tio2光催化技术

合集下载

二氧化钛光催化原理

二氧化钛光催化原理

TiO 2光催化氧化机理TiO 2属于一种n 型半导体材料,它的禁带宽度为3.2ev (锐钛矿),当它受到波长小于或等于387.5nm 的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至导带,形成光生电子(e -);而价带中则相应地形成光生空穴(h +),如图1-1所示。

如果把分散在溶液中的每一颗TiO 2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO 2表面不同的位置。

TiO 2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,而空穴h +则可氧化吸附于TiO 2表面的有机物或先把吸附在TiO 2表面的OH -和H 2O 分子氧化成 ·OH 自由基,·OH 自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化水中绝大部分的有机物及无机污染物,将其矿化为无机小分子、CO 2和H 2O 等无害物质。

反应过程如下:反应过程如下:TiO 2 + hv → h + +e - (3) h + +e - → 热能 (4)h + + OH- →·OH (5) h + + H 2O →·OH + H + (6)e- +O 2 → O 2- (7) O 2 + H+ → HO 2· (8)2 H 2O ·→ O 2 + H 2O 2 (9) H 2O 2 + O 2 →·OH + H + + O 2 (10)·OH + dye →···→ CO 2 + H 2O (11)H + + dye →···→ CO 2 + H 2O (12) 由机理反应可知,TiO 2光催化降解有机物,实质上是一种自由基反应。

Ti02光催化氧化的影响因素1、 试剂的制备方法常用Ti02光催化剂制备方法有溶胶一凝胶法、沉淀法、水解法等。

不同方法制得的Ti02粉末的粒径不同,其光催化效果也不同。

纳米TiO2光催化降解水体中有机污染物

纳米TiO2光催化降解水体中有机污染物

纳米TiO2光催化降解水体中有机污染物纳米TiO2光催化技术为一种有效的水体净化方法,可用于降解水体中的有机污染物。

本文将详细介绍纳米TiO2光催化降解有机污染物的原理、应用和未来发展趋势。

1. 简介水体污染是当前环境问题的重要方面之一,有机污染物的存在严重威胁水生态系统的健康和人类的生存。

因此,研究和开发高效的水体净化技术变得尤为重要。

纳米TiO2光催化技术凭借其高效、无毒、无副产物、易操作等优势,被广泛应用于水体净化领域。

2. 纳米TiO2光催化的原理纳米TiO2光催化技术是通过TiO2纳米颗粒的吸光吸收能量,形成带隙激发,产生电子和空穴对,进而参与化学反应。

在光照的作用下,纳米TiO2表面形成活性氧种,如羟基自由基和超氧阴离子自由基等,这些活性氧种具有较强的氧化能力,可将有机污染物分解为无害的物质。

3. 纳米TiO2光催化应用案例纳米TiO2光催化技术在水体净化领域有着广泛的应用。

以染料为例,纳米TiO2光催化技术可将有机染料降解为无色的无害物质。

此外,纳米TiO2光催化技术还可用于降解苯酚、有机酸类、农药等有机污染物。

这些应用案例充分展示了纳米TiO2光催化技术在水体净化中的潜力和优势。

4. 纳米TiO2光催化的改进方向虽然纳米TiO2光催化技术具有广泛的应用前景,但仍然存在一些问题需要解决。

首先,纳米TiO2材料的光催化效率仍有提升空间,需要进一步改进催化剂的结构和合成方法。

其次,纳米TiO2光催化技术受光照强度、温度等外部条件的影响较大,需要优化反应条件以提高降解效率。

此外,考虑到纳米TiO2颗粒对环境的潜在风险,还需要研究纳米TiO2的生物降解性以及对水生态系统的影响等问题。

5. 结论纳米TiO2光催化技术作为一种高效、环保的水体净化方法,具有重要的应用前景。

通过对纳米TiO2的研究和改进,可以进一步提高光催化降解有机污染物的效果,为水体净化事业做出更大的贡献。

未来,纳米TiO2光催化技术有望成为一种重要的工程应用,为改善水环境质量和保护生态环境做出积极的贡献。

tio2光催化氧化技术

tio2光催化氧化技术

tio2光催化氧化技术文章标题:TIO2光催化氧化技术:从原理到应用的逐步解析引言:TIO2光催化氧化技术是一种通过利用钛白粉(TiO2)在紫外光照射下产生的催化作用来降解及去除有害物质的环境治理技术。

该技术具有高效、无污染、自洁性等优点,因而在空气净化、水处理、有机废弃物处理等领域展现出广阔的应用前景。

本文将从原理、催化剂的制备、反应条件的优化以及应用领域四个方面逐步解析TIO2光催化氧化技术的实施过程。

第一部分:原理的解析TIO2光催化氧化技术的核心原理是光催化效应。

当钛白粉受到紫外光照射时,导带上的电子被激发到价带上,形成电子空穴对。

电子空穴对之间的迁移与它们与溶液中有机污染物之间的氧化反应同时发生。

TIO2表面吸附的有机污染物在电子空穴对的作用下,经历一连串的氧化反应,最终转化为无害的物质。

催化剂的选择和制备工艺是实现高效光催化氧化的关键。

第二部分:催化剂的制备催化剂的制备包括物理法、化学法和物理化学方法。

物理法主要是利用物理能量引起物料结构的改变,如溅射法等;化学法通常是通过溶液反应合成催化剂,如溶胶-凝胶法、水热法等;而物理化学方法则是将物理和化学方法结合使用,如浸渍法、气相法等。

不同的制备方法将导致催化剂的物理和化学性质产生差异,进而影响催化效果。

第三部分:反应条件的优化反应条件的优化在TIO2光催化氧化技术中至关重要。

反应条件包括溶液pH值、催化剂浓度、反应温度、光照强度等。

适当调节反应条件可以提高光催化效果。

例如,适当增加溶液pH值有助于提高催化效果,而过高的催化剂浓度可能导致催化剂之间的覆盖效应,从而减缓反应速率。

反应温度的升高可以加快有机废物的降解速度,但过高的温度可能对催化剂的稳定性产生不利影响。

第四部分:应用领域的探索TIO2光催化氧化技术在空气净化、水处理以及有机废弃物处理等领域均有广泛应用。

在空气净化方面,TIO2催化剂可用于去除大气中的有机污染物和臭氧;在水处理方面,通过TIO2光催化氧化技术可以降解废水中的有机物、重金属离子等;在有机废弃物处理方面,利用TIO2光催化氧化技术可以有效降解有害物质。

二氧化钛光催化反应方程式

二氧化钛光催化反应方程式

二氧化钛光催化反应方程式引言光催化技术是一种利用光能将物质转化为其他形式的技术。

在光催化反应中,二氧化钛(TiO2)是最常用的催化剂之一。

二氧化钛光催化反应方程式描述了二氧化钛在光照条件下催化反应的过程。

本文将详细探讨二氧化钛光催化反应方程式及其应用。

二氧化钛光催化反应方程式的基本原理光催化反应是通过将光能转化为化学能,促使化学反应发生。

二氧化钛在光照条件下具有良好的光催化性能,可以催化多种反应。

二氧化钛光催化反应方程式描述了二氧化钛在光照条件下催化反应的化学过程。

二氧化钛的光催化性能源于其特殊的电子结构。

二氧化钛是一种半导体材料,其带隙宽度较大,能够吸收可见光和紫外光的能量。

当二氧化钛受到光照时,光子激发了二氧化钛中的电子,使其跃迁到导带中。

在导带中,电子具有较高的能量,可以参与化学反应。

二氧化钛的光催化反应方程式通常包括两个基本步骤:光激发和反应发生。

在光激发步骤中,二氧化钛吸收光子能量,激发电子跃迁到导带中。

在反应发生步骤中,光激发的电子参与化学反应,与其他物质发生相互作用,从而催化反应的进行。

二氧化钛光催化反应方程式的应用二氧化钛光催化反应方程式在许多领域中得到了广泛的应用。

以下是几个常见的应用领域:1. 环境污染治理二氧化钛光催化反应可以有效地降解有机污染物。

光催化反应通过将有机污染物分解为无害的物质,从而净化水和空气。

例如,光催化反应可以降解废水中的有机染料和有机溶剂,净化废气中的有机污染物。

2. 水分解产氢二氧化钛光催化反应可以促进水的光解反应,产生氢气。

光催化水分解是一种可持续发展的产氢方法,可以利用太阳能转化为化学能。

这种方法具有环境友好、无污染和可再生的优点,有潜力成为未来氢能源的重要来源。

3. 光催化杀菌二氧化钛光催化反应可以杀灭细菌和病毒,具有抗菌和消毒的能力。

光催化杀菌可以应用于饮用水处理、医疗器械消毒等领域。

相比传统的消毒方法,光催化杀菌无需添加化学物质,避免了二次污染的问题。

二氧化钛光催化原理

二氧化钛光催化原理

二氧化钛光催化原理一、引言二氧化钛光催化技术是一种新型的环境保护技术,它通过利用光催化剂二氧化钛的特殊性质,将光能转化为化学能,实现对有害气体和污染物的高效降解。

本文将从二氧化钛光催化原理的基础开始,分析其反应机理、影响因素以及未来发展方向。

二、二氧化钛光催化原理1. 光催化剂光催化剂是指在光照下产生电子-空穴对并参与反应过程的物质。

目前常用的光催化剂主要有铜铟镓硫系列(CIGS)、纳米金属颗粒、半导体量子点等。

其中,二氧化钛(TiO2)作为一种广泛应用于环境保护领域的光催化剂,由于其稳定性好、价格低廉等特点而备受关注。

2. 光生电子-空穴对当TiO2被紫外线照射时,其价带中会产生电子(E-),同时其导带中会产生空穴(H+)。

这些电子和空穴在TiO2表面上发生反应,从而促进化学反应的进行。

在光照下,TiO2表面电子和空穴的生成速率与消耗速率相等,形成了稳定的电子-空穴对。

3. 光催化反应当有污染物或有害气体进入TiO2表面时,它们会被吸附在TiO2表面,并与光生电子-空穴对发生反应。

以VOCs为例,其分解机理如下:(1) VOCs + hν → VOCs* (激发态)(2) VOCs* → VOCs + e^- (电子)(3) TiO2 + h+ → TiO2+H (空穴)(4) H2O + e^- → H+OH^- (羟基自由基)(5) VOCs + OH· → CO2 + H2O其中,hν表示光子能量,VOCs表示挥发性有机化合物。

4. 反应速率二氧化钛光催化反应速率受到多种因素的影响,主要包括光源强度、污染物浓度、温度、湿度等因素。

其中,光源强度是影响反应速率最为显著的因素之一。

当光源强度增加时,TiO2表面上的电子-空穴对生成速率也会随之增加,从而加快反应速率。

三、影响因素1. 光源强度光源强度是影响二氧化钛光催化反应速率的最为显著的因素之一。

当光源强度增加时,TiO2表面上的电子-空穴对生成速率也会随之增加,从而加快反应速率。

TiO2纳米材料的制备及其光催化性能

TiO2纳米材料的制备及其光催化性能

TiO2溶胶的制备及其光催化性能一、实验目的1•掌握水解法制备TiO2溶胶的基本原理;2.掌握多相光催化反应的催化剂活性评价方法;3•掌握紫外分光光度计的测试原理。

二、TiO2光催化简介1•光催化反应原理自从1972年日本学者Fujishima和Honda在n型半导体TiO2单晶电极上实现了水的光电催化分解制氢气以来,多相光催化技术开始引起世界各行各业科技研究者的极大关注。

半导体多相光催化技术作为一种环境友好型的新型催化技术,在环境治理、新能源开发以及有机合成等领域都有着广泛的应用。

TiO2是n型半导体,根据固体能带理论,TiO2半导体的能带结构是由一个充满电子的低能价带(valenceband,V.B.)和空的高能导带(conductionband,C.B.)构成。

价带和导带之间的不连续区域称为禁带(禁带宽度Eg)。

TiO2(锐钛矿)的Eg=3.2eV,相当于387nm光子的能量。

当TiO2受到波长小于387nm的紫外光照射时,处于价带的电子就可以从价带激发到导带(e-),同时在价带产生带正电荷的空穴(h+),从而形成电子-空穴对。

当光生电子和空穴分别扩散到催化剂表面时,和吸附物质作用后会发生氧化还原反应。

其中空穴是良好的氧化剂,电子是良好的还原剂。

大多数光催化氧化反应是直接或间接利用空穴的氧化能力。

空穴一般与TiO2表面吸附的H2O或OH-离子反应形成具有强氧化性的氢氧自由基OH・,它能够无选择性氧化多种有机物并使之彻底矿化,最终降解为CO2、H2O等无害物质。

而光生电子具有强的还原性可以还原去除水体中的金属离子。

光催化过程的基本反应式如下:TiO2+hv(>TiO2的禁带宽度3.2eV)—h++e-h ++e -—>hv (或热量)H 2OH ++OH -OH -+h +f•OHH 2O+h +f•OH +H+空气中游离氧的作用就犹如电子的受体,可形成超氧负离子・02-,超氧负 离子与羟基自由基一样也是强氧化还原活性的离子,它们可以氧化和降解半导 体表面上甚至其附近的许多细菌和其他有机物。

2024年二氧化钛光催化剂市场前景分析

2024年二氧化钛光催化剂市场前景分析

2024年二氧化钛光催化剂市场前景分析介绍近年来,随着环境污染问题的日益严重,光催化技术逐渐成为净化空气和水源的有效方法。

二氧化钛(TiO2)作为一种广泛应用于光催化领域的材料,其在光催化反应中具有优异的活性和稳定性。

本文将对二氧化钛光催化剂市场的前景进行分析。

市场概述目前,全球环境污染问题越来越严重,人们对环境质量的要求也越来越高。

光催化技术以其高效、环保的特点受到了广泛关注。

二氧化钛作为光催化剂的应用领域非常广泛,包括空气净化、水处理、光催化反应等多个领域。

市场驱动因素环境污染问题的日益严重随着工业化和城市化的快速发展,大量的废气和废水排放对环境造成了严重的影响。

空气和水源的污染成为人们关注的焦点。

二氧化钛光催化技术通过吸附和催化反应将污染物分解成无害的物质,因此被认为是一种有效的净化手段。

政府环保政策的支持为了改善环境质量,各国政府纷纷推出环保政策,加大投入用于环境治理。

二氧化钛光催化技术由于其效果显著,得到了政府的广泛认可和支持。

政府的支持政策和资金扶持将推动二氧化钛光催化剂市场的发展。

市场挑战技术难题尽管二氧化钛光催化剂在净化空气和水源方面具有优异的性能,但其在实际应用中仍然面临一些技术难题。

比如,光催化反应过程中产生的电子-空穴对的复合速率很高,限制了催化剂的光催化活性。

此外,二氧化钛光催化剂的光吸收范围较窄,只能吸收紫外光,限制了其在可见光区的应用。

市场竞争激烈光催化技术市场竞争激烈,不仅有很多企业参与其中,还面临着其他净化技术的竞争。

除了二氧化钛外,还有其他光催化剂材料和光催化技术在市场中占据一定份额。

因此,二氧化钛光催化剂市场需要不断创新和提高产品性能,以保持竞争力。

市场发展趋势技术创新和改进为了克服二氧化钛光催化剂的技术难题,科学家们正在进行技术改进和创新。

通过改进材料结构、调控光催化活性中心等手段,提高催化剂的光催化活性和稳定性。

同时,研究者们也在开发新型的光催化剂材料,以扩大光吸收范围,提高催化效率。

《2024年工业废水处理中纳米TiO2光催化技术的应用》范文

《2024年工业废水处理中纳米TiO2光催化技术的应用》范文

《工业废水处理中纳米TiO2光催化技术的应用》篇一一、引言随着工业化的快速发展,工业废水排放量日益增加,其中含有大量的有毒、有害物质,对环境和人类健康造成了严重威胁。

传统的废水处理方法往往存在处理效率低、二次污染等问题。

因此,开发高效、环保的废水处理方法成为当前研究的热点。

纳米TiO2光催化技术因其高效、无二次污染等优点,在工业废水处理中得到了广泛应用。

本文将详细介绍纳米TiO2光催化技术在工业废水处理中的应用及其优势。

二、纳米TiO2光催化技术概述纳米TiO2光催化技术是一种利用纳米级二氧化钛(TiO2)在光照条件下,通过光激发产生电子-空穴对,进而与水、氧气等发生反应,产生强氧化性的羟基自由基(·OH)和超氧自由基(·O2-),从而将有机物分解为无害物质的技术。

纳米TiO2具有较高的光催化活性、化学稳定性好、无毒等优点,因此在废水处理中具有广阔的应用前景。

三、纳米TiO2光催化技术在工业废水处理中的应用1. 染料废水处理:染料废水中含有大量的有机染料和重金属离子,对环境造成严重污染。

纳米TiO2光催化技术可以有效降解染料废水中的有机物和重金属离子,提高废水的可生化性,降低后续处理的难度。

2. 石油化工废水处理:石油化工废水中含有大量的难降解有机物,如芳香烃、烷烃等。

纳米TiO2光催化技术可以有效地将这些有机物分解为低分子量化合物或无机物,降低废水的毒性。

3. 制药废水处理:制药废水中含有大量的有机溶剂、药物残留等有害物质。

纳米TiO2光催化技术可以有效地去除这些有害物质,降低废水的污染程度。

4. 其他应用:除了上述应用外,纳米TiO2光催化技术还可以应用于电镀废水、印刷废水、制浆造纸废水等各类工业废水的处理。

四、纳米TiO2光催化技术的优势1. 高效性:纳米TiO2光催化技术可以在较短的时间内将有机物分解为无害物质,提高废水处理效率。

2. 无二次污染:纳米TiO2光催化技术在降解有机物的过程中,不产生二次污染,对环境友好。

二氧化钛光催化原理

二氧化钛光催化原理

TiO 2光催化氧化机理TiO 2属于一种n 型半导体材料,它的禁带宽度为3.2ev (锐钛矿),当它受到波长小 于或等于387.5nm 的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至 导带,形成光生电子(e )图1T Tift 光电效应示意图diagram of photo&lectric transfer effect on TiQ如果把分散在溶液中的每一颗TiO 2粒子近似看成是小型短路的光电化学电池, 则光 电效应应产生的光生电子和空穴在电场的作用下分别迁移到 TiO 2表面不同的位置。

TiO 2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,而空穴 h +则可氧化吸 附于TiO 2表面的有机物或先把吸附在TiO 2表面的OH 和口H 2C 分子氧化成-OHl 由基,・OH 自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化水中绝大部分的有机物及无机污染 物,将其矿化为无机小分子、 反应过程如下: 反应过程如下:由机理反应可知,TiO 2光催化降解有机物,实质上是一种自由基反应。

Ti0 2光催化氧化的影响因素1、试剂的制备方法常用Ti0 2光催化剂制备方法有溶胶一凝胶法、沉淀法、水解法等。

不同方法制 得的Ti0 2粉末的粒径不同,其光催化效果也不同。

同时在制备过程中有无复合,有 无掺杂等对光降解也有影响。

Ti0 2的制备方法在许多文献上都有详细的报道, 这里 ;而价带中则相应地形成光生空穴(h +),如图1-1所示。

F IR . 1-1. Schematic + -TiO 2 + hv T h +e (3) + - h +e — >热能 (4) + h + OH- T OH (5)+ h + H 20 T + OH + H (6) e- +O 2 T 02 (7)O 2 + H+ T HO 2 - (8) 2 H 2O T O 2 + H 2O 2 (9) H 2O 2 + 02 + T OH + H + 02 (10)CO 和HO 等无害物(11) (12)OH + dye - -• CO 2 + H 2OH + dye T — CO 2 + H 2O就不再赘述。

二氧化钛做光催化剂的原理

二氧化钛做光催化剂的原理

二氧化钛做光催化剂的原理
二氧化钛(TiO2)是一种常用的光催化剂,它在可见光和紫外光照射下能够催化许多化学反应。

其主要原理是通过光生电荷对的形成和利用来促进化学反应。

当二氧化钛暴露在光照下时,其电子从价带(valence band)被光激发到导带(conduction band),形成带隙电荷对(electron-hole pair)。

导带中的电子和价带中的空穴(electron-hole)分别具有不同的氧化还原性质,可以参与氧化还原反应。

首先,光照下的二氧化钛表面吸附氧分子(O2)并将其催化分解为氧化物阴离子(O2-)。

此过程生成的自由电子可以从导带中转移到表面的吸附氧分子上,形成氧化物阴离子。

同时,生成的空穴也可在材料内部进行传导。

其次,已经吸附在二氧化钛表面或溶于液相中的有机物可以被光激发的电子和空穴进行氧化和还原反应。

光生的电子和空穴可与有机物发生直接的或间接的反应。

在间接反应中,电子和空穴分别与溶液中存在的氧和水分子发生反应,生成具有氧化或还原能力的活性氧种和氢氧离子。

这些活性氧种和氢氧离子可以氧化和降解有机污染物。

总的来说,二氧化钛作为光催化剂的原理是通过吸收光能产生电子和空穴对,并利用这些电子和空穴对参与化学反应。

这种光催化作用可以用于水处理、空气净
化、光电转换等领域,具有潜在的环境和能源应用价值。

《TiO2光催化处理水中难降解有机污染物及环境风险研究》

《TiO2光催化处理水中难降解有机污染物及环境风险研究》

《TiO2光催化处理水中难降解有机污染物及环境风险研究》篇一一、引言随着工业化的快速发展,难降解有机污染物(如染料、农药等)在水中不断积累,给环境和人类健康带来了严重的威胁。

传统的水处理技术如物理吸附、生物降解等方法对这类有机污染物的处理效果有限。

因此,开发高效、环保的污水处理技术成为当前研究的热点。

TiO2光催化技术因其高效、无二次污染等优点,被广泛应用于处理难降解有机污染物。

本文将探讨TiO2光催化处理水中难降解有机污染物的效果及可能存在的环境风险。

二、TiO2光催化技术概述TiO2光催化技术是一种利用光激发TiO2产生电子-空穴对,进而与水中的有机污染物发生氧化还原反应的技术。

TiO2具有较高的化学稳定性、无毒、成本低等优点,在可见光和紫外光的照射下均能表现出良好的光催化性能。

该技术可将有机污染物分解为小分子化合物,最终转化为无害物质,实现污染物的降解和水的净化。

三、TiO2光催化处理难降解有机污染物1. 处理效果:研究表明,TiO2光催化技术对多种难降解有机污染物均具有较好的处理效果。

如染料、农药等有机污染物在TiO2光催化作用下,能够迅速被降解为小分子物质,甚至完全矿化为CO2和H2O。

此外,该技术还能有效去除水中的重金属离子和其他有毒物质。

2. 影响因素:TiO2光催化的效果受多种因素影响,如光照强度、pH值、催化剂浓度等。

适当调整这些因素可提高光催化效率。

此外,催化剂的制备方法、粒径大小等也会影响其光催化性能。

四、环境风险研究1. 安全性:TiO2光催化技术作为一种环保的水处理方法,其产生的二次污染较少。

但在实际应用中,仍需关注催化剂的脱落和流失问题,以防止其对环境和生态造成潜在的危害。

2. 生态风险:尽管TiO2光催化技术能有效降解水中的有机污染物,但在处理过程中可能产生一些中间产物,如自由基等。

这些中间产物可能对水生生物产生一定的毒性,从而对生态环境造成潜在的风险。

因此,在应用TiO2光催化技术时,需关注其生态风险评估和监测。

氧化钛的光催化过程机理

氧化钛的光催化过程机理

氧化钛的光催化过程机理氧化钛(TiO2)作为一种重要的光催化材料,具有广泛的应用潜力。

其光催化过程机理涉及到光激发产生的光生电子和光生空穴的对分离、纳米结构的表面化学反应以及吸附气体分子的活化等多个步骤。

首先,在光照条件下,TiO2表面吸收光子能量,产生激发态电子(e^-)和空穴(h^+)。

这种激发可以通过两种方式进行,一种是直接吸收光能激发,另一种是通过掺杂添加一些金属离子等能量助剂来增强吸光能力。

其中,直接吸收光能激发是最常见的方式,也是最为广泛研究的光激发方式。

接着,产生的激发态电子和空穴会被TiO2表面的离散电子态和电荷缺陷等能级所吸引,形成电子-空穴对(e^-/h^+)。

光生电子具有较长的寿命,可以在材料中自由传导,而光生空穴则容易逃逸到材料表面。

光催化过程中,产生的光生电子和光生空穴起到了重要的作用。

光生电子能够与氧分子(O2)或氧化性有机物(如甲醛等)发生直接还原反应,产生活性氧物种(如·OH、·O2^-等)。

这些活性氧物种具有很强的氧化能力,可以降解有机污染物。

此外,光生电子还可以在材料表面与金属催化剂等活性位点相互作用发生反应,进一步提高光催化性能。

而光生空穴则能够与水分子(H2O)或氧化性有机物发生直接氧化反应,生成羟基离子(·OH)或过氧化物根离子(·O2^-)。

这些活性氧物种也具有强的氧化能力,可以氧化有机污染物,促使其降解。

此外,氧化钛表面的纳米结构和表面缺陷也对光催化反应起到了重要的作用。

纳米结构具有大比表面积,有利于有害物质的吸附和分解。

表面缺陷则可以提供更多的活性位点,增强光生载流子对的分离效率。

总结起来,氧化钛的光催化过程机理主要涉及到:光子能量的吸收和电子-空穴对的形成、光生电子和光生空穴的反应区域选择性、活性氧物种的生成和有机污染物的分解等多个步骤。

对于氧化钛的光催化性能的改进,需要在材料的微观结构和表面性质、光吸收能力等方面进行进一步研究和优化,以实现更高效的光催化应用。

tio2光催化原理

tio2光催化原理

tio2光催化原理
TiO2光催化作用是指利用二氧化钛(TiO2)作为催化剂,在
紫外光或可见光照射下,产生光生电子和光生空穴,从而产生一系列光化学反应的过程。

具体的光催化原理如下:
1. 紫外光或可见光照射下,TiO2表面的价带顶部电子会被能
级较高的光子激发,从价带向导带跃迁,形成光生电子,同时产生光生空穴。

2. 光生电子具有很高的还原能力,可与氧气或水中的氧还原剂发生反应,从而产生氢氧离子或超氧自由基等活性氧物种。

3. 光生空穴则具有很高的氧化能力,能与水中的水分子发生反应,产生羟基自由基(•OH),这是一种强氧化剂,可对有机
污染物进行氧化降解。

4. 光生电子和光生空穴还会在TiO2表面进行寿命较短的复合
反应,产生一系列高级氧化物种(如过氧化氢、过氧硫酸根离子等),进而参与光化学反应。

5. 这些高级氧化物种可与有机污染物发生氧化、光降解等反应,将有机污染物分解为无害的小分子或低毒化合物,从而起到净化水和空气环境的作用。

通过控制光照强度、催化剂的类型和剂量、溶液pH值等条件,可以调节TiO2光催化反应的速率和效果。

此外,TiO2光催化
也具有无需添加外部化学试剂、操作简单、无二次污染等优点,因此在环境净化、光催化降解有机废水、大气污染治理等方面具有广泛的应用前景。

tio2异质结光催化基本原理’

tio2异质结光催化基本原理’

tio2异质结光催化基本原理’TiO2异质结光催化基本原理随着环境污染和能源危机的日益严重,寻找一种高效、环保的能源转化和污染治理方法成为迫切的需求。

光催化技术作为一种具有巨大潜力的技术,在能源转化和环境治理领域得到了广泛的关注和研究。

其中,TiO2异质结光催化作为一种重要的光催化材料,其基本原理和机制备受关注。

TiO2异质结是指由TiO2光催化剂与其他材料组成的异质结构。

通过与其他材料的接触和相互作用,提高了光催化剂的光吸收能力和光生载流子的分离效率,从而提高了光催化剂的催化性能。

在TiO2异质结光催化过程中,光生载流子的产生是关键步骤。

当光照射到TiO2异质结表面时,光子被吸收并激发了材料中的电子,产生了光生电子和空穴。

其中,光生电子具有较高的还原能力,可以参与氧化反应;空穴具有较强的氧化能力,可以参与还原反应。

因此,光生电子和空穴的分离是实现高效光催化的关键。

TiO2异质结中的其他材料在光生载流子的分离和传输中起到了重要的作用。

例如,与TiO2形成异质结的半导体材料能够与TiO2形成p-n结或n-n结,形成内建电场,有利于光生载流子的分离。

此外,TiO2异质结中的金属纳米颗粒能够作为光生电子的接收剂,提高光生载流子的分离效率。

此外,还有一些有机物质可以吸附在TiO2异质结表面,增加光催化剂的光吸收能力。

除了光生载流子的分离,光催化反应的速率也取决于反应物质的吸附和表面活性。

TiO2异质结的表面具有较高的比表面积和活性位点,可以提供更多的吸附位点和反应位点,从而增加反应物质的吸附量和反应速率。

光催化反应的条件也对反应速率和效果有重要影响。

光照强度、光照时间、反应温度等因素都会影响光生载流子的产生和反应物质的吸附与反应。

合理调控这些条件,可以优化光催化反应的效果。

总结起来,TiO2异质结光催化的基本原理是通过与其他材料形成异质结构,提高光催化剂的光吸收能力和光生载流子的分离效率,从而实现高效的光催化反应。

tio2光催化机理

tio2光催化机理

tio2光催化机理
Tio2光催化机理是指二氧化钛(TiO2)在光照条件下产生催
化活性的过程。

这种机理分为两个步骤:光吸收和电子传递。

1. 光吸收:当二氧化钛暴露在紫外光照射下时,其能带结构会导致电子从价带跃迁到导带。

在此过程中,二氧化钛会吸收光的能量,并激发电子到导带。

2. 电子传递:激发到导带的电子和剩余在价带的空穴会在二氧化钛表面发生传递过程。

这些激发态的电子和空穴可以与水中的氧分子和水分子发生反应,产生一系列的氧化还原反应。

例如,激发态的电子可以与水中的氧分子反应,生成一种强氧化性的氢氧离子自由基(•OH),这种自由基可以氧化有机物质。

而激发态的空穴则可以氧化水分子,生成一种强还原性的氢离子自由基(•H),这种自由基可以分解有机物质。

综上所述,Tio2光催化机理是指二氧化钛在光照条件下,通
过吸收光的能量,激发电子和空穴,进而发生一系列氧化还原反应的过程。

这种光催化机理在环境污染治理、清洁能源等领域具有广泛的应用前景。

tio2光催化原理

tio2光催化原理

tio2光催化原理TiO2光催化原理。

光催化技术是一种利用光能激发催化剂表面产生电子-空穴对,从而引发化学反应的技术。

其中,TiO2作为一种重要的光催化剂,因其稳定性高、毒性低、价格便宜等优点,被广泛应用于环境净化、水处理、能源转换等领域。

本文将介绍TiO2光催化原理的相关知识。

首先,TiO2的光催化原理是基于半导体的光生电子-空穴对的产生。

当TiO2暴露在光线下时,其能带结构中的价带和导带将被光激发,产生电子-空穴对。

其中,电子被激发到导带,形成自由电子,而空穴则留在价带中。

这些电子-空穴对具有高度活性,可参与多种光催化反应。

其次,TiO2的光催化反应机理主要包括光生电子-空穴对的产生、氧化还原反应和活性物种的生成。

光生电子-空穴对的产生是光催化反应的起始步骤,其产生量和分布对光催化活性有重要影响。

在光生电子-空穴对的作用下,TiO2表面吸附的有机物质或水分子将发生氧化还原反应,产生活性物种如羟基自由基、超氧阴离子等,从而实现有害物质的降解和清除。

另外,TiO2的光催化活性受多种因素影响,包括晶型结构、晶粒大小、表面状态等。

晶型结构不同的TiO2在光催化反应中表现出不同的活性,其中常见的晶型有锐钛矿型和金红石型。

此外,TiO2的晶粒大小和表面状态也会影响其光催化活性,通常来说,晶粒越小、表面越活跃的TiO2光催化活性越高。

最后,TiO2的光催化技术在环境净化、水处理、能源转换等领域有着广泛的应用前景。

在环境净化方面,TiO2可用于有害气体的光催化降解,如光催化降解有机废气中的苯、醛等有机物。

在水处理方面,TiO2可用于光催化降解水中的有机污染物和杀菌消毒。

在能源转换方面,TiO2可用于光催化水分解产生氢气,以及光催化二氧化碳还原制备燃料等。

总之,TiO2光催化原理是基于半导体的光生电子-空穴对产生和活性物种的生成,其光催化活性受多种因素影响,应用前景广阔。

希望本文内容能为相关领域的研究和应用提供一定的参考和指导。

第一节二氧化钛光催化原理

第一节二氧化钛光催化原理

第一节二氧化钛光催化原理二氧化钛(TiO2)是一种常见的光催化材料,具有较高的光催化活性和化学稳定性,被广泛应用于水处理、空气净化、自洁涂层等领域。

其光催化原理主要包括光激发、电子传输、反应活化和物质降解四个过程。

首先,光激发是指当光照射到二氧化钛表面时,光子的能量被吸收,导致电子从价带跃迁到导带,形成电子-空穴对。

这一过程可以通过低能紫外光和可见光来实现,其中可见光的光催化效果主要依赖于特殊结构和表面修饰的二氧化钛。

其次,电子传输是指在光激发过程中,形成的电子和空穴在二氧化钛晶体内部进行迁移。

电子主要通过导带向表面迁移,而空穴则在价带内进行迁移。

这一过程能够有效地防止电子与空穴的复合,从而延长光生电子和空穴的寿命,提高光催化活性。

接下来,反应活化是指光激发的电子和空穴在二氧化钛表面与吸附的分子反应,产生活性物种(如氧化剂和还原剂)。

例如,光激发的电子可以与吸附在二氧化钛表面的氧分子反应,形成活性的超氧自由基(O2•-),而空穴则可以与水分子反应,生成羟基自由基(•OH)。

这些活性物种能够参与氧化和还原反应,实现对有机污染物的分解和降解。

最后,物质降解是指光催化过程中有机污染物分子与产生的活性物种发生反应,最终降解成无害的物质。

光催化反应所产生的活性物种对有机污染物具有很高的氧化能力,能够有效地降解污染物,从而实现环境的净化和治理。

需要注意的是,光催化过程中的具体反应机理和影响因素还有很多尚待深入研究。

例如,粒径、晶相结构、表面缺陷、掺杂和修饰等因素都对光催化活性具有重要影响。

此外,光催化反应的条件和环境因素(如溶液pH值、温度、气氛等)也会对光催化效果产生重要影响。

综上所述,二氧化钛光催化原理主要包括光激发、电子传输、反应活化和物质降解四个过程。

通过光催化作用,二氧化钛能够将光能转化为化学能,实现对有机污染物的降解和分解,具有很大的应用潜力和发展前景。

为了提高光催化效果,还需要进一步研究和改进二氧化钛的结构和性能,提高其活性和稳定性。

二氧化钛光催化技术介绍

二氧化钛光催化技术介绍

纳米二氧化缺光催化技荷介^纳米光催化探用二氧化金太(TiO2)半^髓的效鹿启攵勤材料表面吸附氧和水分,走生活性氢氧自由基(OH.)和超氧陪雕子自由基(02-), ^而^化舄一希重具有安全化孥能的活性物筲起到碳化降解璞境污染物和抑菌杀殳菌的作用。

纳米二氧化金太(TiO2)光催化利用自然光即可催化分解^菌和污染物,具有高催化活性、良好的化孥穗定性、照二次污染、照刺激性、安全照毒等特黑占,且能畏期有益於生熊自然璞境,是最具有^畿前景的^色璞保催化蒯之一。

然毒害的纳米TiO2催化材料,充分畿撞抗菌、降解有^污染物、除臭、自浮化的功能,是^璞保型功能材料^施方便、雁用性弓鱼,能^ 用到生活空^的多重埸合,畿撞其多功能效废,成舄我仍生活璞境中起畏期浮化作用的璞保材料。

光催化原理-什麽是光催化光催化[Photocatalyst ]是光[Photo二Light] +催化蒯[catalyst]的合成羞司。

主要成分是二氧化金太(Ti02),二氧化金太本身照毒照害,已腐泛用於食品,髻桑,化片攵品等各希重令臭域。

光催化在光的照射下畲走生^似光合作用的光催化反雁(氧化-遢原反雁,走生出氧化能力桎弓鱼的自由氢氧基和活性氧,是些走物可^M^菌和分解有檄污染物。

亚且把有檄污染物分解成照污染的水(H20)和二氧化碳(C02),同畤它具有杀殳菌、除臭、防汗、^水、防紫外^泉等功能。

光催化在微弱的光%泉下也能做反底若在紫外#泉的照射下光催化的活性畲加逾近来,光催化被餐舄未来走棠之一的纳米技彳桁走品。

-光催化反雁原理TiO2富吸收光能量之彳爰,僵带中的雷子就畲被激畿到^带,形成带^雷的高活性雷子e-,同畤在僵带上走生带正雷的空穴h+。

在雷埸的作用下,雷子典空穴畿生分雕,暹移到粒子表面的不同位置。

熟力孥理言禽表明,分怖在表面的h+可以将吸附在TiO2表面OH-和H2O 分子氧化成(OH.)自由基,而OH.自由基的氧化能力是水髓中存在的氧化蒯中最弓鱼的,能氧化亚分解各重有^污染物(甲醛、苯、TVOC等)和^菌及部分照檄污染物(氨、NOX 等),亚将最^降解舄CO2、H2O 等照害物鼻由於OH自由基封反废物^乎MB®性,因而在光催化中起著〉夬定性的作用。

Tio2的光催化性能研究

Tio2的光催化性能研究

TiO2的光催化性能研究摘要:主要介绍二氧化钛的光催化原理,基本途径,以及光催化剂的结构特性和影响因素,还讲述了关于二氧化钛的光催化应用。

关键字:二氧化钛光催化光催化剂,俗称钛白粉,多用于光触媒、化妆品,能靠紫外二氧化钛,化学式为TiO2线消毒及杀菌,现正广泛开发,将来有机会成为新工业。

二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。

二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑;它又具有锌白一样的持久性。

二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。

1 TiO的基本性质21.1结晶特征及物理常数物性:金红石型锐钛型结晶系:四方晶系四方晶系相对密度:3.9~4.2 3.8~4.1折射率: 2.76 2.55莫氏硬度:6-7 5.5-6电容率:114 31熔点:1858 高温时转变为金红石型晶格常数:A轴0.458,c轴0.795 A轴0.378,c轴0.949线膨胀系数:25℃/℃a轴:7.19X10-6 2.88?10-6c轴:9.94X10-6 6.44?10-6热导率: 1.809?10-3吸油度:16~48 18~30着色强度:1650~1900 1200~1300颗粒大小:0.2~0.3 0.3功函数:5.58eV2TiO的光催化作用22.1光催化作用原理二氧化钛是一种N型半导体材料,锐钛矿相TiO的禁带宽度Eg =3.2eV,由2半导体的光吸收阈值λg与禁带宽度E g的关系式:λg (nm)=1240/Eg(eV)上时,价带中的电子就会发生跃迁,可知:当波长为387nm的入射光照射到TiO2形成电子-空穴对,光生电子具有较强的还原性,光生空穴具有较强的氧化性。

在半导体悬浮水溶液中,半导体材料的费米能级会倾斜而在界面上形成一个空间电荷层即肖特基势垒,在这一势垒电场作用下,光生电子与空穴分离并迁移到粒子表面的不同位置,还原和氧化吸附在表面上的物质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米TiO2光催化剂安全环保性能研究作者:北京化工大学 徐瑞芬教授纳米科技的发展为人类治理环境开辟了一条行之有效的途径,我们可以合理利用自然光资源,通过纳米TiO2半导体的光催化效应,在材料内部由吸收光激发电子,产生电子-空穴对,即光生载流子,迅速迁移到材料表面,激活材料表面吸附氧和水分,产生活性氢氧自由基(oOH )和超氧阴离子自由基(O2·-),从而转化为一种具有安全化学能的活性物质,起到矿化降解环境污染物和抑菌杀菌的作用。

纳米TiO2光催化应用技术工艺简单、成本低廉,利用自然光即可催化分解细菌和污染物,具有高催化活性、良好的化学稳定性和热稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景的绿色环保催化剂之一。

本研究在用亚稳态氯化法合成纳米二氧化钛的技术基础上,根据光催化功能高效性的需要,进行掺杂和表面处理,制成特有的在室内自然光和黑暗区微光也能显著发挥光催化作用的纳米二氧化钛,将其作为功能粉体材料,复合到塑料、皮革、纤维、涂料等材料中,研制成无污染、无毒害的纳米TiO2光催化绿色复合材料,充分发挥抗菌、降解有机污染物、除臭、自净化的功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间的多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用的环保材料。

2 纳米TiO2光催化剂对环境的净化功能研究2.1室内环境的净化随着建筑材料中各种添加物的使用,室内装饰材料和各种家用化学物质的使用,室内空气污染的程度越来越严重。

调查表明,室内空气污染物浓度高于室外,甚至高于工业区。

据有关部门测试,现代居室内空气中挥发性有机化合物高达300多种,其中对人体容易造成伤害、甚至致癌的就有20多种,极大地威胁着人类的健康生活。

随着人们健康和环保意识的增强,人们对具有光催化净化室内外空气、抗菌杀毒等功能性绿色环保材料的需求日益迫切,纳米TiO2光催化剂的出现为环境净化材料的发展开辟了一片新天地,也为人们对健康环境需求的解决提供了有效的途径。

2.1.1 纳米TiO2光催化绿色涂料降解氨气的性能研究氨气是室内空气的主要污染源之一,它主要来自于建筑中使用的混凝土添加剂,如防冻剂、膨胀剂,涂料添加剂等。

氨气有难闻的臭味,对上呼吸道及眼睛有刺激作用。

据相关国家标准《民用建筑工程室内环境污染控制规范》---,GB50325-2001,氨气浓度小于0.2mg/m3。

轻度超标氨气污染可导致人流泪、咳嗽、头痛、头昏;中度超标以上污染可导致人的眼角膜水肿、结膜发炎、角膜坏死、直至失明、上呼吸道感染、支气管肺炎、喉头水肿、肺水肿、肺间质纤维化、肺部感染死亡的危害。

表1给出氨气严重超标某一房间在涂刷纳米TiO2复合涂料前后空气中氨气浓度的变化。

表1纳米TiO2光催化绿色涂料降解空气中氨气的测定Table 1 Determination of nano-TiO2 coatings decomposing ammonia in the air表2纳米TiO2光催化绿色涂料对甲醛、氨气、苯的降解效果Table 2 The effect of degrading formaldehyde, ammonia and benzene for nanometer economicalcoatings以氨气浓度相对最高容许浓度标准放大10倍,将纳米TiO2光催化绿色涂料对密闭空间内的氨气进行降解,用七天时间,将氨气浓度从1.93mg/m3降解到0.18mg/m3,控制在容许浓度之内,光催化降解效率达到91%,降解产物为N2和H2O。

对某一氨气严重超标的建筑楼房的客厅和卧室,用纳米TiO2光催化绿色涂料涂饰,也得到很好的降解效果。

由此说明,纳米TiO2光催化绿色涂料对空气中的氨气具有较好的降解作用,以此可长期提高家居室内的空气质量,有效降低氨气对人们造成的危害。

2.1.2 纳米TiO2光催化绿色涂料降解甲醛的性能研究甲醛是比较典型的室内环境污染物,它由多种室内装修材料,如家具油漆、墙纸、塑料地板、化纤地毯、门窗等,都有可能向室内释放甲醛,尤其现今的人造板材普遍使用酚醛树脂等能够释放出甲醛的粘合剂,在室内环境中释放甲醛可持续数年。

能够引起DNA-蛋白质交联,并和DNA结合形成加合物,潜存在致癌的危险,严重损害人类的身体健康。

采用相关国家标准《民用建筑工程室内环境污染控制规范》---GB50325-2001,室内甲醛浓度小于0.08mg/m3。

当室内空气中甲醛含量为0.1mg/m3,就有异味和不适感,达到0.6mg /m3时可出现上呼吸道及结膜刺激症状,表现为流泪、咽喉疼痛等,浓度再高就可引起恶心、胸闷等症状。

针对这种严峻的现状,本实验开展了纳米TiO2光催化绿色涂料降解甲醛的性能研究。

上表给出纳米TiO2光催化绿色涂料在密闭空间内降解甲醛的测试数据,七天的降解效率达到92%,使释放源浓度为0.90 mg/m3超标十倍的甲醛,降解到0.07mg/m3,限制在达标浓度之内。

纳米TiO2光催化降解甲醛有害气体时,由活性氢氧自由基(oOH)和超氧阴离子自由基(O2·-)起氧化作用,将甲醛氧化为羧酸,进一步分解为二氧化碳和水。

它的降解产物是二氧化碳和水,不会产生其它有机物的污染,只要含有纳米TiO2光催化剂的复合材料存在,对甲醛的驱除作用就会有效。

所以,纳米TiO2光催化绿色涂料在普通光照条件时对空气中的甲醛具有明显降解效果,能够达到有效净化室内空气的目的。

2.1.3 苯类化合物是家庭装修材料中又一类严重伤害健康的致癌物质,它会导致人体生理功能失调,导致再生性障碍白血病等疾病。

根据相关国家标准《民用建筑工程室内环境污染控制规范》---GB50325-2001,苯浓度小于0.09mg/m3。

本研究采用测试方法《居住区大气中苯、甲苯和二甲苯卫生检验标准方法/气相色谱法》GB11737-89,对降解前后苯浓度进行测试。

上表给出纳米TiO2光催化绿色复合涂料在密闭空间内降解苯的测试数据,降解前,苯浓度为0.86mg/m3,近十倍的超标,七天时间将苯浓度降解到0.05mg/m3,达到相关国家标准,对苯有害物质的去除降解效率达到94%。

由此可见,纳米TiO2光催化绿色复合涂料同样能减小和消除苯类化合物的危害作用。

以上检测结果均由北京市劳动保护研究所提供。

实例证实:纳米TiO2光催化绿色复合涂料能够达到有效净化室内空气的作用,不会产生其它污染物,无毒无害,无放射元素,无二次污染,同时具有抗菌作用,将其涂刷于居室内,可以很好地净化和改善人们的生活居住环境,提供健康的生活环境。

因此,由纳米TiO2光催化剂研制的绿色涂料将会呈现出广阔的应用前景,带来极大的经济效益和社会效益。

2.2 纳米TiO2光催化剂抗菌性能的研究纳米TiO2光催化功能还体现在长效抗菌防霉性能上。

本实验对PU鞋面层树脂膜进行不同种类细菌的杀菌效果测定,对金黄色葡萄球菌的杀菌率达到99.81%,对大肠杆菌的杀菌率为99.99%,对枯草芽孢的杀菌率为97.62%,它们虽属不同细菌,金黄色葡萄球菌属革兰氏阳性细菌,大肠杆菌属革兰氏阴性细菌,枯草芽孢属于细胞胚胎,有较强的存活力,但纳米TiO2对它们都有明显的杀菌效果。

该纳米TiO2制成的PU皮革油墨对不同霉菌(如黄曲霉、黑曲霉、赛氏曲霉、土曲霉、焦曲霉、球毛壳霉、多主枝孢、桔青霉、拟青霉、绿色木霉)也有很好的杀菌效果。

不添加TiO2的PU皮革油墨(对照)防霉性很差,制成皮革制品后很容易生长霉菌,添加约4 %树脂量的纳米TiO2后,PU皮革油墨防霉性能很强,防霉效果达到0级,能防止聚氨脂合成革早期霉变、龟裂的发生,起到提高皮革使用质量和延长使用寿命的作用。

纳米TiO2抗菌作用机理不同于一般的无机和有机抗菌剂,它并非靠药物的渗出和游离而产生抗菌作用,它的灭菌机理在于光催化作用,抗菌效果较为长久。

我们将经受抗老化实验和没经受老化实验的纳米TiO2光催化绿色复合涂料对枯草芽孢进行杀菌对比实验,得到的杀菌效果一致。

纳米TiO2的杀菌效果没有随着材料的老化实验而产生衰减现象,具有持久的作用。

所以纳米TiO2光催化剂比其它一些无机杀菌剂和有机杀菌剂更具有杀菌长效性,起到长期抗菌、防病、保健、净化环境的作用。

表4老化实验对抗菌性能影响的测试Table 4Influence of aging on antimirobial properties of coatings一般常用的杀菌剂银、铜等能使细菌细胞失去活性,但细菌杀死后,尸体可释放出有害的组分,如内毒素。

纳米TiO2不仅能影响细菌繁殖力,而且能攻击细菌细胞的外层,穿透细胞膜,破坏细菌的细胞膜结构,达到彻底降解细菌,防止内毒素引起的二次污染。

研发不受光源限制的光催化剂,制备成不同的抗菌材料制品,应用到不同光照条件的场合,以满足各种环境中抗菌应用的需求。

一般的纳米TiO2经紫外光照射时方有较明显的杀菌效果,但在许多场合因无紫外光源照射,而使应用受到限制,如常年无光照的阴暗区、封闭仓、易发霉容器的内部等等。

本研究技术将纳米TiO2表面进行特定处理,降低了电子跃迁的禁带宽度,并产生电子-空穴对的陷阱,以强化光催化作用,使其在紫外光照时有较强的光催化效果,在黑暗微光区也有较明显的光催化效果。

采用不同光源对抗菌塑料制品的杀菌效果进行比较,测试结果如表5所示。

其结果表明,光源不同,杀菌效果差别很小,影响不大,可见该纳米TiO2的杀菌效果不受光源作用的限制,即使是很微弱的激发光源(黑暗区的微光),添加该纳米TiO2的材料都能够产生明显的抗菌效果,这样的抗菌材料可以应用到无灯光照的暗仓或封闭层内的微光场合,不受光源的限制,大大拓宽了应用领域。

表5光照条件对抗菌塑料膜杀菌率的影响Table 5 Influence of light source condition on antimicrobial properties of plastic film2.3 纳米TiO2光催化剂降解水中有机污染物的性能的研究排污水中常含有卤代脂肪烃、卤代芳烃、硝基芳烃、多环芳烃、酚类、染料、农药等多种有害的有机成分,水中有机污染物已导致大量水生环境污染、动物中毒,造成江、河、湖、海生态环境的一定破坏,并构成对人体健康的严重威胁。

采用纳米TiO2光催化剂处理有机废水,能有效地降解江河中的有机污染物,进行除毒、脱色、矿化、最终降解为二氧化碳和水,目前这方面的研究已取得进展,光催化降解污水将成为有效的处理手段。

我们利用纳米TiO2光催化剂对药厂废水和甲基橙溶液降解进行了检测研究,表明具有明显的降解效果。

这主要是由于纳米TiO2在水的体系中,受光激发能够自行分解出自由移动的带负电的电子(e-)和带正电的空穴(h-),形成电子空穴对,迁移到材料表面,电子被吸附溶解在TiO2表面的氧俘获形成活性超氧阴离子自由基(O2·-),而空穴则将吸附在TiO2表面的OH-和H2O 氧化成氢氧自由基(·OH),活性的(O2·-)和(·OH)具有很高的反应活性,当污染物吸附于其表面时,就会被氧化、发生链式降解反应,分解成无毒的二氧化碳、水和无机物,从而达到消除污染的目的。

相关文档
最新文档