:学生课后进行思考,并完成课后练习.【答案】1.C 2.B 3.①④⑤ 4.不公平师生共同回顾总结.引领学生感悟数学认知的过程,体会数学核心素养.课后练习是对定理巩固,是对本节知识的一个深化认识,同时也为下节内容做好铺垫.或“不公平”).。

《频率的稳定性》课件 (一等奖)2022年最新PPT

《频率的稳定性》课件 (一等奖)2022年最新PPT
上述的表示方式好不好?如果不好,请你设计一个更好的表示方式.
1、列表法: 课 学生数(画正字) 学生


P
2
C
8
M
12
E
10
Ph
10
S
8
2、用条形统计图表示:
学生人数 12 10 8
2 政治 语文 数学 英语 物理 体育 学科
每个对象出现的次数叫做频数,而每个对象出现次数与总次数的比值叫频率.
功课 学生数(画正字)
“的〞字的使用频率高。
从今天的课程中,你学到了什么知识?频数与频率有什么联系与区别? 频数是每个对象出现的次数,频率是每个对象出现次数与总次数的比值.
博达助教通
比较线段的长短
博达助教通
比较两根铅笔的长短,你有哪些方法?
博达助教通
如果把铅笔抽象成线段,让你比较两条线 段的长短,你能想出哪些方法?
P C M E Ph S
学生 数 2 8
12 10 10 8
功课 P C M
E Ph S 合计
频数 2 8 12 10 10 8 50
频率 0.04 0.16 0.24 0.2 0.2 0.16
1
1、你估计语文课本中哪个汉字使用的频率最高? 2、请你设计一个方案,同组同学进行现场统计.
请统计语文课本中 “的〞与“了〞两个字的频数与频率,并制成统计图的形式。
现场调查:各位同学最喜欢以下六门学科中哪一门功课? 并用枚举法表示出来! (用P表示政治,C表示表示语文,M表示数学,E表示英语,Ph表示
假定调查结果如下 : S M C E Ph M C S S Ph S M M S C Ph E E S M C M P Ph M M C S E Ph Ph C Ph E E M C E Ph E Ph E E S M C M P Ph M
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2 频率的稳定性
1.理解频率和概率的意义;
2.了解频率与概率的关系,能够用频率估计某一事件的概率.(重点,难点)
一、情境导入
养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?
二、合作探究
探究点一:频率的稳定性
在一个不透明的布袋中装有红色、白色玻璃球共60个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在25%左右,则口袋中红色球可能有()
A.5个B.10个C.15个D.45个
解析:∵摸到红色球的频率稳定在25%左右,∴口袋中红色球的频率为25%,故红球的个数为60×25%=15(个).故选C.
方法总结:频率在一定程度上可以反映随机事件发生的可能性的大小,在大量重复试验的条件下才可以近似地作为这个事件的概率.解题时由“频数=数据总数×频率”计算即可.探究点二:用频率估计概率
【类型一】用频率估计概率
为了看图钉落地后钉尖着地的概率有多大,小明做了大量重复试验,发现钉尖着地的次数是实验总次数的40%,下列说法错误的是()
A.钉尖着地的频率是0.4
B .随着试验次数的增加,钉尖着地的频率稳定在0.4附近
C .钉尖着地的概率约为0.4
D .前20次试验结束后,钉尖着地的次数一定是8次
解析:A.钉尖着地的频率是0.4,故此选项说法正确;B.随着试验次数的增加,钉尖着地的频率稳定在0.4,故此选项说法正确;C.∵钉尖着地的频率是0.4,∴钉尖着地的概率大约是0.4,故此选项说法正确;D.前20次试验结束后,钉尖着地的次数应该在8次左右,故此选项说法错误.故选D.
【类型二】 利用频率估计球的个数
王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据(结果保留两位小数):
摸球的次数n 100 150 200 500 800 1000 摸到黑球的次数m 23 31 60 130 203 251 摸到黑球的频率m
n
0.23
0.21
0.30
0.26
0.25
____
(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是________; (2)估算袋中白球的个数.
解析:(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)根据概率公式列出方程求解即可.
解:(1)251÷1000≈0.25.∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;
(2)设袋中白球为x 个,
1
1+x
=0.25,x =3. 答:估计袋中有3个白球.
方法总结:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m
n
.
【类型三】 利用频率折线图估计概率
一粒木质中国象棋棋子“車”,它的正面雕刻一个“車”字,它的反面是平的,将棋子从一定高度下抛,落地反弹后可能是“車”字面朝上,也可能是“車”字朝下.由于棋子的两面不均匀,为了估计“車”字朝上的机会,某实验小组做了棋子下抛实验,并把实验数据整理如下(结果保留两位小数):
实验
次数
20
40
60
80
100
120
140
160
“車”字
朝上的
频数
1418384752____7888
相应的
频率
0.700.450.630.590.520.550.56____
(1)请将表中数据补充完整,并画出折线统计图中剩余部分;
(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的概率,请估计这个概率约是多少?
解析:(1)根据表中信息,用频数除以实验次数,得到频率,由于试验次数较多,可以用频率估计概率.描点连线,可得折线图;(2)根据表中数据,试验频率为0.70,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,即可估计概率的大小.
解:(1)120×0.55=66,88÷160=0.55,故所填数字为66,0.55;补全折线图如下;
(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的概率,这个概率约是0.55.
方法总结:用频率估计概率时,一般观察所计算的各频率数值的变化趋势,即观察各数值主要接近在哪个数附近,这个常数就是所求概率的估计值.
【类型四】利用概率解决实际问题
某批篮球质量检验结果如下:
抽取的篮球数n 40060080010001200
优等品频数m 3765707449401128
优等品频率m/n 0.94________________
(1)填写表中优等品的频率;
(2)这批篮球优等品的概率估计值是多少?
解析:(1)根据表中信息,用优等品频数m 除以抽取的篮球数n 即可;(2)根据表中数据,优等品频率为0.94,0.95,0.93,0.94,0.94,稳定在0.94左右,即可估计这批篮球优等品的概率.
解:(1)570600=0.95,744800=0.93,9401000=0.94,1128
1200=0.94,故表中依次填0.95,0.93,0.94,0.94;
(2)这批篮球优等品的概率估计值是0.94.
三、板书设计 1.频率及其稳定性:
在大量重复试验的情况下,事件的频率会呈现稳定性,即频率会在一个常数附近摆动.随着试验次数的增加,摆动的幅度有越来越小的趋势.
2.用频率估计概率:
一般地,在大量重复实验下,随机事件A 发生的频率会稳定到某一个常数p ,于是,我们用p 这个常数表示随机事件A 发生的概率,即P (A )=p .
教学过程中,学生通过对比频率与概率的区别,体会到两者间的联系,从而运用其解决实际生活中遇到的问题,使学生感受到数学与生活的紧密联系。

相关文档
最新文档