高中数学概率统计

合集下载

高中数学概率统计

高中数学概率统计

第八讲 概率统计考点透视1.了解随机事件的发生存在着规律性和随机事件概率的意义.2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.4.会计算事件在n 次独立重复试验中恰好发生k 次的概率.5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 例题解析考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识:1等可能性事件古典概型的概率:PA =)()(I card A card =nm ;等可能事件概率的计算步骤:① 计算一次试验的基本事件总数n ;② 设所求事件A,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n=求值;④ 答,即给问题一个明确的答复.2互斥事件有一个发生的概率:PA +B =PA +PB ; 特例:对立事件的概率:PA +P A =PA +A =1. 3相互独立事件同时发生的概率:PA ·B =PA ·PB ;特例:独立重复试验的概率:P n k =k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式1-P+P n 展开的第k+1项. 4解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复.例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 结果用数值表示.考查目的本题主要考查概率的概念和等可能性事件的概率求法. 解答过程提示:1335C 33.54C 102P ===⨯ 例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .考查目的本题主要考查用样本分析总体的简单随机抽样方式,同时考查概率的概念和等可能性事件的概率求法.用频率分布估计总体分布,同时考查数的区间~的意义和概率的求法. 解答过程1.20提示:51.10020P == 例3从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为单位:g :492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499根据的原理,该自动包装机包装的袋装食盐质量在~之间的概率约为__________. 考查目的本题主要考查用频率分布估计总体分布,同时考查数的区间~的意义和概率的求法.解答过程在~内的数共有5个,而总数是20个,所以有51.204= 点评:首先应理解概率的定义,在确定给定区间的个体的数字时不要出现错误. 例4.接种某疫苗后,出现发热反应的概率为.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.精确到考查目的 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.解答提示至少有3人出现发热反应的概率为33244555550.800.200.800.200.800.94C C C ⋅⋅+⋅⋅+⋅=.故填.例5.右图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是A 454 B 361 C 154 D 158考查目的 本题主要考查运用组合、概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.解答提示由题意,左端的六个接线点随机地平均分成三组有2226423315C C C A =种分法,同理右端的六个接线点也随机地平均分成三组有2226423315C C C A=种分法;要五个接收器能同时接收到信号,则需五个接收器与信号源串联在同一个线路中,即五个接收器的一个全排列,再将排列后的第一个元素与信号源左端连接,最后一个元素与信号源右端连接,所以符合条件的连接方式共有55120A =种,所求的概率是120822515P ==,所以选D.点评:本题要求学生能够熟练运用排列组合知识解决计数问题,并进一步求得概率问题,其中隐含着平均分组问题.例6.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. 1求从该批产品中任取1件是二等品的概率p ;2若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B .考查目的本小题主要考查相互独立事件、互斥事件等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.解答过程1记0A 表示事件“取出的2件产品中无二等品”,1A 表示事件“取出的2件产品中恰有1件二等品”.则01A A ,互斥,且01A A A =+,故 于是20.961p =-.解得120.20.2p p ==-,舍去.2记0B 表示事件“取出的2件产品中无二等品”,则0B B =. 若该批产品共100件,由1知其中二等品有1000.220⨯=件,故28002100C 316()C 495P B ==. 例7.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率 是 结果用分数表示.考查目的 本题主要考查运用排列和概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.解答提示从两部不同的长篇小说8本书的排列方法有88A 种,左边4本恰好都属于同一部小说的的排列方法有442442A A A 种.所以, 将符合条件的长篇小说任意地排成一排,左边4本恰好都属于同一部小说的概率是 44244288135A A A P A ==种.所以,填135. 例8.甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n 个白球.由甲,乙两袋中各任取2个球.Ⅰ若n=3,求取到的4个球全是红球的概率;Ⅱ若取到的4个球中至少有2个红球的概率为43,求n.考查目的本题主要考查排列组合、概率等基本知识,同时考察逻辑思维能力和数学应用能力.标准解答I 记“取到的4个球全是红球”为事件A .II 记“取到的4个球至多有1个红球”为事件B ,“取到的4个球只有1个红球”为事件1B ,“取到的4个球全是白球”为事件2B . 由题意,得31()1.44P B =-=所以, 12()()()P B P B P B =+22(1)3(2)(1)6(2)(1)n n n n n n n -=+++++14=,化简,得271160,nn --=解得2n =,或37n =-舍去, 故 2n =.例9.某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元. Ⅰ求3位购买该商品的顾客中至少有1位采用一次性付款的概率; Ⅱ求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. 考查目的本小题主要考查相互独立事件、独立重复试验等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.解答过程Ⅰ记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064P A =-=, ()1()10.0640.936P A P A =-=-=.Ⅱ记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”. 1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.01()()P B P B B =+01()()P B P B =+0.2160.432=+0.648=.例10.某公司招聘员工,指定三门考试课程,有两种考试方案. 方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是,,a b c ,且三门课程考试是否及格相互之间没有影响.Ⅰ分别求该应聘者用方案一和方案二时考试通过的概率;Ⅱ试比较该应聘者在上述两种方案下考试通过的概率的大小.说明理由考查目的 本题主要考查互斥事件有一个发生的概率和对立事件的概率,以及不等式等基本知识,同时考查逻辑思维能力和数学应用能力.标准解答记该应聘者对三门指定课程考试及格的事件分别为A,B,C, 则PA =a,PB =b,PC =c.Ⅰ 应聘者用方案一考试通过的概率p 1=PA ·B ·C +P A ·B ·C +PA ·B ·C +PA ·B ·C=a ×b ×1-c+1-a ×b ×c+a ×1-b ×c+a ×b ×c=ab+bc+ca-2abc. 应聘者用方案二考试通过的概率p 2=31PA ·B + 31PB ·C + 31PA ·C = 31×a ×b+b ×c+c ×a= 31 ab+bc+caⅡ p 1- p 2= ab+bc+ca-2abc-31 ab+bc+ca= 23ab+bc+ca-3abc≥23]3abc =0≥.∴p 1≥p 2例11.某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为54、53、52、51,且各轮问题能否正确回答互不影响.Ⅰ求该选手进入第四轮才被淘汰的概率;Ⅱ求该选手至多进入第三轮考核的概率. 注:本小题结果可用分数表示考查目的本小题主要考查相互独立事件、独立重复试验的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.解答过程Ⅰ记“该选手能正确回答第i 轮的问题”的事件为(1234)i A i =,,,,则14()5P A =,23()5P A =,32()5P A =,41()5P A =, ∴该选手进入第四轮才被淘汰的概率412341234432496()()()()()5555625P P A A A A P A P A P A P P ===⨯⨯⨯=. Ⅱ该选手至多进入第三轮考核的概率3112123()P P A A A A A A =++112123()()()()()()P A P A P A P A P A P A =++142433101555555125=+⨯+⨯⨯=. 考点2离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x =i 1,2,……的概率P i x =ξ=i P ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: 10≥iP ,=i1,2,...;2++21P P (1)②常见的离散型随机变量的分布列: 1二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n,并且k n k kn kq p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p 为参数,并记:),;(p n k b q p C kn k k n =- .2 几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生. 随机变量ξ的概率分布为:例12.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.Ⅰ若厂家库房中的每件产品合格的概率为,从中任意取出4件进行检验,求至少有1件是合格的概率;Ⅱ若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数ξ的分布列及期望ξE ,并求出该商家拒收这批产品的概率. 考查目的本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.解答过程Ⅰ记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A用对立事件A 来算,有()()4110.20.9984P A P A =-=-= Ⅱξ可能的取值为0,1,2. ()2172201360190C P C ξ===, ()11317220511190C C P C ξ===, 136513301219019019010E ξ=⨯+⨯+⨯=. 记“商家任取2件产品检验,都合格”为事件B,则商家拒收这批产品的概率()136271119095P P B =-=-=. 所以商家拒收这批产品的概率为2795.例13.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响.Ⅰ求该选手被淘汰的概率;Ⅱ该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望. 注:本小题结果可用分数表示考查目的本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.解答过程解法一:Ⅰ记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =, ∴该选手被淘汰的概率142433101555555125=+⨯+⨯⨯=. Ⅱξ的可能值为123,,,11(1)()5P P A ξ===,1212428(2)()()()5525P P A A P A P A ξ====⨯=, 12124312(3)()()()5525P P A A P A P A ξ====⨯=.ξ∴的分布列为1812571235252525E ξ∴=⨯+⨯+⨯=. 解法二:Ⅰ记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =. ∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=.Ⅱ同解法一.考点3 离散型随机变量的期望与方差 随机变量的数学期望和方差1离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平. ⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…; 方差反映随机变量取值的稳定与波动,集中与离散的程度. ⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+. 4若ξ~Bn,p,则 np E =ξ ; D ξ =npq 这里q=1-p ; 如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则pE 1=ξ,D ξ =2p q其中q=1-p.例14.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:则比较两名工人的技术水平的高低为 .思路启迪:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小. 解答过程:工人甲生产出次品数ε的期望和方差分别为:7.0103210111060=⨯+⨯+⨯=εE , 891.0103)7.02(101)7.01(106)7.00(222=⨯-+⨯-+⨯-=εD ; 工人乙生产出次品数η的期望和方差分别为:7.0102210311050=⨯+⨯+⨯=ηE ,664.0102)7.02(103)7.01(105)7.00(222=⨯-+⨯-+⨯-=ηD 由E ε=E η知,两人出次品的平均数相同,技术水平相当,但D ε>D η,可见乙的技术比较稳定.小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度. 例15.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润. Ⅰ求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; Ⅱ求η的分布列及期望E η.考查目的 本小题主要考查概率和离散型随机变量分布列和数学期望等知识.考查运用概率知识解决实际问题的能力.解答过程Ⅰ由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=, ()1()10.2160.784P A P A =-=-=.Ⅱη的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=元.小结:离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.本题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力.例16.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是,25 ,50 , ,25 解答过程:易得x 没有改变,x =70,而s 2=481x 12+x 22+…+502+1002+…+x 482-48x 2=75,s ′2=481x 12+x 22+…+802+702+…+x 482-48x 2 =48175×48+48x 2-12500+11300-48x 2 =75-481200=75-25=50.答案:B考点4 抽样方法与总体分布的估计 抽样方法1.简单随机抽样:设一个总体的个数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样也称为机械抽样.3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线.典型例题例17.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n= . 解答过程:A 种型号的总体是210,则样本容量n=1016802⨯=.例18.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m k +的个位数字相同,若6m =,则在第7组中抽取的号码是 .解答过程:第K 组的号码为(1)10k - ,(1)101k -+,…,(1)109k -+,当m=6时,第k 组抽取的号的个位数字为m+k 的个位数字,所以第7组中抽取的号码的个位数字为3 ,所以抽取号码为63. 例19.考查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据单位:cm 如下: 171 163 163 166 166 168 168 160 168 165 171 169 167 169 151 168 170 160 168 174 165 168 174 159 167 156 157 164 169 180 176157162161158164163163167161⑴作出频率分布表;⑵画出频率分布直方图.思路启迪:确定组距与组数是解决“总体中的个体取不同值较多”这类问题的出发点.解答过程:⑴最低身高为151,最高身高180,其差为180-151=29;确定组距为3,组数为10,列表如下:⑵频率分布直方图如下:小结: 合理、科学地确定组距和组数,才能准确地制表及绘图,这是用样本的频率分布估计总体分布的基本功. 估计总体分布的基本功; 考点5 正态分布与线性回归 1.正态分布的概念及主要性质 1正态分布的概念如果连续型随机变量ξ 的概率密度函数为 222)(21)(σμπσ--=x ex f ,x R ∈ 其中σ、μ为常数,并且σ>0,则称ξ服从正态分布,记为~N ξμ,2σ. 2期望E ξ =μ,方差2σξ=D . 3正态分布的性质 正态曲线具有下列性质:①曲线在x 轴上方,并且关于直线x =μ对称.②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.③曲线的对称轴位置由μ确定;曲线的形状由σ确定,σ越大,曲线越“矮胖”;反之越“高瘦”. 4标准正态分布当μ=0,σ=1时ξ服从标准的正态分布,记作~N ξ0,1 5两个重要的公式①()1()x x φφ-=-,② ()()()P a b b a ξφφ<<=-. 62(,)N μσ与(0,1)N 二者联系.① 若2~(,)N ξμσ,则~(0,1)N ξμησ-= ;②若2~(,)N ξμσ,则()()()b a P a b μμξφφσσ--<<=-.2.线性回归简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法. 变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.具体说来,对n 个样本数据11,x y ,22,x y ,…,,n n x y ,其回归直线方程,或经验公式为:a bx y+=ˆ.其中,,)(1221x b y a x n xyx n yx b ni ini ii⋅-=--=∑∑==,其中y x ,分别为|i x |、|i y |的平均数.例20.如果随机变量ξ~N μ,σ2,且E ξ=3,D ξ=1,则P -1<ξ≤1=等于Φ1-1 B.Φ4-Φ2 C.Φ2-Φ4D.Φ-4-Φ-2解答过程:对正态分布,μ=E ξ=3,σ2=D ξ=1,故P -1<ξ≤1=Φ1-3-Φ-1-3=Φ-2-Φ-4=Φ4-Φ2.答案:B例21. 将温度调节器放置在贮存着某种液体的容器内,调节器设定在d ℃,液体的温度ξ单位:℃是一个随机变量,且ξ~Nd ,.1若d =90°,则ξ<89的概率为 ;2若要保持液体的温度至少为80 ℃的概率不低于,则d 至少是 其中若η~N 0,1,则Φ2=P η<2=,Φ-=P η<-=.思路启迪:1要求P ξ<89=F 89,∵ξ~Nd ,不是标准正态分布,而给出的是Φ2,Φ-,故需转化为标准正态分布的数值.2转化为标准正态分布下的数值求概率p ,再利用p ≥,解d . 解答过程:1P ξ<89=F 89=Φ5.09089-=Φ-2=1-Φ2=1-=.2由已知d 满足≤P ξ≥80, 即1-P ξ<80≥1-,∴P ξ<80≤. ∴Φ5.080d -≤=Φ-.∴5.080d -≤-.∴d ≤. 故d 至少为.小结:1若ξ~N 0,1,则η=σμξ-~N 0,1.2标准正态分布的密度函数fx 是偶函数,x <0时,fx 为增函数,x >0时,fx 为减函数. 例22.设),(~2σμN X,且总体密度曲线的函数表达式为:412221)(+--=x x ex f π,x ∈R.1则μ,σ是 ;2则)2|1(|<-x P 及)22121(+<<-x P 的值是 .思路启迪: 根据表示正态曲线函数的结构特征,对照已知函数求出μ和σ.利用一般正态总体),(2σμN 与标准正态总体N0,1概率间的关系,将一般正态总体划归为标准正态总体来解决. 解答过程:⑴由于222)2(2)1(41222121)(--+--⋅==x x x eex f ππ,根据一般正态分布的函数表达形式,可知μ=1,2=σ,故X ~N1,2.2(1)120.84131φ=-=⨯-6826.0=.又)21()221()22121(--+=+<<-F F x P(2)(1)10.97720.84131φφ=+-=+-8185.0=.小结:通过本例可以看出一般正态分布与标准正态分布间的内在关联.例23. 公共汽车门的高度是按照确保99%以上的成年男子头部不跟车门顶部碰撞设计的,如果某地成年男子的身高ε~N173,7单位:cm,则车门应设计的高度是 精确到1cm思路启迪:由题意可知,求的是车门的最低高度,可设其为xcm,使其总体在不低于x 的概率小于1%.解答过程:设该地区公共汽车车门的最低高度应设为xcm,由题意,需使P ε≥x<1%. ∵ε~N173,7,∴99.0)7173()(>-=≤x x P φε;查表得33.27173>-x ,解得x>,即公共汽车门的高度至少应设计为180cm,可确保99%以上的成年男子头部不跟车门顶部碰撞. 专题训练 一.选择题1.下面关于离散型随机变量的期望与方差的结论错误的是A.期望反映随机变量取值的平均水平,方差反映随机变量取值集中与离散的程度.B.期望与方差都是一个数值,它们不随试验的结果而变化C.方差是一个非负数D.期望是区间0,1上的一个数.2.要了解一批产品的质量,从中抽取200个产品进行检测,则这200个产品的质量是 A. 总体 B.总体的一个样本 C.个体 D. 样本容量3.已知η的分布列为:设23-=ηξ则ξD 的值为 A. 5 B. 34 C. 32- D.3-4.设),(~p n B ξ,12=ξE ,4=ξD ,则n,p 的值分别为 ,31 B. 36 ,31 C. 32,36 D. 18,325.已知随机变量ξ 服从二项分布,)31,6(~B ξ,则)2(=ξP 等于A. 163B.2434 C. 24313 D.243806.设随机变量的分布列为15)(k k P ==ξ,其中k=1,2,3,4,5,则)2521(<<ξP 等于A.51 B. 21 C. 91 D.617.设15000件产品中有1000件废品,从中抽取150件进行检查,则查得废品数的数学期望为D.都不对8.某市政府在人大会上,要从农业、工业、教育系统的代表中抽查对政府工作报告的意见.为了更具有代表性,抽取应采用 A.抽签法 B.随机数表法 C.系统抽样法 D.分层抽样9.一台X 型号的自动机床在一小时内不需要人照看的概为,有四台这种型号的自动机床各自独立工作,则在一小时内至多有2台机床需要工人照看的概率是 10.某校高三年级195名学生已编号为1,2,3,…195,为了解高三学生的饮食情况,要按1:5的比例抽取一个样本,若采用系统抽样方法进行抽取,其中抽取3名学生的编号可能是,24,33 ,47,147 ,153,193 ,132,15911.同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是 12.已知),0(~2σξN ,且4.0)02(=≤≤-ξp ,则P 2>ξ等于某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法14.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为h h h h二.填空题15.某工厂规定:工人只要生产出一件甲级产品发奖金50元,生产出一件乙级产品发奖金30元,若生产出一件次品则扣奖金20元,某工人生产甲级品的概率为,乙级品的概率为,次品的概率为,则此人生产一件产品的平均奖金为元.16. 同时抛掷两枚相同的均匀硬币,随机变量1=ξ表示结果中有正面向上, 0=ξ表示结果中没有正面向上,则=ξE .17. 甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下单位:t/hm2其中产量比较稳定的小麦品种是 .18.一工厂生产了某种产品16800件,它们来自甲、乙、丙3条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知从甲、乙、丙3条生产线抽取的个体数组成一个等差数列,则乙生产线生产了件.19.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10。

高中数学统计与概率

高中数学统计与概率

高中数学统计与概率1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。

2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。

3、互斥事件不可能同时发生的两个事件叫互斥事件。

如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B)。

4.抽签法和随机数表法(1)抽签法①优点:简单易行;②缺点:当总体容量非常大时,操作比较麻烦;若抽取前搅拌不均匀,可能导致抽取的样本不具有代表性.(2)随机数表法随机数表是由水技术(通常为自然数)形成的数表,表中的每一位置出现的数都是随机的.随机数表法的一般步骤:第一步:对总体进行编号;第二步:任意指定一个开始选取的位置,位置的确定可以闭着眼用手指随机确定,也可以用其他方法;第三步:按照一定规则选取编号;第四步:按照得到的编号找出对应的个体.【注释】①规则一经确定,就不能更改;②选取过程中,遇到超过编号范围或已经选取了的数字,应该舍弃.5.分层抽样一般地,如果相对于要考察的问题来说,总体可以分为有明显差别的,互不重叠的几部分时,每一部分可称为层,在各层中按层在总体中所占比例进行随机抽样的方法称为分层随机抽样(简称分层抽样).【注释】分层抽样得到的样本,一般更具有代表性,可以更准确地反映总体的特征,尤其是在层内个体相对同质而层间差异较大时更是如此.分层抽样在各层中抽样时,还可根据各层的特点灵活选用不同的随机抽样方法.。

(最全)高中数学概率统计知识点总结

(最全)高中数学概率统计知识点总结

高中数学-概率与统计一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。

2、平均数:①、常规平均数:12nx x x x n++⋅⋅⋅+=②、加权平均数:112212n n n x x x x ωωωωωω++⋅⋅⋅+=++⋅⋅⋅+3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。

4、方差:2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+- 二、频率直方分布图下的频率1、频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数2、频率之和:121n f f f ++⋅⋅⋅+=;同时 121n S S S ++⋅⋅⋅+=;三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。

2、平均数: 112233n nx x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。

4、方差:22221122()()()n n s x x f x x f x x f =-+-+⋅⋅⋅+-四、线性回归直线方程:ˆˆˆybx a =+ 其中:1122211()()ˆ()nni i i i i i nni i i i x x y y x y nxybx x x nx ====---∑∑==--∑∑ , ˆˆay bx =- 1、线性回归直线方程必过样本中心(,)x y ;2、ˆ0:b>正相关;ˆ0:b <负相关。

3、线性回归直线方程:ˆˆˆy bx a =+的斜率ˆb 中,两个公式中分子、分母对应也相等;中间可以推导得到。

五、回归分析1、残差:ˆˆi i i ey y =-(残差=真实值—预报值)。

分析:ˆi e 越小越好; 2、残差平方和:21ˆ()ni i i y y=-∑, 分析:①意义:越小越好; ②计算:222211221ˆˆˆˆ()()()()ni i n n i y yy y y y y y =-=-+-+⋅⋅⋅+-∑ 3、拟合度(相关指数):22121ˆ()1()ni i i ni i y yR y y ==-∑=--∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高;4、相关系数:()()nni i i i x x y y x y nx yr ---⋅∑∑==分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.22()()()()()n ad bc k a b c d a c b d -=++++②.犯错误上界P 对照表3、独立性检验步骤①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++;②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k ;③.下结论:0k k ≥:即犯错误概率不超过P 的前提下认为: ,有1-P 以上的把握认为: ; 0k k <:即犯错误概率超过P 的前提认为: ,没有1-P 以上的把握认为: ;【经典例题】题型1 与茎叶图的应用例1(2014全国)某市为考核甲、乙两部门的工作情况,学科网随机访问了50位市民。

高中数学概率统计(含详细答案)

高中数学概率统计(含详细答案)

1.某初级中学共有学生2000名,各年级男、女生人数如下表:已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1)求x 的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (3)已知y ≥245,z ≥245,求初三年级中女生比男生多的概率. 解:(1)0.192000x= ∴ 380x =(2)初三年级人数为y +z =2000-(373+377+380+370)=500, 现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:48500122000⨯= 名 (3)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y ,z ); 由(2)知 500y z += ,且 ,y z N ∈, 基本事件空间包含的基本事件有:(245,255)、(246,254)、(247,253)、……(255,245)共11个事件A 包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245) 共5个∴ 5()11P A =2.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查.6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体. (Ⅰ)求该总体的平均数;(Ⅱ)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 解:(Ⅰ)总体平均数为1(5678910)7.56+++++=. (Ⅱ)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”. 从总体中抽取2个个体全部可能的基本结果有:(56),,(57),,(58),,(59),,(510),,(67),,(68),,(69),,(610),,(78),,(79),,(710),,(89),,(810),,(910),.共15个基本结果.事件A 包括的基本结果有:(59),,(510),,(68),,(69),,(610),,(78),,(79),.共有7个基本结果. 所以所求的概率为7()15P A =.3.现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,,132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,,122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成, 因而61()183P M ==. (Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=.4.某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.(I )求全班人数及分数在[)90,80之间的频数;(II )估计该班的平均分数,并计算频率分布直方图中[)90,80间的矩形的高; (III )若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.解:(I )由茎叶图知,分数在[)60,50之间的频数为2,频率为,08.010008.0=⨯ 全班人数为.2508.02= …………3分所以分数在[)90,80之间的频数为42107225=---- …………5分(II )分数在[)60,50之间的总分为56+58=114;分数在[)70,60之间的总分为60×7+2+3+3+5+6+8+9=456;(III )将[)90,80之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6,在[80,100]之间的试卷中任取两份的基本事件为: (1,2),(1,3),(1,4),(1,5),(1,6) (2,3),(2,4),(2,5),(2,6), (3,4),(3,5),(3,6) (4,5),(4,6) (5,6)共15个, …………12分 其中,至少有一个在[90,100]之间的基本事件有9个, …………14分故至少有一份分数在[90,1000]之间的频率是6.0159= …………15分5.袋子中装有编号为b a ,的2个黑球和编号为e d c ,,的3个红球,从中任意摸出2个球。

高中数学统计知识点高中数学概率与统计

高中数学统计知识点高中数学概率与统计

高中数学统计知识点高中数学概率与统计高中数学概率与统计知识点
一、引言
统计学是数学的一个分支,它涉及到数据的收集、分析、解释、展示和组织。

在高中数学中,概率与统计是理解现实世界数据和随机事件的基础。

二、统计学的基本概念
数据类型
定性数据
定量数据
数据的收集
实验数据
调查数据
数据的描述
中心趋势的度量(均值、中位数、众数)
离散程度的度量(方差、标准差、极差)
三、概率论基础
随机事件
事件的分类
事件的概率
概率的计算
经典概率模型
几何概率模型
条件概率
贝叶斯定理
概率分布
离散型概率分布(如二项分布)
连续型概率分布(如正态分布)四、统计量的计算与应用
均值、中位数与众数
计算方法
应用场景
方差与标准差
计算公式
意义与作用
相关性与回归分析
相关系数
线性回归
非线性回归
五、统计图表的应用
条形图
折线图
饼图
散点图
箱线图
六、假设检验
概念介绍
类型I与类型II错误
t检验
卡方检验
七、置信区间与样本大小的确定置信区间的计算
样本大小的确定
八、实际应用案例分析
市场调查数据分析
医学试验结果的统计分析
教育测试分数的统计处理
九、统计软件的应用
Excel在统计中的应用
SPSS的使用基础
R语言入门
十、总结与展望
统计学不仅仅是数学的一个分支,它还是一种思维方式,帮助我们从数据中提取信息,做出更加科学的决策。

高中数学中的概率与统计公式整理

高中数学中的概率与统计公式整理

高中数学中的概率与统计公式整理概率与统计是高中数学中的重要内容,它们在我们日常生活中的应用非常广泛。

在学习概率与统计时,整理公式是非常重要的,它可以帮助我们更好地理解和应用这些知识。

本文将整理一些高中数学中常用的概率与统计公式,帮助大家更好地掌握这一知识点。

一、概率公式1. 事件的概率公式:对于一个事件A,它的概率可以用如下公式表示:P(A) = 事件A发生的次数 / 总的可能次数2. 互斥事件的概率公式:如果两个事件A和B是互斥事件(即两个事件不能同时发生),则它们的概率可以用如下公式表示:P(A或B) = P(A) + P(B)3. 相互独立事件的概率公式:如果两个事件A和B是相互独立事件(即一个事件的发生不受另一个事件的影响),则它们的概率可以用如下公式表示:P(A且B) = P(A) × P(B)4. 条件概率公式:如果事件B已经发生,事件A的概率可以用如下公式表示:P(A|B) = P(A且B) / P(B)5. 贝叶斯公式:如果事件A和事件B是两个相关事件,且P(B) ≠ 0,则事件B发生的条件下事件A发生的概率可以用如下公式表示:P(A|B) = P(B|A) × P(A) / P(B)二、统计公式1. 样本均值的计算公式:对于一组样本数据x1, x2, ..., xn,它们的均值可以用如下公式表示:x = (x1 + x2 + ... + xn) / n2. 总体均值的计算公式:对于一组总体数据x1, x2, ..., xn,它们的均值可以用如下公式表示:μ = (x1 + x2 + ... + xn) / N3. 样本方差的计算公式:对于一组样本数据x1, x2, ..., xn,它们的方差可以用如下公式表示:s^2 = [(x1 - x)^2 + (x2 - x)^2 + ... + (xn - x)^2] / (n - 1)4. 总体方差的计算公式:对于一组总体数据x1, x2, ..., xn,它们的方差可以用如下公式表示:σ^2 = [(x1 - μ)^2 + (x2 - μ)^2 + ... + (xn - μ)^2] / N5. 样本标准差的计算公式:对于一组样本数据x1, x2, ..., xn,它们的标准差可以用如下公式表示:s = √[s^2]6. 总体标准差的计算公式:对于一组总体数据x1, x2, ..., xn,它们的标准差可以用如下公式表示:σ = √[σ^2]7. 正态分布的概率计算公式:对于一个服从正态分布的随机变量X,它的概率密度函数可以用如下公式表示:f(x) = (1 / (σ√(2π))) × e^(-((x - μ)^2) / (2σ^2))以上是高中数学中常用的概率与统计公式的整理。

高中数学概率与统计知识点

高中数学概率与统计知识点

高中数学概率与统计知识点1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。

2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。

3、互斥事件不可能同时发生的两个事件叫互斥事件。

如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B 分别发生的概率和,即P(A+B)=P(A)+P(B)。

4、对立事件对立事件是指两个事件必有一个发生的互斥事件。

例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件。

而抽到“红色牌”与抽到“黑色牌”互为对立事件,因为其中一个必发生。

对立事件的性质:1)对立事件的概率和等于1:P(A)+P(Ä)=P(A+A)=1。

2)互为对立的两个事件一定互斥,但互斥不一定是对立事件。

5、相互独立事件事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。

两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B)。

相互独立事件的性质:1)如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立。

2)必然事件与任何事件都是相互独立的。

3)独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件。

6、独立重复试验若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。

如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k 次的概率:P…(k)=CP*(1-P)"-*7、两个事件之间的关系对任何两个事件都有P(A+B)=P(A)+P(B)-P(A·B)。

(完整版)高中数学概率统计知识点总结

(完整版)高中数学概率统计知识点总结

高中数学概率统计知识点总结一、抽样方法1.简单随机抽样 2.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法.3.系统抽样:K (抽样距离)=N (总体规模)/n (样本规模)4.分层抽样:二、样本估计总体的方式1、用样本的频率分布估计总体分布(1)频率分布直方图的画法;(2)频率的算法;(3)频率分布折线图;(4)总体密度曲线;(5)茎叶图。

化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。

2、用样本的数字特征估计总体的数字特征(1)众数、中位数、平均数的算法;(2)标准差、方差公式.3、样本均值:nx x x x n +++= 21 4、.样本标准差:n x x x x x x s s n 222212)()()(-++-+-==三、两个变量的线性相关1、正相关2、负相关正相关:自变量增加,因变量也同时增加(即单调递增) 负相关:自变量增长,因变量减少(即单调递减)四、概率的基本概念(1)必然事件(2)不可能事件(3)确定事件(4)随机事件(5)频数与频率(6)频率与概率的区别与联系必然事件和不可能事件统称为确定事件1他们都是统计系统各元件发生的可能性大小;2、频率一般是大概统计数据经验值,概率是系统固有的准确值; 3频率是近似值,概率是准确值4、频率值一般容易得到,所以一般用来代替概率进行定量分析,首先要知道系统各元件发生故障的频率或概率.事件的频率与概率是度量事件出现可能性大小的两个统计特征数.频率是个试验值,或使用时的统计值,具有随机性,可能取多个数值。

因此,只能近似地反映事件出现可能性的大小概率是个理论值,是由事件的本质所决定的,只能取唯一值,它能精确地反映事件出现可能性的大小虽然概率能精确反映事件出现可能性的大小,但它通过大量试验才能得到,这在实际工作中往往是难以做到的.所以,从应用角度来看,频率比概率更有用,它可以从所积累的比较多的统计资料中得到需要指出的是用频率代替概率,并不否认概率能更精确、更全面地反映事件出现可能性的大小,只是由于在目前的条件下,取得概率比取得频率更为困难。

高中数学公式大全概率计算与统计分析的公式推导

高中数学公式大全概率计算与统计分析的公式推导

高中数学公式大全概率计算与统计分析的公式推导高中数学公式大全——概率计算与统计分析的公式推导概率计算是数学中一个重要的分支,而统计分析则是应用数学在实际问题中进行数据处理和推断的过程。

本文将介绍一些在高中数学中常用的概率计算与统计分析的公式,并给出其推导过程。

一、概率计算公式1.1 事件的概率计算公式在概率论中,我们用P(A)表示事件A发生的概率,事件A的概率可以通过以下公式计算:P(A) = 事件A的发生数 / 样本空间的元素数1.2 条件概率公式条件概率是指在已知事件B发生的条件下,事件A发生的概率。

条件概率可以通过以下公式计算:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。

1.3 独立事件的乘法公式当两个事件A和B相互独立时,事件A与事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。

数学上可以表示为:P(A∩B) = P(A) * P(B)二、统计分析公式2.1 样本均值的计算公式在统计学中,样本均值是用来度量一组数据的集中程度的重要指标。

对于n个样本数据X₁, X₂, ... , Xn,样本均值可以通过以下公式计算:x = (X₁ + X₂ + ... + Xn) / n其中,x表示样本均值。

2.2 样本方差的计算公式样本方差是用来度量一组数据的离散程度的指标。

对于n个样本数据X₁, X₂, ... , Xn,样本方差可以通过以下公式计算:S² = [(X₁ - x)² + (X₂ - x)² + ... + (Xn - x)²] / (n-1)其中,S²表示样本方差,x表示样本均值。

2.3 假设检验中的t检验公式t检验是一种常用的假设检验方法,用于判断两组或多组数据之间差异的显著性。

对于两个独立样本的t检验,可以使用以下公式计算t 值:t = (x₁ - x₂) / sqrt(S₁²/n₁ + S₂²/n₂)其中,x₁和x₂分别表示两个样本的均值,S₁²和S₂²分别表示两个样本的方差,n₁和n₂分别表示两个样本的样本容量。

高中数学概率与统计知识点总结

高中数学概率与统计知识点总结

概率与统计一、概率及随机变量的分布列、期望与方差(一)概率及其计算1.几个互斥事件和事件概率的加法公式①如果事件A 与事件B 互斥,则()P A B =()()P A P B +.推广:如果事件1A ,2A ,…,n A 两两互斥(彼此互斥),那么事件12n A A A +++发生的概率,等于这n 个事件分别发生的概率的和,即()12n P A A A +++=()()()12n P A P A P A ++.②若事件B 与事件A 互为对立事件,则()P A =()1P B -. 2.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.(二)随机变量的分布列、期望与方差1. 常用的离散型随机变量的分布列(1)二项分布如果随机变量X 的可能取值为0,1,2,…,n ,且X 取值的概率()P X k ==C k k n kn p q-(其中0,1,2,,,1k n q p ==-),其随机变量分布列为X 0 1 …k…nP0C nnp q111C n np q-…C k k n knp q-…0C n n n p q则称X 服从二项分布,记为(),X B n p ~.(2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为C C C k n kM N Mn N--()0,10,1,2,,2,,k m =,其中{}min ,m M n =,且n N …,M N …,n ,M ,*N ÎN .此时称随机变量X 的分布列为超几何分布列,称随机变量X 服从超几何分布.2.条件概率及相互独立事件同时发生的概率 I.条件概率条件概率一般地,设A ,B 为两个事件,且()0P A >,称()()()P ABP B A P A=为事件A 发生的条件下,事件B 发生的条件概率.在古典概型中,若用()n A 表示事件A 中基本事件的个数,则()()()()()n AB P AB P B A n A P A ==. II .相互独立事件相互独立事件(1)若,A B 相互独立.则()P AB =()()P A P B .(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. III .独立重复试验与二项分布独立重复试验与二项分布在n 次独立重复试验中,事件A 发生k 次的概率为(每次试验中事件A 发生的概率为p)()C 1n kkknp p --,事件A 发生的次数是一个随机变量X ,其分布列为()01)2()C 1(n kk knP X k k n p p -===-¼,,,,,此时称随机变量X 服从二项分布. 学科*网3.离散型随机变量的数学期望(均值)与方差 (1)若离散型随机变量X 的概率分布列为的概率分布列为X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n则称EX =1122i i n n x p x p x p x p ++++¼+¼为随机变量X 的均值或数学期望. (2)若Y aX b =+,则EY =aEX b +,)(D aX b +=2a DX (3)若()X B n p ~,,则EX np =.()(1)D X np p -=. 4.正态分布(1)正态曲线的性质:正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,它关于直线x m =对称;③曲线在x m=处达到峰值12πs;④曲线与x 轴之间的面积为1;⑤当s 一定时,曲线的位置由m 确定,曲线随着m 的变化而沿x 轴平移,⑥当m 一定时,曲线的形状由s 确定,s 越小,曲线越“瘦高”,表示总体的分布越集中;s 越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)服从正态分布的变量在三个特殊区间内取值的概率服从正态分布的变量在三个特殊区间内取值的概率 ①0().6826P X m s m s -<+=…;②2209().544P X m s m s -<+=…; ③3309().974P X m s m s -<+=…. 二、统计与统计案例 (一)抽样方法 1.简单随机抽样设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本()n N …,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,最常用的简单随机抽样的方法:抽签法和随机数表法.最常用的简单随机抽样的方法:抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本.的样本.(1)先将总体的N 个个体编号.(2)确定分段间隔k ,对编号进行分段,当Nn是整数时,取N k n =.如果遇到Nn不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除得总体中剩余的个体数能被样本容量整除(3)在第1段用简单随机抽样确定第一个个体编号()l l k ….(4)按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号()l k +,再加k 得到第3个个体编号()2l k +,依次进行下去,直到获取整个样本.直到获取整个样本.3.分层抽样在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.分层抽样的应用范围:当总体是由差异明显的几个部分组成的,往往选用分层抽样.层抽样.注:注:不论哪种抽样方法不论哪种抽样方法,总体中的每一个个体入样的概率是相同的. (二)统计图表的含义 1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距和组数.(3)将数据分组.(4)列频率分布表.列频率分布表. (5)画频率分布直方图.画频率分布直方图. (三)样本的数字特征1.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.出现次数最多的数据叫做这组数据的众数.2.中位数:将一组数据按大小依次排列,把处在中间位置的一个数据(或中间两个数据的平均数)叫做这组数据的中位数叫做这组数据的中位数3.平均数:样本数据的算术平均数,即x =()121n x x x n+++.4.方差:()()()2222121n s x x x x x x n éù=-+-++-êúëû(n x 是样本数据,n 是样本容量,x 是样本平均数).5.标准差:()()()222121ns x x x x x x n éù=-+-++-êúëû.(四)线性回归直线方程 1.两个变量的线性相关(1)如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫回归直线.(2)从散点图上看,如果点分布在从左下角到右上角的区域内,那么两个变量的这种相关关系称为正相关;如果点分布在从左上角到右下角的区域内,那么两个变量的这种相关关系称为负相关. (3)相关系数相关系数r =ååå===----ni nj jini i i y y x x y y x x 11221)()())((,当0r >时,表示两个变量正相关;当0r <时,表示两个变量负相关.r 的绝对值越接近1,表示两个变量的线性相关性越强;r 的绝对值越接近0,表示两个变量的线性相关性越弱.通常当r 的绝对值大于0.75时,便认为两个变量具有很强的线性相关关系.当1r =时,两个变量在回归直线上两个变量在回归直线上 2.回归直线方程 (1)通过求21()ni i i Qy x a b ==--å的最小值而得出回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.该式取最小值时的a ,b 的值即分别为aˆ,b ˆ. (2)两个具有线性相关关系的变量的一组数据:11(,)x y ,22(,)x y ,…,()n n x y ,,其回归方程为a x b y ˆˆˆ+=,则1122211()()ˆ()ˆˆnn i i i i i i n ni ii i x x y y x y nx yb x x x nxa y bx ====ì---×ï==ïí--ïï=-ïîåååå.注:样本点的中心(),x y 一定在回归直线上. (3)相关系数22121ˆ()1()n i ii ni i y yR y y ==-å=--å.2R 越大,说明残差平方和越小,即模型的拟合效果越好;2R 越小,残差平方和越大,即模型的拟合效果越差.在线性回归模型中,2R表示解释变量对于预报变量变化的贡献率,2R 越接近于1,表示回归的效果越好. (六)独立性检验(1)变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.像这样的变量称为分类变量.(2)像下表所示列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y ,它们的可能取值分别为12(,)x x 和12(,)y y ,其样本频数列联表(称为22´列联表)为表)为y 1 y 2 总计总计x 1 a b a b + x 2 cdc d +总计a c +b d +a b c d +++构造一个随机变量()()()()()22n ad bc K a b c d a c b d -=++++ ,其中n a b c d =+++为样本容量.确定临界值0k ,如果2K 的观测值0k k …,就认为“两个分类变量之间有关系”;否则就认为“两个分类变量之间没有关系”.。

高中数学必修3概率统计知识点归纳

高中数学必修3概率统计知识点归纳

高中数学必修3概率统计知识点归纳概率统计是高中数学必修3中的一门重要课程,它研究的是随机事件的发生规律和变化趋势。

概率统计知识点在高中数学习中占据着重要的位置,对于培养学生的逻辑思维、数学建模和解决实际问题的能力具有重要意义。

下面将对高中数学必修3概率统计知识点进行全面归纳。

1.基础概念概率统计的基础概念包括样本空间、随机事件、事件的概率等。

样本空间是指所有可能的结果组成的集合,用S表示;随机事件是样本空间的子集,用A、B、C等表示;事件的概率是指一个随机事件发生的可能性大小,用P(A)表示。

2.排列组合排列组合是概率统计中常用的工具,主要用于计算事件的可能性。

在排列中,元素的顺序是重要的,而在组合中,元素的顺序是不重要的。

排列可以表示为n!,组合可以表示为C(n,m)。

3.基本概率公式基本概率公式是指计算事件的概率的公式。

对于一个随机事件A,它的概率可以用公式P(A) = n(A) / n(S)来表示,其中n(A)表示事件A 的样本点数量,n(S)表示样本空间的样本点数量。

4.互斥事件与对立事件互斥事件是指两个事件不可能同时发生的事件,它们的概率相加等于两个事件发生的总概率。

对立事件是指两个事件互为对方的补集,它们的概率之和等于1。

5.条件概率条件概率是指在已知某个条件下,事件发生的概率。

条件概率可以用公式P(A|B) = P(A∩B) / P(B)来表示,其中P(A|B)表示在事件B发生的条件下,事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。

6.全概率公式和贝叶斯公式全概率公式和贝叶斯公式是处理复杂事件概率的重要方法。

全概率公式可以用于计算一个事件在不同条件下发生的概率,贝叶斯公式可以用于根据已知条件计算相应的概率。

7.随机变量与概率分布随机变量是指与随机事件相对应的数值,概率分布是指随机变量各取值的概率情况。

常见的概率分布有离散型概率分布和连续型概率分布。

高中数学概率与统计

高中数学概率与统计

高中数学概率与统计在高中数学的学习中,概率与统计是一个非常重要的内容。

概率与统计涉及到我们日常生活中各种概率事件的计算与分析,以及统计数据的收集与解读。

本文将介绍概率与统计的基本概念、常用方法和一些实际应用。

一、概率的基本概念概率是用来度量一个事件发生的可能性的数值。

在概率计算中,我们常使用事件的概率来描述事件发生与不发生的可能性大小。

概率的计算可以通过频率方法或几何方法进行。

1.1 频率方法频率方法是通过实验来估计一个事件发生的概率。

我们可以进行大量的实验,记录事件发生的次数,然后用事件发生次数除以总实验次数,得到事件发生的频率。

经过大量实验,频率会逐渐接近真实概率值。

1.2 几何方法几何方法是通过对事件发生的空间进行几何概念的分析来计算概率。

例如,对于一个均匀的正方形,事件发生的区域的面积与正方形的面积之比就是事件发生的概率。

二、统计的基本概念统计是用来对数据进行收集、整理、分析和解读的方法。

通过统计,我们可以对一组数据的特征和规律进行描述和推断。

2.1 数据的收集数据的收集是统计的第一步。

我们可以通过调查、观察、实验等方式来收集数据。

收集到的数据可以是数值型数据或类别型数据。

2.2 数据的整理与分析收集到数据后,需要对数据进行整理和分析。

可以使用表格、图表、统计量等方式来呈现和分析数据。

常用的数据整理方法包括频数表、频率表、直方图、饼图等。

2.3 数据的解读与推断在数据分析的过程中,我们可以通过对数据的解读和推断来得出结论。

可以计算数据的平均值、中位数、众数、方差、标准差等统计量,从而对数据的特征和规律进行解读和推断。

三、常用的概率与统计方法在概率与统计的学习中,我们会接触到一些常用的方法。

3.1 排列与组合排列与组合是概率计算中常用的方法。

排列是指从若干个元素中选取若干个进行排序,组合是指从若干个元素中选取若干个不进行排序。

通过排列和组合的计算,可以得到事件发生的可能性的数量。

3.2 离散型随机变量离散型随机变量是指在一定范围内,可能取值有限且可数的随机变量。

高中数学概率统计

高中数学概率统计

高中数学概率统计
概率统计是数学中的一个重要分支,它研究随机现象和事件发
生的可能性。

在高中阶段,学生需要通过研究概率统计来理解和应
用概率的基本概念和计算方法。

概率是指某个事件发生的可能性大小。

在数学中,概率可以通
过计算来得出。

常见的计算方法包括频率概率和几何概率。

学生需
要学会根据给定的条件计算概率,包括单个事件和多个事件的概率
计算。

在概率统计中,还有一些重要的概念需要学生掌握。

例如,样
本空间是指随机事件所有可能结果的集合;事件是样本空间的子集,表示满足特定条件的结果集合;试验是指对随机现象进行观察和记
录的过程。

高中数学概率统计还涉及到一些常见的概率分布,如二项分布、均匀分布和正态分布。

学生需要理解这些分布的特点和应用场景,
以及如何计算和图示化概率分布。

通过研究高中数学概率统计,学生可以提高他们的数据分析和问题解决能力。

他们能够在实际生活中应用概率统计的知识,例如在投资、保险和赌博等方面做出理性的决策。

总之,高中数学概率统计是一门重要的数学课程,它帮助学生理解和应用概率的基本概念和计算方法,提高他们的数学思维和问题解决能力。

【高中数学】 概率与统计

【高中数学】 概率与统计

回扣9 概率与统计1.牢记概念与公式 (1)概率的计算公式 ①古典概型的概率计算公式P (A )=事件A 包含的基本事件数m基本事件总数n;②互斥事件的概率计算公式P (A ∪B )=P (A )+P (B );③对立事件的概率计算公式P (A )=1-P (A );④几何概型的概率计算公式P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.(2)抽样方法简单随机抽样、分层抽样、系统抽样.①从容量为N 的总体中抽取容量为n 的样本,则每个个体被抽到的概率都为nN;②分层抽样实际上就是按比例抽样,即按各层个体数占总体的比确定各层应抽取的样本容量.(3)统计中四个数据特征①众数:在样本数据中,出现次数最多的那个数据.②中位数:在样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数. ③平均数:样本数据的算术平均数,即x =1n(x 1+x 2+…x n ).④方差与标准差 方差:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].标准差:s =1n[x 1-x 2+x 2-x 2+…+x n -x 2].(4)八组公式①离散型随机变量的分布列的两个性质Ⅰ.p i ≥0(i =1,2,…,n );Ⅱ.p 1+p 2+…+p n =1. ②均值公式E (X )=x 1p 1+x 2p 2+…+x n p n .③均值的性质Ⅰ.E (aX +b )=aE (X )+b ; Ⅱ.若X ~B (n ,p ),则E (X )=np ; Ⅲ.若X 服从两点分布,则E (X )=p . ④方差公式D (X )=[x 1-E (X )]2·p 1+[x 2-E (X )]2·p 2+…+[x n -E (X )]2·p n ,标准差D X .⑤方差的性质Ⅰ.D (aX +b )=a 2D (X );Ⅱ.若X ~B (n ,p ),则D (X )=np (1-p ); Ⅲ.若X 服从两点分布,则D (X )=p (1-p ). ⑥独立事件同时发生的概率计算公式P (AB )=P (A )P (B ).⑦独立重复试验的概率计算公式P n (k )=C k n p k (1-p )n -k . ⑧条件概率公式P (B |A )=P AB P A.2.活用定理与结论 (1)直方图的三个结论①小长方形的面积=组距×频率组距=频率.②各小长方形的面积之和等于1.③小长方形的高=频率组距,所有小长方形高的和为1组距.(2)线性回归方程y ^=b ^x +a ^一定过样本点的中心(x ,y ).(3)利用随机变量K 2=n ad -bc2a +bc +da +cb +d来判断“两个分类变量有关系”的方法称为独立性检验.如果K 2的观测值k 越大,说明“两个分类变量有关系”的可能性越大.(4)如果随机变量X 服从正态分布,则记为X ~N (μ,σ2).满足正态分布的三个基本概率的值是:①P (μ-σ<X ≤μ+σ)=0.682 6;②P (μ-2σ<X ≤μ+2σ2)=0.954 4;③P (μ-3σ<X ≤μ+3σ)=0.997 4.1.应用互斥事件的概率加法公式,一定要注意首先确定各事件是否彼此互斥,然后求出各事件分别发生的概率,再求和.2.正确区别互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.3.混淆频率分布条形图和频率分布直方图,误把频率分布直方图纵轴的几何意义当成频率,导致样本数据的频率求错.4.要注意概率P (A |B )与P (AB )的区别(1)在P (A |B )中,事件A ,B 发生有时间上的差异,B 先A 后;在P (AB )中,事件A ,B 同时发生.(2)样本空间不同,在P (A |B )中,事件B 成为样本空间;在P (AB )中,样本空间仍为Ω,因而有P (A |B )≥P (AB ).5.易忘判定随机变量是否服从二项分布,盲目使用二项分布的均值和方差公式计算致误.1.某学校有男学生400名,女学生600名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取男学生40名,女学生60名进行调查,则这种抽样方法是( )A.抽签法B.随机数法C.系统抽样法D.分层抽样法 答案 D解析 总体由男生和女生组成,比例为400∶600=2∶3,所抽取的比例也是2∶3,故拟从全体学生中抽取100名学生进行调查,采用的抽样方法是分层抽样法,故选D.2.投掷两颗骰子,得到其向上的点数分别为m 和n ,则复数(m +n i)(n -m i)为实数的概率是( )A.13B.14C.16D.112 答案 C解析 投掷两颗骰子,得到其向上的点数分别为m 和n ,记作(m ,n ),共有6×6=36(种)结果.(m +n i)(n -m i)=2mn +(n 2-m 2)i 为实数,应满足m =n ,有6种情况,所以所求概率为636=16,故选C.3.一个袋子中有5个大小相同的球,其中3个白球2个黑球,现从袋中任意取出一个球,取出后不放回,然后再从袋中任意取出一个球,则第一次为白球、第二次为黑球的概率为( )A.35B.310C.12D.625 答案 B解析 设3个白球分别为a 1,a 2,a 3,2个黑球分别为b 1,b 2,则先后从中取出2个球的所有可能结果为(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2),(a 2,a 1),(a 3,a 1),(b 1,a 1),(b 2,a 1),(a 3,a 2),(b 1,a 2),(b 2,a 2),(b 1,a 3),(b 2,a 3),(b 2,b 1),共20种.其中满足第一次为白球、第二次为黑球的有(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),共6种,故所求概率为620=310.4.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得线性回归方程y ^=b ^x +a ^,其中b ^=0.76,a ^=y -b ^x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A.11.4万元B.11.8万元C.12.0万元D.12.2万元 答案 B解析 由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=8-0.76×10=0.4, ∴当x =15时,y ^=0.76×15+0.4=11.8(万元).5.设X ~N (1,σ2),其正态分布密度曲线如图所示,且P (X ≥3)=0.022 8,那么向正方形OABC 中随机投掷10 000个点,则落入阴影部分的点的个数的估计值为( )附:(随机变量ξ服从正态分布N (1,σ2),则P (μ-σ<ξ≤μ+σ)=68.26%,P (μ-2σ<ξ≤μ+2σ)=95.44%)( )A.6 038B.6 587C.7 028D.7 539 答案 B解析 由题意知,P (0<X ≤1)=1-12×0.682 6=0.658 7,则落入阴影部分的点的个数的估计值为10 000×0.658 7=6 587.故选B.6.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( ) A.9 B.10 C.18 D.20 答案 C解析 由于lg a -lg b =lg a b (a >0,b >0),从1,3,5,7,9中任取两个作为ab有A 25=20种,又13与39相同,31与93相同,∴lg a -lg b 的不同值的个数有A 25-2=20-2=18,选C.7.甲、乙两同学用茎叶图记录高三前5次数学测试的成绩,如图所示,他们在分析对比成绩变化时,发现乙同学成绩的一个数字看不清楚了,若已知乙的平均成绩低于甲的平均成绩,则看不清楚的数字为( )A.0B.3C.6D.9 答案 A解析 设看不清的数字为x ,甲的平均成绩为99+100+101+102+1035=101,所以93+94+97+110+110+x 5<101,x <1,所以x =0.故选A.8.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =-13x +2上,则这组样本数据的样本的相关系数为( ) A.-1 B.0 C.-13 D.1答案 A解析 数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,样本点(x i ,y i )(i =1,2,…,n )都在直线y =-13x +2上,说明这组数据点完全负相关,其相关系数为-1,故选A.9.在区间[1,5]和[2,4]内分别取一个数,记为a ,b ,则方程x 2a2+y 2b 2=1表示焦点在x 轴上且离心率小于32的椭圆的概率为________. 答案 1532解析 当方程x 2a2+y 2b 2=1表示焦点在x 轴上且离心率小于32的椭圆时,有⎩⎪⎨⎪⎧a 2>b 2,e =c a=a 2-b 2a <32,即⎩⎪⎨⎪⎧ a 2>b 2,a 2<4b 2, 化简得⎩⎪⎨⎪⎧a >b ,a <2b .又a ∈[1,5],b ∈[2,4],画出满足不等式的平面区域,如图阴影部分所示 ,求得阴影部分的面积为154,故P =S 阴影2×4=1532.10.将某班参加社会实践编号为1,2,3,…,48的48名学生,采用系统抽样的方法抽取一个容量为6的样本,已知5号,21号,29号,37号,45号学生在样本中,则样本中还有一名学生的编号是________. 答案 13解析 系统抽样法取出的样本编号成等差数列,因此还有一个编号为5+8=21-8=13. 11.某班有学生60人,现将所有学生按1,2,3,…,60随机编号,若采用系统抽样的方法抽取一个容量为5的样本(等距抽样),已知编号为4,a ,28,b ,52号学生在样本中,则a +b =________. 答案 56解析 ∵样本容量为5,∴样本间隔为60÷5=12, ∵编号为4,a ,28,b ,52号学生在样本中, ∴a =16,b =40, ∴a +b =56.12.给出如下四对事件:①某人射击1次,“射中7环”与“射中8环”;②甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”;③从装有2个红球和2个黑球的口袋内任取2个球,“至少一个黑球”与“都是红球”;④从装有2个红球和2个黑球的口袋内任取2个球,“没有黑球”与“恰有一个红球”.其中属于互斥事件的是________.(把你认为正确的事件的序号都填上).答案①③④解析①某人射击1次,“射中7环”与“射中8环”两个事件不会同时发生,故为互斥事件;②甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”,前者包含后者,故②不是互斥事件;③“至少有一个黑球”与“都是红球”不能同时发生,但一定会有一个发生,所以这两个事件是对立事件,故是互斥事件;④“没有黑球”与“恰有一个红球”,不可能同时发生,故他们属于互斥事件.13.国内某知名大学有男生14 000人,女生10 000人.该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间,如下表:(平均每天运动的时间单位:小时,该校学生平均每天运动的时间范围是[0,3])男生平均每天运动的时间分布情况:女生平均每天运动的时间分布情况:(1)请根据样本估算该校男生平均每天运动的时间(结果精确到0.1);(2)若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”.①根据样本估算该校“运动达人”的数量;②请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“是否为‘运动达人’与性别有关?”运动达人非运动达人总计 男生 女生 总计参考公式:K 2=n ad -bc2a +ba +da +cb +d,其中n =a +b +c +d参考数据:P (K 2>k 0) 0.15 0.10 0.05 0.025 0.010 0.005 k 02.0722.7063.8415.0246.6357.879解 (1)由分层抽样得:男生抽取的人数为120×14 00014 000+10 000=70,女生抽取的人数为120-70=50,故x =5,y =2,则该校男生平均每天运动的时间为 0.25×2+0.75×12+1.25×23+1.75×18+2.25×10+2.75×570≈1.5.故该校男生平均每天运动的时间约为1.5小时.(2)①样本中“运动达人”所占比例是20120=16,故估计该校“运动达人”有16×(14 000+10000)=4 000(人). ②由表格可知:运动达人 非运动达人总计 男生 15 55 70 女生 5 45 50 总计20100120故K 2的观测值k =120×15×45-5×55220×100×50×70=9635≈2.743<3.841, 故在犯错误的概率不超过0.05的前提下不能认为“是否为‘运动达人’与性别有关”.14.某公司通过初试和复试两轮考试确定最终合格人选,当第一轮初试合格后方可进入第二轮复试,两次考核过程相互独立.根据甲、乙、丙三人现有的水平,第一轮考核甲、乙、丙三人合格的概率分别为0.4、0.6、0.5.第二轮考核,甲、乙、丙三人合格的概率分别为0.5、0.5、0.4.(1)求第一轮考核后甲、乙两人中只有乙合格的概率;(2)设甲、乙、丙三人经过前后两轮考核后合格入选的人数为X ,求X 的分布列和均值. 解 (1)设甲、乙经第一次考核后合格为事件A 1、B 1,设事件E 表示第一轮考核后甲不合格、乙合格,则P (E )=P (A 1·B 1)=0.6×0.6=0.36.即第一轮考核后甲、乙两人中只有乙合格的概率为0.36.(2)分别设甲、乙、丙三人经过前后两次考核后合格入选为事件A 、B 、C ,则P (A )=0.4×0.5=0.2,P (B )=0.6×0.5=0.3,P (C )=0.4×0.5=0.2,经过前后两轮考核后合格入选的人数为X ,则X 可能取0,1,2,3.P (X =0)=0.8×0.7×0.8=0.448,P (X =1)=0.2×0.7×0.8+0.8×0.3×0.8+0.8×0.7×0.2=0.416,P (X =3)=0.2×0.3×0.2=0.012,P (X =2)=1-0.448-0.416-0.012=0.124.X 的分布列为 X0 1 2 3 P0.448 0.416 0.124 0.012均值为E(X)=0×0.448+1×0.416+2×0.124+3×0.012=0.7.。

高一必修二数学统计与概率

高一必修二数学统计与概率

高一必修二数学统计与概率摘要:一、统计与概率的基本概念1.统计学的定义与作用2.概率论的定义与作用3.统计与概率的关系二、数据的收集与整理1.数据的来源与分类2.数据的收集方法3.数据的整理与展示三、描述性统计分析1.频数与频率分布2.图表法3.统计量度四、概率的基本概念与运算1.随机事件与样本空间2.概率的公理化定义3.概率的运算五、条件概率与独立性1.条件概率2.独立性3.贝叶斯公式六、随机变量及其分布1.随机变量的定义与性质2.离散型随机变量3.连续型随机变量七、数学期望与方差1.数学期望2.方差与标准差3.协方差与相关系数正文:在我国高中数学课程中,必修二数学统计与概率是高一阶段的重要内容。

本章主要介绍统计与概率的基本概念、数据的收集与整理、描述性统计分析、概率的基本概念与运算、条件概率与独立性、随机变量及其分布以及数学期望与方差等方面的知识。

首先,统计学是一门研究如何收集、整理、分析、解释以及展示数据的方法论,它具有广泛的应用,如在科学研究、企业管理、政府决策等方面都发挥着重要作用。

概率论则是一门研究随机现象的理论,通过研究随机现象发生的可能性,可以对未来事件进行预测。

统计与概率之间存在密切的联系,统计学中的许多方法都基于概率论的理论。

数据的收集与整理是统计分析的基础。

数据来源于各种渠道,包括实验数据、观测数据和调查数据等。

数据的整理主要包括数据的分类、排序、汇总等操作,而数据的展示则有图表法、描述性统计量度等方法。

描述性统计分析是统计学的一个重要分支,主要通过频数与频率分布、图表法以及统计量度等方法来概括和描述数据的基本特征。

在概率论部分,我们学习随机事件与样本空间、概率的公理化定义以及概率的运算等基本概念。

条件概率与独立性是概率论中的重要内容,通过学习这部分知识,我们可以更好地处理复杂事件之间的概率关系。

此外,贝叶斯公式是一种在概率论中广泛应用的计算工具,它可以帮助我们根据已知信息来更新对未知事件的概率估计。

高中概率统计考点归纳

高中概率统计考点归纳

高中概率统计考点归纳一、概率的基本概念与性质概率的定义:概率是一个衡量事件发生可能性的数值,通常用P(A)表示事件A发生的概率。

概率的取值范围为0到1之间,其中P(A) = 0表示事件A不可能发生,P(A) = 1表示事件A必然发生。

举例:抛掷一枚硬币,正面朝上的概率为0.5,反面朝上的概率也为0.5。

概率的性质:非负性:对于任意事件A,有P(A) ≥0;归一性:对于必然事件S,有P(S) = 1;可加性:对于互斥事件A和B(即A和B不能同时发生),有P(A ∪B) = P(A) + P(B)。

举例:一个袋子中有3个红球和2个白球,随机抽取一个球为红球的概率是3/5,为白球的概率是2/5。

由于红球和白球是互斥事件,所以抽取到红球或白球的概率是3/5 + 2/5 = 1。

二、古典概型与几何概型古典概型:在有限个等可能的基本事件中,通过计算事件包含的基本事件个数与总基本事件个数的比值来求概率。

举例:抛掷两颗骰子,求点数之和为7的概率。

总的基本事件个数为6×6=36,点数之和为7的基本事件有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共6种。

因此,点数之和为7的概率为6/36=1/6。

几何概型:在某一度量(长度、面积、体积等)下,通过计算事件占有的度量与样本空间占有的度量的比值来求概率。

举例:在长度为1的线段上随机取一点,求该点位于线段前1/3部分的概率。

样本空间为整个线段,其长度为1;事件空间为线段前1/3部分,其长度为1/3。

因此,该点位于线段前1/3部分的概率为1/3。

三、条件概率与全概率公式条件概率:在已知事件B发生的条件下,事件A发生的概率,记为P(A|B)。

计算公式为P(A|B) = P(AB) / P(B),其中P(AB)表示事件A和B同时发生的概率。

举例:一个班级中有40名学生,其中25名男生和15名女生。

已知某学生是女生,求该学生数学成绩优秀的概率。

高中数学概率统计

高中数学概率统计

高中数学概率统计高中数学的概率统计是数学中的一个重要分支,它主要研究事件发生的可能性以及事件之间的关联性。

以下是一些常见的概率统计概念和方法:1. 概率:概率是指某个事件发生的可能性。

它的取值范围在0到1之间,其中0表示不可能发生,1表示一定会发生。

2. 随机事件:随机事件是在一次试验中可能发生的结果。

例如,掷硬币的结果(正面或反面)或掷骰子的点数(1到6)都是随机事件。

3. 样本空间:样本空间是指一个试验中所有可能结果的集合。

例如,掷硬币的样本空间是{正面,反面},掷骰子的样本空间是{1, 2, 3, 4, 5, 6}。

4. 事件:事件是样本空间的一个子集,表示我们感兴趣的结果。

例如,掷硬币出现正面可以表示为事件A,掷骰子点数大于3可以表示为事件B。

5. 概率计算:概率可以通过计算事件发生的次数与试验总次数的比值来确定。

当试验次数足够多时,这个比值将趋近于事件的概率。

6. 条件概率:条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

它可以用P(A|B)表示,表示在事件B发生的情况下,事件A发生的概率。

7. 独立事件:独立事件是指两个事件之间没有相互影响,一个事件的发生与另一个事件的发生无关。

如果事件A和事件B是独立事件,那么P(A|B) = P(A)。

8. 期望值:期望值是对随机变量取值的平均预期。

它是根据每个取值乘以其概率,再将所有乘积相加而得到的。

9. 正态分布:正态分布是一种常见的连续型概率分布,具有钟形曲线特征。

它在实际应用中广泛用于描述各种现象的分布情况。

以上是概率统计的一些基本概念和方法,通过学习这些内容,可以更好地理解和分析概率和统计问题,并在实际问题中应用这些知识进行分析和决策。

高中数学中的概率与统计

高中数学中的概率与统计

高中数学中的概率与统计概率和统计是高中数学中非常重要的两个概念。

概率是用来描述事件发生的可能性,而统计则是通过对数据的收集、整理和分析来得出结论。

本文将从概率和统计的基本概念、应用以及解决实际问题等方面进行论述。

一、概率的基本概念概率是指事件发生的可能性。

在高中数学中,我们常用“P(A)”来表示事件A发生的概率。

概率的取值范围在0到1之间,其中0代表不可能事件,1代表必然事件。

1.1 事件的分类在概率中,事件可以分为互斥事件和非互斥事件。

互斥事件是指两个事件不能同时发生,而非互斥事件则可以同时发生。

1.2 概率的计算对于互斥事件,可以通过求和法则来计算概率。

若事件A和事件B 互斥,则P(A或B) = P(A) + P(B)。

而对于非互斥事件,可以通过减法法则来计算概率。

若事件A和事件B非互斥,则P(A或B) = P(A) + P(B) - P(A和B)。

二、统计的基本概念统计是指通过对数据的收集、整理和分析来得出结论的过程。

在高中数学中,我们主要学习的是统计中的平均数、频率分布和抽样等概念。

2.1 平均数平均数是统计中最常见的概念之一。

我们可以通过求和然后除以总个数来计算平均数。

例如,对于一组数据x1, x2, ..., xn,其平均数可以表示为:(x1 + x2 + ... + xn) / n。

2.2 频率分布频率分布是将数据按照不同数值进行分类,并统计各个类别的个数。

通过绘制频率分布表或直方图,我们可以更直观地了解数据的分布状况。

2.3 抽样抽样是统计中常用的一种方法,它通过从总体中选择一部分样本进行调查和分析。

合理的抽样方法可以保证所得到的结论具有代表性。

三、概率与统计的应用概率和统计在现实生活中有着广泛的应用,以下通过几个具体的例子来说明。

3.1 古典概率的应用古典概率是一种基于样本空间和事件发生数的概率计算方法。

例如,在一组均匀的骰子中,计算掷出的点数为偶数的概率就是一个古典概率的应用。

高中数学公式大全概率计算与统计分析的实例公式

高中数学公式大全概率计算与统计分析的实例公式

高中数学公式大全概率计算与统计分析的实例公式高中数学公式大全:概率计算与统计分析的实例公式一、概率计算公式1. 事件的概率计算公式:P(A) = (事件A的样本点数) / (样本空间的样本点数)2. 加法法则:对于两个互斥事件A和B,有P(A或B) = P(A) + P(B)3. 减法法则:对于事件A和B,有P(A且B的补集) = P(A的补集) - P(A且B)4. 乘法法则:对于两个独立事件A和B,有P(A且B) = P(A) × P(B)5. 条件概率公式:对于事件A和B,有P(A|B) = P(A且B) / P(B)6. 全概率公式:对于事件A和B1、B2、...、Bn构成的样本空间分割,有P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)二、统计分析的实例公式1. 平均数(均值)公式:对于一组数据x1、x2、...、xn,均值(平均数)为平均数 = (x1 + x2 + ... + xn) / n2. 加权平均数公式:对于一组数据x1、x2、...、xn及其对应的权重w1、w2、...、wn,加权平均数为加权平均数 = (x1w1 + x2w2 + ... + xnwn) / (w1 + w2 + ... + wn)3. 中位数公式:对于一组有序数据,中位数为若数据个数为奇数,中位数为第(n+1)/2个数据;若数据个数为偶数,中位数为第n/2个数据和第(n/2+1)个数据的平均数。

4. 众数公式:对于一组数据,众数为数据中出现次数最多的值。

5. 方差公式:对于一组数据x1、x2、...、xn,均值为μ,方差为方差 = ( (x1 - μ)^2 + (x2 - μ)^2 + ... + (xn - μ)^2 ) / n6. 标准差公式:对于一组数据x1、x2、...、xn,均值为μ,标准差为标准差= √方差7. 相关系数公式:对于两组数据x1、x2、...、xn和y1、y2、...、yn,其相关系数为相关系数 = (协方差) / (x的标准差 × y的标准差)其中,协方差的计算公式为协方差 = ( (x1 - μx)(y1 - μy) + ... + (xn - μx)(yn - μy) ) / n8. 样本方差公式:对于一组数据x1、x2、...、xn,样本均值为x,样本方差为样本方差 = ( (x1 - x)^2 + (x2 - x)^2 + ... + (xn - x)^2 ) / (n - 1)9. 样本标准差公式:对于一组数据x1、x2、...、xn,样本均值为x,样本标准差为样本标准差= √样本方差综上所述,以上是高中数学中概率计算和统计分析的常用公式。

高中数学概率统计知识点总结

高中数学概率统计知识点总结

高中数学概率统计知识点总结1. 随机变量的期望值若随机变量 X 的概率分布如下表:则随机变量 X 的期望值为E (X )=1=∑nk k k x p =x 1‧p 1+x 2‧p 2+…+x n ‧p n 。

2. 一组数据的变异数与标准差若一组数据 x 1,x 2,…,x n 的平均数为 μ,则这组数据的 (1) 变异数为σ2=1n((x 1-μ)2+(x 2-μ)2+…+(x n -μ)2)=211()μ=-∑n k k x n 。

(2) 标准差为 σ。

3. 随机变量的变异数与标准差若随机变量 X 的分布如下表:则随机变量 X 的(1) 变异数为 Var (X )=21(())=-⋅∑nk k k x E X p =E (X 2)-(E (X ))2。

(2) 标准差为4. 三事件为独立事件当三事件 A ,B ,C 同时满足下列四项条件: (1) P (A ∩B )=P (A )P (B ),(2) P (B ∩C )=P (B )P (C ), (3) P (A ∩C )=P (A )P (C ),(4) P (A ∩B ∩C )=P (A )P (B )P (C )。

称 A ,B ,C 三事件为独立事件。

5. 独立重复试验的概率假设一白努利试验成功的概率为 p 。

则独立重复试验 n 次中,恰出现 k 次成功的概率为n k C p k (1-p )n -k 。

6. 二项分布假设白努利试验成功的概率为 p ,失败的概率为 q =1-p ,其中 p ≥ 0,q ≥ 0。

令随机变量 X 的取值表示此试验独立重复试验 n 次中成功的次数,则 X 的概率质量函数为P (X =k )=n k C p k q n -k ,k =0,1,…,n 。

此随机变量 X 的概率分布称为二项分布,记为 B (n ,p )。

7. 二项分布的期望值、变异数、标准差设随机变量 X 的概率分布为二项分布 B (n ,p ),则随机变量 X 的 (1) 期望值为 E (X )=np 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八讲 概率统计【考点透视】1.了解随机事件的发生存在着规律性和随机事件概率的意义.2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 【例题解析】考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =n m ;等可能事件概率的计算步骤:① 计算一次试验的基本事件总数n ;② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n=求值;④ 答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B );特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”:① 求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件:互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复.例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示).[考查目的]本题主要考查概率的概念和等可能性事件的概率求法.[解答过程]0.3提示:1335C 33.54C 102P ===⨯例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .[考查目的]本题主要考查用样本分析总体的简单随机抽样方式,同时考查概率的概念和等可能性事件的概率求法.用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法. [解答过程]1.20提示:51.10020P ==例3从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ):492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g 之间的概率约为__________.[考查目的]本题主要考查用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法.[解答过程]在497.5g~501.5内的数共有5个,而总数是20个,所以有51.204=点评:首先应理解概率的定义,在确定给定区间的个体的数字时不要出现错误.例4.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)[考查目的] 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.[解答提示]至少有3人出现发热反应的概率为33244555550.800.200.800.200.800.94C C C ⋅⋅+⋅⋅+⋅=.故填0.94.例5.右图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是(A )454 (B )361 (C )154 (D )158[考查目的] 本题主要考查运用组合、概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.[解答提示]由题意,左端的六个接线点随机地平均分成三组有2226423315C C C A =种分法,同理右端的六个接线点也随机地平均分成三组有2226423315C C C A =种分法;要五个接收器能同时接收到信号,则需五个接收器与信号源串联在同一个线路中,即五个接收器的一个全排列,再将排列后的第一个元素与信号源左端连接,最后一个元素与信号源右端连接,所以符合条件的连接方式共有55120A =种,所求的概率是120822515P ==,所以选D.点评:本题要求学生能够熟练运用排列组合知识解决计数问题,并进一步求得概率问题,其中隐含着平均分组问题.例6.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B .[考查目的]本小题主要考查相互独立事件、互斥事件等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.[解答过程](1)记0A 表示事件“取出的2件产品中无二等品”, 1A 表示事件“取出的2件产品中恰有1件二等品”. 则01A A ,互斥,且01A A A =+,故01()()P A P A A =+212012()()(1)C (1)1.P A P A p p p p =+=-+-=- 于是20.961p =-.解得120.20.2p p ==-,(舍去).(2)记0B 表示事件“取出的2件产品中无二等品”,则0B B =.若该批产品共100件,由(1)知其中二等品有1000.220⨯=件,故28002100C 316()C 495P B ==.00316179()()1()1.495495P B P B P B ==-=-=例7.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率 是 (结果用分数表示).[考查目的] 本题主要考查运用排列和概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.[解答提示]从两部不同的长篇小说8本书的排列方法有88A 种,左边4本恰好都属于同一部小说的的排列方法有442442A A A 种.所以, 将符合条件的长篇小说任意地排成一排,左边4本恰好都属于同一部小说的概率是 44244288135A A A P A ==种.所以,填135.例8.甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n 个白球.由甲,乙两袋中各任取2个球.(Ⅰ)若n=3,求取到的4个球全是红球的概率;(Ⅱ)若取到的4个球中至少有2个红球的概率为43,求n.[考查目的]本题主要考查排列组合、概率等基本知识,同时考察逻辑思维能力和数学应用能力.[标准解答](I )记“取到的4个球全是红球”为事件A .22222245111().61060C C P A C C =⋅=⋅=(II )记“取到的4个球至多有1个红球”为事件B ,“取到的4个球只有1个红球”为事件1B ,“取到的4个球全是白球”为事件2B . 由题意,得31()1.44P B =-=2111122222122224242()n n n n C C C C C C P B C C C C ++⋅⋅=⋅+⋅22;3(2)(1)n n n =++ 22222242()n n C C P B C C +=⋅(1);6(2)(1)n n n n -=++ 所以, 12()()()P B P B P B =+22(1)3(2)(1)6(2)(1)n n n n n n n -=+++++14=,化简,得271160,n n --=解得2n =,或37n =-(舍去), 故 2n =.例9.某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率; (Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率.[考查目的]本小题主要考查相互独立事件、独立重复试验等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.[解答过程](Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064P A =-=, ()1()10.0640.936P A P A =-=-=.(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”. 1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.01()()P B P B B =+01()()P B P B =+0.2160.432=+0.648=.例10.某公司招聘员工,指定三门考试课程,有两种考试方案. 方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是,,a b c ,且三门课程考试是否及格相互之间没有影响.(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)[考查目的] 本题主要考查互斥事件有一个发生的概率和对立事件的概率,以及不等式等基本知识,同时考查逻辑思维能力和数学应用能力.[标准解答]记该应聘者对三门指定课程考试及格的事件分别为A ,B,C , 则P (A )=a ,P (B )=b ,P (C )=c. (Ⅰ) 应聘者用方案一考试通过的概率p 1=P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C ) =a ×b ×(1-c)+(1-a)×b ×c+a ×(1-b)×c+a ×b ×c=ab+bc+ca-2abc. 应聘者用方案二考试通过的概率p 2=31P (A ·B )+ 31P (B ·C )+ 31P (A ·C )= 31×(a ×b+b ×c+c ×a)= 31 (ab+bc+ca)(Ⅱ) p 1- p 2= ab+bc+ca-2abc-31 (ab+bc+ca)= 23( ab+bc+ca-3abc)≥23]3abc =0≥.∴p 1≥p 2例11.某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为54、53、52、51,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第四轮才被淘汰的概率;(Ⅱ)求该选手至多进入第三轮考核的概率. (注:本小题结果可用分数表示)[考查目的]本小题主要考查相互独立事件、独立重复试验的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.[解答过程](Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(1234)i A i =,,,,则14()5P A =,23()5P A =,32()5P A =,41()5P A =,∴该选手进入第四轮才被淘汰的概率412341234432496()()()()()5555625P P A A A A P A P A P A P P ===⨯⨯⨯=.(Ⅱ)该选手至多进入第三轮考核的概率3112123()P P A A A A A A =++112123()()()()()()P A P A P A P A P A P A =++142433101555555125=+⨯+⨯⨯=. 考点2离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且k n k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p 为参数,并记:),;(p n k b q p C kn k k n =- .(2) 几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生. 随机变量ξ的概率分布为:例12.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率;(Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数ξ的分布列及期望ξE ,并求出该商家拒收这批产品的概率.[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.[解答过程](Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件A 来算,有()()4110.20.9984P A P A =-=-= (Ⅱ)ξ可能的取值为0,1,2. ()2172201360190C P C ξ===,()11317220511190C C P C ξ===,()2322032190C P C ξ===136513301219019019010E ξ=⨯+⨯+⨯=. 记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-=.所以商家拒收这批产品的概率为2795.例13.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响. (Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望. (注:本小题结果可用分数表示)[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.[解答过程]解法一:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =, ∴该选手被淘汰的概率112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++142433101555555125=+⨯+⨯⨯=.(Ⅱ)ξ的可能值为123,,,11(1)()5P P A ξ===,1212428(2)()()()5525P P A A P A P A ξ====⨯=,12124312(3)()()()5525P P A A P A P A ξ====⨯=.ξ∴的分布列为1812571235252525E ξ∴=⨯+⨯+⨯=.解法二:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =. ∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=.(Ⅱ)同解法一.考点3 离散型随机变量的期望与方差 随机变量的数学期望和方差(1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平. ⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…; 方差反映随机变量取值的稳定与波动,集中与离散的程度. ⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+.(4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则pE 1=ξ,D ξ =2pq 其中q=1-p.例14.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:则比较两名工人的技术水平的高低为 .思路启迪:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.解答过程:工人甲生产出次品数ε的期望和方差分别为:7.0103210111060=⨯+⨯+⨯=εE ,891.0103)7.02(101)7.01(106)7.00(222=⨯-+⨯-+⨯-=εD ; 工人乙生产出次品数η的期望和方差分别为:7.0102210311050=⨯+⨯+⨯=ηE ,664.0102)7.02(103)7.01(105)7.00(222=⨯-+⨯-+⨯-=ηD 由E ε=E η知,两人出次品的平均数相同,技术水平相当,但D ε>D η,可见乙的技术比较稳定.小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度. 例15.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.[考查目的] 本小题主要考查概率和离散型随机变量分布列和数学期望等知识.考查运用概率知识解决实际问题的能力.[解答过程](Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=, ()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元). 小结:离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.本题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力. 例16.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是A.70,25B.70,50C.70,1.04D.65,25解答过程:易得x 没有改变,x =70, 而s 2=481[(x 12+x 22+…+502+1002+…+x 482)-48x 2]=75, s ′2=481[(x 12+x 22+…+802+702+…+x 482)-48x 2] =481[(75×48+48x 2-12500+11300)-48x 2] =75-481200=75-25=50. 答案:B考点4 抽样方法与总体分布的估计 抽样方法1.简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样). 3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线.典型例题例17.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么此样本的容量n= .解答过程:A种型号的总体是210,则样本容量n=1016802⨯=.例18.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m k+的个位数字相同,若6m=,则在第7组中抽取的号码是.解答过程:第K组的号码为(1)10k-,(1)101k-+,…,(1)109k-+,当m=6时,第k组抽取的号的个位数字为m+k的个位数字,所以第7组中抽取的号码的个位数字为3 ,所以抽取号码为63.例19.考查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm)如下:171 163 163 166 166 168 168 160 168 165171 169 167 169 151 168 170 160 168 174165 168 174 159 167 156 157 164 169 180176 157 162 161 158 164 163 163 167 161⑴作出频率分布表;⑵画出频率分布直方图.思路启迪:确定组距与组数是解决“总体中的个体取不同值较多”这类问题的出发点.解答过程:⑴最低身高为151,最高身高180,其差为180-151=29。

相关文档
最新文档