分式的加减法提高题
分式加减法专项练习60题含答案
分式加减法专项练习60题(有答案)1.2.a(a﹣1)+3.4..5. +.6..7.=_________.8..6yue289..10..11..12.13.14..15.16.(1);(2)17.18.1+ 19.﹣+20.21.+.22.23..24.,25.26.++.27.+﹣.28.29.(式中a,b,c两两不相等):30.31.(1);(2)….32.+﹣33.化简分式:.34..35.计算:﹣.36.计算:.37.计算:.38..39.计算化简:.40.计算:+++.41.计算.42.计算:.43.化简:.44..45.计算:.zuoguo46..55.化简:.47.化简:.48..49..50.计算:﹣.51.计算:.52.计算:1﹣•.53.计算:.54.化简56.先观察下列等式,然后用你发现的规律解答下列问题:由,,…(1)计算++++++=_________(n为正整数);(2)化简:+…+.57.化简:﹣.60.求和.58.请你阅读下列计算过程,再回答所提出的问题:题目计算:解:原式=(A)=(B)=a﹣3﹣6(C)=a﹣9(D)(1)上述计算过程中,从哪一步开始出现错误:_________.(2)从B到C是否正确,若不正确,错误的原因是_________.(3)请你把正确解答过程写下来.59.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=_________;(2)证明你猜想的结论;(3)求和:+++…+.参考答案:1.原式===1+1=2.2.原式=a2﹣a+=a2﹣a+a=a2.3.==.4.原式===.5.原式=+==.6.原式===.7.==.8.原式===a﹣1.9.原式==.10.+=+=+==1.11.原式=﹣==.12.原式=﹣=﹣=.13.原式=+===14.原式=+==.15.=﹣=﹣==﹣1.16.(1)原式=;(2)原式=17.====.18.原式=1﹣====.19.原式=﹣•==.20.===0.21.原式=+==.22.原式=﹣==.23.原式=====1.24.原式====;x的取值范围是x≠﹣2且x≠1的实数.25.原式==.26.====027.原式=﹣﹣==28.=.29.原式=++=+++++=0.30.原式=+﹣==.31.(1),=,=;(2)+…+=﹣+﹣+…+﹣=﹣=.32.==﹣2 33.=(2a+1)+﹣(a﹣3)﹣﹣(3a+2)++(2a﹣2)﹣=[(2a+1)﹣(a﹣3)﹣(3a+2)+(2a﹣2)]+(﹣+﹣)=﹣+﹣=﹣=.34.原式=﹣=﹣===35.原式====﹣36.原式====37.原式==38.原式=+﹣==39.原式=++=+﹣==== 40.原式=+++=++ =++=+=+=.41.设2x2+3x=y,则原式=﹣+===.42.原式=﹣a+2=a+1﹣a+2=3.43. 原式====.44.原式===,===45.=﹣===46.=== ==47.原式=,=﹣+,=+﹣﹣++,=048.原式=2a﹣a﹣1+a+1=2a.49.原式====.50.原式====.51.原式===.52.原式=1﹣×=1﹣==﹣.53.原式=+﹣====54.原式=++=+++++=﹣+﹣+﹣=0+0+0=055.原式===156.(1)原式=1﹣+﹣+…+﹣=1﹣=;(2)原式=﹣+…+﹣=﹣=57.原式=﹣=﹣=158.(1)A(2)不正确,不能去分母(3)原式===59.(1)=﹣;(2)﹣=﹣==;(3)+++…+=1﹣+﹣+﹣+…+﹣=1﹣=60.原式=++++…+﹣=+++…+﹣=+﹣=﹣=.。
分式加减法练习题
分式的加减法分式的加减法:(1)23+34=34⨯+ 34⨯= (2)abab 610-= (3)1a +1b =ab +ab= (4)b a 21+21ab= 因为最简公分母是___________,所以b a 21+21ab = =_____________________=_____________________=_____________________-.提示:通分的关键是确定几个分式的公分母,通常取各分母所有因式的最高次幂的积作为公分母(叫做最简公分母).例如第(1)小题中的两个分式b a 21和21ab,它们的最简公分母是(5)y x -1+yx +1 因为最简公分母是___________,所以y x -1+y x +1 =(6)1()x x y -+yx +1 因为最简公分母是___________,所以1()x x y -+yx +1 =练习A : (1)a a 21+= (2)bc a c -= (3)a c b a c b ++- (4)ba b b a a +++=(5)ab b b a a -+-= (6)x x -++1111 =(7)231x +x43; 因为最简公分母是_____,所以231x +x43 =2134x ⨯+34x=+=(8)221y x -+xy x +21 因为 x 2-y 2=(x+y )( ), x 2+xy =x( ), 所以221y x -与xy x +21的最简公分母为_____,因此221y x -+xy x +21 =1()x y++1x =+(9)231x +xy125; 因为最简公分母是___________ =(10)24ab a b -;B 组(1)xy y x xy y x 2)(2-++)(; (2)xyy x xy y x 22)()(--+(3)x x +21+x x -21. 最简公分母是__________ =(4)1624432---x x (5)aa a +--22214;(6)224-++a a (7)112---x x x .(8)323111x x x x⋅⎪⎭⎫ ⎝⎛+-;(9)⎪⎭⎫ ⎝⎛--+⋅+-y x x y x y x x 2121.(10)林林家距离学校a 千米,骑自行车需要b 分钟,若某一天林林从家出发迟了c 分钟,则她每分钟应多骑多少千米,才能像往常一样到达学校(11)周末,小颖跟妈妈到水果批发市场去买苹果.那儿有两种苹果,甲种苹果每箱重m 千克,售a 元;乙种苹果每箱重n 千克,售b 元.请问,甲种苹果的单价是乙种苹果的多少倍。
分式加减法练习题及答案
分式加减法练习题及答案分式加减法练习题及答案分式加减法是数学中的基础概念之一,也是我们在日常生活中经常会遇到的计算问题。
掌握了分式加减法的方法和技巧,不仅可以帮助我们更好地理解数学知识,还能在实际生活中提高计算能力。
下面,我将为大家提供一些分式加减法的练习题及答案,希望能够帮助大家更好地掌握这一知识点。
练习题一:1. 2/3 + 1/4 = ?2. 3/5 - 1/10 = ?3. 4/7 + 5/7 = ?4. 2/3 - 1/6 = ?5. 1/2 + 3/4 = ?练习题二:1. 3/8 + 2/5 = ?2. 5/6 - 1/3 = ?3. 7/9 + 2/9 = ?4. 4/5 - 1/10 = ?5. 2/3 + 1/6 = ?练习题三:1. 1/4 + 2/3 = ?2. 3/5 - 1/5 = ?3. 2/7 + 5/7 = ?4. 1/2 - 1/4 = ?5. 3/4 + 1/8 = ?答案:练习题一:1. 2/3 + 1/4 = 11/122. 3/5 - 1/10 = 7/103. 4/7 + 5/7 = 9/74. 2/3 - 1/6 = 3/65. 1/2 + 3/4 = 5/4练习题二:1. 3/8 + 2/5 = 31/402. 5/6 - 1/3 = 1/23. 7/9 + 2/9 = 9/94. 4/5 - 1/10 = 39/505. 2/3 + 1/6 = 5/6练习题三:1. 1/4 + 2/3 = 11/122. 3/5 - 1/5 = 2/53. 2/7 + 5/7 = 7/74. 1/2 - 1/4 = 1/45. 3/4 + 1/8 = 7/8通过以上练习题,我们可以看到分式加减法的运算过程其实并不复杂。
首先,我们需要找到两个分式的公共分母,然后将分子进行相应的运算,最后将结果化简为最简形式。
在解答这些练习题的过程中,我们可以学到一些技巧。
比如,在计算分式的加法时,我们可以先找到两个分式的公共分母,然后将分子相加,分母保持不变。
分式加减法练习题 答案
分式加减法练习题答案分式加减法练习题答案分式,作为数学中的一个重要概念,是我们在日常生活中经常会遇到的。
它是由分子和分母组成的,分子表示分数的一部分,而分母表示总共的份数。
分式加减法是分式运算的一种基本形式,通过练习题来提高我们的分式加减法运算能力,下面是一些练习题及其答案。
题目一:计算下列分式的和或差。
1. 3/4 + 1/62. 5/8 - 1/33. 2/5 + 3/104. 7/12 - 1/6解答:1. 3/4 + 1/6 = (3×3 + 1×2) / (4×3) = 11/122. 5/8 - 1/3 = (5×3 - 1×8) / (8×3) = 7/243. 2/5 + 3/10 = (2×2 + 3×1) / (5×2) = 7/104. 7/12 - 1/6 = (7×1 - 1×2) / (12×2) = 5/24题目二:计算下列分式的和或差。
1. 2/3 + 4/52. 3/7 - 2/93. 1/2 + 1/34. 4/5 - 3/10解答:1. 2/3 + 4/5 = (2×5 + 4×3) / (3×5) = 22/152. 3/7 - 2/9 = (3×9 - 2×7) / (7×9) = 13/633. 1/2 + 1/3 = (1×3 + 1×2) / (2×3) = 5/64. 4/5 - 3/10 = (4×2 - 3×1) / (5×2) = 7/10通过以上的练习题及其答案,我们可以发现分式加减法的计算并不难,只需要根据分式的定义和运算规则进行计算即可。
在计算过程中,我们需要注意分式的分子和分母的运算,以及最终结果的化简。
分式的加减法速算练习题(打印版)
分式的加减法速算练习题(打印版)### 分式的加减法速算练习题#### 一、基础练习题1. 计算以下分式的和:\[\frac{1}{2} + \frac{3}{4}\]2. 计算以下分式的差:\[\frac{5}{6} - \frac{1}{3}\]3. 计算以下分式的和:\[\frac{3}{8} + \frac{5}{12}\]4. 计算以下分式的差:\[\frac{7}{9} - \frac{2}{9}\]#### 二、进阶练习题1. 计算以下分式的和:\[\frac{2}{5} + \frac{1}{10} + \frac{3}{20}\]2. 计算以下分式的差:\[\frac{4}{7} - \frac{2}{21} - \frac{1}{3}\]3. 计算以下分式的和:\[\frac{3}{7} + \frac{5}{14} + \frac{1}{2}\]4. 计算以下分式的差:\[\frac{8}{15} - \frac{1}{5} + \frac{3}{10}\]#### 三、挑战练习题1. 计算以下分式的和:\[\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \frac{8}{81} \]2. 计算以下分式的差:\[\frac{5}{11} - \frac{3}{22} + \frac{1}{66}\]3. 计算以下分式的和:\[\frac{2}{3} + \frac{1}{6} - \frac{1}{9} + \frac{1}{18}\]4. 计算以下分式的差:\[\frac{7}{12} - \frac{1}{4} + \frac{1}{6} - \frac{1}{3}\]#### 答案解析1. \(\frac{1}{2} + \frac{3}{4} = \frac{2}{4} + \frac{3}{4} =\frac{5}{4}\)2. \(\frac{5}{6} - \frac{1}{3} = \frac{5}{6} - \frac{2}{6} =\frac{3}{6} = \frac{1}{2}\)3. \(\frac{3}{8} + \frac{5}{12} = \frac{9}{24} + \frac{10}{24} = \frac{19}{24}\)4. \(\frac{7}{9} - \frac{2}{9} = \frac{5}{9}\)5. \(\frac{2}{5} + \frac{1}{10} + \frac{3}{20} = \frac{8}{20} + \frac{2}{20} + \frac{3}{20} = \frac{13}{20}\)6. \(\frac{4}{7} - \frac{2}{21} - \frac{1}{3} = \frac{12}{21} - \frac{2}{21} - \frac{7}{21} = \frac{3}{21} = \frac{1}{7}\)7. \(\frac{3}{7} + \frac{5}{14} + \frac{1}{2} = \frac{6}{14}+ \frac{5}{14} + \frac{7}{14} = \frac{18}{14} = \frac{9}{7}\)8. \(\frac{8}{15} - \frac{1}{5} + \frac{3}{10} = \frac{16}{30} - \frac{6}{30} + \frac{9}{30} = \frac{19}{30}\)9. \(\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \frac{8}{81}= \frac{27}{81} + \frac{18}{81} + \frac{12}{81} + \frac{8}{81} = \frac{65}{81}\)10. \(\frac{5}{11} - \frac{3}{22。
(05)分式加减法专项练习60题(有答案)ok
分式加减法专项练习60题(有答案)6yue281 12a41|a 2-l[13 nx-:3 x ( X-3)5.6.2 a ..] a+1.i '.8.1 ID - 5 in2 _ in 2ID 2 _ 214.9.10. ab b:I.7'-'-.11.2m _ 1 m 2 -4 时2x 2 2x .K 2+X -2 /-4X £+4X +412.a - 1a 2+a- 2a+l¥-115.13.16 .(1)x+x | - 9X2+6I+917 .n m ^2_2L珂0jm_ 2n n, - 4im+4n*18.1+a2+ab+ b 2?-b319 .b2ab+ b2 - 2ab+ b2'a2 - b22a * b ~ e , 2b ~ c - a _ 2e - a - b~2I 5' oa - ab - ac+bc b - ab - bc+ac c - ac - bc+ab23.ir^+2ni+l V 7?(i-l)(K +2)-1 ,r 12.L2IE 2 - 9 TS;_ IT 26.25.27.2y+z —■+28 卅9b _ a+3b.:.- --29.(式中a , b , c 两两不相等)231. (1) ^― ■出;x+y2曰'+3*2 _ 己2 _ 廿 _ 5 _ 3 a? _ 4邑- § 2护 - 3时5 a+1af2 a - 2 + a - 3:, 1 … K (xfl) T (计1)(計刃 (x+2005) (x+2006)(2) b 2a+c b-ca 一 b+c|b ' a _ c b -耳-百 32.33.化简分式:34. 72x y+xy35 .计算:2x+2y36. 计算: 37•计算:3K - 4y40. 38. 39.计算化简:一X2+3X +2 X 2+K -2 1- T 21124 1-X|i+d1+/计算:41 . 1 2 12X 2+31-1 2 K 2+3X +1 2X 2+3I ^3计算45•计算:f「二47.化简:2a_ b-c _ 2b _c _a , 2c _a ~ b (a-b) ta_c) * (b_c) Cb - a)亠(G_(G_b)42•计算: 7s +2a+l a+148. ::-■-a- 1 49.a2-l51 •计算:2JS' y _z 2y _ _2 2z _K_y~~5 "I o "I- Ky- xz+yz y^- xy - yz+xz z^-KZ- yz+sy54.化简(2)化简:1 + + + +■ ++=1X^ 2X3 3X4 4X5 5X6|6X7 7X8 _—□__________ 1______ .L[(n为正整数);+・・+1(x+2QQ8) C K+2009)50.计算:56.先观察下列等式,然后用你发现的规律解答下列问题:由 __ _!—丄_J_一_!_! _J__1X2 2 1 2 2X3 6 2 3 3Xq 12 3 4 (1)计算(K+2) (X+3)(x+1)(x+1) (x+2)解答下面的问题:(1 )若n 为正整数,请你猜想一.1.= _|n Cn+1)(2) 证明你猜想的结论;(3) ------------------------------------------------------------- 求和: 一=—+—=—+—=—+ •- +=1X2 2X3 3X4 2011X2012解:原式= ----- ------------ ' (A )a+3(a+3)(a - 3)= a-3_6(a+3)_3)((a - 3)58•请你阅读下列计算过程,再回答所提岀的问题:题目计算:(B)=a — 3- 6 (C ) =a - 9 ( D )(1 )上述计算过程中,从哪一步开始岀现错误: _ _ •(2)从B 到C 是否正确,若不正确,错误的原因是 __________________ (3 )请你把正确解答过程写下来.59 •观察下面的变形规律:=11X21::;L1 1 1 |1 12|3|;3X4 3 4;参考答案:1 原式=• .' . -1 - I =1 + 1=2 .a _ ba _b a _ ba 2 - abb a (a b) n = • a + b a+b|Pt/a+b(a+b) (a _b)a+b a +h| a+ba+b|m _ 2 2m (mH)4. 5. 6. 2x1x 11(xH) (K--1) x-1 (計 1) (x-1) x+1-+a+1 (aH )2冷-1)a- 1+2 _ (aH)〔耳 T) 1 1 1-1 X3x _ 3 1 1x (x _3) x (x-3)"x Cs _ 3) x1 . 2_l+2_3 a da a T a14.十「、2自(已+1)222 .原式=a — a+ =a - a+a=a .nfl3.原式=原式= 原式=7. 10.(ID - 1 ) (ID - 2)2m (ID - 1) (nrl-1)a _ 1_ 3.^+0| a-1 |a (a+1) | 1 |a 1 _ a □ -l =a-la 2 - 2a+l a 2 - T'(a -D 旷(a -1) (a+1)〜1 一-11 _ 4 _ - a+2 _41□ _ 2 (at2) Ca _ 2) (af2)冷-2)(a+2) (a _ 2)(寸2〕_ 2)16.17.18. 19. 20.21 .22.23.24.25. 26.27.28. 29.D 2,1血G+l ) 2(x+1)(x-1)(xH) (K-1)(xH) C K -1)K-l 原式 2xy y (旳)= ¥ a - y) y (K _ y) (K +Y ) (K _ y) Cx+y)(富一 y ) 〔盂+y )(nrFl ) 22 itd-1 2 | irr^L - 2 ra _1 A (1□- 1) (nrbl) m - 1 m _ 1 m _ 1 m _ 1 m _ 1x (x+2)5 _(X- n (X42) _x 2+2x-3 - X 2-X +2 (K- 1) (x+2)(K-1;(x+2)〔耳「1)(計2)_ (i-l )(计2)原式原式原式 ;x 的取值范围是x a 2且x 的实数.K - 12m -n nr^n m n _ ID n ~ IT ] 原式-- ・ 1 _ 12 -2 (m+3)皿2 _ 9 _ in 「nr+3 (ml-3) (ID - 3i 丁 (nrl-3) Cm - 3)12-2 (昭引 +2 57)L2-2u- -&+2m - 61 J -■ i :(nrf 3) ■i 02 Cm - 3) +(nH-3)~_ 3)2y+xy2x2y+z - y - 2iy x",(xfy) (K _y)1 x+ya 2= 1(ad-2) Ca _2)nt - n (m - 2n ) in - 2n (mi-n) (m 一 n)a 2+ab+ b 2m _ 2n _rrH ■口 - ( m _ 2n) jirl-n _ irrl^2n _irr^nrn^n m+n— b 24_ 1 _ b_1 -b(a -b) 2| b ( a+b)'□-b(旦-b) ~a+l+a 1 2a 0 且一 1 8+1 /-I(a - 1) (a+1) (a+1) fa _ 1)a+9b a +3t 廿9b =~ (a-K3b) ■仙 23ab3ab - 3ab 3ab a原式=1 -=0.(a~b) ( a^+ab+ b 2)原式=原式34.…氏+F )'原式x - y x+y-莖+y 2y 2xy xy xy x36. / - 2xy+ y 2 - 2Z 3 - 2y 2z+y2 (x+y) (K -y) =b 【葢-y)J s+2y y -1yi+2y - y+1 - yx+1 | 1 |_l-x 2 1-S 2l-,21 1*1 - :, 1 -.37. 原式2-y 238. 原式三買丄玄-丄?x 2 (x _ 1)(2)「| J +••+^亠亠 + 亠——+ ••+ -s (xfl) (K +1) (X +2) (X +2005) (r+2006)同莎直+1 越 x+200EL =. 200& 丈我006=x (x+200G)” b2a^c b - c b 2a+c - b-+c - b 2a - M2c 2a - 2b+2<na " t+cb _ a _ cb _ a _ ca" b+cb _ a _ Gb _ a _G b _ a - G b 一且一 E2a 2+3a+2 __ 3a 2_4a~^ 2 a 2 _ Sa+Sarbla+2 a _ 2 + a - 3=(2a+1)-( a - 3)--( 3a+2) +—'a+1a+2a-=[(2a+1)-( a - 3)-( 3a+2) + ( 2a - 2) ]+ (-—r ■丁arl a+Z a _ J 耳一/ 丄-一 :-• = . •. -a+1 a+2 □ _ 2 a _ 3 (aH 〕(a+2)(a _ 2) (a _ 3)-盼4(a-bl)( a+2) (a - 2)(a _ 3)x+2006-40x+40 (x-2) (K -4)31. (1)x+ysy (x - y)35.原式22 - K - 3yJy+ x 2C K - 1)(y+1)(y+3) -2 (y 1? (y+3) + (y■-1D (y+1) rs(y-1) Cy+1)Cy+3) =(厂⑴(y+D (y+3)8(2x ?+3i- 1)(2 x 2+3X +1 )(2 x 2+3x+3)'2c - a - k>4 (1+/) 4 (1+ J)—丄8 (1-』)(Hx 4) (1-/) (1+/)1-x 8 2 41 .设2x +3x=y ,则原式=X J y 2 2 _ * y _xK ( K ~ y) y(y _z) K ( K ~ y) y (K_ y) xy (K _ y) xy (K _y)_ 2 . y K -(旳)Cx -y)s+y xy -y)xy (h -y)XV44.原式 2y 严2 y2X1 y 2-x 2(y+莖)Cy x) /-/y-xx (K - y)K (x - y) x U - y) x (s - y) 45.2KVx _ xE M 什貨(x - y) +x (x+y) 992zy+ z - XV+ 92sy+2 x 凤2 -x+y ^-y _ ]宀/ I'_2 _ 2K y(x _y) (x+y)46. 2工(旳)n (旳)「2工m 一y39.原式=JS ( 1 - 1 )X (x+1) 2 (x+2)(K +2) (X +1 } (x _ 1)( K +2) C X H) (s-1) | | (K +2) C K H)(; cl)K ?K + K2+X 2x - 4=2x 2 2x 4J 2 ( 英-2〕(x+1)2K - 4 (計刃(?-n 丨丘+对a+D G — i ) (xf2) (x+1) (x-1)X2+K - 240.原式=14■覽(1 - x)~(1 十辺2 (1+ x 2) 2 (1- J)丄+ 4 =44 I(1 -4 (H x £)(1-?) (1+?)1十 J 1- J 1+J+ -+ ■-1+x 2 1+J42 .原式=■-+ 乩一x - x+y 1K +X (s+y)(盖—y)(s+y) (x-y) (x+y) (K - y)K _ y47 .原式=.一: - 1〔 一 ,,++(x+2) &十 1)(1 十小(1 -X ) (2 (x-1)2+4(1-X )(1+G(1-X )(1卄)43.原式-a+2=a+1 - a+2=3.48.49.50.(a-k>) + (且-c)—(h* - c? + (b - s) +(c-a) +〔匚-b)(a- b) (a~ c)(b-c) (a-b) 〔£-辺)(c - b)+++]—,=0a+ (3a+l) ・(2a+3) a+3a4-l -•岛・3 2 (a- 1? .2 I宀1a-1a+1'=1 3x+5=h 1 ③+5)-2:計孑(X-HS) ( K _ 1 )(K+3)(K-D(K+3)G-1)原式原式原式=2a - a _1+a+仁2a.4 x- 81 3 x+612= 7 x- 14(x+2 ) ( x-2 )(x+2 ) ( x-2 )(x+2 ) ( x -2 )](也)(K-2 )51.原式乂且(# 3)52.原式=1 -2a+12a+b 2b^2a- (2a+b) 2b+2a 2a b=1..--2ab2ab Znb 2ab=1 -(曲)Ca_ 1)a+3a+153. 原式-I- , 1-L2ab 2ab1 1r 1 亠1-L 1 4.1 1x _ z z _ y y _s 1y _ m 12 _y i Z _I X _z55.原式X2-1+2(好1) (x+L ) 2= 4+1 )戈=_(田)2=1M -—+ •-+3118 =1 -+ - - + 1L56. (1)原式=1 -12=』;11= 2009灶2009K (計20Q9)=157 .原式=■K (x+2) 2 XK-2'_X- 2K+2008 K+200^y- 一a-3 ’£寸畀(arf3) G - 3)(a+3)(且- 3)丁(af3) Ca_ 3)a - 3+6 十1(时3) (a-3) (a+3) ( □ _3) a.-3(x+2) (x _2)58. (1) A (2)不正确,不能去分母(3)原式=1 ]11n (汩1)=n n+1;59. (1)-=.n+1 n .n+1 - n 1n+1 n (n+1)n (n+1) n (nil) b 5+i)(2) 2岛说九X4=14墙4 i弓-—+ ••+2011X20121feOll2012 =20122011 2012—=1.=2 +」+4+ ••+ 「1 ] 1 - X 1-x 2l+i 21出1+4|1-』60•原式叮・+.「.。
分式的加减法练习题
分式的加减法练习题分式的加减法练习题分式是数学中的一个重要概念,在我们的日常生活中也经常会用到。
它可以帮助我们解决一些实际问题,比如分配资源、计算比例等等。
在学习分式的过程中,掌握分式的加减法是非常关键的一步。
本文将通过一些练习题来帮助大家巩固和提高对分式加减法的理解和运用能力。
1. 加法练习题(1) 计算:1/3 + 2/5 = ?解答:首先需要找到这两个分式的公共分母,即3和5的最小公倍数,为15。
然后,将两个分式的分母都改为15,得到1/3 = 5/15,2/5 = 6/15。
最后,将分子相加,得到答案为11/15。
(2) 计算:2/7 + 3/8 = ?解答:同样地,我们需要找到这两个分式的公共分母,即7和8的最小公倍数,为56。
然后,将两个分式的分母都改为56,得到2/7 = 16/56,3/8 = 21/56。
最后,将分子相加,得到答案为37/56。
2. 减法练习题(1) 计算:2/3 - 1/4 = ?解答:同样地,我们需要找到这两个分式的公共分母,即3和4的最小公倍数,为12。
然后,将两个分式的分母都改为12,得到2/3 = 8/12,1/4 = 3/12。
最后,将分子相减,得到答案为5/12。
(2) 计算:5/6 - 2/9 = ?解答:同样地,我们需要找到这两个分式的公共分母,即6和9的最小公倍数,为18。
然后,将两个分式的分母都改为18,得到5/6 = 15/18,2/9 = 4/18。
最后,将分子相减,得到答案为11/18。
通过以上的练习题,我们可以发现,分式的加减法实际上就是将分子相加或相减,而分母保持不变。
所以,只需要找到公共分母,将分子进行相应的运算即可。
当然,有时候需要进行分数的化简,比如将11/18化简为5/9,这需要我们熟练掌握分数化简的方法。
除了加减法,我们还可以进行分式的乘法和除法运算。
分式的乘法就是将两个分式的分子相乘,分母相乘,得到的结果即为乘法的结果。
分式的加减练习题
分式的加减习题精选(一)一、判断题··二、选择题三、填空题9.10.11.12.四、计算题13.14.15.16.分式的加减 习题精选(二)1.1+--b b a等于 ( )A.b b b a -+-2 B.b b b a ++-2 C.b b b a +--2 D.b b b a ---2 2.⎪⎪⎭⎫⎝⎛-÷y x x 11等于 ( )A.y x y x -2 B.x y y x -2C.xy x -2 D.2x xy -3.m n m n m n -+-22等于 ( ) A.m+n B.m-n C.-m+n D.-m-n4.计算)6(246612--+--a a a a a ,其结果等于 ( ) A.)6(210--a a B.)6(210--a a C.a a 24- D.a a 24+5.如果x y <<-1,那么2211++-++x y x y 的值 ()A.大于零 B.等于零C.小于零 D.以上都有可能6.计算:1213223-+----x x x x x 7.计算:22229631y xy x y x y x y x +--÷---8.计算: 1596234122--÷⎪⎪⎭⎫ ⎝⎛+---+-+y y y y y y y y9.计算: ⎪⎭⎫⎝⎛-++÷⎥⎦⎤⎢⎣⎡--+1111)1(1)1(122x x x x 10.计算:2343223811113a a a a a a a a +++÷⎪⎭⎫ ⎝⎛+-+--+11.已知⎩⎨⎧=-=+42112y x y x ,求分式⎪⎪⎭⎫ ⎝⎛--++-++÷+-2222332222y x yx y x y xy x y xy x x 的值.12.计算:x x x x -----52335175 13.计算:y x z zy z x y z x z y x y x -++---+++-+14.计算: 1123-+-+x x x x15.已知0132=++x x ,求441x x +的值.16.已知x x xx x -=+--2222313,求x x x x x x x x -÷⎪⎭⎫ ⎝⎛+----+44412222的值. 分式的加减 习题精选(三)一、选择题:1.分式的值为( )A .B .C .D .2.分式、、的最简公分母是( ) A .B .C .D .3.分式的值为( )A .B .C .D .以上都不对4.把分式、、通分后,各分式的分子之和为( )A .B .C .D .5.若的值为,则的值为()A.B.C.D.6.已知为整数,且为整数,则符合条件的有()A.2个B.3个C.4个D.5个二、填空题:1.式子的最简公分母是___________。
分式加减法练习题及答案
分式加减法练习题及答案分式加减法练习题及答案分式加减法是数学中的一个重要概念,它在实际生活中有着广泛的应用。
掌握分式加减法的运算规则和技巧,对于提高数学能力和解决实际问题都有着重要的意义。
本文将为大家提供一些分式加减法的练习题及答案,帮助大家更好地理解和掌握这一知识点。
练习题一:1. 计算:3/5 + 2/5。
2. 计算:4/7 - 1/7。
3. 计算:2/3 + 1/6。
4. 计算:5/8 - 1/4。
5. 计算:3/4 + 1/2。
答案一:1. 3/5 + 2/5 = 5/5 = 1。
2. 4/7 - 1/7 = 3/7。
3. 2/3 + 1/6 = 4/6 + 1/6 = 5/6。
4. 5/8 - 1/4 = 5/8 - 2/8 = 3/8。
5. 3/4 + 1/2 = 6/8 + 4/8 = 10/8 = 1 1/4。
练习题二:1. 计算:2/3 + 3/4。
2. 计算:5/6 - 1/3。
3. 计算:1/2 + 3/8。
4. 计算:7/8 - 1/2。
5. 计算:2/5 + 1/10。
答案二:1. 2/3 + 3/4 = 8/12 + 9/12 = 17/12。
2. 5/6 - 1/3 = 10/18 - 6/18 = 4/18 = 2/9。
3. 1/2 + 3/8 = 4/8 + 3/8 = 7/8。
4. 7/8 - 1/2 = 7/8 - 4/8 = 3/8。
5. 2/5 + 1/10 = 4/10 + 1/10 = 5/10 = 1/2。
练习题三:1. 计算:3/4 + 1/3。
2. 计算:2/5 - 1/4。
3. 计算:5/6 + 2/3。
4. 计算:7/8 - 3/4。
5. 计算:1/2 + 1/4。
答案三:1. 3/4 + 1/3 = 9/12 + 4/12 = 13/12。
2. 2/5 - 1/4 = 8/20 - 5/20 = 3/20。
3. 5/6 + 2/3 = 10/12 + 8/12 = 18/12 = 1 1/2。
分式分数加减法练习题(打印版)
分式分数加减法练习题(打印版)# 分式分数加减法练习题## 一、基础练习题1. 计算下列分式的和:\[\frac{1}{2} + \frac{3}{4}\]2. 计算下列分式的差:\[\frac{5}{6} - \frac{2}{3}\]3. 计算下列分式的和:\[\frac{2}{3} + \frac{1}{6}\]4. 计算下列分式的差:\[\frac{7}{8} - \frac{5}{12}\]5. 计算下列分式的和:\[\frac{3}{5} + \frac{4}{15}\]6. 计算下列分式的差:\[\frac{11}{12} - \frac{1}{4} \]## 二、进阶练习题7. 计算下列分式的和,并约分: \[\frac{4}{9} + \frac{5}{12} \]8. 计算下列分式的差,并约分: \[\frac{8}{15} - \frac{3}{10} \]9. 计算下列分式的和,并约分: \[\frac{7}{12} + \frac{5}{18} \]10. 计算下列分式的差,并约分: \[\frac{9}{14} - \frac{2}{7} \]11. 计算下列分式的和,并约分: \[\frac{2}{5} + \frac{3}{10}\]12. 计算下列分式的差,并约分:\[\frac{13}{18} - \frac{5}{9}\]## 三、综合应用题13. 某工厂生产一批零件,第一天生产了总数的 \(\frac{3}{8}\),第二天生产了总数的 \(\frac{1}{4}\),求两天共生产了总数的几分之几。
14. 一个班级有40名学生,其中 \(\frac{1}{5}\) 参加了数学竞赛,\(\frac{1}{8}\) 参加了科学竞赛。
求参加竞赛的学生总数。
15. 一个水池的容量为 \(\frac{3}{4}\) 立方米,第一天用去了\(\frac{1}{6}\) 的容量,第二天用去了 \(\frac{1}{12}\) 的容量。
分式的加减法练习题
分式加减法(一)一.填空题1.若代数式1324x x x x ++÷++有意义,则x 的取值范围是__________. 2.化简131224a a a -⎛⎫-÷ ⎪--⎝⎭ 的结果是___________. 3.若222222M xy y x y x y x y x y--=+--+ ,则M=___________. 4.公路全长s 千米,骑车t 小时可到达,要提前40分钟到达,每小时应多走____千米.5.某班a 名同学参加植树活动,其中男生b 名(b<a).若只由男生完成,每人需植树15棵;若只由女生完成,则每人需植树棵.6.已知y x 11-=3,则分式y xy x y xy x ---+2232= 。
7.化简13+a a -1+a a= ,8.若50m x y y x -=--,则m =9.若113x y -=,则232x xy y x xy y +---= 10. ________6,4的最简公分母是x a a 11. ________25,43,322422的最简公分母是c a b c b a b a c - 12. ________21,442的最简公分母是--m m 13. ________221,)(2,432的最简公分母是y x y x x xy -- 14. ________341,651,231222的最简公分母是+-+-+-x x x x x x7.若113x y -=,则232x xy y x xy y +---= __________________二.选择题1.下列等式中不成立的是( )A 、y x y x --22=x -yB 、y x yx y xy x -=-+-222 C 、yx y xy x xy -=-2 D 、xy x y y x x y 22-=- 2.下列各式中,从左到右的变形正确的是( )A 、y x y x y x y x ---=--+-B 、yx y x y x y x +-=--+- C 、y x y x y x y x -+=--+- D 、yx y x y x y x +--=--+- 3.如果从一卷粗细均匀的电线上截取1米长的电线, 称得它的质量为a 克,再称得剩余电线的质量为b 克, 那么原来这卷电线的总长度是( )A .b+1a 米B .(b a +1)米C .(a+b a +1)米D .(a b +1)米4.已知a ,b 为实数,且ab=1,设M=11+++b b a a ,N=1111+++b a ,则M ,N 的大小关系是( ) A 、M>N B 、M=N C 、M<N D 、不确定5.下列分式的运算中,其中结果正确的是( )A 、a 1+b a b +=21B 、323)(a a a =C 、b a b a ++22=a+bD 、319632-=+--a a a a 6.下列各式从左到右的变形正确的是( )A.122122x y x y x y x y --=++ B .0.220.22a b a b a b a b ++=++ C.11x x x y x y +--=-- D.a b a b a b a b+-=-+ 7.若有m 人a 天完成某项工程,则(m+n )个同样工作效率的人完成这项工程需要的天数是( ) BA 、a+mB 、n m ma + C 、n m a + D 、man m + 8.已知两个分式:244A x =-,1122B x x =++-,其中2x ≠±,则A 与B 的关系是( ) A.相等 B.互为倒数 C.互为相反数 D.A 大于B三、计算题:1.化简(x x x x x 2)2422+÷-+-2.化简:÷--23x x (25-x -x-2),3.化简:ab b a ab b a b a 21(222222++÷-- ),4.化简:22193m m m -=-+. 5.(m 1+n 1)÷n n m + 6. 24111a a a a++-- 7.)11(122xx x x +⋅+- 8.化简x -1x ÷(x -1x ). 9.xx x x x x x 112122÷⎪⎭⎫ ⎝⎛+---+ 10.2221412211a a a a a a --÷+-+- 11.222299369x x x x x x x +-++++; 12.23111x x x x -⎛⎫÷+- ⎪--⎝⎭ 13.2a a b a b --- 14.2222a a a a +-+-+ 15.233a a a ---16.22111x x x -+- 17.18.19.20.21.1213223-+----x x x x x 2222229631y xy x y x y x y x +--÷---23. 1596234122--÷⎪⎪⎭⎫ ⎝⎛+---+-+y y y y y y y y24. ⎪⎭⎫ ⎝⎛-++÷⎥⎦⎤⎢⎣⎡--+1111)1(1)1(122x x x x 25. 2343223811113a a a a a a a a +++÷⎪⎭⎫ ⎝⎛+-+--+26. 已知⎩⎨⎧=-=+42112y x y x ,求分式⎪⎪⎭⎫ ⎝⎛--++-++÷+-2222332222y x y x y x y xy x y xy x x 的值.27.x x x x -----52335175 28.1123-+-+x x x x 29.y x z z y z x y z x z y x y x -++---+++-+ 30. 已知0132=++x x ,求441x x +的值.31. 已知x x xx x -=+--2222313,求x x x x x x x x -÷⎪⎭⎫ ⎝⎛+----+44412222的值. 32. 33.34. 35.36. 37.38.39. 35.先化简,再求值:(1). 请你先化简,再选取一个你喜欢的数代入并求值:11)1(212--+-+a a a a . (2). 14422-+-x x x ÷(13+x -1) ,其中x =-2⑶. 2132·446222--+-+-+x x x x x x x ,其中2-=x(4). 先化简再求值:()x x x x x x x x x x -+⋅+++÷--=-11442412222,其中。
专题21 分式的加减乘除混合运算特训50道-【微专题】2022-2023学年八年级数学下册常考点
专题21 分式的加减乘除混合运算特训50道1. 计算:2244222x x x x x x -+⎛⎫-÷ ⎪+++⎝⎭.2. 化简:(1)2y x y x y y x-+--;(2)1211x x x -⎛⎫-÷ ⎪-⎝⎭.3. 化简:27816333a a a a a -+⎛⎫+-÷ ⎪--⎝⎭.4. 计算:2241244a a a a a -⎛⎫-÷ ⎪+++⎝⎭.5. 计算:22ab a b a b b a ab⎛⎫++÷ ⎪--⎝⎭6. 计筫:(1)2a b a a b a b----;(2)22212a b a b a a ab---÷+.7. 化简(1)2223m n m n m n --+-;(2)2344111a a a a a ++⎛⎫-+÷ ⎪++⎝⎭8. 计算:(1)3223222222x x y xy y xy x y x xy y x y+-+---+-;(2)211121m m m m ⎛⎫-÷ ⎪+++⎝⎭.9. 计算:221224x x x x x x -⎛⎫-÷ ⎪---⎝⎭.10. 计算(1)222a b ab a b a b a b+----(2)211121a a a a ⎛⎫-÷ ⎪+++⎝⎭11. 化简:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭12. 化简:21111m m m-⎛⎫+⋅ ⎪-⎝⎭.13. 化简:231122a a a a a +-⎛⎫-+÷ ⎪++⎝⎭14. 化简:2221121x x x x x x ⎛⎫+-+÷ ⎪+++⎝⎭.15. 化简:(1)2111a a a ---(2)2743326m m m m m -⎛⎫--÷ ⎪++⎝⎭16. 化简:35(2)22x x x x -÷+---17. 计算:2241393x x x x -⎛⎫+÷ ⎪+-+⎝⎭.18. 化简:22221244a b a b a b a ab b---÷+++.19. 计算:22211121x x x x x -÷+--+20. 计算:(1)22421x x x--+;(2)222228224x x x x x ⎛⎫+--÷ ⎪--⎝⎭.21. 计算:2221211x x x x x x x-÷+-+--.22. 计算22242⎛⎫-÷ ⎪--+⎝⎭m m m m m m .23. 计算:221(1211x x x x x -÷+-+-.24. 计算(1)11a b a b b a ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭(2)2214422x x x x x x x -÷--+--25. 计算:(1)2343m n n t mt ⎛⎫-÷ ⎪⎝⎭(2)22424412x x x x x x x -+÷--++-26. 计算:42()11x x x x x --+÷--.27. 计算:(1)11x x x+-;(2)()231422a a a ⎛⎫-⋅- ⎪-+⎝⎭.28. 计算22311244a a a a -⎛⎫+÷ ⎪--+⎝⎭.29. 计算:11111a a a a a a+-+⎛⎫+⋅ ⎪-+⎝⎭.30. 计算:(1)3222ab ab ⎛⎫÷ ⎪⎝⎭;(2)2211xy x y x y x y ⎛⎫÷- ⎪-+-⎝⎭.31. 计算:2169122m m m m -+⎛⎫-÷ ⎪--⎝⎭.32. 计算:(1)21111x x x -+-+;(2)22169124x x x x ++⎛⎫+÷ ⎪+-⎝⎭.33. 化简22361142x x x x x ++⎛⎫÷- ⎪--⎝⎭.34. 计算:(1)23239x y z ⎛⎫- ⎪⎝⎭(2)221111x x x -⎛⎫-÷ ⎪++⎝⎭35. 分式计算:(1)2211497m m m÷--(2)524223m m m m-⎛⎫++⋅ ⎪--⎝⎭36. 计算(1)22y x x xy y x+--;(2)2244111a a a a a a -+⎛⎫÷-+ ⎪--⎝⎭.37. 计算:532224x x x x -⎛⎫--÷ ⎪++⎝⎭.38. 计算:(1)ac bc a b a b---(2)2221a a ab b b b -+⎛⎫-÷ ⎪⎝⎭39. 计算(1)a b a b a b+÷ ⎪+--⎝⎭(2)2112x x x x ⎛⎫++÷+ ⎪⎝⎭40. 化简:(1)22224224x x x x ++-+--(2)(233x x x --+)2239x xx -÷-41. 计算(1)234332223y y x x x y ----⎛⎫⎛⎫⎛⎫÷⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)4222x x xx x x ⎛⎫-÷ ⎪-+-⎝⎭.42. 计算 :(1)2233(1)(1)xx x ---(2)2122()ab ab a b b a ÷⋅--(3)221()4x xyy x y y ⋅-÷-43. 计算(1)222x x x -++(2)2162844x x x x--÷+44. 化简:(1)2243342x x x x x x +---÷--;(2)2111m m m --÷ ⎪--⎝⎭.45. 计算:(1)232433x x y y ⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭;(2)22142a a a ---;(3)22211444a a a a a --÷-+-.46. 化简:2222y y x x y x y xy y ⎛⎫-÷ ⎪--+⎝⎭.47. 计算:(2511a a a a ---)÷41a a -+.48. 计算:2222334422m m m m m m m m ⎛⎫-++÷ ⎪-+--⎝⎭.49. (1)计算:1133a a --+(2)计算:2211x x x x +-⎛⎫+÷ ⎪⎝⎭50. 计算:(1)2a a 1--1a a -;(2)(1+11x -)÷21x x -专题21 分式的加减乘除混合运算特训50道【1题答案】【答案】12x -【解析】【分析】首先运用同分母分式减法法则计算括号内的,再利用分式除法运算法则求解即可.【详解】解:2244222x x x x x x -+⎛⎫-÷ ⎪+++⎝⎭224422x x x x x --+=÷++222244x x x x x -+=⋅+-+2222(2)x x x x -+=⋅+-12x =-.【点睛】本题主要考查了分式的混合运算,解题的关键是熟练运用分式的减法运算法则和乘除运算法则【2题答案】【答案】(1)−1(2)1x x -【解析】【分析】(1)根据同分母分式的减法法则进行计算即可;(2)先计算括号内的,再把除法转换为乘法,再进行约分即可得到答案.【小问1详解】2y x y x y y x-+--2y x y x y x y-=---y xx y-=-=−1;【小问2详解】1211x x x -⎛⎫-÷ ⎪-⎝⎭11=11x x x -⎛⎫- ⎪--⎝⎭2x x -÷2·1x x -=-2x x -1x x =-【点睛】本题主要考查了分式的混合运算,熟练掌握运算法则是解答本题的关键.【3题答案】【答案】44a a +-【解析】【分析】根据分式混合运算法则进行计算即可.【详解】解:27816333a a a a a -+⎛⎫+-÷ ⎪--⎝⎭()22973334a a a a a ⎛⎫--=-⋅ ⎪---⎝⎭()2216334a a a a --=⋅--()()()244334a a a a a +--=⋅--44a a +=-.【点睛】本题主要考查了分式的混合运算,熟练掌握运算法则是解题的关键.【4题答案】【答案】22a -【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【详解】解:原式()()()222222a a a a a a +-+-=÷++2222a a a +=⨯+-22a =-.【点睛】此题考查了分式的混合运算,熟练掌握公式及运算法则是解本题的关键.【5题答案】【答案】ab 【解析】【分析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,最后进行约分化简.【详解】解:22a b a b a b b a ab⎛⎫++÷ ⎪--⎝⎭22a b a b a b ab-+=÷-()()a b a b ab a b a b+-=⨯-+ab =.【点睛】本题主要考查分式的混合运算的知识点,通分和约分是解答本题的关键.【6题答案】【答案】(1)2(2)ba b-+【解析】【分析】(1)直接利用同分母分式的减法法则计算即可得到答案;(2)先将第二项利用除法法则变形,约分后,再进行通分,最后根据同分母分式的减法法则计算即可得到答案.【小问1详解】解:2a b a a b a b----2a b a a b-+=-22a ba b-=-()2a b a b-=-2=;【小问2详解】解:22212a b a b a a ab---÷+()()()21a a b a b a a b a b +-=-⨯+-21a b a b +=-+2a b a b a b a b++=-++2a b a ba b +--=+b a b =-+.【点睛】本题主要考查了分式的混合运算,熟练掌握分式混合运算的法则是解本题的关键.【7题答案】【答案】(1)1m n -; (2)22a a -+.【解析】【分析】(1)根据异分母分式的减法化简即可;(2)根据分式的加减乘除混合运算化简即可.【小问1详解】解:()()222323m n m n m n m n m n m n m n ---=-+-++-()()()()()()23223m n m n m n m n m n m n m n m n -----+==+-+-()()1m n m n m n m n +==+--;【小问2详解】解:()()()22311344111112a a a a a a a a a a --++++⎛⎫-+÷=⋅ ⎪+++⎝⎭+()()()222222a a a a a +--==++.【点睛】本题考查分式的加减乘除混合运算,掌握分式的加减乘除混合运算法则正确化简是解题的关键.【8题答案】【答案】(1)x y -;(2)1m +.【解析】【分析】(1)先分解因式,再进行同分母分式的加减法则运算即可得出结果;(2)先通分,再根据分式的除法法则运算即可得出结果.【小问1详解】解:3223222222x x y xy y xy x y x xy y x y+-+---+-()()()()()2222x x y y x y xy x y x y x yx y -----+=++222x y xy x y x y x y----=()2x y x y --=x y -=;【小问2详解】解:21(1121m m m m -÷+++2121m m m m m ⎛⎫÷ ⎪++⎝⎭=+2211m m m m m⨯++=+1m =+.【点睛】本题考查了分式的加减运算法则,分式混合运算法则,熟记对应法则是解题的关键.【9题答案】【答案】2x x+【解析】【分析】先将括号内的式子相减,再将224x x x --分子、分母分解因式,然后约分即可.【详解】解:221224x x x x x x -⎛⎫-÷ ⎪---⎝⎭()()()22121x x x x x x -+-=⋅-- x 2x+=.【点睛】本题考查了分式加减乘除混合运算及提公因式和公式法分解因式,熟练掌握分式化简的运算法则是解决问题的关键【10题答案】【答案】(1)a b -(2)1a +【解析】【分析】(1)根据同分母分式的加减计算法则求解即可;(2)根据分式的混合计算法则进行求解即可.【小问1详解】解:222a b ab a b a b a b +----222a ab b a b-+=-()2a b a b -=-a b =-;【小问2详解】解:211121a a a a ⎛⎫-÷ ⎪+++⎝⎭()21111a a a a +-=÷++()211a a a a+=⋅+1a =+.【点睛】本题主要考查了分式的加减计算,分式的混合计算,熟知分式的相关计算法则是解题的关键.【11题答案】【答案】2a a -【解析】【分析】根据分式的混合运算法则进行计算即可.【详解】解:原式231()(2)(2)(2)(2)(2)a a a a a a a a +-=-÷+-+-+1(2)(2)(2)1a a a a a a -+=⨯+--2a a =-.【点睛】本题考查了分式的混合运算,熟练掌握分式的混合运算法则是解本题的关键.【12题答案】【答案】1m +【解析】【分析】先计算括号内的分式加法,再计算分式的乘法即可得.【详解】解:原式()()111111m m m m m m +-⎛⎫+⋅ ⎪--⎝⎭-=()()111m m m mm =+-⋅-1m =+.【点睛】本题考查了分式的加法与乘法,熟练掌握分式的运算法则是解题关键.【13题答案】【答案】11a a +-【解析】【分析】原式括号中通分并利用同分母分式的加法法则计算,同时利用除法法则变形,再将分子分母分别因式分解,进而约分得到最简结果即可.【详解】解:原式()()()()12322211a a a a a a a a -+⎡⎤++=+⋅⎢⎥+++-⎣⎦()()22232211a a a a a a a a -+-+++=⋅++-()()22111a a a a ++=+-()()()2111a a a +=+-11a a +=-.【点睛】此题考查了分式的混合运算,熟练掌握分式运算法则是解本题的关键.【14题答案】【答案】12x x ++【解析】【分析】由分式的加减乘除运算,把分式进行化简,即可得到答案.【详解】解:原式()()()22112111x x x x x x x +-⎡⎤+=-÷⎢⎥+++⎣⎦()2221112x x x x x +-+=⋅++12x x +=+;【点睛】本题考查了分式的加减乘除混合运算,分式的化简求值,解题的关键是掌握运算法则,正确的进行化简.【15题答案】【答案】(1)a +1(2)28m m+【解析】【分析】(1)利用同分母分式的加减法计算,再约分即可;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到最简结果.【小问1详解】解:2111a a a ---211a a -=-(1)(1)1a a a +-=-=a +1;【小问2详解】解:2743326m m m m m -⎛⎫--÷ ⎪++⎝⎭(3)(3)7(4)32(3)m m m m m m +---=÷++2972(3)3(4)m m m m m --+=⋅+-(4)(4)2(3)3(4)m m m m m m +-+=⋅+-=28m m+.【点睛】本题主要考查了分式的化简,解题的关键是掌握分式混合运算顺序和运算法则.【16题答案】【答案】13x +【解析】【分析】根据分式的减法和除法可以化简题目中的式子.【详解】解:35(2)22x x x x -÷+---=2345()222x x x x x --÷----=23922x x x x --÷--=322(3)(3)x x x x x --⨯-+-=13x +【点睛】此题考查了分式的化简,熟练掌握运算法则是解本题的关键.【17题答案】【答案】23x -【解析】【分析】先算括号内的异分母分式加法,再化除为乘进行化简.【详解】解:原式2(3)43(3)(3)1x x x x x -++=⋅+--2(1)3(3)(3)1x x x x x -+=⋅+--23x =-.【点睛】本题考查分式的化简,熟练掌握最简公分母的寻找规律、因式分解是关键.【18题答案】【答案】-b a b+ 【解析】【详解】解:原式=()()()2212a b a b a b a b a b +--⋅++- =21a b a b +-+ =2a b a b a b a b++-++=b a b -+;【19题答案】【答案】1x 【解析】【分析】先把分子与分母进行因式分解,再把除法转换成乘法进行约分,最后再进行分式的加法运算.【详解】解:22211121x x x x x -÷+--+=221(1)1(1)(1)x x x x x--⨯++-=211(1)x x x x --++=2(1)(1)x x x x --+=1x.【20题答案】【答案】(1)22x x - (2)22x +【解析】【分析】(1)利用提公因式和平方差公式进行计算即可;(2)利用提公因式和平方差公式进行计算即可.【小问1详解】22421x x x--+()()()42111x x x x =-+-+()()()42111x x x x x --=+-()()2211x x x x +=+-22x x=-;【小问2详解】222228224x x x x x ⎛⎫+--÷ ⎪--⎝⎭()()22222228224x x x x x x x +-⎡⎤+=-÷⎢⎥---⎣⎦()()()2222222244x x x x x x +-⎛⎫=⋅ ⎪⎝⎭-+-+()()()22222244x x x x x +-⋅-+=+22x +=.【点睛】本题考查了分式的混合运算,熟练运用分式运算法则和平方差公式是解题的关键.【21题答案】【答案】1x 【解析】【分析】把原式中的除法转化为乘法,将分子分母经过分解因式、约分把结果化为最简即可.【详解】解:原式()()221111x x x x x x --=⨯+--()21111x x x x x -=⨯+--()()1112x x x x x =+---()11x x x =--1x =.【点睛】本题考查的知识点是分式的混合运算,要注意运算顺序,有括号先算括号里的,有除法的把除法转化为乘法来做,再经过分解因式、约分把结果化为最简.【22题答案】【答案】2m m -【解析】【分析】先将括号内的式子通分,再将分式除法变形为分式乘法,最后约分化简即可.【详解】解:22242⎛⎫-÷ ⎪--+⎝⎭m m m m m m ()()222222m m m m m m m +-=÷+-+()()2222m m m m m+=⋅+-2m m =-.【点睛】本题考查分式的混合运算,掌握分式的运算顺序和运算法则是解题的关键.【23题答案】【答案】1【解析】【分析】先把各个分式的分子、分母因式分解,将原式括号中两项通分并利用同分母分式的加法法则计算,再利用除法法则变形,约分即可得到结果.【详解】解:221(1)211x x x x x -÷+-+-2(1)11()(1)11x x x x x x --=÷+---2(1)(1)1x x x x x -=÷--2(1)1(1)x x x x x --=- 1=.【点睛】本题考查了分式的混合运算,熟练掌握运算顺序和每一步的运算法则是解答本题关键.【24题答案】【答案】(1)1a b - (2)12x -【解析】【分析】(1)先计算括号内的分式的加减运算,再把除法转化为乘法,约分后可得结果;(2)先计算除法运算,再计算分式的减法运算即可得到答案.【小问1详解】解:11a b a b b a ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭22b a a b ab ab ab ab ⎛⎫⎛⎫=+÷- ⎪ ⎪⎝⎭⎝⎭22a b a b ab ab+-=÷()()a b ab ab a b a b +=+- 1a b=-.【小问2详解】2214422x x x x x x x -÷--+--()222122x x x x x x --=⋅---122-=---x x x x 12-+=-x x x 12x =-.【点睛】本题考查的是分式的混合运算,掌握“分式的混合运算的运算顺序”是解本题的关键.【25题答案】【答案】(1)7169m n t(2)12x -【解析】【分析】(1)先计算乘方,再计算除法即可;(2)先按分式除法法则计算,再按分式减法法则计算即可.【小问1详解】解:原式622169m n n mt t =÷622169m n mt n t =⋅7169m n t=;【小问2详解】解:原式()()()2221222x x x xx x x +-+=⋅-+--122x x x x +=---12x =-.【点睛】本题考查分式混合运算,熟练掌握分式运算法则是解题的关键.【26题答案】【答案】2x +【解析】【分析】先把括号内的式子通分,在运用分式乘除法法则进行解题即可.【详解】解:原式4(1)112x x x x x x -+--=⋅--242x x x x -+-=-(2)(2)2x x x -+=-2x =+.【点睛】本题考查分式的混合运算,掌握运算法则和运算顺序是解题的关键.【27题答案】【答案】(1)1;(2)28a +.【解析】【分析】(1)根据同分母分式的减法法则计算即可;(2)先把()24a -因式分解,再利用乘法分配律计算,然后合并同类项即可求解.【小问1详解】解:11x x x+-11x x+-=x x=1=;【小问2详解】解:()231422a a a ⎛⎫-⋅- ⎪-+⎝⎭()()312222a a a a ⎛⎫=-⋅+- ⎪-+⎝⎭()()()()31222222a a a a a a =⋅+--⋅+--+()()322a a =+--362a a =+-+28a =+.【点睛】本题考查了分式的加减乘除混合运算,分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【28题答案】【答案】21a a --【解析】【分析】先计算括号内的异分母分式减法,同时将除法化为乘法,将分式的分母分子分解因式,再计算乘法即可.【详解】原式222312244a a a a a a --⎛⎫=+÷ ⎪---+⎝⎭2211244a a a a a +-=÷--+()()()221211a a a a a -+=⨯-+-21a a -=-【点睛】此题考查了分式的混合运算,正确掌握分式的混合运算法则是解题的关键.【29题答案】【答案】41a -【解析】【分析】根据分式的运算法则,先去括号,再算除法.【详解】解:原式()()()()()()221111111a a a a a a a a ⎡⎤+-+=-⋅⎢⎥-+-+⎢⎥⎣⎦()()()()222121111a a a a a a a a⎡⎤++--++⎢⎥=⋅-+⎢⎥⎣⎦()()4111a a a a a +=⋅-+41a =-.【点睛】本题考查分式的混合运算.熟练掌握分式的运算法则,是解题的关键.【30题答案】【答案】(1)24a b (2)2x-【解析】【分析】(1)根据整式的混合运算法则计算即可;(2)根据分式的混合运算法则计算即可.【小问1详解】解:原式23382ab a b =⋅24a b=;【小问2详解】解:原式()()()()22xy x y x y x y x y x y x y x y ⎡⎤-+=÷-⎢⎥-+--+⎢⎥⎣⎦22222xy y x y x y -=÷--22222xy x y x y y-=⋅--2x =-.【点睛】本题考查了整式和分式的混合运算,解题的关键是注意运算顺序.【31题答案】【答案】13m -【解析】【分析】先计算括号内的,再计算除法即可求解.【详解】解:原式()233=22m m m m --÷--()23223m m m m --=⋅--13m =-.【点睛】本题考查分式的混合运算,熟练掌握分式运算法则是解题的关键.【32题答案】【答案】(1)21x + (2)23x x -+【解析】【分析】(1)先将分式211x x --约分变为11x +,然后按照同分母分式加减运算法则进行计算即可;(2)按照分式混合运算法则进行计算即可.【小问1详解】解:21111x x x -+-+()()11111x x x x -++-+=1111x x =+++21x =+;【小问2详解】解:22169124x x x x ++⎛⎫+÷ ⎪+-⎝⎭()()()2321222x x x x x +++=÷++-()()()222323x x x x x +-+==⋅++23x x -=+.【点睛】本题主要考查了分式混合运算,解题的关键是熟练掌握分式混合运算法则,准确进行计算.【33题答案】【答案】x【解析】【分析】根据分式的混合运算法则进行计算即可.【详解】解:22361142x x x x x ++⎛⎫÷- ⎪--⎝⎭3(2)(1)(2)(2)(2)2x x x x x x x ++--=÷+--3322x x x =÷--3223x x x -=⋅-x=【点睛】本题主要考查了分式的混合运算,熟练掌握分式混合运算的法则是解题的关键.【34题答案】【答案】(1)6249x y z(2)11x x -+【解析】【分析】(1)根据分式的乘方法则计算即可;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到最简结果.【小问1详解】解:2233622243939x y x y x y z z z ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭==;【小问2详解】解:221111x x x -⎛⎫-÷ ⎪++⎝⎭2121111x x x x x ++⎛⎫=-⋅ ⎪++-⎝⎭21111x x x x -+⎛⎫=⋅ ⎪+-⎝⎭11x x -=+.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.【35题答案】【答案】(1)7m m -+ (2)26--m 【解析】【分析】(1)根据分式的除法运算法则求解即可;(2)根据分式的混合运算法则求解即可.【小问1详解】2211497m m m÷--()()()1777m m m m =⨯-+-7m m =-+;【小问2详解】524223m m m m-⎛⎫++⋅ ⎪--⎝⎭()222923m m m m-⎛⎫-=⋅ ⎪--⎝⎭()()()332223m m m m m+--=⋅--26m =--【点睛】本题考查的是分式混合运算,熟知分式混合运算的法则是解答此题的关键.【36题答案】【答案】(1)y x x +-(2)22aa -【解析】【分析】(1)根据平方差公式对分式进行化简即可;(2)根据平方差公式和完全平方公式对分式进行化简即可.【小问1详解】解:22y x x xy y x+--()()22y x x x y x x y =---()22y x x x y -=-()()()y x y x x x y -+=-y x x +=-;【小问2详解】解:2244111a a a a a a -+⎛⎫÷-+ ⎪--⎝⎭()()()22211111a a a a a a ⎡⎤--=÷-⎢⎥---⎢⎥⎣⎦()()222121111a a a a a a a -⎛⎫-+=÷- ⎪---⎝⎭()()222211a a a a a a -⎛⎫-=÷- ⎪--⎝⎭()()()22112a a a a a a --=-⨯--22a a -=.【点睛】本题考查了分式的化简,正确的计算是解决本题的关键.【37题答案】【答案】26x +【解析】【分析】先把括号内通分化简,再把除法转化为乘法约分化简.【详解】解:原式24532224x x x x x ⎛⎫--=-÷ ⎪+++⎝⎭293224x x x x --=÷++()()()332232x x x x x +-+=⨯+-26x =+【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解答本题的关键.分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先算乘除,再算加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【38题答案】【答案】(1)c (2)1b a-【解析】【分析】(1)根据分式的加减法则进行计算即可;(2)先算括号里的,根据除法法则把除法变乘法,利用完全平方公式将分母因式分解,最后约分化简即可.【小问1详解】解:原式ac bca b-=-()a b c a b-=- c =.【小问2详解】解:原式2()b a b b a b -=⨯-1b a =-.【点睛】本题考查了解分式方程,分式的加减法则的应用,能熟记知识点的内容是解此题的关键.【39题答案】【答案】(1)2a b+ (2)11x +【解析】【分析】(1)将括号内通分,括号外除法改为乘法,再整理约分即可;(2)将括号内通分,再利用完全平方公式整理,最后将除法改为乘法并约分即可.【小问1详解】解:11a a b a b a b⎛⎫+÷ ⎪+--⎝⎭)())(()(a b a b a b a a b a b -=+⨯--++21aa ab =⨯+2a b=+;【小问2详解】解:2112x x x x ⎛⎫++÷+ ⎪⎝⎭2121x x x x x+++=÷21(1)x x x x +=⨯+11x =+.【点睛】本题考查分式的化简.掌握分式的混合运算法则是解题关键.【40题答案】【答案】(1)22x x -+; (2)9x-【解析】【分析】(1)先通分化为同分母分式加减法,进而即可求解;(2)先算括号里分式的减法,再把除法化为乘法,进而即可求解.【小问1详解】解:22 224224xx x x++-+--=()()2222 22224 444 x x xx x x-++----+=()()22222244x x xx----++=22444 x xx---=() ()()2222xx x---+=22xx-+;【小问2详解】解:2223339x x x xx x⎛⎫---÷⎪+-⎝⎭=22229339 x x x x x x⎛⎫---÷⎪+-⎝⎭=()()()33 933x xx x x+--⋅+-=9 x -.【点睛】本题主要考查分式的混合运算,熟练掌握通分和约分以及分式的混合运算法则是关键.【41题答案】【答案】(1)1015x y;(2)12x-+.【解析】【分析】(1)先乘方,再根据分式的乘除法求解即可;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果即可.【小问1详解】解:234332223y y x x x y ----⎛⎫⎛⎫⎛⎫÷⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭6984612y y x x x y---=÷⋅6684912y x x x y y ---=⋅⋅1015x y =;【小问2详解】解:4222x x x x x x⎛⎫-÷ ⎪-+-⎝⎭22224(2)(2)(2)(2)2x x x x x x x x x x⎡⎤+-=-÷⎢⎥+-+--⎣⎦4(2)(2)(2)4x x x x x--=⋅+-12x =-+.【点睛】本题考查了分式的化简,正确对分式进行通分、约分是关键.【42题答案】【答案】(1)31x - (2)1a b- (3)4()x y x y -【解析】【分析】(1)根据分式的减法运算进行计算即可求解;(2)根据分式的乘除法进行计算即可求解;(3)根据分式的加减乘除法进行计算即可求解.【小问1详解】解:2233(1)(1)x x x ---()2331x x -=-()()2311x x -=-31x =-;【小问2详解】解:2122()ab ab a b b a ÷⋅--()2122a b ab ab a b -=⨯⨯-1a b=-;【小问3详解】解:221(4x x y y x y y ⋅-÷-22414x x y x y y y=⨯-⨯-()()2244x x x y y x y --=-()4xy y x y =-.【点睛】本题考查了分式的混合运算,掌握分式的性质是解题的关键.【43题答案】【答案】(1)42x + (2)2x【解析】【分析】(1)先通分,再计算即可;(2)先因式分解,除法改为乘法,再约分即可;【小问1详解】解:222x x x -++2(2)2(2)222x x x x x x x ++=-++++222224x x x x x --++=+42x =+;【小问2详解】2162844x x x x--÷+(4)(4)442(4)x x x x x -+=⨯+-2x =.【点睛】本题考查了分式的混合运算.掌握分式的混合运算法则是解题关键.【44题答案】【答案】(1)22x -+ (2)12m m+-【解析】【分析】(1)先把除法变乘法,再进行分式的混合运算;(2)先把整式化成分式的形式,再进行分式的混合运算.【小问1详解】解:原式=()()2432223x x x x x x x +--⋅+---=()()24222x x x x x +-+--=()()()24222x x x x x +-++- =()()()2222x x x --+- 22x =-+;【小问2详解】解:原式()()2111112m m m m m m +-⎛⎫+-⋅ ⎪-⎝⎭=()()()2211112m m m m m m--+-⋅-=()()11112m m m m+-⋅-=12m m +-.【点睛】本题考查了分式的混合运算,熟练掌握分式运算法则是解题的关键.【45题答案】【答案】(1)316y x (2)12a + (3)222a a a +--【解析】【分析】(1)先平方和立方运算,根据除以一个数等于乘以这个数的倒数,化简即可求得结果;(2)根据平方差公式通分,运算进行化简即可求得结果;(3)根据完全平方公式、平方差公式和除法法则进行运算即可求得结果.【小问1详解】解:原式=2323464927x x y y ÷=2323427964x y y x ⨯=316y x;【小问2详解】解:原式=()()()()222222a a a a a a +--+-+=()()2222a a a a ---+=()()222a a a --+=12a +;【小问3详解】解:原式=()()()()()2221112a a a a a a +--⨯+--=()()221a a a +-+=222a a a +--.【点睛】本题考查了完全平方式、平方差公式、分式的减法与除法,熟练掌握运算法则是解题的关键.【46题答案】【答案】2y x y-【解析】【分析】先通分算括号内的减法,同时将除法变成乘法,然后把分子、分母能因式分解的进行因式分解,最后约分即可.【详解】解:原式()()()()()()2y x y y x y y x y x y x y x y x ⎡⎤++=-⋅⎢⎥-+-+⎢⎥⎣⎦()()()y x y xyx y x y x +=⋅-+2y x y=-.【点睛】本题考查分式的化简,解题的关键是掌握分式的运算法则.【47题答案】【答案】1a a -【解析】【分析】先算括号内的分式减法,然后计算括号外的分式除法即可.【详解】解:254111a a a a a a -⎛⎫-÷ ⎪--+⎝⎭=()()()151114a a a a a a a +-++-- =()()()41114a a a a a a -++-- =1a a -.【点睛】本题考查分式的混合运算,熟练掌握分式的运算法则是解答本题的关键.【48题答案】【答案】1m【解析】【分析】先计算括号内的分式加法,再计算分式的除法即可得.【详解】解:原式()()()2233222m m m m m m m ⎡⎤-+=+÷⎢⎥---⎢⎥⎣⎦()32223m m m m m m -⎛⎫=+⋅ ⎪--+⎝⎭()3223m m m m m +-=⋅-+1m=.【点睛】本题考查了分式的加法与除法,熟练掌握分式的运算法则是解题关键.【49题答案】【答案】(1)269a - (2)21x -【解析】【分析】(1)利用异分母分式加减法法则,进行计算即可解答;(2)先利用异分母分式加减法法则计算括号里,再算括号外,即可解答.【详解】解:(1)1133a a --+()()3333a a a a +-+=-+ ()()633a a =+-=269a -;(2)2211x x x x +-⎛⎫+÷ ⎪⎝⎭2x x x++=•()()11x x x +- ()21x x +=•()()11xx x +- 21x =-.【点睛】本题考查了分式的混合运算,熟练掌握因式分解是解题的关键.【50题答案】【答案】(1)a(2)x +1【解析】【分析】根据分式的四则混合运算和化简可以求得.【小问1详解】解:原式=21a a a --,=(1)1a a a --,=a ;【小问2详解】解:原式=(1)(1)1x x xx x+-´-,=1x .【点睛】本题考查了分式的四则混合运算和化简,熟练的掌握分式运算是解决此题的关键.。
分式的加减法练习题及答案
分式的加减法练习题及答案一、基础练习题1. 计算下列分式的和或差:(1) 1/2 + 1/3(2) 3/5 - 1/4(3) 2/3 + 5/6(4) 7/8 - 2/92. 用分式表示下列各数:(1) 八分之三(2) 六分之五(3) 三分之六(4) 十分之一3. 简化下列分式:(1) 4/8(2) 6/12(3) 9/27(4) 10/20二、深度练习题1. 小明喝了1/2瓶可乐,小红喝了3/4瓶可乐,两人一共喝了多少瓶可乐?解答:小明和小红喝的可乐瓶数之和为 1/2 + 3/4 = 2/4 + 3/4 = 5/4 瓶可乐。
2. 小华从家到学校有4/5小时的路程,小明从家到学校有3/4小时的路程,两人谁比较早到学校?解答:比较两人到学校所需的时间,3/4小时 < 4/5小时,即小明比小华更早到学校。
3. 小明在数学考试中获得了4/5的分数,小红获得了3/4的分数,两人的总分是多少?解答:小明和小红的总分为 4/5 + 3/4 = 20/25 + 15/20 = 35/25 = 7/5。
三、答案:一、基础练习题1.(1) 1/2 + 1/3 = (3 + 2)/6 = 5/6(2) 3/5 - 1/4 = (12 - 5)/20 = 7/20(3) 2/3 + 5/6 = (4 + 5)/6 = 9/6 = 3/2(4) 7/8 - 2/9 = (63 - 16)/72 = 47/722.(1) 八分之三 = 3/8(2) 六分之五 = 5/6(3) 三分之六 = 6/3 = 2(4) 十分之一 = 1/103.(1) 4/8 = 1/2(2) 6/12 = 1/2(3) 9/27 = 1/3(4) 10/20 = 1/2二、深度练习题1. 小明和小红一共喝了 5/4 瓶可乐。
2. 小明比小华更早到学校。
3. 小明和小红的总分为 7/5。
希望以上练习题及答案对你有帮助!如有其他问题可以继续咨询。
分式的加减法练习题及答案
分式的加减法练习题及答案分式的加减法练习题及答案分式是数学中的一个重要概念,它在实际生活中有着广泛的应用。
掌握分式的加减法是学习数学的基础,也是解决实际问题的关键。
本文将给出一些分式的加减法练习题及答案,帮助读者巩固和提高自己的分式运算能力。
1. 加法练习题:a) 3/4 + 1/2 = ?b) 2/3 + 5/6 = ?c) 7/8 + 3/4 = ?d) 1/5 + 2/3 = ?e) 4/7 + 3/5 = ?答案:a) 3/4 + 1/2 = 3/4 + 2/4 = 5/4b) 2/3 + 5/6 = 4/6 + 5/6 = 9/6 = 3/2c) 7/8 + 3/4 = 7/8 + 6/8 = 13/8d) 1/5 + 2/3 = 3/15 + 10/15 = 13/15e) 4/7 + 3/5 = 20/35 + 21/35 = 41/352. 减法练习题:a) 3/4 - 1/2 = ?b) 2/3 - 5/6 = ?c) 7/8 - 3/4 = ?d) 1/5 - 2/3 = ?e) 4/7 - 3/5 = ?答案:a) 3/4 - 1/2 = 3/4 - 2/4 = 1/4b) 2/3 - 5/6 = 4/6 - 5/6 = -1/6c) 7/8 - 3/4 = 7/8 - 6/8 = 1/8d) 1/5 - 2/3 = 3/15 - 10/15 = -7/15e) 4/7 - 3/5 = 20/35 - 21/35 = -1/35通过以上练习题,我们可以看到分式的加减法运算并不复杂,只需要将分母相同的分式进行运算即可。
当分母不同的时候,我们需要找到一个最小公倍数,将分式的分母转换为最小公倍数,然后进行运算。
在减法中,我们需要特别注意结果可能为负数的情况。
除了直接计算分式的加减法,我们还可以通过化简分式来简化运算。
化简分式可以使分子和分母的数值变小,从而减少计算的复杂度。
例如,对于题目1c中的7/8 + 3/4,我们可以将3/4化简为6/8,然后相加得到13/8。
分式加减练习题及答案
分式加减练习题及答案分式加减练习题及答案分式是数学中的一个重要概念,它可以帮助我们更好地理解和处理数值之间的关系。
在日常生活和学习中,我们经常会遇到需要进行分式的加减运算的情况。
下面,我将给大家提供一些分式加减的练习题及答案,希望能够帮助大家加深对这一概念的理解。
练习题一:1. 计算:3/4 + 2/5 = ?2. 计算:7/8 - 3/10 = ?3. 计算:5/6 + 1/3 = ?4. 计算:2/3 - 1/4 = ?5. 计算:4/5 + 3/10 = ?答案一:1. 3/4 + 2/5 = (3×5 + 2×4) / (4×5) = 23/202. 7/8 - 3/10 = (7×10 - 3×8) / (8×10) = 49/803. 5/6 + 1/3 = (5×3 + 1×6) / (6×3) = 23/184. 2/3 - 1/4 = (2×4 - 1×3) / (3×4) = 5/125. 4/5 + 3/10 = (4×10 + 3×5) / (5×10) = 47/50练习题二:1. 计算:2/3 + 1/2 = ?2. 计算:5/8 - 1/4 = ?3. 计算:3/5 + 2/7 = ?4. 计算:4/9 - 1/6 = ?5. 计算:1/2 + 1/3 = ?答案二:1. 2/3 + 1/2 = (2×2 + 1×3) / (3×2) = 7/62. 5/8 - 1/4 = (5×4 - 1×8) / (8×4) = 3/83. 3/5 + 2/7 = (3×7 + 2×5) / (5×7) = 29/354. 4/9 - 1/6 = (4×6 - 1×9) / (9×6) = 15/54 = 5/185. 1/2 + 1/3 = (1×3 + 1×2) / (2×3) = 5/6通过以上的练习题,我们可以看到,分式的加减运算实际上就是对分子和分母进行相应的运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的加减法提高题
一、填空题:
1. 分式xy 2,y x +3,y x -4
的最简公分母是________。
2. 计算:2
22321xyz z xy yz x +-=__________.
3. 计算:)11(1x x x x -+-=___________.
4. 已知22y x M -=2222y x y xy --+y
x y x +-,则M=____________.
5. 若(3-a )2与|b -1|互为相反数,则b
a -2
的值为____________. 6. 如果x <y <0,那么
x
x ||+xy xy |
|化简结果为____________. 7. 计算
22+-x x -22
-+x x =____________; 化简x 1+x 21+x
31等于 . 8. 使代数式
1x 1
1x 11
x 12
-+++-等于0的x 的值是 . 9. 计算363723822-++---+-+x x x x x x x = ; (x 2-1)(1
111+--x x -1)= . 10.
3
2329122
++-+-m m m = . =-+-+-ac a
c bc c b ab b a . 11. 已知31
1
=-
y x
,则y xy x y xy x ---+55的值为 ; 若ab =1,则1
1++
+b b a a 的值为 . 12. 已知:0652
2
=+-y xy x ,那么y x y x +-的值为 ;若31
=+x x ,1
242++x x x =__________.
二、判断正误并改正:
1. a
b
a b a a b a a b a --+=--+=0( ) 2.
1
1
)1(1)1(1)1()1(1)1(2
2
2
2
2
-=
--=
--
-=
-+
-x x x x x x x x x ( ) 3.
)
(212121222
2
y x y x +=
+
( ) 4.
2
22b a c b a c b a c +=-++( ) 三、选择题: 1.分式
()2
11
-+x x ,
()3
13x x
-,
1
2
-x 的最简公分母是( ) A .1-x B .()3
1-x C .()21-x D .()21-x ()3
1x -
2.如果分式
b a b a +=
+111,那么a
b
b a +的值( ) A .1 B .-1 C .2 D .-2 3.若x
x 1
=,则分式36224+-+x x x 的值为( ) A .0 B . 1 C .-1 D .-2
4. 如果x >y >0,那么
x y
x y -++11的值是( ) A.零 B.正数 C.负数
D.整数
5. 甲、乙两人分别从相距8千米的两地同时出发,若同向而行,则t 1小时后,快者追上慢者;若相向而行,则t 2小时后,两人相遇,那么快者速度是慢者速度的( )
A.
2
11
t t t + B.
121t t t + C.2
121t t t
t +- D.
2
12
1t t t t -+
6. 计算:x+1-123+-x x x 的结果是( ) A .113+x B .113-x C .112+-x x D .1
1
2++x x
7. 若x -y=xy ≠0,那么
x
1-y 1
等于 ( ) A .xy 1 B .y x -1 C .0 D .-1 8. 化简ab b a 22--2
2a
ab b ab --得 ( ) A .b a B .ab b a 222+ C .a 2
D .a -2b 9. 计算2
111111x x ⎛⎫⎛⎫+
÷+ ⎪ ⎪--⎝⎭⎝⎭ 的结果为( ) A.1 B.x+1 C.1x x + D.1
1
x - 10.已知x 为整数,且分式222
1
x x +-的值为整数,则x 可取的值有( ) A.1个 B.2个 C.3个 D.4个 11. 化简11x y y x ⎛⎫⎛⎫-
÷- ⎪ ⎪⎝⎭
⎝⎭的结果是( ) A.1 B.x y C.y
x D.-1 四、解答题
1. 计算: (1)(2122
2---+x x x x )÷x 2; (2)13112-+-+x x x ·3
41222+++-x x x x
(3 ) x x x x 3922+++9
6922++-x x x (4)))((1))((1))((1b c a c c a b c b b c a b a a --++--++--+
(5)4
)223(2-÷+--x x
x x x x (6)1311112+÷
--+x x x x )(
(7)
2
222
233
2a
b b ab ab b a a b b a b -+÷+-+- (8).
(9)11)11(2+-+-x x x x (10)(1+1x 1-)÷1
x x 2-
(11)
2312+-x x +6512+-x x +3
41
2
+-x x ; (12)⎪⎭⎫ ⎝⎛--+÷--25223x x x x
(13) (x x -y -2y x -y ) xy x -2y ÷(1x +1y ). (14)1222222-⋅⎥⎦
⎤⎢⎣⎡-+-+--n mn
n m n mn n mn m n m
2. 已知a -2b=2(a ≠1)求b
a b a b a 2442
22
2++---a 2+4ab -4b 2的值.
222222
(1)2a b a b
a b ab ab -+÷+-
3. 化简求值:当x=
2
1时,求1
1
21122-+-++-x x x x x 的值.
4.先化简,再求值:y x y -+y x x y 2232-·2
22y
xy x y +-,其中x=32
,y=-3.
5. 阅读下列题目的计算过程:
23232(1)
11(1)(1)(1)(1)
x x x x x x x x x ----=--++-+- ① =x-3-2(x-1) ② =x-3-2x+2 ③ =-x-1 ④
(1)上述计算过程,从哪一步开始出现错误?请写出该步的代号:______. (2)错误的原因是____________________.
(3)本题目的正确结论是______________________________. 6. 已知2
1)2)(1(12++-=+-+x B
x A x x x ,求A 、B 的值.
7. 已知x 为整数,且9
18232322-++-++x x x x 为整数,求所有符合条件的x 值的和. 8. 已知13ab a b =+,14bc b c =+,15ac a c =+,求代数式
abc
ab bc ca
++的值.。