立体几何大题-线面平行与垂直的证明题
空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。
理解和掌握这些关系,对于解决相关的几何问题具有关键作用。
下面我们通过一些例题来深入探讨,并对相关知识点进行总结。
一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。
2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。
证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。
又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。
(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。
2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。
证明:连接 AC 交 BD 于 O,连接 MO。
因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。
又因为 M 是 PC 的中点,所以MO∥PA。
因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。
(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。
2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。
证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。
二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。
第8章立体几何专题4 垂直的证明常考题型专题练习——【含答案】

1垂直的证明【方法总结】1、证明线面垂直的方法:①利用线面垂直定义:如果一条直线垂直于平面内任一条直线,则这条直线垂直于该平面;②用线面垂直判定定理:如果一条直线与平面内的两条相交直线都垂直,则这条直线与平面垂直;③用线面垂直性质:两条平行线中的一条垂直于一个平面,则另一条也必垂直于这个平面.2、证明线线(或线面)垂直有时需多次运用线面垂直的定义和线面垂直的判定定理,实现线线垂直与线面垂直的相互转化.3、证明面面垂直一般要先找到两个面的交线,然后再在两个面内找能与交线垂直的直线,最后通过证明线面垂直证明面面垂直。
【分类练习】考向一 线面垂直例1、在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AB BC ⊥,1AB BC ==,2DC =,点E 在PB 上求证:CA 平面PAD;【答案】(1)证明见解析;(2)2.【解析】(1)过A作AF⊥DC于F,则CF=DF=AF,所以∠DAC=90°,即AC⊥DA,又PA⊥底面ABCD,AC⊂面ABCD,所以AC⊥PA,因为PA、AD⊂面PAD,且PA∩AD=A,所以AC⊥平面PAD.例2、如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.11(1)证明:BE ⊥平面EB 1C 1;解析:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .例3、如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点C 1B 1A 1GFE DCBA求证:AC ⊥平面BEF ;1【解析】(1)在三棱柱111ABC A BC -中,∵1CC ⊥平面ABC , ∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点, ∴AC ⊥EF . ∵AB BC =. ∴AC ⊥BE , ∴AC ⊥平面BEF .例4、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:BD ⊥平面PAB ;【解析】因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以BD ⊥PA .在直角梯形ABCD 中,12BC CD AD ==,由题意可得2AB BDBC==,所以222AD AB BD=+,所以BD AB⊥.因为PA AB A=,所以BD⊥平面PAB.【巩固练习】1、如图,在三棱柱ABC-A1B1C1中,AB=AC,A1在底面ABC的射影为BC的中点,D 是B1C1的中点.证明:A1D⊥平面A1BC;【答案】见解析【解析】证明:设E为BC的中点,连接A1E,AE.由题意得A1E⊥平面ABC,所以A1E⊥AE.11因为AB =AC ,所以AE ⊥BC.故AE ⊥平面A 1BC.连接DE ,由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE =B 1B,从而DE ∥A 1A 且DE =A 1A ,所以AA 1DE 为平行四边形.于是A 1D ∥AE. 因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC.2.(2019·上海格致中学高三月考)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .(1)证明:PA ∥平面EDB ; (2)证明:PB ⊥平面EFD .【答案】(1)详见解析;(2)详见解析.【解析】(1)设AC 与BD 相交于O ,连接OE ,由于O 是AC 中点,E 是PC 中点,所以OE 是三角形PAC 的中位线,所以//PA OE ,而PA ⊂平面EDB ,OE ⊂平面EDB ,1所以PA ∥平面EDB.(2)由于PD ⊥底面ABCD ,所以PD BC ⊥,由于,BC CD PD CD D ⊥⋂=,所以BC ⊥平面PCD ,所以BC DE ⊥.由于DP DC =且E 是PC 中点,所以DE PC ⊥,而PC BC C ⋂=,所以DE ⊥平面PBC ,所以DE PB ⊥.依题意EF PB ⊥,DE EF E =,所以PB ⊥平面EFD .3.(2019·江苏高三月考)如图,在四棱锥P ABCD -中,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,OP OC =,E 为PC 的中点,PA PD ⊥.(1)求证://PA 平面BDE ; (2)求证:PA ⊥平面PCD 【答案】(1)详见解析(2)详见解析 【解析】(1)连结OE .1因为四边形ABCD 是平行四边形,AC ,BD相交于点O ,所以O 为AC 的中点. 因为E 为PC 的中点,所以//OE PA .因为OE ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE .(2)因为OP OC =,E 为PC 的中点,所以OE PC ⊥. 由(1)知,//OE PA ,所以PA PC ⊥.因为PA PD ⊥,PC , PD ⊂平面PCD ,PC PD P ⋂=,所以PA ⊥平面PCD .考向二 面面垂直例1、如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,且2AB =,1BC =,E ,F 分别是AB ,PC 的中点,PA DE ⊥.旗开得胜1(1)求证://EF 平面PAD ; (2)求证:平面PAC ⊥平面PDE . 【答案】(1)详见解析(2)详见解析【解析】证明:(1)取PD 中点G ,连AG ,FG ,F ,G 分别是PC ,PD 的中点//FG CD ∴,且12FG CD = 又E 为AB 中点//AE CD ∴,且12AE CD =//AE FG ∴,AE FG =四边形AEFG 为平行四边形//EF AG ∴,又EF ⊄平面PAD ,AG ⊂平面PAD //EF ∴平面PAD(2)设AC DE H =由AEHCDH ∆∆及E 为AB 中点旗开得胜1得12AH AE CH CD == 又2AB =,1BC =3AC ∴=,1333AH AC ==23AH AB AE AC ∴==又BAD ∠为公共角GAE BAC ∴∆∆90AHE ABC ∴∠=∠=︒即DE AC ⊥又DE PA ⊥,PAAC A =DE ⊥平面PAC ,又DE ⊂平面PDE∴平面PAC ⊥平面PDE例2、如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;MD CBA【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为CD上异于C,D的点,且DC为直径,所以DM⊥CM.又BC CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.例3、如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=3π,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=AD,点M在线段EF上。
高考数学复习—立体几何:(二)空间直线平面关系判断与证明—平行与垂直关系证明(试题版)

【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质【典型例题】[例1]►(1)如图,在四面体P ABC中,点D,E,F,G分别是棱AP,AC,BC,PB的中点.求证:DE∥平面BCP .►(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC . ►(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF .[例2]►(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG .►(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:①EG∥平面BB1D1D;②平面BDF∥平面B1D1H .【变式训练】1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.2.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH .3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F .题型2:直线、平面垂直的判断及性质【典型例题】[例1]►(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE .►(2)如图所示,在四棱锥P-ABCD中,AB⊥平面P AD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△P AD中AD边上的高.①证明:PH⊥平面ABCD;②证明:EF⊥平面P AB.[例2]►(1)[2014·辽宁文]如图所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(I)求证:EF⊥平面BCG;(II)求三棱锥D -BCG的体积.►(2)(2012·课标全国)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(I)证明:平面BDC1⊥平面BDC;(II)平面BDC1分此棱柱为两部分,求这两部分体积的比.►(3)(2015·大庆质检) 如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.①求证:PC⊥BC;②求点A到平面PBC的距离.【变式训练】1.如图,四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,点E 在线段AD上,且CE∥AB. (1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.2.[2014·福建文]如图所示,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.3.(2015·唐山统考)如图,在三棱锥P-ABC中,P A=PB=AB =BC,∠PBC=90°,D为AC的中点,AB⊥PD.(1)求证:平面P AB⊥平面ABC;(2)如果三棱锥P-BCD的体积为3,求P A.4.[2014·课标Ⅰ文]如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.☆题型3:直线、平面平行与垂直关系的综合【典型例题】[例1]►(1)已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是(写出序号).①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.►(2)(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α►(3)(2015·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面►(4)(2013·课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l►(5)(2016·课标Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号) [例2]►(1)(2014·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(I)求证:平面ABE⊥平面B1BCC1;(II)求证:C1F∥平面ABE;(III)求三棱锥E-ABC的体积.►(2)[2014江苏文]如图,三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(I)直线P A∥平面DEF;(II)平面BDE⊥平面ABC.[例3]►(1)[2014·陕西文]四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(I)求四面体ABCD的体积;(II)证明:四边形EFGH是矩形.►(2)(2012·北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(I)求证:DE∥平面A1CB;(II)求证:A1F⊥BE;(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【变式训练】1.(2016·浙江联考)已知a,b,c为三条不同的直线,α,β是空间两个平面,且a⊂α,b⊂β,α∩β=c.给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有α⊥β. 其中正确命题的个数是()A.0B.1C.2D.32.(2012·四川)下列命题正确的是()A.若两直线和同一平面所成的角相等,则这两条直线平行B.若一平面内有三点到另一平面的距离相等,则这两平面平行C.若一直线平行于两相交平面,则这条直线与这两平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2016·山东济南一模)设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.(2016·浙江温州联考)关于直线a,b,l及平面α,β,下列命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a∥α,b⊥a,则b⊥αC.若a ⊂α,b ⊂α,且l ⊥a ,l ⊥b ,则l ⊥αD.若a ⊥α,a ∥β,则α⊥β 6.(2015·山东二模)设m ,n 是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是( ) A.当n ⊥α时,“n ⊥β”是“α∥β”的充要条件B.当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件C.当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件D.当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件 7.(2016·浙江)已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m ∥α,n ⊥β,则( )A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n 8.(2013北京)如图,四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD .E 和F 分别是CD 和PC 的中点.求证: (1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ;(3)平面BEF ⊥平面PCD .9.[2014·山东文]如图,四棱锥P -ABCD 中,AP ⊥平面PCD , AD ∥BC ,AB =BC=12AD ,E ,F 分别为线段AD ,PC 的中点. (1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面P AC .10.(2013全国Ⅱ文)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.11.(2013·辽宁)如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点. (1)求证:BC ⊥平面P AC ; (2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC .12.[2014·课标Ⅱ文]如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (1)证明:PB ∥平面AEC ;(2)设AP =1,AD =3,三棱锥P - ABD 的体积V =34,求A到平面PBC 的距离.13.(2015江苏)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.14.(2015广东文)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3. (1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.15.(2015课标Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16, BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值.16.(2015陕西)如图,直角梯形ABCD 中,AD ∥B C,∠BAD =π2, AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到如图2中△A 1BE 的位置,得到四棱锥A 1﹣BCDE . (Ⅰ)证明:CD ⊥平面A 1OC ;(Ⅱ)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1﹣BCDE 的体积为362,求a 的值.17.(2016·课标Ⅱ文)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置. (1)证明:AC ⊥HD ′(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.18.(2016·课标Ⅲ文)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面P AB ;(2)求四面体N -BCM 的体积.19.[2017全国I 文]如图,在四棱锥P-ABCD 中,AB//CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,∠ADP =90°,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.20.[2017全国II 文]如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 面积为27,求四棱锥P-ABCD 的体积.21.[2017全国III 文]在正方体ABCD-A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A.A 1E ⊥DC 1B.A 1E ⊥BDC.A 1E ⊥BC 1D.A 1E ⊥AC22.[2017全国III 文]如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.。
专题20立体几何中的平行与垂直问题(解析版)

专题20 立体几何中的平行与垂直问题一、题型选讲题型一、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。
直线与平面垂直关键是找两条相交直线例1、(2019南通、泰州、扬州一调)如图,在四棱锥PABCD中,M, N分别为棱PA, PD的中点.已知侧面PAD丄底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN〃平面PBC;MD丄平面PAB.【证明】(1)在四棱锥P-ABCD中,M, N分别为棱PA, PD的中点,所以MN〃AD.(2分)又底面ABCD是矩形,所以BC〃AD.所以MN〃BC.(4分)又BC U平面PBC,MN Q平面PBC,所以MN〃平面PBC. (6分)(2)因为底面ABCD是矩形,所以AB丄AD.又侧面PAD丄底面ABCD,侧面PAD n底面ABCD=AD, AB U底面ABCD,所以AB丄侧面PAD.(8分)又MD U侧面PAD,所以AB丄MD.(10分)因为DA=DP,又M为AP的中点,从而MD丄PA. (12分)又PA,AB在平面PAB内,PA n AB=A,所以MD丄平面PAB.(14分)例2、(2019扬州期末)如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B丄平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1)求证:EF〃平面ABC;(2)求证:BB]丄AC.规范解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E, F分别是侧面AA1B1B, BB1C1C对角线的交点,所以E, F分别是AB1,CB1的中点,所以EF〃AC.(4分)因为EF Q平面ABC, AC U平面ABC,所以EF〃平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1丄AB.因为平面AA1B1B丄平面ABC,且平面AA1B1B n平面ABC=AB, BB1U平面AA1B1B, 所以BB1丄平面ABC.(12分)因为AC U平面ABC,所以BB1丄AC.(14分)例3、(2019南京、盐城二模)如图,在三棱柱ABCA1B1C1中,AB=AC, A1C丄BC], AB]丄BC1,D, E 分别是AB1和BC的中点.求证:(1)DE〃平面ACC1A1;(2)AE丄平面BCC1B1.A _________ c,规范解答⑴连结A1B,在三棱柱ABCA1B1C1中,AA1#BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在厶BA1C中,D和E分别是BA1和BC的中点,所以DE〃A]C.又因为DE G平面ACC1A1,A1C U平面ACC1A1,所以DE〃平面ACC1A1.(6分)(2)由(1)知DE〃A]C,因为A1C丄BC” 所以BC]丄DE.(8 分)又因为BC]丄AB1,AB1H DE=D,AB1,DE U平面ADE,所以BC1丄平面ADE.又因为AE U平在ADE,所以AE丄BC1.(10分)在厶ABC中,AB=AC,E是BC的中点,所以AE丄BC.(12分)因为AE丄BC1,AE丄BC,BC1H BC=B,BC1,BC U平面BCC1B1,所以AE丄平面BCC1B1. (14 分)例4、(2019苏锡常镇调研)如图,三棱锥DABC中,已知AC丄BC,AC丄DC,BC=DC,E,F 分别为BD,CD 的中点.求证:(1)EF〃平面ABC;(2)BD丄平面ACE.所以EF 〃平面ABC.(6分)(2)因为AC丄BC,AC丄DC,BC H DC = C,BC,DC U平面BCD所以AC丄平面BCD,(8分)因为BD U平面BCD,所以AC丄BD,(10分)因为DC=BC,E为BD的中点,所以CE丄BD,(12分)因为AC n CE = C, AC,CE U平面ACE,所以BD丄平面ACE.(14分)例5、(2019苏州三市、苏北四市二调)如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1 丄B1C1•设A1C与AC1交于点D, B1C与BC1交于点E.求证:(1) DE〃平面ABB1A1;(2) BC]丄平面A1B1C.规范解答(1)因为三棱柱ABCA1B1C1为直三棱柱,所以侧面ACC1A1为平行四边形.又A1C 与AC1 交于点D,所以D为AC]的中点,同理,E为BC]的中点•所以DE〃AB.(3分)又AB U平面ABB]A], DE G平面ABB]A], 所以DE〃平面ABB]A].(6分)(2)因为三棱柱ABCA]B]C]为直三棱柱,所以BB]丄平面A]B]C]. 又因为A]B]U平面A]B]C],所以BB]丄A]B i.(8分)又A]B]丄B]C], BB], B]C] U 平面BCC]B], BB]n B]C1=B1,所以A]B]丄平面BCC]B].(10 分)又因为BC]U平面BCC]B1,所以A]B丄BC].(12分)又因为侧面BCC]B1为正方形,所以BC]丄BQ.又A1B1n B1C=B1,A1B1,B1C U平面A1B1C, 所以BC1丄平面A1B1C.(14分)例6、(2017苏北四市一模)如图,在正三棱柱ABCA1B1C1中,已知D, E分别为BC, B1C1的中点,点F 在棱CC1上,且EF丄CD.求证:(1)直线A1E〃平面ADC1;⑴证法1连结ED,因为D, E分别为BC, B1C1的中点,所以B&/BD且B1E=BD, 所以四边形BBDE是平行四边形,(2分)所以BB/DE且BB1=DE. 又BB]〃AA]且BB]=AA], 所以AA/DE且AA1=DE, 所以四边形AA]ED是平行四边形,所以A]E〃AD.(4分)又因为AE G平面ADC, AD U平面ADC,所以直线AE〃平面ADC.(7分)1 1 1畀 ------ 1B证法2连结ED,连结A1C, EC分别交AC” DC1于点M, N,连结MM,则因为D, E分别为BC,B1C1的中点,所以C1E^CD且C、E=CD,所以四边形C1EDC是平行四边形,所以N是CE的中点.(2分)因为A1ACC1为平行四边形,所以M是A1C的中点,(4分)所以MN//A\E.又因为A]E G平面ADC,MN U平面ADC,,所以直线Af〃平面ADC、.(7分)(2)在正三棱柱ABCA1B1C1中,BB]丄平面ABC.又AD U平面ABC,所以AD丄BB、.又A ABC是正三角形,且D为BC的中点,所以AD丄BC.(9分)又BB,,BC U 平面BBCC,,BB1A BC=B,所以AD丄平面B,BCC,,又EF U平面BBCC,所以AD丄EF.(11分)又EF丄CD,CD,AD U平面ADC,,C,D A AD=D,所以直线EF丄平面ADC,.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
专题06五种直线、平面平行与垂直的判定与性质解题方法(解析版)

专题06五种直线、平面平行与垂直的判定与性质解题方法 题型一:求异面直线所成角题型二:证明线线、线面平行的方法题型三:证明面面平行的方法题型四:证明线线、线面垂直的方法题型五:证明面面垂直的方法题型一:求异面直线所成角一、单选题1.(2019·江苏苏州·高一期末)正方体1111ABCD A B C D -中,异面直线1AA 与BC 所成角的大小为( ) A .30B .45︒C .60︒D .90︒【答案】D【分析】利用异面直线1AA 与BC 所成角的的定义,平移直线BC ,即可得答案.【详解】在正方体1111ABCD A B C D -中,易得190A AD ∠=︒.//AD BC ∴异面直线1AA 与BC 垂直,即所成的角为90︒.故选:D .【点睛】本题考查异面直线所成角的定义,考查对基本概念的理解,属于基础题.2.(2020·宁夏银川·高一期末)下图的正方体ABCD A B C D ''''-中,异面直线AA '与BC '所成的角是( )A .30B .45C .60D .90【答案】B 【解析】只需将异面直线AA '与BC '平移至同一个平面内,转化为两条相交直线,即可求出它们所成的角.【详解】在正方体ABCD A B C D ''''-中,因为//AA BB '',所以B BC ''∠即为异面直线AA '与BC '所成的角,因为45B BC ''∠=,所以异面直线AA '与BC '所成的角为45.故选:B.【点睛】本题主要考查异面直线所成角的求法.求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为共面问题来解决,根据空间等角定理及推论可知,异面直线所成角的大小与顶点位置无关,往往可以选在其中一条直线上(线面的端点或中点)利用三角形求解.3.(2021·陕西·西安市远东一中高一期末)如图,在正三棱锥D ABC -中,AD DC ⊥,点F 为棱AC 的中点,则异面直线DF 与AB 所成角的大小为( )A .30°B .45°C .60°D .90°【答案】C 【分析】取BC 的中点E ,∠DFE 即为所求,结合条件即求.【详解】如图取BC 的中点E ,连接EF ,DE ,则EF ∠AB ,∠DFE 即为所求,设DF a =,在正三棱锥D ABC -中,AD DC ⊥,故2,AB AC BC a DA DB DC ======,∠EF DE DF a ===,∠60DFE ∠=,即异面直线DF 与AB 所成角的大小为60.故选:C.4.(2021·湖北孝感·高一期末)在正方体1111ABCD A B C D -中,M 为11A C 和11B D 的交点,则异面直线BM 与1AD 所成的角为( )A .6πB .4πC .3πD .2π 【答案】A 【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即得结果.【详解】如图,连接1,BC MB ,因为1AD ∠1BC ,所以MBC 1∠或其补角为直线MB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB MC ⊥,又111MC B D ⊥,1111BB B D B ⋂=,111,BB B D ⊂平面1MBB ,所以MC 1⊥平面1MBB ,所以1MC PB ⊥,设正方体棱长为2,则111112BC MC AC ===1111sin 2MC MBC BC ∠===,而直角三角形中MBC 1∠是锐角, 所以16MBC π∠=,即异面直线BM 与1AD 所成的角是6π. 故选:A. 5.(2021·贵州毕节·高一期末)在空间四边形ABCD 中,AB CD =,E ,F 分别为BC ,AD 的中点,若AB 与CD 所成的角为40°,则EF 与AB 所成角的大小为( )A .20°B .70°C .20°或70°D .40°或140°【答案】C【分析】根据异面直线所成角的定义转化为相交直线所成角,利用几何图形求EF 与AB 所成角的大小.【详解】取AC 的中点M ,BD 的中点N ,连接,,,,ME EN NF FM EF ,,,,M E N F 分别是,,,AC BC BD AD 的中点,//,//ME AB NF AB ∴,∴//ME NF ,同理//EN MF ,∴四边形MENF 是平行四边形,又AB CD =,∴=ME EN ,四边形MENF 是菱形,AB 与CD 所成的角为40,40MEN ∴∠=或140,∴EF 与AB 所成角是1202MEF MEN ∠=∠=或70. 故选:C二、多选题6.(2021·江苏常州·高一期末)下图是一个正方体的平面展开图,则在该正方体中( )A .//BF CDB .DG BH ⊥C .CH 与BG 成60°角D .BE 与平面ABCD 所成角为45°【答案】BCD 【分析】由正方体的平面展开图还原原正方体,再由正方体的结构特征结合空间角的概念逐个分析判断即可【详解】由正方体的平面展开图还原原正方体如图所示,由正方体的结构特征可知,BF 与CD 异面垂直,所以A 错误,DG CH ⊥,而CH 为BH 在平面DCGH 上的射影,所以DG BH ⊥,所以B 正确,连接AH ,由AB ∠GH ,AB GH =,可得四边形ABGH 为平行四边形,则AH ∠BG ,所以AHC ∠或其补角为异面直线CH 与BG 所成的角,连接AC ,可得AHC 为等边三角形,得CH 与BG 成60°角,所以C 正确,因为AE ⊥平面ABCD ,所以EBA ∠为BE 与平面ABCD 所成角为45︒,所以D 正确,故选:BCD三、填空题7.(2020·天津市红桥区教师发展中心高一期末)正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_________. 【答案】3π 【分析】连接1A D 、BD ,证明11//A D B C ,可得1DA B ∠即为异面直线1A B 与1B C 所成角,在1DA B △求1DA B ∠即可求解.【详解】如图,连接1A D 、BD , 因为11A B DC ,所以四边形11A B CD 是平行四边形,所以11//A D B C ,所以1DA B ∠即为异面直线1A B 与1B C 所成角,设正方体1111ABCD A B C D -的棱长为a ,在1DA B △中,11DA A B BD ===,所以1DA B △是等边三角形,所以13DA B π∠=,即异面直线1A B 与1B C 所成角为3π, 故答案为:3π 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,具体步骤如下(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.8.(2022·陕西西安·高一期末)在正方体1111ABCD A B C D -中,则异面直线1AB 与1BC 的夹角为_________. 【答案】3π 【解析】先证明11//AD BC ,可得11D AB ∠或其补角即为异面直线1AB 与1BC 所成的角,连接11D B ,在11AB D 中求11D AB ∠即可.【详解】在正方体1111ABCD A B C D -中,//,AB DC AB CD =, 1111//,,D C DC D C DC =所以1111//,AB D C AB D C =,所以四边形11ABC D 是平行四边形,所以11//AD BC ,所以11D AB ∠或其补角即为异面直线1AB 与1BC 所成的角,连接11D B ,由1111ABCD A B C D -为正方体可得11AB D 是等边三角形, 所以113D AB π∠=.故答案为:3π 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.9.(2020·湖北湖北·高一期末)已知M 是长方体1111ABCD A B C D -的棱1BB 的中点,底面ABCD 为正方形且12AA AB =,则AM 与11B D 所成角的大小用弧度制可以表示为______. 【答案】3π 【分析】取1AA 中点N ,连接11,B N D N ,可判断11D B N 即为AM 与11B D 所成角,求出即可.【详解】如图,取1AA 中点N ,连接11,B N D N ,设12=2AA AB =,,M N 是中点,可知1//AN B M 且1AN B M ,∴四边形1AMB N 是平行四边形,1//AM B N ∴,则11D B N 即为AM 与11B D 所成角, 可知11112,2,2B N B D D N ,113D B N,即AM 与11B D 所成角为3π. 故答案为:3π. 【点睛】本题考查异面直线所成角的求解,属于基础题.10.(2021·吉林·长春市第二十中学高一期末)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E ,F 依次是A 1D 1和B 1C 1的中点,则异面直线AE 与CF 所成角的余弦值为_____.【答案】35【解析】先推导出BF ∠AE ,从而∠BFC 是异面直线AE 与CF 所成角(或所成角的补角),由此能求出异面直线AE 与CF 所成角的余弦值.【详解】解:在正方体ABCD ﹣A 1B 1C 1D 1中,∠E ,F 依次是A 1D 1和B 1C 1的中点,∠BF ∠AE ,∠∠BFC 是异面直线AE 与CF 所成角(或所成角的补角),设正方体ABCD ﹣A 1B 1C 1D 1中棱长为2,则BF =CF ==∠cos ∠BFC 35==. ∠异面直线AE 与CF 所成角的余弦值为35. 故答案为:35.【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.11.(2021·山西吕梁·高一期末)已知正三棱柱中111ABC A B C -中,2AB =,14BB =,D ,E 分别是棱11A C ,1BB 的中点,则异面直线1B D 与AE 所成角的正切值为______.【分析】作出辅助线,证得1DB F ∠或其补角为异面直线1B D 与AE 所成角,然后求出相关线段的长度,进而在1B DF 中,利用余弦定理求出余弦值,进而可以求出结果.【详解】取1A A 的中点F ,连接1,B F DF ,因为E 分别是棱1BB 的中点,所以1AF B E =且1//AF B E ,所以四边形1AFB E 为平行四边形,故1//FB EA ,所以1DB F ∠或其补角为异面直线1B D 与AE 所成角,因为111A B C △为等边三角形,D 分别是棱11A C 的中点,所以111B DA C ,所以1B D ,在1Rt A DF 中,DF在Rt ABE △中,AE =1B F =在1B DF 中,2221cos DB F +-∠==0,2π⎛⎫ ⎪⎝⎭,故1DB F ∠为异面直线1B D 与AE 所成角,而1tan DB F ∠=题型二:证明线线、线面平行的方法一、单选题1.(2020·湖南师大附中高一期末)设a 是直线,α是平面,则能推出//a α的条件是( )A .存在一条直线b ,//a b ,b α⊂B .存在一条直线b ,a b ⊥,b α⊥C .存在一个平面β,a β⊂,//αβD .存在一个平面β,a β⊥,αβ⊥【答案】C【分析】利用a α⊂可得到ABD 的反例,利用面面平行性质知C 正确.【详解】对于A ,若a α⊂,可满足//a b ,b α⊂,但无法得到//a α,A 错误;对于B ,若a α⊂,可满足a b ⊥,b α⊥,但无法得到//a α,B 错误;对于C ,由面面平行的性质知:若//αβ,a β⊂,则//a α,C 正确;对于D ,若a α⊂,可满足a β⊥,αβ⊥,但无法得到//a α,D 错误.故选:C.2.(2019·天津市红桥区教师发展中心高一期末)下列正方体中,A ,B 为正方体的两个顶点, M ,N ,P 分别为其所在棱的中点,能得出直线AB ∠平面MNP 的图形的序号是( )A.①③B.①②C.①④D.②③【答案】A【分析】运用线面平行的判定、面面平行及线面相交、面面平行的性质,并结合图形即可判断结论在各图中是否正确NC PC,得平面MCPN【详解】图①,如图,作MC//NP,连接,AB NC,NC⊂平面MCPN∠AB//平面MCPN//即AB//平面MNP,故①项正确;AC AD CD图②,如图,连结,,由已知可得平面MNP//平面ACD;∠AB和平面ACD相交,∠AB不平行于平面MNP,故②项错误;图③,如图,连接CD由已知可得AB//CD,而MP//CD,可得AB//MP,∠平面AB⊄/平面MNP,又∠MP⊂平面MNP∠AB //平面MNP ,故③项正确;③④项,如图,由DB //MN ,MN ⊂平面MNP ,若AB //平面MNP ,又ABDB B = 则平面ACBD //平面MNP而由图可知,平面ACBD 不可能平行平面MNP∠AB 不平行于平面MNP ,故④项错误.综上,①③符合题意.故选:A二、填空题3.(2021·天津河东·高一期末)如图,CD αβ=,EF αγ=,AB βγ=,AB//α,则CD 与EF 的位置关系为___________.【答案】//CD EF【分析】由线面平行的性质有//AB CD ,根据线面平行的判定可得//CD γ,最后再由线面平行的性质即可得//CD EF .【详解】∠AB//α,AB β⊂,CD αβ=,∠//AB CD ,又AB γ⊂,CD γ⊄,∠//CD γ,又CD α⊂,EF αγ=, ∠//CD EF .故答案为://CD EF4.(2021·浙江·高一期末)空间四边形ABCD 中,,E F 分别在边,AD CD 上,且满足DE DF EA FC =,则直线EF 与平面ABC 的位置关系是_________.【答案】平行【分析】由已知得//EF AC ,由此能证明//EF 平面ABC .【详解】空间四边形ABCD 中,E ,F 分别是AD ,CD 上的点,且DE DF EA FC= //EF AC ∴,EF ⊄平面ABC ,AC ⊂平面ABC ,//EF ∴平面ABC .故答案为:平行.5.(2022·陕西·宝鸡市金台区教育体育局教研室高一期末)如图,平面////αβγ,直线,l m 分别与α、β、γ相交于点A 、B 、C 和点D 、E 、F ,若13AB BC =,20DF =,则EF =_______.【答案】15【分析】分两种情况:(1)直线l 和m 在同一平面内(2)直线l 和m 不在同一平面内,即l 和m 异面然后利用面面平行的性质定理得到线线平行,进一步利用平行线分线段成比例定理得到结果.【详解】分两种情况:(1)直线l 和m 在同一平面内,设该平面为τ,连结,,AD BE CF因为平面////αβγ,==,=,AD BE CF αβγτττ,所以////AD BE CF , 所以13AB DE BC EF ==,又20DF = ,所以15EF = ; (2)直线l 和m 不在同一平面内,即l 和m 异面,过D 作//DH AC ,平面////αβγ,∠,AB DG BC GH ==,设直线DH 与AC 所确定的平面为ξ,又,GE HF ξβξγ==,又//βγ,所以//GE HF , 利用平行线分线段成比例,可得13AB DG DE BC GH EF ===,又20DF =,所以15EF =. 综上,15EF =.故答案为:15.三、解答题6.(2021·新疆·伊宁市第四中学高一期末)已知E F G H 、、、为空间四边形ABCD 的边AB BC CD DA 、、、上的中点,求证://EH FG .【分析】根据中位线定理与平行公理证明即可.【详解】证明:∠ 在ABD △中,E H 、为边AB DA 、的中点,∠ //EH BD ,∠在BCD △中,F G 、为边BC CD 、上的中点,∠//FG BD ,∠//EH FG .7.(2022·陕西·铜川阳光中学高一期末)如图,在正方体1111ABCD A B C D -中,点,E F 分别是棱11,BB DD 的中点.求证:(1)//BD 平面AEF ;(2)EF ⊥平面11ACC A .【分析】(1)易证得四边形BDFE 为平行四边形,可知//BD EF ,由线面平行的判定可得结论; (2)由正方形性质和线面垂直性质可证得BD AC ⊥,1AA BD ⊥,由线面垂直的判定可得BD ⊥平面11ACC A ,由//EF BD 可得结论.(1),E F 分别为11,BB DD 的中点,11BB DD =,11//BB DD ,//BE DF ∴且BE DF =,∴四边形BDFE 为平行四边形,//BD EF ∴,又EF ⊂平面AEF ,BD ⊄平面AEF ,//BD ∴平面AEF .(2)四边形ABCD 为正方形,//BD AC EF BD BD EF ∴⊥∴⊥;1AA ⊥平面ABCD ,BD ⊂平面ABCD ,11//AA BDEF BD AA EF ∴⊥∴⊥, 又1AC AA A =∩,1,AC AA ⊂平面11ACC A ,11EF ACC A ∴⊥平面8.(2021·陕西·西安市远东一中高一期末)如图,正方体1111ABCD A B C D -中,点E ,F 分别为棱1DD ,BC 的中点.(1)证明:1A D ⊥平面11ABC D ;(2)证明://EF 平面11ABC D .【分析】(1)利用线面垂直的判定定理即证;(2)设11A D AD G ⋂=,由题可得EF ∠GB ,再利用线面平行的判定定理可证.(1)由正方体1111ABCD A B C D -的性质,可得11A D AD ⊥,AB ⊥平面11ADD A ,∴1AB A D ⊥,又1AD AB A ⋂=,∠1A D ⊥平面11ABC D ;(2)设11A D AD G ⋂=,连接,EG BG ,则11//,,//,,22EG AD EG AD BF AD BF AD == ∠//,EG BF EG BF =,∠四边形BFEG 为平行四边形,∠EF ∠GB ,又EF ⊄平面11ABC D ,GB ⊂平面11ABC D ,∠//EF 平面11ABC D9.(2022·陕西渭南·高一期末)如图,在正方体1111ABCD A B C D -中,E 、F 分别为1DD 、1CC 的中点,AC 与BD 交于点O .求证:(1)1//CE FD ;(2)平面//AEC 平面1BFD .【分析】(1)证明出四边形1CED F 为平行四边形,可证得结论成立;(2)证明出//OE 平面1BFD ,//CE 平面1BFD ,利用面面平行的判定定理可证得结论成立.(1)证明:在正方体1111ABCD A B C D -中,11//CC DD 且11CC DD =,因为E 、F 分别为1DD 、1CC 的中点,则1//CF D E 且1CF D E =,所以,四边形1CED F 为平行四边形,则1//CE FD .(2)证明:因为四边形ABCD 为正方形,ACBD O =,则O 为BD 的中点,因为E 为1DD 的中点,则1//OE BD , OE ⊄平面1BFD ,1BD ⊂平面1BFD ,所以,//OE 平面1BFD ,因为1//CE FD ,CE ⊄平面1BFD ,1FD ⊂平面1BFD ,所以,//CE 平面1BFD ,因为OE CE E ⋂=,因此,平面//ACE 平面1BFD .题型三:证明面面平行的方法一、单选题1.(2021·贵州铜仁·高一期末)已知a ,b ,c 表示直线,α表示平面,给出下列命题:①若//a α,//b α,那么//a b ;②若b α⊂,//a α,那么//a b ;③若a c ⊥,b c ⊥,则a b ⊥;④若a α⊥,b α⊥,那么//a b .其中正确的命题个数是( )A .0B .1C .2D .3【答案】B 【分析】对于①②③可以判断出直线a b 、可能平行,可能相交,也可能异面;对于②直线a b 、可能平行,也可能异面;对于④利用线面垂直的性质定理直接证明即可.【详解】对于①若//a α,//b α,那么直线a b 、可能平行,可能相交,也可能异面;故①错误; 对于②若b α⊂,//a α,那么直线a b 、可能平行,也可能异面;故②错误;对于③若a c ⊥,b c ⊥,那么直线a b 、可能平行,可能相交,也可能异面;故③错误;对于④若a α⊥,b α⊥,按照线面垂直的性质定理可得: //a b .故④正确.故选:B2.(2021·贵州·黔西南州同源中学高一期末)已知两条不重合的直线m n ,和两个不重合的平面αβ,,有下列命题:①若m α⊂,n β⊥,//αβ,则//m n ;②若m α⊥,n β⊥,//m n ,则//αβ;③若m n ⊥,m α⊥,则//n α;④若//m α,//n α,则//m n .其中正确命题的个数是( )A .1B .2C .3D .4【答案】A【分析】利用空间线面、线线,面面的位置关系一一判定各选项即可.【详解】①当m α⊂,n β⊥,//αβ,则m n ⊥,所以①错误;②因为m α⊥,//m n n α⇒⊥,又n β⊥则//αβ,所以②正确;③若m n ⊥,m α⊥,则//n α或n a ⊂,所以③错误;④若//m α,//n α,则//m n 或,m n 相交或,m n 异面,所以④错误.故选:A.二、多选题3.(2021·江苏·金陵中学高一期末)已知,m n 是两条不同的直线,,αβ是两个不重合的平面,则下列结论正确的是( )A .若,//m n n α⊥,则m α⊥B .若,,m n αβαβ⊥⊥⊥,则m n ⊥C .若,,,m n m αβαβ⊥⋂=⊥则n β⊥D .若,m n αα⊂⊂,且m 与n 不平行,//,//,m n ββ则//αβ【答案】BD【解析】结合空间线面位置关系及平行垂直的判定与性质定理对选项进行分别判断.【详解】A :若,//m n n α⊥,则m 与α平行或相交或m α⊂,A 选项错误;B :因为,ααβ⊥⊥m ,所以//m β或m β⊂,又n β⊥,所以m n ⊥,B 选项正确;C :若,,,m n m αβαβ⊥⋂=⊥则n 与β相交或平行或n β⊂,C 选项错误;D :若一个平面内两条相交直线都平行与另一个平面,则这两个平面平行,D 选项正确;故选:BD.三、填空题4.(2019·湖南·临澧县第一中学高一期末)平面几何中我们有“垂直于同一条直线的两条直线平行”,试将该命题中的直线(部分或全部)换成平面,写出一个在空间中成立的命题:_________.【答案】“垂直于同一直线的两个平面平行”或“垂直于同一平面的两直线平行”【分析】从直线到平面,从平面到空间进行类比得解.【详解】从直线到平面,从平面到空间进行类比得到一个在空间中成立的命题:“垂直于同一直线的两个平面平行”或“垂直于同一平面的两直线平行”.故答案为:“垂直于同一直线的两个平面平行”或“垂直于同一平面的两直线平行”【点睛】本题主要考查空间位置关系,考查类比推理,意在考查学生对这些知识的理解掌握水平.四、解答题5.(2021·贵州黔东南·高一期末)如图,在四棱锥P ABCD -中,ABCD 是正方形,PD ⊥平面ABCD ,PD AB =, ,,E F G 分别是,,PC PD BC 的中点.(1)求证:PC AD ⊥;(2)求证:平面//PAB 平面EFG .【分析】(1)由PD ⊥平面ABCD ,得AD PD ⊥,再根据线面垂直的判定定理和性质定理得证(2)由//EF AB 证明//EF 平面PAB ,由//EG PB 证明//EG 平面PAB ,再由面面平行的判定定理证明即可.(1)由PD ⊥平面ABCD ,得AD PD ⊥,又AD CD ⊥(ABCD 是正方形),PD CD D ⋂=,所以AD ⊥平面PDC ,所以AD PC ⊥.(2)由,E F 分别是线段,PC PD 的中点,所以//EF CD ,又ABCD 为正方形,//AB CD ,所以//EF AB ,又EF ⊄平面PAB ,所以//EF 平面PAB .因为,E G 分别是线段,PC BC 的中点,所以//EG PB ,又EG ⊄平面PAB ,所以//EG 平面PAB .因为,,EF EG E EF EG =⊂平面EFG ,所以平面//EFG 平面PAB . 6.(2021·广东江门·高一期末)如图,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点.(1)求证:BC ⊥平面PAC ;(2)设Q 为PA 的中点,G 为AOC △的重心,求证:面//OQG 平面PBC .【分析】(1)根据圆直径的性质,得BC AC ⊥,由PA ⊥平面ABC 得BC PA ⊥,利用线面垂直的判定定理,可证BC ⊥平面PAC ;(2)延长OG ,交AC 于M ,连结GM 、QM ,证出QM 是PAC △的中位线,得//QM PC .利用线面平行的判定定理证出//QM 平面PBC ,同理可得//QO 平面PBC ,根据面面平行的判定定理,可得平面//OQG 平面PBC .【详解】解:(1)∠AB 是圆O 的直径,∠BC AC ⊥,又∠PA ⊥平面ABC ,BC ⊂平面ABC ,∠BC PA ⊥.∠PA AC A =,∠BC ⊥平面PAC ;(2)延长OG ,交AC 于M ,连结GM 、QM ,∠G 为AOC △的重心,∠OM 是AOC △的中线,∠Q 为PA 的中点,M 为AC 的中点,∠//QM PC ,∠QM ⊄平面PBC ,PC ⊂平面PBC ,∠//QM 平面PBC ,同理可得//QO 平面PBC ,∠QM 、QO 是平面OQG 内的相交直线,∠平面//OQG 平面PBC .7.(2021·贵州毕节·高一期末)如图甲,已知在四棱锥P ABCD -中,底面ABCD 为平行四边形,点M ,N ,Q 分别在PA ,BD ,PD 上(1)若:::PM MA BN ND PQ QD ==,求证:平面//MNQ 平面PBC ;(2)如图乙所示,若Q 满足:2PQ QD =,PM tPA =,当t 为何值时,//BM 平面AQC .【答案】(1)证胆见解析,(2)12t = 【分析】(1)由已知比例式结合平行线截线段成比例证明线线平行,进一步得到线面平行,再由面面平行的判定定理可证得结论;(2)连接AC 交BD 于O ,连接OQ ,取PQ 的中点G ,连接BG ,则可得BG ∠OQ ,可得BG ∠平面AQC ,取PA 的中点M ,连接GM ,则GM ∠AQ ,可得GM ∠平面AQC ,则平面BGM ∠平面AQC ,则BM ∠平面AQC ,可得M 为PA 的中点.【详解】(1)证明:因为::PM MA PQ QD =,所以QM ∠AD ,因为AD ∠BC ,所以QM ∠BC ,因为QM ⊄平面PBC ,BC ⊂平面PBC ,所以QM ∠平面PBC ,因为::BN ND PQ QD =,所以QN ∠PB ,因为QN ⊄平面PBC ,PB ⊂平面PBC ,,所以QN ∠平面PBC ,因为QM QN Q =,QM ⊂平面MNQ ,QN ⊂平面MNQ ,所以平面//MNQ 平面PBC ;(2)连接AC 交BD 于O ,连接OQ ,取PQ 的中点G ,连接BG ,则BG ∠OQ ,因为QO ⊂平面AQC ,BG ⊄平面AQC ,所以BG ∠平面AQC ,取PA 的中点M ,连接GM ,则GM ∠AQ , 因为AQ ⊂平面AQC ,GM ⊄平面AQC ,, 所以GM ∠平面AQC ,因为BG GM G ⋂=,所以平面BGM ∠平面AQC , 因为BM ⊂平面BGM , 所以BM ∠平面AQC , 此时M 为PA 的中点, 所以12PM PA =, 因为PM tPA =,所以12t =题型四:证明线线、线面垂直的方法 一、单选题1.(2021·辽宁·辽河油田第一高级中学高一期末)设α,β,γ为不同的平面,m ,n ,l 为不同的直线,则下列条件一定能得到m β⊥的是( ) A .m αγ=,αγ⊥,βγ⊥ B .αβ⊥,l αβ=,m l ⊥C .n α⊥,n β⊥,m α⊥D .αγ⊥,βγ⊥,m α⊥【答案】C【解析】根据排除法,结合线面垂直的判定,可得结果. 【详解】在A 中,因为m αγ=,所以,m m αγ⊂⊂, 而,m βγ⊥并不垂直于β内的所有直线, 所以β和m 可能不垂直,故A 错误; 在B 中,m 只垂直β内的一条直线, 所以不能推出m β⊥,故B 错误;在C 中,因为,n n αβ⊥⊥,所以α//β, 又m α⊥,所以m β⊥,故C 正确; 在D 中,由,αγβγ⊥⊥,不能推出α//β, 所以由m α⊥不能推出m β⊥,故D 错误. 故选:C【点睛】本题主要是线面垂直的判定,属基础题.2.(2021·陕西·西安市远东一中高一期末)已知α,β,γ是三个不同的平面,l 是一条直线,则下列说法正确的是( ) A .若αβ⊥,αγ⊥,l βγ=,则l α⊥B .若αβ⊥,l α⊂,则l β⊥C .若αβ⊥,βγ⊥,则αγ⊥D .若αβ⊥,l αβ=,l γ∥,则βγ⊥【答案】A【分析】利用面面垂直的性质,线面的位置关系,面面的位置关系,结合几何模型即可判断.【详解】对于A ,在平面α内取一点P ,在平面α内过P 分别作平面α与β,α与γ的交线的垂线a ,b ,则由面面垂直的性质定理可得,a b βγ⊥⊥,又l βγ=,∠,l a l b ⊥⊥,由线面垂直的判定定理可得l α⊥,故A 正确;对于B ,若αβ⊥,l α⊂,则l 与β位置关系不确定,可能l 与β平行、相交或l 在β内,故B 错误; 对于C ,若αβ⊥,βγ⊥,则α与γ相交或平行,故C 错误; 对于D ,如图平面,αβγ,且αβ⊥,l αβ=,l γ∥,显然β与γ不垂直,故D 错误. 故选:A.3.(2022·陕西·宝鸡市渭滨区教研室高一期末)在空间中,如果一个角的两边和另一个角的两边分别垂直,则这两个角的大小关系为( ) A .相等 B .互补 C .相等或互补 D .不确定【答案】D【分析】EDF ∠的边DE 垂直平面EOF ,所以DE OE ⊥ ,作EF OF ⊥ 则DF OF ⊥.【详解】如下图所示,EOF ∠确定一个平面,EDF ∠的边DE 垂直平面EOF ,所以DE OE ⊥ , 作EF OF ⊥,因为DE ⊥平面EOF ,而OF ⊂平面EOF ,故DE OF ⊥, 而EF DE E ⋂=,故OF ⊥平面EDF ,又DF ⊂平面EDF 中,则DF OF ⊥,对于给定的EOF ∠,当D 变化时,EDF ∠的取值范围为0,2π⎛⎫ ⎪⎝⎭,故EOF ∠的大小跟EDF ∠无关.故选:D 二、填空题4.(2022·宁夏·银川唐徕回民中学高一期末)如图,在直四棱柱1111ABCD A B C D -中,当底面ABCD 满足条件___________时,有111AC B D ⊥.(只需填写一种正确条件即可)【答案】AC BD ⊥(答案不唯一)【分析】直四棱柱1111ABCD A B C D -,11A C 是1A C 在上底面1111D C B A 的投影,当1111AC B D ⊥时,可得111AC B D ⊥,当然底面ABCD 满足的条件也就能写出来了. 【详解】根据直四棱柱1111ABCD A B C D -可得:1BB ∠1DD ,且11BB DD =,所以四边形11BB D D 是矩形,所以BD ∠11B D ,同理可证:AC ∠11A C ,当AC BD ⊥时,可得:1111AC B D ⊥,且1CC ⊥底面1111D C B A ,而11B D ⊂底面1111D C B A ,所以111CC B D ⊥,而1111AC CC C =,从而11B D ⊥平面11A CC ,因为1AC ⊂平面11A CC ,所以111AC B D ⊥,所以当AC BD ⊥满足题意. 故答案为:AC BD ⊥. 三、解答题5.(2021·江苏·南京市第二十九中学高一期末)已知直线//m 平面α,直线l ⊥平面α.求证:l m ⊥. 【分析】过m 作平面β交平面α于直线m ',根据线面平行的性质易知//m m ',再由线面垂直的性质有l ⊥m ',由平行线的性质即可证结论.【详解】证明:如下图,过m 作平面β交平面α于直线m ', ∠//m α,m βα'⋂=, ∠//m m ',∠l ⊥α,而m α'⊂, ∠l ⊥m ',综上,l m ⊥,得证.6.(2021·陕西·西安市远东一中高一期末)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,90ADB PDC ∠=∠=︒,平面PAD ⊥底面ABCD ,M 是棱PC 上的点.(1)证明:PD ⊥底面ABCD ;(2)若三棱锥A BDM -的体积是四棱锥P ABCD -体积的14,设PM tMC =,试确定t 的值.【答案】(1)详见解析;(2)1t =.【分析】(1)利用面面垂直的性质定理,可得BD ⊥平面PAD ,然后利用线面垂直的判定定理即证; (2)由题可得14A BDM M ABD P ABCD V V V ---==,进而可得12MC PC =,即得.(1)∠90ADB ∠=︒,平面PAD ⊥底面ABCD ,∠AD BD ⊥,平面PAD 底面ABCD =AD ,BD ⊂底面ABCD , ∠BD ⊥平面PAD ,PD ⊂平面PAD , ∠BD ⊥PD ,又90PDC ∠=︒, ∠PD DC ⊥,BD DC D =, ∠PD ⊥底面ABCD ;(2)设PD h =,M 到底面ABCD 的距离为h ',∠三棱锥A BDM -的体积是四棱锥P ABCD -体积的14,∠14A BDM M ABD P ABCD V V V ---==,又11,33M ABD ABDP ABCD ABCDV Sh V Sh --'=⋅=⋅,12ABDABCDSS =,∠12h h '=,故12MC PC =, 又PM tMC =, 所以1t =.题型五:证明面面垂直的方法 一、多选题1.(2021·浙江嘉兴·高一期末)已知,a b 是两条不重合的直线,αβ,是两个不重合的平面,则下列命题为真命题的是( )A .若//αβ,a 与α所成的角和b 与β所成的角相等,则//a bB .若a α⊥,a β⊥,则//αβC .若//a b ,a α⊥,//b β,则αβ⊥D .若//a α,//αβ,则//a β 【答案】BC【分析】判断命题真假可以直接对各选项逐个判断.对于A 可通过直观想象判断其存在平行或异面或相交几种情况;对于B 可通过直线与平面垂直的性质得到;对于C 通过直线与平面垂直性质和平面与平面垂直的判定定理判断;对于D 可直观想象知存在//a β或a β⊂两种情况.【详解】对于A ,若//αβ,a 与α所成的角和b 与β所成的角相等,则//a b 或a 与b 相交或a 与b 异面,故A 错误;对于B ,若a α⊥,a β⊥,由线面垂直的性质可知//αβ,故B 正确; 对于C ,若//a b ,a α⊥,则b α⊥,又因为//b β,则αβ⊥,故C 正确; 对于D ,若//a α,//αβ,则//a β或a β⊂,故D 错误. 故选:BC 二、解答题2.(2021·江苏南通·高一期末)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,点E 、F 分别是棱PC 和PD 的中点.(1)求证://EF 平面P AB(2)若AP AD =,平面PAD ⊥平面ABCD ,证明:平面PAD ⊥平面PCD【分析】(1)根据三角形中位线定理,结合矩形的性质、线面平行的判定定理进行证明即可; (2)根据面面垂直的性质定理、线面垂直的判定定理,结合面面垂直的判定定理进行证明即可. 【详解】(1)证明:因为点E 、F 分别是棱PC 和PD 的中点,所以//EF CD 又在矩形ABCD 中,//AB CD ,所以//EF AB 又AB平面P AB ,EF ⊄平面P AB所以//EF 平面.PAB(2)证明:在矩形ABCD 中,AD CD ⊥,又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,CD ⊂平面ABCD所以CD ⊥平面P AD ,又AF ⊂平面P AD所以.CD AF ⊥①因为PA AD =且F 是PD 的中点,所以AF PD ⊥,②由①②及PD ⊂平面PCD ,CD ⊂平面PCD ,PD CD D ⋂=所以AF ⊥平面PCD .又AF ⊂平面P AD ,所以平面PAD ⊥平面PCD .3.(2021·广东·封开县渔涝中学高一期末)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是边长为3的正方形,AP =PD =APD ∠平面ABCD ,E 为AP 的中点,F 为CD 的中点.(1)求证:EF ∠平面PBC ; (2)求证:平面APB ∠平面PCD .【分析】(1)根据三角形中位线定理,结合平行四边形的判定定理和性质、线面平行的判定定理进行证明即可;(2)根据勾股定理的逆定理,结合线面垂直的判定定理、面面垂直的判定定理进行证明即可. 【详解】(1)设PB 的中点为G ,连接,EG FG ,因为E 为AP 的中点,所以//EG AB 且12EG AB =, 因为F 为CD 的中点,底面ABCD 是正方形, 所以//FC AB 且12FC AB =,因此//FC EG 且FC EG =, 所以四边形EGCF 是平行四边形,因此//EF GC ,因为EF ⊄平面PBC ,GC ⊂平面PBC ,所以EF ∠平面PBC ;(2)因为底面ABCD 是边长为3的正方形,所以3AD =,因为AP =PD = 所以有222AD PA PD =+,因此PD PA ⊥,因为底面ABCD 是正方形,所以BA DA ⊥,因为平面APD ∠平面ABCD , 平面APD平面ABCD AD =,所以AB ⊥平面APD ,因为PD ⊂平面APD ,所以AB PD ⊥, 因为AB PA A ⋂=,,AB PA ⊂平面APB , 所以PD ⊥平面APB ,因为PD ⊂平面APD , 所以平面APB ∠平面PCD .4.(2021·江苏扬州·高一期末)正方体1111ABCD A B C D -中,E 为棱1DD 中点.(1)求证:1//BD 平面AEC ; (2)求证:平面1⊥B AC 平面11B BDD .【分析】(1)由线面平行的判定定理可证得结果;(2)证得AC ⊥平面11BDD B ,进而由面面垂直的判定定理可证得结果.【详解】(1)设AC 与BD 交于点O ,连结OE .因为1111ABCD A B C D -是正方体,所以ABCD 为正方形,O 为BD 中点.又因为E 为1DD 中点,所以1//OE BD .又因为OE ⊂平面1,AEC BD ⊄平面AEC ,所以1//BD 平面AEC .(2)因为1111ABCD A B C D -是正方体,1BB ⊥平面ABCD .又AC ⊂平面ABCD ,所以1AC BB ⊥.又ABCD 为正方形,所以AC BD ⊥.因为11,,AC BD AC BB BB ⊥⊥⊂平面11,BDD B BD ⊂平面111,BDD B BB BD B ⋂=,所以AC ⊥平面11BDD B .又因为AC ⊂平面1B AC ,所以平面1⊥B AC 平面11B BDD .5.(2021·山东枣庄·高一期末)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,直线PC ⊥平面ABC ,E ,F 分别是线段PA ,PC 的中点.(1)证明:平面BEF ⊥平面PBC ;(2)记平面BEF 与平面ABC 的交线为l ,试判断直线EF 与直线l 的位置关系,并说明理由. 【答案】(1)证明见解析;(2)//EF l ,理由见解析.【分析】(1)推导出AC PC ⊥,AC BC ⊥,AC ⊥平面PBC ,从而//EF AC ,进而EF ⊥平面PBC ,由此能证明平面BEF ⊥平面PBC .(2)推导出//EF AC ,//EF 平面ABC ,根据线面平行的性质,即能证明//EF l . 【详解】解:(1)因为PC ⊥平面ABC ,AC ⊂平面ABC , 所以AC PC ⊥.因为C 是以AB 为直径的圆O 上的点, 所以AC BC ⊥. 又PC BC C ⋂=, 所以AC ⊥平面PBC .因为E ,F 分别是PA ,PC 的中点, 所以//EF AC . 所以EF ⊥平面PBC .又EF ⊂平面BEF ,故平面BEF ⊥平面PBC .。
高中数学平行与垂直地证明练习

D BDABCE1A C 立体几何中平行与垂直的证明1.已知正方体ABCD —A 1B 1C 1D 1,O 是底ABCD 对角线的交点. 求证:(1)C 1O//平面AB 1D 1; (2)A 1C ⊥平面AB 1D 1.2.如图,在长方体1111D C B A ABCD -中,1,11>==AB AA AD , 点E 在棱AB 上移动。
求证:E D 1⊥D A 1; D 1ODBA C 1B 1A 1C3.如图平面ABCD ⊥平面ABEF , ABCD 是正方形,ABEF 是矩形, 且,221==AD AF G 是EF 的中点, (1)求证平面AGC ⊥平面BGC ; (2)求空间四边形AGBC 的体积。
4.如图,在直三棱柱(侧棱与底面垂直的三棱柱)111ABC A B C -中,8AB =,6AC =,10BC =,D 是BC 边的中点.(Ⅰ)求证:1AB A C ⊥; (Ⅱ)求证:1A C ∥ 面1ABD ;5.如图组合体中,三棱柱111ABC A B C -的侧面11ABB A 是圆柱的轴截面,C 是圆柱底面圆周上不与A 、B 重合一个点. (Ⅰ)求证:无论点C 如何运动,平面1A BC ⊥平面1A AC ;(Ⅱ)当点C 是弧AB 的中点时,求四棱锥111A BCC B -与圆柱的体积比.6.如图,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点,且BF ⊥平面ACE . (1)求证:AE ⊥BE ;(2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE上确定一点N ,使得MN ∥平面DAE.7.如图,在棱长为1的正方体1111D C B A ABCD -中: (1) 求异面直线1BC 与1AA 所成的角的大小;(2) 求三棱锥B C A B 111-的体积;。
(3) 求证:B C A D B 111平面⊥8. 如图:S 是平行四边形ABCD 平面外一点,,M N 分别是,SA BD 上的点,且SM AM =NDBN, 求证://MN 平面SBC9. 如图,在底面为平行四边形的四棱锥P -ABCD 中,AB ⊥AC ,PA ⊥平面ABCD ,点E 是PD 的中点.(Ⅰ)求证:AC ⊥PB ; (Ⅱ)求证:PB ∥平面AEC .10.在多面体ABCDEF 中,点O 是矩形ABCD 的对角线的交点,平面CDE 是等边三角形,棱EF//BC 且EF =BC 21. (I )证明:FO ∥平面CDE ;(II )设BC =,3CD 证明EO ⊥平面CDF . PBC DEABACDOEFEDCBAP11. 如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱 PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .(Ⅰ)证明PA //平面EDB ; (Ⅱ)证明PB ⊥平面EFD .12.如图,四棱锥ABCD P -中,⊥PA 底面ABCD ,AD AB ⊥,CD AC ⊥,︒=∠60ABC ,BC AB PA ==, E 是PC 的中点.(1)求证:AE CD ⊥; (2)求证:⊥PD 面ABE . PABCDEF13. 如图在三棱锥P ABC -中,PA ⊥平面ABC ,3AB BC CA ===,M 为AB 的中点,四点P 、A 、M 、C都在球O 的球面上。
高考数学立体几何平行与垂直精品30题

立体几何-平行与垂直练习题1. 空间四边形SABC中,SO⊥平面ABC,O为∆ABC的垂心,求证:(1)AB⊥平面SOC(2)平面SOC⊥平面SABO D CA2. 如图所示,在正三棱柱ABC- A1B1C1中,E,M分别为BB1,A1C的中点,求证:(1)EM⊥平面A A1C1C; (2)平面A1EC⊥平面AA1C1C;EMA1B1C1ABC"3. 如图,矩形ABCD中,AD⊥平面ABE,BE=BC,F为CE上的点,且BF⊥平面ACE,G为AC与BD的交点.(1)求证:AE⊥平面BCE.(2)求证:AE∥平面BFD.4. 设P,Q是边长为a的正方体AC1的面AA1D1D,面A1B1C1D1的中心,如图,(1)证明PQ∥平面AA1B1B;(2)求线段PQ的长.`5. 如图,在四棱锥P-ABCD 中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠=.(Ⅰ)当主视图方向与向量AD 的方向相同时,画出四棱锥P ABCD -的三视图.(要求标出尺寸);(Ⅱ)若M 为PA 的中点,求证:DM //面PBC .6. 已知直四棱柱ABCD —A 1B 1C 1D 1的底面是菱形,且∠DAB=60°,AD=AA 1,F 为棱BB 1的中点,M 为线段AC 1的中点. 求证:(1)直线MF ∥平面ABCD ;(2)平面AFC 1⊥平面ACC 1A 1.7. 如图,PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点. (1)求证:MN ∥平面PAD ;(2)求证:MN ⊥CD ;(3)若二面角P-DC-A=45°,求证:MN ⊥平面PDC.|8. 如图,在三棱柱ABC -A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M ,N 分别是AB ,A1C 的中点.(1)求证:MN ∥平面BCC1B1;(2)求证:MN ⊥平面A1B1C ;(3)求三棱锥M-A1B1C的体积.9. 如图所示,在四棱锥S—ABCD中,底面ABCD是矩形,侧面SDC⊥底面ABCD,且AB=2,SC=SD=2. 求证:平面SAD⊥平面SBC.10. 如图所示,在直.三棱柱...ABC-A1B1C1中,AC⊥BC.(1) 求证:平面AB1C1⊥平面AC1;(2) 若AB1⊥A1C,求线段AC与AA1长度之比;(3) 若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1若存在,试确定点E的位置;若不存在,请说明理由..11. 如图,把等腰Rt△ABC沿斜边AB旋转至△ABD的位置,使CD=AC,(1)求证:平面ABD⊥平面ABC;(2)求二面角C-BD-A的余弦值.12. 如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCDA1C D1B1是边长为2的菱形,∠BAD=60°,N是PB中点,过A、D、N三点的平面交PC于M,E为AD的中点.(1)求证:EN∥平面PCD;(2)求证:平面PBC⊥平面ADMN;(3)求平面PAB 与平面ABCD所成二面角的正切值.:13.如图,AB为⊙O直径,C为⊙O上一点,PA⊥平面ABC,A在PB,PC上的射影分别为E,F,求证:PB⊥平面AFE.14.在四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AB⊥BC,AB=BC=1,DC=2,点E在PB上.(1)求证:平面AEC⊥平面PAD.(2)当PD∥平面AEC时,求PE∶EB的值.|15. 如图,已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=12AB,N为AB上一点,AB=4AN,M,D,S分别为PB,AB,BC的中点.(1)求证:PA∥平面CDM;(2)求证:SN⊥平面CDM.16. 一个多面体的直观图和三视图如图所示,其中M,G分别是AB,DF的中点.(1)求证:CM⊥平面FDM;(2)在线段AD上(含A,D端点)确定一点P,使得GP∥平面FMC,并给出证明.|1.(2014•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.2.(2014•四川)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;?(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC请证明你的结论.3.(2014•湖北)在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.(Ⅰ)求证:BE∥平面PAD;(Ⅱ)求证:BC⊥平面PBD;(Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q﹣BD﹣P为45°."4.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.5.(2014•黄山一模)如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F 分别是AB、PD的中点.(1)求证:AF∥平面PCE;…(2)求证:平面PCE⊥平面PCD;(3)求四面体PEFC的体积.6.(2014•南海区模拟)如图,四棱锥P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB 和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求证:OE∥平面PDC;(Ⅲ)求直线CB与平面PDC所成角的正弦值.~7.(2014•天津模拟)如图,在四棱台ABCD﹣A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.(1)求证:B1B∥平面D1AC;(2)求证:平面D1AC⊥平面B1BDD1.8.(2013•北京)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:?(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.9.(2013•天津)如图,三棱柱ABC﹣A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.(Ⅰ)证明:EF∥平面A1CD;(Ⅱ)证明:平面A1CD⊥平面A1ABB1;"(Ⅲ)求直线BC与平面A1CD所成角的正弦值.10.(2013•浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.!11.(2013•湖南)如图.在直棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在棱BB1上运动.(1)证明:AD⊥C1E;(2)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1﹣A1B1E的体积.12.(2012•山东)如图,几何体E﹣ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;?(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.13.(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.)14.(2011•天津)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.(Ⅰ)证明:PB∥平面ACM;(Ⅱ)证明:AD⊥平面PAC;(Ⅲ)求直线AM与平面ABCD所成角的正切值.15.(2011•北京)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.16.(2010•深圳模拟)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.17.(2010•重庆)如图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB.(1)求证:AB⊥平面PCB;(2)求二面角C﹣PA﹣B的大小的余弦值.。
立体几何专题复习(自己精心整理)

专题一证明平行垂直问题题型一证明平行关系(1)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1的中点.求证:MN∥平面A1BD。
(2)在正方体AC1中,M,N,E,F分别是A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.思考题1(1)如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点,求证:平面EFG∥平面PBC.(2)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.求证:PQ∥平面BCD。
题型二证明垂直关系(微专题)微专题1:证明线线垂直(1)已知空间四边形OABC中,M为BC中点,N为AC中点,P为OA中点,Q为OB中点,若AB=OC。
求证:PM⊥QN.(2)(2019·山西太原检测)如图,直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点,求证:DF⊥AE。
微专题2:证明线面垂直(3)在正方体ABCD-A1B1C1D1中,求证:BD1⊥平面ACB1.(4)(2019·河南六市一模)在如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.若AA1=AC,求证:AC1⊥平面A1B1CD。
微专题3:证明面面垂直(5)已知正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证:平面DEA⊥平面A1FD1.(6)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=错误!PD,求证:平面PQC⊥平面DCQ。
思考题2(1)(2019·北京东城区模拟)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥BP交BP于点F,求证:PB⊥平面EFD。
高考大题专项(四) 立体几何

| || |
所以异面直线 PC 与 BQ
=
2
,
3
2
所成角的余弦值为 3 .
解题心得用向量法求异面直线所成角的一般步骤
(1)选择三条两两垂直的直线建立空间直角坐标系.
(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量.
(3)利用向量的夹角公式求出向量夹角的余弦值.
(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.
高考大题专项(四) 立体几何
【考情分析】
从近五年的高考试题来看,立体几何是历年高考的重点,约占整个试卷的
15%,通常以一大两小的模式命题,以中、低档难度为主.简单几何体的表面
积与体积、点、线、面位置关系的判定与证明以及空间角的计算是考查
的重点内容,前者多以客观题的形式命题,后者主要以解答题的形式命题考
【例题】 (2020安徽高三三模)如图,边长为2的等边三角形ABC所在平面与
菱形A1ACC1所在平面互相垂直,且BC∥B1C1,BC=2B1C1,A1C=
(1)求证:A1B1∥平面ABC;
(2)求多面体ABC-A1B1C1的体积.
3 1.
AC
(1)证明∵四边形A1ACC1是菱形,
∴AC∥A1C1.
对点训练2(2020辽宁高三三模)如图,在直棱柱ABCDA1B1C1D1中,底面ABCD为菱形,AB=BD=2,BB1=2,BD
与AC相交于点E,A1D与AD1相交于点O.
(1)求证:AC⊥平面BB1D1D;
(2)求直线OB与平面OB1D1所成的角的正弦值.
(1)证明∵底面ABCD为菱形,∴AC⊥BD.
查.着重考查推理论证能力和空间想象能力,而且对数学运算的要求有加强
立体几何练习题

立体几何题型一、平行与垂直的证明例1.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F . (1)证明PA //平面EDB ;(2)证明PB ⊥平面EFD例2.四棱锥S A B C D -中,底面ABCD 为平行四边形,侧面SB C ⊥底面ABCD ,已知45A B C ∠=︒,2A B =,BC =SA SB ==(Ⅰ)证明:SA B C ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小. 变式:已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90底面ABCD ,且PA =AD =DC =21AB =1,M 是PB 的中点.(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小.ACDBCASOE A DCBNM EP题型二、空间角与距离例3.如图,在四棱锥O A B C D -中,底面A B C D 四边长为1的 菱形,4A B C π∠=, OA ABCD ⊥底面, 2O A =,M 为O A 的中点。
(Ⅰ)求异面直线AB 与MD 所成角的大小; (Ⅱ)求点B 到平面OCD 的距离。
例4. 如图,四面体ABCD 中,O 、E 分别BD 、BC 的中点,CA =CB =CD =BD =2 (Ⅰ)求证:AO ⊥平面BCD ;(Ⅱ)求异面直线AB 与CD 所成角的大小; (Ⅲ)求点E 到平面的距离. 变式:如图,正三棱锥O A B C -的三条侧棱O A 、O B 、O C 两两垂直,且长度均为2.E 、F 分别是A B 、A C 的中点,H 是E F 的中点,过E F 的平面与侧棱O A 、O B 、O C 或其延长线分别相交于1A 、1B 、1C ,已知132O A =.(1)求证:11B C ⊥面O A H ; (2)求二面角111O A BC --的大小.1C 1A题型三、探索性问题例5.在四棱锥P-ABCD 中,底面ABCD 是矩形,侧棱PA 垂直于底面,E 、F 分别是AB 、PC 的中点.(1)求证://EF 平面PAD ;(2)当平面PCD 与平面ABCD 成多大二面角时,⊥EF 平面PCD ?变式:如图,在三棱锥A -BCD 中,侧面ABD 、ACD 是全等的直角三角形,AD 是公共的斜边,且AD ,BD =CD =1,另一个侧面是正三角形 (1)求证:AD ⊥BC(2)求二面角B -AC -D 的大小(3)在直线AC 上是否存在一点E ,使ED 与面BCD 成30︒角?若存在,确定E 的位置;若不存在,说明理由.DC题型四、折叠、展开问题例6.已知正方形A B C D E 、F 分别是A B 、C D 的中点,将AD E 沿D E 折起,如图所示,记二面角A D E C --的大小为(0)θθπ<< (1) 证明//B F 平面ADE ;(2)若A C D 为正三角形,试判断点A 在平面B C D E 内的射影G 是否在直线E F 上,证明你的结论,并求角θ的余弦值。
2018届高考数学复习—立体几何:(二)空间直线、平面关系的判断与证明—2.平行与垂直关系的证明(试题版)

【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质【典型例题】[例1]►(1)如图,在四面体P ABC中,点D,E,F,G分别是棱AP,AC,BC,PB的中点.求证:DE∥平面BCP.►(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC. ►(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF.[例2]►(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG.►(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:①EG∥平面BB1D1D;②平面BDF∥平面B1D1H. 【变式训练】1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.2.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F.题型2:直线、平面垂直的判断及性质【典型例题】[例1]►(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE.►(2)如图所示,在四棱锥P-ABCD中,AB⊥平面P AD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△P AD中AD边上的高.①证明:PH⊥平面ABCD;②证明:EF⊥平面P AB.[例2]►(1)[2014·辽宁文]如图所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(I)求证:EF⊥平面BCG;(II)求三棱锥D -BCG的体积.►(2)(2012·课标全国)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(I)证明:平面BDC1⊥平面BDC;(II)平面BDC1分此棱柱为两部分,求这两部分体积的比.►(3)(2015·大庆质检) 如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.①求证:PC⊥BC;②求点A到平面PBC的距离. 【变式训练】1.如图,四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,点E 在线段AD上,且CE∥AB.(1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.2.[2014·福建文]如图所示,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.3.(2015·唐山统考)如图,在三棱锥P-ABC中,P A=PB=AB =BC,∠PBC=90°,D为AC的中点,AB⊥PD.(1)求证:平面P AB⊥平面ABC;(2)如果三棱锥P-BCD的体积为3,求P A.4.[2014·课标Ⅰ文]如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.☆题型3:直线、平面平行与垂直关系的综合【典型例题】[例1]►(1)已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是(写出序号).①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.►(2)(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α►(3)(2015·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面►(4)(2013·课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l►(5)(2016·课标Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号) [例2]►(1)(2014·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(I)求证:平面ABE⊥平面B1BCC1;(II)求证:C1F∥平面ABE;(III)求三棱锥E-ABC的体积.►(2)[2014江苏文]如图,三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(I)直线P A∥平面DEF;(II)平面BDE⊥平面ABC. [例3]►(1)[2014·陕西文]四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(I)求四面体ABCD的体积;(II)证明:四边形EFGH是矩形.►(2)(2012·北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(I)求证:DE∥平面A1CB;(II)求证:A1F⊥BE;(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【变式训练】1.(2016·浙江联考)已知a,b,c为三条不同的直线,α,β是空间两个平面,且a⊂α,b⊂β,α∩β=c.给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有α⊥β. 其中正确命题的个数是()A.0B.1C.2D.32.(2012·四川)下列命题正确的是()A.若两直线和同一平面所成的角相等,则这两条直线平行B.若一平面内有三点到另一平面的距离相等,则这两平面平行C.若一直线平行于两相交平面,则这条直线与这两平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2016·山东济南一模)设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.(2016·浙江温州联考)关于直线a,b,l及平面α,β,下列命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a∥α,b⊥a,则b⊥αC.若a⊂α,b⊂α,且l⊥a,l⊥b,则l⊥αD.若a⊥α,a∥β,则α⊥β6.(2015·山东二模)设m,n是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是()A.当n⊥α时,“n⊥β”是“α∥β”的充要条件B.当m⊂α时,“m⊥β”是“α⊥β”的充分不必要条件C.当m⊂α时,“n∥α”是“m∥n”的必要不充分条件D.当m⊂α时,“n⊥α”是“m⊥n”的充分不必要条件7.(2016·浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n8.(2013北京)如图,四棱锥P-ABCD中,AB∥CD,AB⊥AD, CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.9.[2014·山东文]如图,四棱锥P-ABCD中,AP⊥平面PCD, AD∥BC,AB=BC=12AD,E,F分别为线段AD,PC的中点.(1)求证:AP∥平面BEF;(2)求证:BE⊥平面P AC.10.(2013全国Ⅱ文)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)设AA1=AC=CB=2,AB=22,求三棱锥C-A1DE的体积. 11.(2013·辽宁)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.12.[2014·课标Ⅱ文]如图,四棱锥P-ABCD中,底面ABCD 为矩形,P A⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥P -ABD的体积V=34,求A 到平面PBC的距离.13.(2015江苏)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.14.(2015广东文)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.15.(2015课标Ⅱ)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.16.(2015陕西)如图,直角梯形ABCD中,AD∥B C,∠BAD=π2,AB=BC=12AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到如图2中△A1BE的位置,得到四棱锥A1﹣BCDE.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)当平面A1BE⊥平面BCDE时,四棱锥A1﹣BCDE的体积为362,求a的值.17.(2016·课标Ⅱ文)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.(1)证明:AC⊥HD′(2)若AB=5,AC=6,AE=54,OD′=22,求五棱锥D′ABCFE的体积.18.(2016·课标Ⅲ文)如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面P AB;(2)求四面体N-BCM的体积.19.[2017全国I文]如图,在四棱锥P-ABCD中,AB//CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠ADP=90°,且四棱锥P-ABCD的体积为83,求该四棱锥的侧面积.20.[2017全国II文]如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为27,求四棱锥P-ABCD的体积.21.[2017全国III文]在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC22.[2017全国III文]如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D 不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE 的体积比.。
立体几何最典型的平行与垂直题型归纳(带答案)(1)

专题:立体几何最典型的平行与垂直题型归纳1.四面体ABCD 中,△ ABC 是正三角形,△ ACD 是直角三角形,∠ ABD =∠ CBD,AB=BD ,则四面体的四个表面中互相垂直的平面有()对.2.如图,在四棱锥P﹣ABCD 中,PA⊥底面ABCD ,四边形ABCD 为长方形,AD=2AB,点E、F 分别是线段PD、PC 的中点.(Ⅰ)证明:EF∥平面PAB;(Ⅱ)在线段AD 上是否存在一点O,使得BO⊥平面PAC,若存在,请指出点O 的位置,⊥底面ABCD ,且PA=AD=2,AB=BC=1,M 为PD 的中点.Ⅰ)求证:CM ∥平面PAB;Ⅱ)求证:CD ⊥平面PAC.AD ∥BC ,∠ BAD =90°,PA4.如图,△ ABC 为正三角形,AE 和CD 都垂直于平而ABC,F 是BE 中点,AE=AB=2,CD=1.1)求证:DF ∥平面ABC;2)求证:AF ⊥DE;3)求异面直线AF 与BC 所成角的余弦值.5.如图,在四棱锥A﹣BCDE 中,平面ABC⊥平面BCDE ,∠ CDE =∠ BED =90°,AB=CD=2,DE=BE=1,AC=.(1)证明:D E⊥平面ACD ;2)求棱锥C﹣ABD 的体积.6.如图,在四棱锥P﹣ABCD 中,底面ABCD 是矩形,PA⊥平面ABCD,PA=AD=2,AB =1,M 为线段PD 的中点.I)求证:BM ⊥PDII )求直线CM 与PB 所成角的余弦值.7.如图,在正三棱柱ABC﹣A1B1C1 中,所有棱长都等于2.(1)当点M 是BC 的中点时,求异面直线AB1和MC1所成角的余弦值;专题 :立体几何最容易错的最难的平行与垂直问题汇编1.如图,在三棱柱 ABC ﹣A 1B 1C 1中,侧棱垂直于底面,∠ ACB =90°, 2AC =AA 1,D ,M 分别是棱 AA 1, BC 的中点.证明:2)若∠ ABC =120°,AE ⊥EC ,AB =2,求点 G 到平面 AED 的距离.3.如图,在四棱锥 P ﹣ ABCD 中,平面 PAD ⊥平面 ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD , AB =1,AD =2,AC =CD = .( 1)求证: PD ⊥平面 PAB ;1)证明:平面 PAB ⊥平面 PAD;AB ∥CD ,且∠ BAP =∠ CDP =90BE ⊥平面 ABCD .1)证明:平面 AEC ⊥平面 BED .2)若 PA =PD =AB =DC ,∠APD =90°,且四棱锥 P ﹣ABCD 的体积为 ,求该四棱 1)证明: AC ⊥BD ;(2)已知△ ACD 是直角三角形, AB =BD ,若 E 为棱 BD 上与 D6.如图,在四棱锥 A ﹣EFCB 中,△ AEF 为等边三角形,平面 AEF ⊥平面 EFCB ,EF = 2,四边形 EFCB 是高为 的等腰梯形, EF ∥BC ,O 为 EF 的中点.AD =CD . 求 O 到平面 ABC 的距离.专题:立体几何最典型的平行与垂直题型归纳1.四面体ABCD 中,△ ABC 是正三角形,△ ACD 是直角三角形,∠ ABD =∠ CBD,AB=BD ,则四面体的四个表面中互相垂直的平面有()对.A .0 B.1 C. 2 D. 3【解答】解:取AC 的中点E,连接BE,DE,∵∠ ABD=∠ CBD ,∴ BD 在平面ABC 上的射影在直线BE 上,∵△ ACD 是直角三角形,∴∠ ADC=90°,设 AB = 2,则 BE = ,DE = AC =1,BD =2,2 2 2∴DE 2+BE 2= BD 2,即 DE ⊥BE ,又 BE ⊥ AC ,DE ∩AC =E ,∴ BE ⊥平面 ACD ,∴平面 ABC ⊥平面 ACD .∵ D 在平面 ABC 上的射影为 E , B 在平面 ACD 上的射影为 E ,∴平面 ABD 与平面 ABC 不垂直,平面 BCD 与平面 ABC 不垂直,平面 ABD 与平面 ACD 不垂直,平面 BCD 与平面 ACD 不垂直, 过A 作 AF ⊥BD ,垂足为 F ,连接 CF ,由△ ABD ≌△ CBD 可得 CF ⊥BD ,故而∠ AFC 为二面角 A ﹣BD ﹣C 的平面角, ∵ AD == , ∴ cos ∠ ABD ∴ CF = AF =∴ cos ∠ AFC =∴∠ AFC ≠ 90°,∴平面 ABD 与平面 BCD 不垂直.F 分别是线段 PD 、PC 的中点.证明: EF ∥平面 PAB ;BO ⊥平面 PAC ,若存在,请指出点 O 的位置, 并证明 BO ⊥平面 PAC ;若不存在,请说明理由.2.如图, 在四棱锥 P ﹣ABCD 中, PA ⊥底面 ABCD ,四边形 ABCD 为长方形, AD = 2AB ,在线段 AD 上是否存在一点 O ,使得,∴ sin ∠ ABD=∵EF ∥CD ,∴ EF ∥AB ,∴ EF ∥平面 PAB . ⋯(6 分)此时点 O 为线段 AD 的四等分点,满足 ,⋯( 8 分) ∵长方形ABCD 中,∴△ ABO ∽△ ADC , ∴∠ ABO+∠CAB =∠ DAC + ∠CAB =90°,∴AC ⊥BO ,(10 分) 又∵ PA ⊥底面 ABCD ,BO? 底面ABCD , ∴PA ⊥BO , ∵PA ∩AC =A ,PA 、AC? 平面 PACABCD 为长方形,∴CD ∥AB ,∠ BAO =∠ ADC = 90°,四边形 ABCD 为直角梯形, AD∥BC ,∠ BAD=,PA 又∵ EF? 平面 PAB , AB? 平面 PAB ,Ⅱ) 在线段 AD 上存在一点 O ,使得 BO ⊥平面 PAC ,⊥底面ABCD ,且PA=AD=2,AB=BC=1,M为PD 的中点.(Ⅰ)求证:CM ∥平面PAB;(Ⅱ)求证:CD ⊥平面PAC.解答】证明:(I )取PA 的中点E,连接ME 、BE,∵ ME ∥AD,ME AD,∴ ME ∥BC,ME=BC,∴四边形BCME 为平行四边形,∴ BE∥CM ,∵BE? 平面PAB,CM?平面PAB,∴ CM∥平面PAB;(II )在梯形ABCD 中,AB=BC=1,AD=2,∠ BAD=90° 过C作CH⊥AD于H,∴AC =CD=2 2 2∵AC2+CD2=AD2,∴ CD⊥AC又∵ PA⊥平面ABCD ,CD ?平面ABCD,∴ CD⊥PA∵PA∩AC=A,∴CD ⊥平面PAC4.如图,在三棱柱ABC﹣A1B1C1中,AB=AC,A1在底面ABC的射影为BC的中点,D是B1C1 的中点,证明:A1D⊥平面A1BC.解答】 证明:设 E 为 BC 的中点,连接 A 1E , DE ,AE ,由题意得 A 1E ⊥平面 ABC ,∴ A 1E ⊥AE .∵ AB = AC , AE ⊥BC ,∴ AE ⊥平面 A 1BC . 由 D ,E 分别为 B 1C 1,BC 的中点,得 DE ∥B 1B 且 DE =B 1B , 从而 DE ∥A 1A 且 DE =A 1A ,∴四边形 A 1AED 为平行四边形,∴ A 1D ∥AE .5.如图,△ ABC 为正三角形, AE 和 CD 都垂直于平而 ABC ,F 是 BE 中点, AE =AB = 2,CD = 1.(1)求证: DF ∥平面 ABC ;(2)求证: AF ⊥DE ;(3)求异面直线 AF 与 BC 所成角的余弦值.【解答】(1)证明:取 AC 中点 O ,过 O 作平面 ABC 的垂线交 DE连结 OB ,则 OG ⊥OB , OG ⊥ OC ,∵△ ABC 是正三角形, O 是 AC 中点,∴ OB ⊥ OC ,以 O 为原点, OB 、OC 、OG 所在直线分别为 x 、y 、z轴,建立空间直角坐标系,又∵ AE ⊥平面 A 1BC , ∴ A 1D ⊥平面 A 1BC∵F 是 BE 中点, AE =AB = 2,CD =1,=(﹣ , 1, 0), =( 0,0, 1),∵CD ⊥平面 ABC ,∴ =(0,0,1)是平面 ABC 的一个法向量,又 DF? 平面 ABC ,∴ DF ∥平面 ABC .2)证明:∵ =( ), =( 0,﹣2,1),∴ = 0﹣ 1+1=0,∴AF ⊥DE .(3)解:∵ =( ), =(﹣ ,1, 0),设 AF 、 BC 所成角为 θ,cos θ= ∴异面直线 AF 与 BC 所成角的余弦值6.如图,在四棱锥 P ﹣ABCD 中,底面 ABCD 是矩形, PA ⊥平面 ABCD ,PA =AD =2,AB = 1,M 为线段 PD 的中点.( I )求证: BM ⊥PD( II )求直线 CM 与 PB 所成角的余弦值.∴ =( ,0), =( ), =(0,﹣ 2,1),∵ = , ∴,D (0,1,1),E (0,﹣1,∴A (0,﹣ 1,0),B(| | =【解答】( I )证明:连接 BD ,∵四棱锥 P ﹣ABCD 中,底面 ABCD 是矩形, PA ⊥平面 ABCD ,PA =AD =2,AB =1, ∴PB =BD =∵ M 为线段 PD 的中点,∴BM ⊥PD(II )解:连接 AC ,与 BD 交于 O ,连接 OM ,则∵ M 为线段 PD 的中点,∴MO ∥PB∴直线 CM 与 PB 所成角的余弦值为7.如图,在正三棱柱 ABC ﹣A 1B 1C 1 中,所有棱长都等于 2.( 1)当点 M 是 BC 的中点时,① 求异面直线 AB 1和 MC 1 所成角的余弦值;② 求二面角 M ﹣AB 1﹣C 的正弦值;(2)当点 M 在线段 BC 上(包括两个端点)运动时, 求直线 MC 1与平面 AB 1C 所成角的∴∠ CMO (或其补角)为直线 CM 与 PB 所成角,在△ MOC中, ∴ cos ∠ CMO=CM = = ,. .解答】 解:(1)取 AC 的中点为 O ,建立空间直角坐标系 O ﹣ xyz ,则 ,C ( 0,1,0),当 M 是 BC 的中点时,则 . ①, 设异面直线 AB 1 和 MC 1 所成角为 θ,则 = = .= = .② , , ,,令 x = 2,∴ ,∴ .设二面角 M ﹣ AB 1﹣ C 的平面角为 θ,则=.所以 .( 2)当 M 在 BC 上运动时,设 .设平面 MAB 1的一个法向量为 ,则 .∴ 设平面 AB 1C 的一个法向量为 ,令 ,则 y =﹣ 1,z =﹣ 1,∴,,则正弦值的取值范围.设M(x,y,z),∴,∴ ,则,∴ .设直线MC1 与平面AB1C 所成的角为θ ,则设,设t=λ+1 ∈[1,2],所以,t∈[1,2].设,∴∵ ,∴ ,∴∴直线MC 1与平面AB1C 所成的角的正弦值的取值范围为6.如图,在四棱锥 A ﹣BCDE 中,平面 ABC ⊥平面 BCDE ,∠ CDE =∠ BED =90°, AB =CD = 2,DE =BE =1,AC = .( 1)证明: DE ⊥平面 ACD ;( 2)求棱锥 C ﹣ ABD 的体积.【解答】 解:( 1)在直角梯形 BCDE 中,∵DE = BE = 1, CD = 2,∴ BC == , 又 AB =2, AC = ,∴ AB 2=AC 2+BC 2,即 AC ⊥ BC ,又平面 ABC ⊥平面 BCDE ,平面 ABC ∩平面 BCDE =BC ,AC? 平面 ABC ,∴AC ⊥平面 BCDE ,又 DE? 平面 BCDE ,∴AC ⊥ DE ,又 DE ⊥DC ,AC ∩CD =C ,∴ DE ⊥平面 ACD .1.如图,在三棱柱 ABC ﹣A 1B 1C 1中,侧棱垂直于底面,∠ ACB =90°, 2AC =AA 1,D ,M分别是棱 AA 1, BC 的中点.证明:S △BCD ?AC =V C ﹣ABD =V A ﹣BCD =1)AM∥平面BDC12)DC1⊥平面BDC .∴AD ∥ MN ,且 AD = MN ;∴四边形 ADNM 为平行四边形,∴DN ∥AM ;又 DN? 平面 BDC 1,AM? 平面 BDC 1,∴ AM ∥平面 BDC 1⋯( 6 分)( 2)由已知 BC ⊥CC 1,BC ⊥AC ,又 CC 1∩ AC = C ,∴ BC ⊥平面 ACC 1A 1,又 DC 1? 平面 ACC 1A 1,∴ DC 1⊥BC ;由已知得∠ A 1DC 1=∠ ADC =45°,∴∠ CDC 1= 90°,∴DC 1⊥DC ;又 DC ∩BC =C ,∴ DC 1⊥平面 BDC .⋯( 12分)【解答】 证明:( 1)如图所示,取 BC 1 的中点 N ,连接 DN ,MN .则 MN ∥ CC 1,且 M N = CC 1;又 AD ∥CC 1,且 ADV = ,2.如图,四边形 ABCD 为菱形, G 为 AC 与 BD 的交点, BE ⊥平面 ABCD .( 1)证明:平面 AEC ⊥平面 BED .因为 BE ⊥平面 ABCD , AC? 平面 ABCD ,所以 AC ⊥BE ,⋯( 2 分)又因为 DB ∩BE =B ,所以 AC ⊥平面 BED .⋯( 3分) 又 AC? 平面 AEC ,所以平面 AEC ⊥平面 BED .⋯( 5 分)2)取 AD 中点为 M ,连接 EM .因为∠ ABC = 120°.,AB =2,所以 AB =DB = 2,AG = ,DG = 1,因为 AE ⊥EC ,所以 EG == ,所以 BE = ,⋯( 6 分)所以 AE =DE = ,又所以 AD 中点为 M ,所以 EM ⊥AD 且 EM = .设点 G 到平面 AED 的距离为为 h , 则三棱锥 E ﹣ADG 的体积为求点 G 到平面 AED 的距离.为菱形,所以 AC ⊥BD ,⋯( 1 分)即,解得 h = .PAD ⊥平面 ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,ABCD ,且平面 PAD ∩平面 ABCD =AD ,AB ⊥AD ,AB? 平面 ABCD ,∴ AB ⊥平面 PAD ,∵PD? 平面 PAD ,∴AB ⊥PD ,又 PD ⊥PA ,且 PA ∩AB =A ,∴ PD ⊥平面 PAB ;( 2)解:取 AD 中点 O ,连接 PO ,则 PO ⊥ AD , 又平面 PAD ⊥平面 ABCD , ∴PO ⊥平面 ABCD ,∵PA ⊥PD ,PA =PD ,AD =2,∴ PO =1.10 分) 所以点 G 到平面 AED 的距离为AB =1,AD =2,AC =CD = .1)求证: PD ⊥平面PAB ;在△ ACD 中,由 AD =2,AC =CD = ,可得 .4.如图,在四棱锥 P ﹣ABCD 中, AB ∥CD ,且∠ BAP =∠ CDP =901)证明:平面 PAB ⊥平面 PAD ;P ﹣ABCD 中,∠ BAP =∠ CDP = 90°,∴AB ⊥PA ,CD ⊥PD ,又 AB ∥ CD ,∴ AB ⊥PD ,∵PA ∩PD =P ,∴ AB ⊥平面 PAD ,∵AB? 平面 PAB ,∴平面 PAB ⊥平面 PAD .解:(2)设 PA =PD =AB =DC =a ,取 AD 中点O ,连结 PO ,∵PA =PD =AB =DC ,∠ APD =90°,平面 PAB ⊥平面 PAD ,∵四棱锥 P ﹣ABCD 的体积为由 AB ⊥平面 PAD ,得 AB ⊥ AD ,∴V P ﹣ABCD =2)若 PA =PD = AB = DC ,∠ APD =90°,且四棱锥 P ﹣ ABCD 的体积为求该四棱 ∴ PO ⊥底面ABCD , O P= = = = , 解得 a =2,∴ PA =PD =AB =DC =2,AD =BC =2 ,PO = , ∴ PB = PC = =2 ,∴该四棱锥的侧面积:S 侧= S △PAD +S △PAB +S △PDC +S △PBC=+1)证明: AC ⊥ BD ;2)已知△ ACD 是直角三角形, AB = BD ,若 E 为棱 BD 上与 D 不重合的点, ∵△ ABC 是正三角形, AD =CD ,∴DO ⊥AC ,BO ⊥AC ,∵DO ∩BO =O ,∴ AC ⊥平面 BDO ,∵BD? 平面 BDO ,∴AC ⊥BD . 解:(2)法一:连结 OE ,由( 1)知 AC ⊥平面 OBD , ∵OE? 平面 OBD ,∴ OE ⊥ AC , 设 AD = CD = ,则 OC = OA = 1, EC = EA ,2 2 2 ∵AE ⊥CE ,AC =2,∴ EC 2+EA 2=AC 2,∴ EC = EA = = CD ,∴E 是线段 AC 垂直平分线上的点,∴ EC =EA =CD = ,由余弦定理得:AE ⊥= 6+2 .AD =CD .∵BE<<BD=2,∴BE=1,∴ BE=ED ,∵四面体ABCE 与四面体ACDE 的高都是点 A 到平面BCD 的高h,∵ BE=ED ,∴ S△DCE=S△BCE,∴四面体ABCE 与四面体ACDE 的体积比为1.法二:设AD=CD=,则AC=AB=BC=BD=2,AO=CO=DO=1,∴ BO==,∴ BO2+DO2=BD2,∴ BO⊥DO,以O 为原点,OA 为x 轴,OB 为y 轴,OD 为z 轴,建立空间直角坐标系,则C(﹣1,0,0),D(0,0,1),B(0,,0),A(1,0,0),设E(a,b,c),,(0≤λ≤1),则(a,b,c﹣1)=λ(0,,﹣1),解得E(0,,1﹣λ),∴ =(1,),=(﹣ 1 ,),∵AE⊥EC,∴=﹣1+3λ2+ (1﹣λ)2=0,由λ∈[0 ,1],解得,∴ DE=BE,∵四面体ABCE 与四面体ACDE 的高都是点 A 到平面BCD 的高h,∵DE=BE,∴ S△DCE=S△BCE,∴四面体ABCE 与四面体ACDE 的体积比为1.AEF⊥平面EFCB,EF=2,四边形EFCB 是高为的等腰梯形,EF∥BC,O 为EF 的中点.1)求证:AO⊥CF;O 为EF 的中点,所以AO⊥ EF ⋯( 1 分)又因为平面AEF⊥平面EFCB,AO? 平面AEF,平面AEF ∩平面EFCB =EF ,所以AO ⊥平面EFCB,⋯( 4 分)又CF? 平面EFCB ,所以AO⊥ CF ⋯( 5 分)(2)解:取BC 的中点G,连接OG.由题设知,OG⊥BC ⋯( 6 分)由(1)知AO⊥平面EFCB ,又BC? 平面EFCB ,所以OA⊥BC,因为OG∩OA=O,所以BC⊥平面AOG⋯(8 分)过O 作OH⊥AG,垂足为H,则BC⊥ OH ,因为AG∩BC=G,所以OH⊥平面ABC.⋯(10 分)因为,所以,即O 到平面ABC 的距离为.(另外用等体积法亦可)⋯(12 分)10.直三棱柱ABC﹣A1B1C1 中,若∠ BAC=90°,AB=AC=AA1,则异面直线BA1 与B1C 所成角的余弦值为(A.0 B.C.。
第29讲 线面垂直证线线平行和垂直2种题型(学生版)

第29讲线面垂直证线线平行和垂直2种题型【题型目录】题型一:线面垂直的证线线平行题型二:线面垂直的证线线垂直【典型例题】题型一:线面垂直的证线线平行【例1】在正方体1111ABCD A B C D -中,直线l (与直线1BB 不重合)⊥平面ABCD ,则有()A .1BB l ⊥B .1BB l ∥C .1BB 与l 异面D .1BB 与l 相交【例2】在空间中,下列说法正确的是()A .垂直于同一直线的两条直线平行B .垂直于同一直线的两条直线垂直C .平行于同一平面的两条直线平行D .垂直于同一平面的两条直线平行【例3】圆柱OP 如图所示,AC 为下底面圆的直径,DE 为上底面圆的直径,BD ⊥底面ABC ,证明://BP 面AEC【例4】如图,已知多面体ABCDE ,⊥AE 平面,⊥ABC DC 平面ABC ,且2AE DC ==,证明://AC 平面BED .【题型专练】1.若a 、b 是空间中两条不同的直线,则a b ∥的充分条件是()A .直线a 、b 都垂直于直线lB .直线a 、b 都垂直于平面αC .直线a 、b 都与直线l 成30︒角D .直线a 、b 都与平面α成60︒角2.(多选题)已知α,β是两个不同的平面,m ,n ,l 是三条不同的直线,则下列命题中正确的是()A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若m α⊥,n α⊥,则m n ∥C .若l αβ= ,m α∥,m β∥,则m l ∥D .若l αβ= ,m α⊂,m l ⊥,则m β⊥3.在梯形ABCD 中,AB CD ,2AB =,4CD =,3AD BC ==,BD 与AE 交于点G .如图所示沿梯形的两条高AE ,BF 所在直线翻折,使得90DEF CFE ∠=∠=︒.(1)求证:AD BC ∥;(2)求三棱锥C BDG -的体积.4.已知空间几何体ABCDE 中,ABC ,ECD 是全等的正三角形,平面ABC ⊥平面BCD ,平面ECD ⊥平面BCD .(1)若BD ==BC ED ⊥;(2)证明://AE BD .题型二:线面垂直的证线线垂直【例1】如图,在三棱柱111ABC A B C -中,1AC BC ⊥,1AC CC =.(1)记平面1A BC 与平面111A B C 的交线为l ,求证://l 平面11BCC B ;(2)求证:11A C AB ⊥.【例2】如图,四棱锥S ABCD -中,,,AB DC CD SD SM CM ==∥,平面SCD ⊥平面SBC .(1)求证:DM BC ⊥;(2)设,9,6,12BC AB AB BC CD SB ⊥====,点N 在棱AB 上,DN =,求多面体DSAN 的体积.【例3】在三棱锥-P ABC 中,ABC 为等边三角形,PA ⊥平面ABC ,将三角形PAC 绕PA 逆时针旋转至PAD 位置(如图),且二面角D PA B --的大小为90°.(1)证明:A ,B ,C ,D 四点共面,且AD PB ⊥;【例4】如图,在四棱锥P ABCD -中,底面ABCD 为菱形,60ABC ∠=︒,又PA ⊥底面,ABCD E 为BC 的中点.(1)求证:AD PE ⊥;(2)设F 是PD 的中点,求证:CF 平面PAE .【例5】如图,三棱柱111ABC A B C -中,90CAB ∠=︒,11AB AC A B AC ====12AA =,点M ,F 分别为BC ,11A B 的中点,点E 为AM 的中点.(1)证明:1AA BC ⊥;(2)证明://EF 平面11BCC B ;【例6】如图,在长方形ABCD 中,AB =,AD =M 为DC 的中点.将ADM △沿AM 折起得到四棱锥D ABCM -,且BD .(1)证明:AD BM ⊥;(2)若E 是线段DB 上的动点,三棱锥E ADM -的体积与四棱锥D ABCM -的体积之比为1:2,求DE BD的值.【例7】如图,四棱锥P ABCD -中,底面ABCD 为矩形,8AB AD ==,PAD 为等边三角形,并且与底面所成二面角为60︒.(1)求四棱锥P ABCD -的体积;(2)证明:PA BD ⊥.【题型专练】1.如图,在四棱锥...P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为正方形,2AB PA ==.(1)求证:AB PD ⊥;(2)求三棱锥C PBD -的体积.2.如图,在四棱锥P ABCD -中,PAD 为正三角形,60BAD CDA ∠=∠=︒,且223CD AD AB ==,M 为PC 的中点,(1)平面PAB ⋂平面PCD l =,求证:l AD ⊥.(2)求证:BM //平面PAD .3.如图,四面体ABCD 中,AD CD ⊥,AD CD =,ADB BDC ∠=∠,E 为AC 的中点,且平面DAC ⊥平面ABC ,若2AB =,60CAB ∠=︒.(1)证明:AC BD ⊥;4.如图,AB 是圆O 的直径,点P 在圆O 所在平面上的射影恰是圆O 上的点C ,且2AC BC =,点D 是PA 的中点,PO 与BD 交于点E ,点F 为PC 的中点,且2PC AB ==.(1)求证:BC PA ⊥;(2)求三棱锥P BEF -的体积.5.如图,桌面上摆放了两个相同的正四面体PABD 和QABC .(1)求证:PQ AB ⊥;(2)若=4AB ,求四面体APQB 的体积.6.如图,三棱柱111ABC A B C -的侧棱与底面垂直,=2AC ,BC ==4AB ,12AA =,点D 是AB 的中点.(1)求证:1AC B C ⊥;(2)求三棱锥11C CDB -的体积.7.如图,在四棱锥P ABCD -中,平面PAD ⊥底面ABCD ,CD AB ∥,2PA PD AD DC ====,=4AB ,60DAB ∠=︒.(1)证明:BD PA ⊥;8.在三棱锥-P ABC 中,AC BC =,PA PB =,D 、E 分别是棱BC 、PB 的中点.(1)证明:AB PC ⊥;(2)线段AC 上是否存在点F ,使得//AE 平面PDF ?若存在,指出点F 的位置;若不存在,请说明理由.9.如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .(1)证明:1B C AB ⊥;(2)若1AC AB ⊥,160CBB ∠=︒,1BC =,求三棱柱111ABC A B C -的高;(3)在(2)的条件下,求三棱柱111ABC A B C -的表面积.。
线面垂直判定经典证明题

线面垂直判定经典证明题第一篇:线面垂直判定经典证明题线面垂直判定1、已知:如图,PA⊥AB,PA⊥AC。
求证:PA⊥平面ABC。
2、已知:如图,PA⊥AB,BC⊥平面PAC。
求证:PA⊥BC。
3、如图,在三棱锥V-ABC中,VA=VC,AB=BC。
求证:VB⊥AC4、在正方体ABCD-EFGH中,O为底面ABCD中心。
求证:BD⊥平面AEGC5、如图,AB是圆O的直径,PA⊥AC, PA⊥AB,求证:BC⊥平面PAC6、如图,AD⊥BD, AD⊥DC,AD=BD=CD,∠BAC=60°求证:BD⊥平面ADC7、.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.8、已知:如图,P是棱形ABCD所在平面外一点,且PA=PC 求证:AC⊥平面PBD __C9、已知四面体ABCD中,AB=AC,BD=CD,平面ABC⊥平面BCD,E为棱BC的中点。
(1)求证:AE⊥平面BCD;(2)求证:AD⊥BC;BECD10、三棱锥A-BCD中,AB=1,AD=2,求证:AB⊥平面BCD11、在四棱锥S-ABCD中,SD⊥平面ABCD,底面ABCD是正方形求证:AC⊥平面SBD12、如图,正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE⊥平面CDE,求证:AB⊥平面ADE;AED13、三棱锥P-ABC中,三条侧棱PA,PB,PC两两垂直,H是△ABC的垂心求证:PH 底面ABC14、正方体ABCD-A1B1C1D1中,求证:A1C⊥平面BC1D._A_115、S是△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC,求证AB⊥BCSCAB16、如图,直三棱柱ABC—A1B1C1 中,AC =BC =1,∠ACB =90°,AA1 =2,D 是A1B1 中点.求证C1D ⊥平面A1B ;第二篇:线面垂直的判定漯河高中2013—2014高一数学必修二导学案2.3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质编制人:魏艳丽方玉辉审核人:高一数学组时间:2013.12.03【课前预习】一、预习导学1、直线与平面垂直的性质定理:_________________________________________.2、垂直于同一条直线的两个平面____________.3、平面与平面垂直的性质定理:_________________________________________.4、如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在___________.二、预习检测教材P71、P73【课内探究】[例1]如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面.[例2]如图,已知矩形ABCD,过A作SA⊥平面AC,再过A作AE⊥SB交SB于E,过E作EF⊥SC交SC于F.(1)求证:AF⊥SC;(2)若平面AEF交SD于G,求证:AG⊥SD.我主动,我参与,我体验,我成功第1页(共4页)[例3]10、在三棱锥P—ABC中,△PAB是等边三角形,∠PAC=∠PBC=90º.(1)证明:AB⊥PC;(2)若PC=4,且平面PAC⊥平面PBC,求三棱锥P—ABC的体积.[例4]如图所示,在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.(1)若D是BC的中点,求证:AD⊥CC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证:截面MBC1⊥侧面BB1C1C;(3)若截面MBC1⊥平面BB1C1C,则AM=MA1吗?请叙述你的判断理由.我主动,我参与,我体验,我成功第2页(共4页)【巩固训练】1.已知两个平面互相垂直,那么下列说法中正确的个数是()①一个平面内的直线必垂直于另一个平面内的无数条直线;②一个平面内垂直于这两个平面交线的直线必垂直于另一个平面内的任意一条直线;③过一个平面内一点垂直于另一个平面的直线,垂足必落在交线上;④过一个平面内的任意一点作交线的垂线,则此直线必垂直于另一个平面. A.4B.3C.2D.1()()2.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是A.相交B.平行C.异面D.相交或平行3.若m、n表示直线,α表示平面,则下列命题中,正确命题的个数为m∥n⎫m⊥α⎫⎪⎪⎬⎬⇒m∥n;①⇒n⊥α;②⎪⎪m⊥α⎭n⊥α⎭m⊥α⎫m∥α⎫⎪⎪⎬⎬⇒n⊥α.③⇒m⊥n;④⎪⎪n∥α⎭m⊥n⎭A.4B.3C.2D.1D.重心oo4.在△ABC所在的平面α外有一点P,且PA=PB=PC,则P在α内的射影是△ABC的()A.垂心B.外心C.内心5.如图所示,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为45和30.过A、B分别作两平面交线的垂线,垂足分别为A′、B′,则AB∶A′B′等于()A.3∶1B.2∶1C.3∶2D.4∶36.设α-l-β是直二面角,直线a⊂α,直线b⊂β,a,b与l都不垂直,那么()A.a与b可能垂直,但不可能平行B.a与b不可能垂直,但可能平行 C.a与b可能垂直,也可能平行 D.a与b不可能垂直,也不可能平行7.若α⊥β,α∩β=AB,a∥α,a⊥AB,则a与β的关系为________.8.直线a和b在正方体ABCD-A1B1C1D1的两个不同平面内,使a∥b成立的条件是________.①a和b垂直于正方体的同一个面;②a和b在正方体两个相对的面内,且共面;③a和b平行于同一条棱;④a和b在正方体的两个面内,且与正方体的同一条棱垂直.9.如图,在三棱锥P-ABC中,PA⊥平面ABC,平面PAB⊥平面PBC.我主动,我参与,我体验,我成功第3页(共4页)求证:BC⊥AB.10.如图所示,在正方体ABCD—A1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC.求证:(1)MN∥AD1;(2)M是AB的中点.11.如图所示,在多面体P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4(1)设M是PC上的一点,求证:平面M BD⊥平面PAD;(2)求四棱锥P—ABCD的体积.※12.如图,直三棱柱ABC-A1B1C1中,AC=BC=1,D是棱AA12的中点,DC1⊥BD.(1)证明:DC1⊥BC;(2)求二面角A1-BD-C1的大小.我主动,我参与,我体验,我成功第4页(共4页)第三篇:线面垂直的判定1(模版)深圳市第二课堂文化教育徐老师***直线与平面垂直的判定1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是()A.平行B.垂直C.相交不垂直D.不确定2.直线a与b垂直,b⊥平面α,则a与平面α的位置关系是()A.a∥αB.a⊥αC.a⊂αD.a⊂α或a∥α3.已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是()A .m⊂α,n⊂α,m//β,n//β⇒α//βB.α//β,m⊂α,n⊂β⇒m//nC.m⊥α,m⊥n⇒n//αD. m//n,n⊥α⇒m⊥α4.已知两条直线m,n,两个平面α,β,给出下面四个命题:①m//n,m⊥α⇒n⊥α②α//β,m⊂α,n⊂β⇒m//n③m//n,m//α⇒n//α④α//β,m//n,m⊥α⇒n⊥β其中正确命题的序号是()A.①③B.②④C.①④D.②③5.已知正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦等于()A.BC.D26.如图,已知正三棱柱ABC-A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD 与平面B1DC所成角的正弦值为.7.如图,在正三棱柱ABC-A1B1C1中,侧棱长为2,底面三角形的边长为1,则BC1与侧面ACC1A1所成的角是.(第6题图)(第7题图)8.已知∆ABC所在平面外一点P到∆ABC三顶点的距离都相等,则点P在平面ABC内的射影是∆ABC的。
《立体几何中的平行与垂直关系》专题训练

一、单选题1.m 、n 是平面α外的两条直线,在m ∥α的前提下,m ∥n 是n ∥α的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.设α,β为两个平面,则α∥β的充要条件是().A.α内有无数条直线与β平行B.α,β平行与同一个平面C.α内有两条相交直线与β内两条相交直线平行D.α,β垂直与同一个平面4.已知l ,m 是两条不同的直线,m //平面α,则().A.若l //m ,则l //αB.若l //α,则l //mC.若l ⊥m ,则l ⊥αD.若l ⊥α,则l ⊥m5.设α,β为两个平面,则α∥β的充要条件是().A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面6.如果用m ,n 表示不同直线,α,β,γ表示不同平面,下列叙述正确的是().A.若m //α,m //n ,则n //αB.若m //n ,m ⊂α,n ⊂β,则α//βC.若α⊥γ,β⊥γ,则α//βD.若m ⊥α,n ⊥α,则m //n7.如图1,点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,则下列四个结论:图1①三棱锥A -D 1PC 的体积不变;②A 1P //平面ACD 1;③DP ⊥BC 1;④平面PDB 1⊥平面ACD 1.其中正确的结论的个数是().A.1个B.2个C.3个D.4个8.如图2,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则().图2A.BM =EN ,且直线BM ,EN 是相交直线B.BM ≠EN ,且直线BM ,EN 是相交直线C.BM =EN ,且直线BM ,EN 是异面直线D.BM ≠EN ,且直线BM ,EN 是异面直线9.如下图所示的四个正方体中,A ,B 正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB //平面MNP 的图形的序号为().59A.①②B.②③C.③④D.①②③10.如图3,在直角梯形ABCD中,BC⊥CD,AB=BC=2,CD=4,E为CD中点,M,N分别为AD,BC的中点,将△ADE沿AE折起,使点D到D1,M到M1,在翻折过程中,有下列命题:图3①||M1M的最小值为1;②M1N//平面CD1E;③存在某个位置,使M1E⊥DE;④无论M1位于何位置,均有M1N⊥AE.其中正确命题的个数为().A.1B.2C.3D.4二、多选题11.已知α,β是两个不重合的平面,m,n是两条不重合的直线,则下列命题正确的是().A.若m//n,m⊥α,则n⊥αB.若m//α,α⋂β=n,则m//nC.若m⊥α,m⊥β,则α//βD.若m⊥α,m//n,n⊥β,则α//β12.已知菱形ABCD中,∠BAD=60°,AC与BD 相交于点O,将△ABD沿BD折起,使顶点A至点M,在折起的过程中,下列结论正确的是().A.BD⊥CMB.存在一个位置,使△CDM为等边三角形C.DM与BC不可能垂直D.直线DM与平面BCD所成的角的最大值为60°13.己知m、n为两条不重合的直线,α、β为两个不重合的平面,则下列说法正确的是().A.若m//α,n//β且α//β,则m//nB.若m//n,m⊥α,n⊥β,则α//βC.若m//n,n⊂α,α//β,m⊄β,则m//βD.若m//n,n⊥α,α⊥β,则m//β14.如图4,在正方体ABCD-A1B1C1D1中,N为底面ABCD的中心,P为线段A1D1上的动点(不包括两个端点),M为线段AP的中点,则().图4A.CM与PN是异面直线B.CM>PNC.平面PAN⊥平面BDD1B1D.过P,A,C三点的正方体的截面一定是等腰梯形15.已知四棱锥P-ABCD,底面ABCD为矩形,侧面PCD⊥平面ABCD,BC=23,CD=PC=PD=26.若点M为PC的中点,则下列说法正确的为().A.BM⊥平面PCDB.PA//面MBDC.四棱锥M-ABCD外接球的表面积为36πD.四棱锥M-ABCD的体积为6三、填空题16.如图5,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.其中正确的有_______.(把所有正确的序号都填上)图517.已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:_______.18.已知α,β是两个不同的平面,l,m是两条不同的直线,有如下四个命题:①若l⊥α,l⊥β,则α∥β;②若l⊥α,α⊥β,则l∥β;③若l∥α,l⊥β,则α⊥β;④若l∥α,α⊥β,则l⊥β.其中真命题为______(填所有真命题的序号).19.已知α,β是两个不同的平面,l,m是两条不同60,C⊥平面ABB.图622.如图7,在直三棱柱ABC为BC,AC的中点,AB=BC.(1)求证:A1B1∥平面DEC1;(2)求证:BE⊥C1E.23.如图8,在四棱锥P-ABCDPA,PD的中点.已知侧面PAD⊥是矩形,DA=DP.(1)求证:MN∥平面PBC;图8图9图11P-ABCD中,已知底BC=1,E,F分别是AB,;平面PDE.如图13,取PD中点G。
高中数学必修2立体几何专题-线面垂直专题典型例题精选精讲

线面垂直的证明中的找线技巧◆通过计算,运用勾股定理寻求线线垂直1 如图1,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC交BD 于点O ,求证:1A O ⊥平面MBD .证明:连结MO ,1A M,∵D B⊥1A A ,D B⊥AC ,1A AAC A =,∴DB ⊥平面11A ACC ,而1AO ⊂平面11A ACC ∴DB ⊥1A O . 设正方体棱长为a ,则22132A O a =,2234MO a =.在Rt △11A C M 中,22194A M a =.∵22211A O MO A M +=,∴1AO OM ⊥. ∵OM ∩D B=O ,∴ 1A O ⊥平面MBD . 评注:在证明垂直关系时,有时可以利用棱长、角度大小等数据,通过计算来证明.◆利用面面垂直寻求线面垂直2 如图2,P 是△A BC 所在平面外的一点,且PA ⊥平面ABC ,平面PAC ⊥平面PBC .求证:B C⊥平面PAC .证明:在平面PAC 内作A D⊥PC 交PC 于D.因为平面PAC ⊥平面PB C,且两平面交于P C,AD ⊂平面PAC ,且A D⊥PC , 由面面垂直的性质,得AD ⊥平面PB C. 又∵BC ⊂平面P BC ,∴AD ⊥BC .∵PA ⊥平面AB C,BC ⊂平面ABC ,∴PA ⊥BC .∵AD ∩PA =A ,∴BC ⊥平面PAC .(另外还可证BC 分别与相交直线AD ,A C垂直,从而得到BC ⊥平面PAC ).评注:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直⇒线面垂直⇒线线垂直.一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.下面举例说明.3 如图1所示,ABCD 为正方形,SA ⊥平面AB CD ,过A 且垂直于SC 的平面分别交SB SC SD ,,于E F G ,,.求证:AE SB ⊥,AG SD ⊥.证明:∵SA ⊥平面ABCD , ∴SA BC ⊥.∵AB BC ⊥,∴BC ⊥平面SAB .又∵AE ⊂平面SAB ,∴BC AE ⊥.∵SC ⊥平面AEFG ,∴SC AE ⊥.∴AE ⊥平面SBC .∴AE SB ⊥.同理可证AG SD ⊥.评注:本题欲证线线垂直,可转化为证线面垂直,在线线垂直与线面垂直的转化中,平面起到了关键作用,同学们应多注意考虑线和线所在平面的特征,从而顺利实现证明所需要的转化.4 如图2,在三棱锥A -BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E 为垂足,作AH ⊥B E于H .求证:AH ⊥平面B CD.证明:取A B的中点F,连结CF ,DF . ∵ACBC =,∴CF AB ⊥.∵AD BD =,∴DF AB ⊥.又CF DF F =,∴AB ⊥平面CDF . ∵CD ⊂平面CD F,∴CD AB ⊥. 又CD BE ⊥,BE AB B =, ∴CD ⊥平面A BE ,CD AH ⊥.∵AH CD ⊥,AH BE ⊥,CD BE E =,∴ AH ⊥平面BCD .评注:本题在运用判定定理证明线面垂直时,将问题转化为证明线线垂直;而证明线线垂直时,又转化为证明线面垂直.如此反复,直到证得结论.5 如图3,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E 为垂足,F 是P B上任意一点, 求证:平面AEF ⊥平面PBC .证明:∵AB 是圆O 的直径,∴AC BC ⊥.∵PA ⊥平面AB C,BC⊂平面A BC ,∴PA BC ⊥.∴BC ⊥平面APC . ∵BC ⊂平面P BC ,∴平面AP C⊥平面PBC .∵AE ⊥PC ,平面APC ∩平面P BC =P C, ∴AE ⊥平面PBC .∵AE ⊂平面AE F,∴平面AE F⊥平面PB C. 评注:证明两个平面垂直时,一般可先从现有的直线中寻找平面的垂线,即证线面垂直,而证线面垂直则需从已知条件出发寻找线线垂直的关系.6. 空间四边形ABCD 中,若AB ⊥CD ,BC ⊥AD,求证:AC ⊥BDAD B O C证明:过A 作AO ⊥平面BCD 于O 。
立体几何中平行与垂直的证明3

高中数学专题复习讲座 关于求空间的角的问题例1在棱长为a 的正方体ABCD —A ′B ′C ′D ′中, E 、F 分别是BC 、A ′D ′的中点 (1)求证 四边形B ′EDF 是菱形; (2)求直线A ′C 与DE 所成的角;(3)求直线AD 与平面B ′EDF 所成的角; (4)求面B ′EDF 与面ABCD 所成的角(1)证明 如上图所示,由勾股定理,得B ′E =ED =DF =FB ′=25a ,下证B ′、E 、D 、F 四点共面,取AD 中点G ,连结A ′G 、EG ,由EG AB A ′B ′知,B ′EGA ′是平行四边形∴B ′E ∥A ′G ,又A ′ FDG ,∴A ′GDF 为平行四边形∴A ′G ∥FD ,∴B ′、E 、D 、F 四点共面 故四边形B ′EDF 是菱形(2)解 如图所示,在平面ABCD 内,过C 作CP ∥DE ,交直线AD 于P ,则∠A ′CP (或补角)为异面直线A ′C 与DE 所成的角在△A ′CP 中,易得A ′C =3a ,CP =DE =25a ,A ′P =213a 由余弦定理得cos A ′CP =1515故A ′C 与DE 所成角为arccos 1515另法(向量法) 如图建立坐标系,则(0,0,),(,,0),(0,,0),(,,0)2aA a C a a D a E a '(,,),(,,0)2a A C a a a DE a '⇒=-=-15cos ,15||||A C DE A C DE A C DE ''⇒<>=='故A ′C 与DE 所成角为arccos 1515(3)解 ∵∠ADE =∠ADF ,∴AD 在平面B ′EDF 内的射影在∠EDF 的平分线上 如下图所示又∵B ′EDF 为菱形,∴DB ′为∠EDF 的平分线, 故直线AD 与平面B ′EDF 所成的角为∠ADB ′在Rt △B ′AD 中,AD =2a ,AB ′=2a ,B ′D =2a 则cos ADB ′=33 故AD 与平面B ′EDF 所成的角是arccos 33另法(向量法)∵∠ADE =∠ADF ,∴AD 在平面B ′EDF 内的射影在∠EDF 的平分线上 如下图所示又∵B ′EDF 为菱形,∴DB ′为∠EDF 的平分线,故直线AD 与平面B ′EDF 所成的角为∠ADB ′, 如图建立坐标系,则(0,0,0),(,0,),(0,,0)A B a a D a '(0,,0),(,,)DA a DB a a a '⇒=-=-3cos ,3||||DA DB DA DB DADB ''⇒<>==',故AD 与平面B ′EDF 所成的角是arccos33 (4)解 如图,连结EF 、B ′D ,交于O 点,显然O 为B ′D 的中点,从而O 为正方形ABCD —A ′B ′C ′D 的中心作OH ⊥平面ABCD ,则H 为正方形ABCD 的中心, 再作HM ⊥DE ,垂足为M ,连结OM ,则OM ⊥DE , 故∠OMH 为二面角B ′—DE ′—A 的平面角 在Rt △DOE 中,OE =22a ,OD =23a ,斜边DE =25a , 则由面积关系得OM =1030=⋅DE OE OD a 在Rt △OHM中,sin OMH =630=OM OH 故面B ′EDF 与面ABCD 所成的角为arcsin630 另法(向量法) 如图建立坐标系,则(0,0,0),(0,0,),(,0,),(0,,0),(,2a A A a B a a D a E a '',所以面ABCD 的法向量为(0,0,),m AA a '==下面求面B ′EDF 的法向量n设(1,,)n y z =,由(,,0),(0,22aa ED a EB a'=-=-00221002a a y n ED y a z n ED y az ⎧-+=⎪⎧==⎧⎪⎪⇒⇒⎨⎨⎨==⎩⎪⎪⎩-+=⎪⎩∴(1,2,1)n =G FED'C'B'A'DCBAPED'C'B'A'D CBAH O MFED'C'B'A'DCBA F ED'C'B'A'DCBA ED'C'B'A'DCBA oxzyFE D'C'B'A'DC B A xyz F ED'C'B'A'DCBA xyz∴6cos ,||||6n m n m n m <>==故面B ′EDF 与面ABCD 所成的角为6arccos6例2如下图,已知平行六面体ABCD —A 1B 1C 1D 1中,底面ABCD 是边长为a 的正方形,侧棱AA 1长为b ,且AA 1与AB 、AD 的夹角都是120°求 (1)AC 1的长;(2)直线BD 1与AC 所成的角的余弦值21111111222111:(1)||()()()()||||||222AC AC AC AA AC AA AC AA AB AD AA AB AD AA AB AD AA AB AA AD AB AD =⋅=++=++++=+++⋅+⋅+⋅解 22222111112221:||,||||,,120,,9011cos120,cos120,0,22||2AA b AB AD a AA AB AA AD AB AD AA AB b a ab AA AD b a ab AB AD AC a b ===<>=<>=︒<>=︒∴⋅=⋅︒=-⋅=⋅︒=-⋅=∴=+- 由已知得2212,||22.ab AC a b ab ∴=+-11112211(2),||2,()()AC a AC AB ADBD AD BA AA AD AB AC BD AB AD AA AD AB AB AA AD AA AB AD AD AB ==+=+=+-∴⋅=++-=⋅+⋅+⋅+-依题意得21111122222111||()()||||||2222AB AD abBD BD BD AA AD AB AA AD AB AA AD AB AA AD AB AD AA AB a b -⋅=-=⋅=+-+-=+++⋅-⋅-⋅=+2212||b a BD +=∴2211124||||,cos b a b AC BD ACBD AC BD +-=⋅>=<∴BD 1与AC 所成角的余弦值为2224ba b+例3如图,l αβ--为60°的二面角,等腰直角 三角形MPN 的直角顶点P 在l 上,M ∈α,N ∈β,且MP 与β所成的角等于NP 与α所成的角 (1)求证 MN 分别与α、β所成角相等; (2)求MN 与β所成角 (1)证明 作NA ⊥α于A ,MB ⊥β于B ,连接AP 、PB 、BN 、AM ,再作AC ⊥l 于C ,BD ⊥l 于D ,连接NC 、MD600CDA600βαNP BM∵NA ⊥α,MB ⊥β,∴∠MPB 、∠NPA 分别是MP 与β所成角及NP 与α所成角,∠MNB ,∠NMA 分别是MN 与β,α所成角,∴∠MPB =∠NPA 在Rt △MPB 与Rt △NPA 中,PM =PN ,∠MPB =∠NPA ,∴△MPB ≌△NPA ,∴MB =NA 在Rt △MNB 与Rt △NMA 中,MB =NA ,MN 是公共边,∴△MNB ≌△NMA ,∴∠MNB =∠NMA ,即(1)结论成立(2)解 设∠MNB =θ,MN =2a ,则PB =PN =a ,MB =NA =2a sin θ,NB =2a cos θ ,∵MB ⊥β,BD ⊥l ,∴MD ⊥l ,∴∠MDB 是二面角α—l —β的平面角,∴∠MDB =60°,同理∠NCA =60°, ∴BD =AC =3633=MB a sin θ,CN =DM =63260sin 6=︒MB a sin θ, ∵MB ⊥β,MP ⊥PN ,∴BP ⊥PN ∵∠BPN =90°,∠DPB =∠CNP ,∴△BPD ∽△PNC ,∴PBBDPNPC =2222,a CN DB aBN a-=-即222226(sin )6sin 33(2cos )aa a a aθθθ-∴=- 整理得,16sin 4θ-16sin 2θ+3=0解得sin 2θ=4341或,sin θ=2321或, 当sin θ=23时,CN =632a sin θ= 2a >PN 不合理,舍去 ∴sin θ=21,∴MN 与β所成角为30°另法(向量法) 如图设α的法向量为n,β的法向量为m ,模均为1,由题意0,60n m <>=,D 1C 1B 1A 1D CBA βαNPM,,n PN m PM <>=<>,0,90,PN PM <>=设||||PN PM a == ,则,12n m =,n PN m PM n PN m PM ==或-,0,PN PM =且0m PN n PM ==cos ,||||||||||MN n MN n PN n PM n PN n MN n MN n MN MN MN -<>==== cos ,||||||||||MN m MN m PN m PM m PM m MN m MN m MN MN MN --<>==== 所以cos ,MN n <> =cos ,MN m <>或cos ,MN n <> =-cos ,MN m <>所以,MN 分别与α、β所成角相等 学生巩固练习 1 在正方体ABCD —A 1B 1C 1D 1中,M 为DD 1的中点,O 为底面ABCD 的中心,P 为棱A 1B 1上任意一点,则直线OP 与直线AM 所成的角是( ) A 6π B 4π C 3πD 2π2 设△ABC 和△DBC 所在两平面互相垂直,且AB =BC =BD =a ,∠CBA =∠CBD =120°,则AD 与平面BCD 所成的角为( ) A 30° B 45° C 60° D 75°3 已知∠AOB =90°,过O 点引∠AOB 所在平面的斜线OC ,与OA 、OB 分别成45°、60°,则以OC 为棱的二面角A —OC —B 的余弦值等于______4 正三棱锥的一个侧面的面积与底面积之比为2∶3,则这个三棱锥的侧面和底面所成二面角的度数为_________5 已知四边形ABCD 为直角梯形,AD ∥BC ,∠ABC =90°,PA ⊥平面AC ,且PA =AD =AB =1,BC =2 (1)求PC 的长; (2)求异面直线PC 与BD 所成角的余弦值的大小; (3)求证 二面角B —PC —D 为直二面角6 设△ABC 和△DBC 所在的两个平面互相垂直,且AB =BC =BD ,∠ABC =∠DBC =120°,求(1)直线AD 与平面BCD 所成角的大小; (2)异面直线AD 与BC 所成的角;(3)二面角A —BD —C 的大小7一副三角板拼成一个四边形ABCD , 如图,然后将它沿BC 折成直二面角(1)求证 平面ABD ⊥平面ACD ;(2)求AD 与BC 所成的角;(3)求二面角A —BD —C 的大小[参考答案] 1 解析 (特殊位置法)将P 点取为A 1,作OE ⊥AD 于E ,连结A 1E ,则A 1E 为OA 1的射影,又AM ⊥A 1E ,∴AM⊥OA 1,即AM 与OP 成90°角 答案 D 2 解析 作AO ⊥CB 的延长线,连OD ,则OD 即为AD 在平面BCD 上的射影, ∵AO =OD =23a ,∴∠ADO =45°答案 B3 解析 在OC 上取一点C ,使OC =1,过C 分别作CA ⊥OC 交OA 于A ,CB ⊥OC 交OB 于B ,则AC =1,,OA =2,BC =3,OB =2,Rt △AOB 中,AB 2=6,△ABC 中,由余弦定理,得cos ACB =-33答案 -334 解析 设一个侧面面积为S 1,底面面积为S ,则这个侧面在底面上射影的面积为3S,由题设得321=S S ,设侧面与底面所成二面角为θ,则cos θ=2133111==S S S S,∴θ=60° 答案 60° 5 (1)解 因为PA ⊥平面AC ,AB ⊥BC ,∴PB ⊥BC ,P AB C D DCBAA BCD ABCD即∠PBC =90°,由勾股定理得PB =222=+AB PA∴PC =622=+PC PB(2)解 如图,过点C 作CE ∥BD 交AD 的延长线于E ,连结PE ,则PC 与BD 所成的角为∠PCE 或它的补角∵CE =BD =2,且PE =1022=+AE PA ∴由余弦定理得cos PCE =632222-=⋅-+CE PC PE CE PC ∴PC 与BD 所成角的余弦值为63(3)证明 设PB 、PC 中点分别为G 、F ,连结FG 、AG 、DF ,则GF ∥BC ∥AD ,且GF =21BC =1=AD ,从而四边形ADFG 为平行四边形, 又AD ⊥平面PAB ,∴AD ⊥AG , 即ADFG 为矩形,DF ⊥FG在△PCD 中,PD =2,CD =2,F 为BC 中点, ∴DF ⊥PC从而DF ⊥平面PBC ,故平面PDC ⊥平面PBC , 即二面角B —PC —D 为直二面角 另法(向量法) (略)PA BCDoxzy6 解 (1)如图,在平面ABC 内,过A 作AH ⊥BC ,垂足为H ,则AH ⊥平面DBC ,∴∠ADH 即为直线AD 与平面BCD 所成的角 由题设知△AHB ≌△AHD ,则DH ⊥BH ,AH =DH , ∴∠ADH =45°(2)∵BC ⊥DH ,且DH 为AD 在平面BCD 上的 射影,∴BC ⊥AD ,故AD 与BC 所成的角为90° (3)过H 作HR ⊥BD ,垂足为R ,连结AR ,则由三垂线定理知,AR ⊥BD ,故∠ARH 为二面角A —BD —C 的平面角的补角 设BC =a ,则由题设知,AH =DH =2,23aBH a =,在△HDB 中,HR =43a ,∴tan ARH =HRAH=2故二面角A —BD —C 大小为π-arctan2 另法(向量法) (略)R H ABCDzy7 (1)证明 取BC 中点E ,连结AE ,∵AB =AC ,∴AE ⊥BC∵平面ABC ⊥平面BCD ,∴AE ⊥平面BCD ,∵BC ⊥CD ,由三垂线定理知AB ⊥CD又∵AB ⊥AC ,∴AB ⊥平面BCD ,∵AB ⊂平面ABD ∴平面ABD ⊥平面ACD(2)解 在面BCD 内,过D 作DF ∥BC ,过E 作EF ⊥DF ,交DF 于F ,由三垂线定理知A F ⊥DF ,∠ADF 为AD 与BC所成的角设AB =m ,则BC =2m ,CE =DF =22m ,CD =EF =36m 321arctan,321tan 22=∠∴=+==∴ADF DF EF AE DFAFADF即AD 与BC 所成的角为arctan321 (3)解 ∵AE ⊥面BCD ,过E 作EG ⊥BD 于G ,连结AG ,由三垂线定理知AG ⊥BD ,∴∠AGE 为二面角A —BD —C 的平面角∵∠EBG =30°,BE =22m ,∴EG =42m 又AE =22m ,∴tan AGE =GEAE=2,∴∠AGE =arctan2即二面角A —BD —C 的大小为arctan2 另法(向量法) (略)FEF EDC BAABCDo xzyF GPAB C D EPABC D G GFEF EDCBAA B CD RHABCD高中数学专题复习讲座 关于求空间距离的问题例1把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求(1)EF 的长;(2)折起后∠EOF 的大小解 如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-42a , a ),F (42a , 42a ,0)21||||,cos ,2||,2||8042)42)(42(420)0,42,42(),42,42,0()2(23,43)420()4242()042(||)1(22222-=⋅>=<==-=⋅+-+⨯=⋅=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE aEF a a a a a EF ∴∠EOF =120°例2正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离解法一 如图,在正方体AC 1中, ∵A 1C 1∥AC ,∴A 1C 1∥平面AB 1C , ∴A 1C 1与平面AB 1C 间的距离等于异面直线A 1C 1与AB 1间的距离连结B 1D 1、BD ,设B 1D 1∩A 1C 1=O 1,BD ∩AC =O ∵AC ⊥BD ,AC ⊥DD 1,∴AC ⊥平面BB 1D 1D ∴平面AB 1C ⊥平面BB 1D 1D ,连结B 1O ,则平面AB 1C ∩平面BB 1D 1D =B 1O 作O 1G ⊥B 1O 于G ,则O 1G ⊥平面AB 1C∴O 1G 为直线A 1C 1与平面AB 1C 间的距离,即为异面直线A 1C 1与AB 1间的距离在Rt △OO 1B 1中,∵O 1B 1=22,OO 1=1,∴OB 1=21121B O OO += 26∴O 1G =331111=⋅OB B O O O ,即异面直线A 1C 1与AB 1间距离为33 解法二 如图,在A 1C 上任取一点M ,作MN ⊥AB 1于N ,作MR ⊥A 1B 1于R ,连结RN ,∵平面A 1B 1C 1D 1⊥平面A 1ABB 1, ∴MR ⊥平面A 1ABB 1,MR ⊥AB 1 ∵AB 1⊥RN ,设A 1R =x ,则RB 1=1-x∵∠C 1A 1B 1=∠AB 1A 1=45°,∴MR =x ,RN =NB 1=)1(22x - 31)31(23)1(2122222+-=-+=+=x x x RN MR MN (0<x <1)∴当x =31时,MN 有最小值33即异面直线A 1C 1与AB 1距离为33解法三(向量法)如图建立坐标系,则111(1,0,0),(1,0,1),(1,1,1),(0,1,1)A A B C ∴111(0,1,1),(1,1,0)AB AC -== 设MN 是直线A 1C 1与AB 1的公垂线,且1111(0,,),(,,0)AN AB A M AC λλλμμμ- ==== 则11(,,0)(0,0,1)(0,,)MN MA A A AN μμλλ=++-+-+=-(,,1),μλμλ=--从而有11100MN AC MN AB ⎧⎪⇒⎨⎪⎩==22032113λλμλμμ⎧=⎪-=⎧⎪⇒⎨⎨-=⎩⎪=⎪⎩∴1113(,,)||3333MN MN =⇒=例3如图,已知ABCD 是矩形,AB =a ,AD =b ,P A ⊥平 面ABCD ,P A =2c ,Q 是P A 的中点求 (1)Q 到BD 的距离;(2)P 到平面BQD 的距离解 (1)在矩形ABCD 中,作AE ⊥BD ,E 为垂足连结QE , ∵QA ⊥平面ABCD ,由三垂线定理得QE ⊥BE ∴QE 的长为Q 到BD 的距离 在矩形ABCD 中,AB =a ,AD =b ,∴AE =22ba ab +在Rt △QAE 中,QA =21P A =c ∴G D 1C 1B 1A 1o 1oD C BARNMD 1C 1B 1A 1DC BANMD 1C 1B 1A 1DC BAxzyQ PD CB AH E Q P DC BAQE =22222b a b ac ++ ∴Q 到BD 距离为22222b a ba c ++ (2)解法一 ∵平面BQD 经过线段P A 的中点, ∴P 到平面BQD 的距离等于A 到平面BQD 的距离 在△AQE 中,作AH ⊥QE ,H 为垂足 ∵BD ⊥AE ,BD ⊥QE ,∴BD ⊥平面AQE ∴BD ⊥AH ∴AH ⊥平面BQE ,即AH 为A 到平面BQD 的距离 在Rt △AQE 中,∵AQ =c ,AE =22ba ab+ ∴AH =22222)(ba cb a abc++ ∴P 到平面BD 的距离为22222)(ba cb a abc++ 解法二 设点A 到平面QBD 的距离为h ,由 V A —BQD =V Q —ABD ,得31S △BQD ·h =31S △ABD ·AQh =22222)(ba cb a abcS AQ S BQD ABD ++==⋅∆∆ 学生巩固练习 1 正方形ABCD 边长为2,E 、F 分别是AB 和CD 的中点,将正方形沿EF 折成直二面角(如图),M 为矩形AEFD 内一点,如果∠MBE =∠MBC ,MB 和平面BCF 所成角的正切值为21,那么点M 到直线EF 的距离为( )A 22B 1C 32 D 122 三棱柱ABC —A 1B 1C 1中,AA 1=1,AB =4,BC =3,∠ABC =90°,设平面A 1BC 1与平面ABC 的交线为l ,则A 1C 1与l 的距离为( )A 10B 11C 2.6D 2.43 如左图,空间四点A 、B 、C 、D 中,每两点所 连线段的长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上,则P 与Q 的最短距离为_________4 如右上图,ABCD 与ABEF 均是正方形,如果二 面角E —AB —C 的度数为30°,那么EF 与平面ABCD的距离为_________5 在长方体ABCD —A 1B 1C 1D 1中,AB =4,BC =3, CC 1=2,如图 (1)求证 平面A 1BC 1∥平面ACD 1; (2)求(1)中两个平行平面间的距离; (3)求点B 1到平面A 1BC 1的距离6 已知正四棱柱ABCD —A 1B 1C 1D 1,点E 在棱D 1D 上,截 面EAC ∥D 1B 且面EAC 与底面ABCD 所成的角为45°,AB =a ,求 (1)截面EAC 的面积; (2)异面直线A 1B 1与AC 之间的距离;(3)三棱锥B 1—EAC 的体积7 如图,已知三棱柱A 1B 1C 1—ABC 的底面是边长为2的正三角形,侧棱A 1A 与AB 、AC 均成45°角,且A 1E⊥B 1B 于E ,A 1F ⊥CC 1于F(1)求点A 到平面B 1BCC 1的距离; (2)当AA 1多长时,点A 1到平面ABC 与平面B 1BCC 1的距离相等8 如图,在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB = 31AD =a ,∠ADC =arccos 552,P A ⊥面ABCD 且P A =a (1)求异面直线AD 与PC 间的距离; (2)在线段AD 上是否存在一点F ,使点A 到平面PCF 的距离为36MA B C D C B FE A B CD Q PA BCD GF E D 1C 1B 1A 1DC BA E D 1C 1B 1A 1D CBA EC 1B 1F C B A AB CDP[参考答案]1 解析 过点M 作MM ′⊥EF ,则MM ′⊥平面BCF∵∠MBE =∠MBC∴BM ′为∠EBC 为角平分线,∴∠EBM ′=45°,BM ′=2,从而MN =22 答案 A2 解析 交线l 过B 与AC 平行,作CD ⊥l 于D ,连C 1D ,则C 1D 为A 1C 1与l 的距离,而CD 等于AC 上的高,即CD =512,Rt △C 1CD 中易求得C 1D =513=2.6 答案 C3 解析 以A 、B 、C 、D 为顶点的四边形为空间四边形,且为正四面体,取P 、Q 分别为AB 、CD 的中点,因为AQ =BQ =22a ,∴PQ ⊥AB , 同理可得PQ ⊥CD ,故线段PQ 的长为P 、Q 两点间的最短距离,在Rt △APQ 中,PQ =22)2()23(2222=-=-a a AP AQ a 答案22a 4 解析 显然∠F AD 是二面角E —AB —C 的平面角,∠F AD =30°,过F 作FG ⊥平面ABCD 于G ,则G 必在AD 上,由EF ∥平面ABCD∴FG 为EF 与平面ABCD 的距离,即FG =2a答案 2a5 (1)证明 由于BC 1∥AD 1,则BC 1∥平面ACD 1 同理,A 1B ∥平面ACD 1,则平面A 1BC 1∥平面ACD 1 (2)解 设两平行平面A 1BC 1与ACD 1间的距离为d ,则d 等于D 1到平面A 1BC 1的距离 易求A 1C 1=5,A 1B =25,BC 1=13,则cos A 1BC 1=652,则sin A 1BC 1=6561,则S111C B A ∆=61,由于111111D C A B BC A D V V --=,则31S 11BC A ∆·d =)21(31111D C AD ⋅·BB 1,代入求得d =616112,即两平行平面间的距离为616112 (3)解 由于线段B 1D 1被平面A 1BC 1所平分,则B 1、D 1到平面A 1BC 1的距离相等,则由(2)知点B 1到平面A 1BC 1的距离等于6161126 解 (1)连结DB 交AC 于O ,连结EO , ∵底面ABCD 是正方形∴DO ⊥AC ,又ED ⊥面ABCD ∴EO ⊥AC ,即∠EOD =45°又DO =22a ,AC =2a ,EO =︒45cos DO =a ,∴S △EAC =22a (2)∵A 1A ⊥底面ABCD ,∴A 1A ⊥AC ,又A 1A ⊥A 1B 1 ∴A 1A 是异面直线A 1B 1与AC 间的公垂线 又EO ∥BD 1,O 为BD 中点,∴D 1B =2EO =2a∴D 1D =2a ,∴A 1B 1与AC 距离为2a(3)连结B 1D 交D 1B 于P ,交EO 于Q ,推证出B 1D ⊥面EAC∴B 1Q 是三棱锥B 1—EAC 的高,得B 1Q =23a 32422322311a a a V EAC B =⋅⋅=-7 解 (1)∵BB 1⊥A 1E ,CC 1⊥A 1F ,BB 1∥CC 1 ∴BB 1⊥平面A 1EF 即面A 1EF ⊥面BB 1C 1C 在Rt △A 1EB 1中,∵∠A 1B 1E =45°,A 1B 1=a∴A 1E =22a ,同理A 1F =22a ,又EF =a ,∴A 1E =22a 同理A 1F =22a ,又EF =a∴△EA 1F 为等腰直角三角形,∠EA 1F =90°过A 1作A 1N ⊥EF ,则N 为EF 中点,且A 1N ⊥平面BCC 1B 1即A 1N 为点A 1到平面BCC 1B 1的距离∴A 1N =221a=又∵AA 1∥面BCC 1B ,A 到平面BCC 1B 1的距离为2a∴a =2,∴所求距离为2 (2)设BC 、B 1C 1的中点分别为D 、D 1,连结AD 、DD 1和A 1D 1,则DD 1必过点N ,易证ADD 1A 1为平行四边形∵B 1C 1⊥D 1D ,B 1C 1⊥A 1N ∴B 1C 1⊥平面ADD 1A 1 ∴BC ⊥平面ADD 1A 1得平面ABC ⊥平面ADD 1A 1,过A 1作A 1M ⊥平面ABC ,交AD 于M ,若A 1M =A 1N ,又∠A 1AM =∠A 1D 1N ,∠AMA 1=∠A 1ND 1=90°∴△AMA 1≌△A 1ND 1,∴AA 1=A 1D 1=3,即当AA 1=3时满足条件8 解 (1)∵BC ∥AD ,BC ⊂面PBC ,∴AD ∥面PBC 从而AD 与PC 间的距离就是直线AD 与平面PBC 间的距离过A 作AE ⊥PB ,又AE ⊥BC ∴AE ⊥平面PBC ,AE 为所求在等腰直角三角形P AB 中,P A =AB =a∴AE =22a (2)作CM ∥AB ,由已知cos ADC =552∴tan ADC =21,即CM =21DM ∴ABCM 为正方形,AC =2a ,PC =3a 过A 作AH ⊥PC ,在Rt △P AC 中,得AH =36下面在AD 上找一点F ,使PC ⊥CF取MD 中点F ,△ACM 、△FCM 均为等腰直角三角形∴∠ACM +∠FCM =45°+45°=90°∴FC ⊥AC ,即FC ⊥PC ∴在AD 上存在满足条件的点F。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线面平行与垂直的证明
1:如图,在棱长为1的正方体ABCD-A 1B 1C 1D 1中. (1)求证:AC ⊥平面B 1BDD 1;
(2)求三棱锥B-ACB 1体积.
2:如图,ABCD 是正方形,O 是正方形的中心, PO ⊥底面ABCD ,E 是PC 的中点.
求证:(1)PA∥平面BDE ; (2)平面PAC ⊥平面BDE .
3:如图:在底面是直角梯形的四棱锥S —ABCD 中, ∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,2
1=AD . (Ⅰ)求四棱锥S —ABCD 的体积; (Ⅱ)证明:平面SBC ⊥平面SCD .
4:已知多面体ABCDFE 中, 四边形ABCD 为矩形,AB ∥EF ,AF ⊥BF ,平面ABEF ⊥平面ABCD , O 、M 分别为AB 、FC 的中点,且AB = 2,AD = EF = 1. (Ⅰ)求证:AF ⊥平面FBC ; (Ⅱ)求证:OM ∥平面DAF .
5:.如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,
侧棱PD ⊥底面ABCD ,PD =DC ,E 是P C 的中点,作EF ⊥PB 交PB 于点F . (1)证明 P A //平面EDB ; (2)证明PB ⊥平面EFD ;
D 1
C 1
B 1 A 1
C D
B
A
D
A
B
C
O
E
P
6:已知正方形ABCD 和正方形ABEF 所在的平面相交于AB ,点M ,N 分别在AC 和BF 上,且AM=FN. 求证:MN ‖平面BCE.
7:如图,正方体1111D C B A ABCD -中,棱长为a (1)求证:直线//1B A 平面1ACD (2)求证:平面1ACD ⊥平面D BD 1;
8: 如图,已知△ABC 是正三角形,EA 、CD 都垂直于平面ABC ,且EA=AB=2a,DC=a,F 是BE 的中点, 求证:(1) FD ∥平面ABC (2) AF ⊥平面EDB.
9:如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是CB 、CD 、CC 1的中点,
(1) 求证:平面A B 1D 1∥平面EFG;
(2) 求证:平面AA 1C ⊥面EFG.
C
P
10:如图,PC AB N M ABCD PA 、分别是、所在的平面,矩形⊥的中点. (1)求证:PAD MN 平面//;(2)求证:CD MN ⊥;
11:如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中, 求证:⑴ AC ⊥平面B 1D 1DB;
⑵ 求证:BD 1⊥平面ACB 1 ⑶ 求三棱锥B-ACB 1体积.
12: 四棱锥ABCD 中,底面ABCD 是正方形,O 是正方形ABCD 的中心,PO ⊥底面ABCD ,E 是PC 的中点. 求证:(Ⅰ)PA ∥平面BDE ; (Ⅱ)平面PAC ⊥平面BDE .
13:在三棱锥S ABC -中,已知点D 、E 、F 分别为棱AC 、SA 、SC 的中点. ①求证:
EF ∥平面ABC .
D 1 C 1
B 1
A C
D
B
A
②若SA SC =,BA BC =,求证:平面SBD ⊥平面ABC .
14:如图, 已知正三角形PAD , 正方形ABCD ,
平面PAD ⊥平面ABCD , E 为PD 的中点.
(Ⅰ)求证:CD AE ⊥; (Ⅱ)求证:AE ⊥平面PCD .
15:四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,M N 、分别是
AB PC 、的中点,PA AO a ==.
(1)求证://MN 平面PAD ; (2)求证:平面PMC ⊥平面PCD . (自己画图)
16:如图,在三棱锥P ABC -中,PC ⊥底面ABC ,
AB BC ⊥, D 、E 分别是AB 、PB 的中点.
(1)求证:DE ∥平面PAC ;(2)求证:AB ⊥PB ;
A
C
P
B
D
E
17:如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1=2,AC⊥BC,D为AB的中点.
(1)求证:AC1∥平面B1CD;
(2)求二面角B-B1C-D的正弦值.
18:已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+3,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使DE⊥EC.
(1)求证:BC⊥平面CDE;
(2)求证:FG∥平面BCD;
(3)求四棱锥D-ABCE的体积.。