最新人教版高中数学必修三课时训练题(全册 共156页)
高中人教版数学必修3课本练习-习题参考答案
高中数学必修③课本练习,习题参考答案第一章算法初步1.1算法与程序框图1.1.1算法的概念(p5)1. 解;第一步:输入任意正实数r,第二步:计算第三步:输出圆的面积S2. 解;第一步:给定一个大于l的正整数;第二步:令;第三步:用除,得到余数;第四步:判断“”是否成立,若成立,则i是n的因数;否则,i不是n的因数;第五步:使的值增加l,仍用表示,即令;第六步,判断“”是否成立.若是,则结束算法;否则,返回第三步1.1.2程序框图与算法的基本逻辑(P19)1.解;算法步骤:第一步,给定精确地d,令i=1第二步,取出的到小数点后第i位的不足近似值,记为a;取出的到小数点后第i位的过剩近似值,记为b,第三步,计算第四步,若m<d,则执行第五步;否则,将i的值增加1,返回第二步.第五步,输出程序框图如下图所示:1.1算法与程序框图(P20)解; 题目:在国内寄平信(外埠),每封信的质量x (克)不超过60克时的邮费(单位:分)标准为,试写出计算邮费的算法并画出程序框图。
算法如下:第一步,输入质量数x 。
第二步,判断是否成立,若是,则输出y=120,否则执行第三步。
第三步,判断是否成立,若是,则输出y=240,否则,输出y=360,算法结束。
程序框图如下图所示:(注释:条件结构)2.解:算法如下:第一步,i=1,S=0.第二步,判断是否成立,若成立,则执行第三步,否则,执行第四步。
第三步,,i=i+1,返回第二步。
第四步,输出S.程序框图如下图所示:(注释:循环结构)3. 解:算法如下:第一步,输入人数x,设收取的卫生费为y元。
第二步,判断x>3是否成立,若不成立,y=5,输出y;否则,输出y.程序框图如下图所示:(注释:条件结构)1. 解:分析:我们设计对于一般的二元一次方程组(其中)的通用算法:第一步,,得(即) (3)第二步,解(3),得 (4)第三步,将(4)代入(1),得,因此,只要输入相应的未知数的系数和常数项,就能计算出方程组的解,即可以输出x、y的值,用顺序结构即可。
数学必修3整套练习一课一练(90页)
第一章算法初步1.1算法与程序框图班次姓名1.1.1算法的概念[自我认知]:1.下面的结论正确的是( ).A.一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则2.下面对算法描述正确的一项是( ).A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征( )A.抽象性B.精确性C.有穷性D.唯一性4.算法的有穷性是指( )A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法 ( )A.S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是 ( )A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程210x-=有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为157.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c=a,b的值;③输出斜边长c的值,其中正确的顺序是 ( )A.①②③B.②③①C.①③②D.②①③[课后练习]:8.若()f x 在区间[],a b 内单调,且()()0f a f b <g ,则()f x 在区间[],a b 内 ( ) A.至多有一个根 B.至少有一个根 C.恰好有一个根 D.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99; 第二步:____①______; 第三步:_____②_____; 第四步:输出计算的结果.10.写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n =(1)2n n +直接计算. 第一步______①_______; 第二步_______②________; 第三步 输出计算的结果.11.写出1×2×3×4×5×6的一个算法.12.写出按从小到大的顺序重新排列,,x y z 三个数值的算法.1.1.2程序框图[自我认知]:1.算法的三种基本结构是 ( ) A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构 C.顺序结构、分支结构、流程结构 D.流程结构、循环结构、分支结构2.程序框图中表示判断框的是 ( )A.矩形框 B.菱形框 D.圆形框 D.椭圆形框3.如图(1)、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为 ( )A.⑴3n ≥1000 ? ⑵3n <1000 ? B. ⑴3n ≤1000 ? ⑵3n ≥1000 ? C. ⑴3n <1000 ? ⑵3n ≥1000 ? D. ⑴3n <1000 ? ⑵3n <1000 ?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是 ( )A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合⑴⑵班次 姓名[课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是 ( ) A.求输出,,a b c 三数的最大数 B.求输出,,a b c 三数的最小数 C.将,,a b c 按从小到大排列 D.将,,a b c 按从大到小排列6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是( )A.0m =?B.0x = ?C.1x = ?D.1m =?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构 ( ) A.顺序结构 B.条件结构和循环结构 C.顺序结构和条件结构 D.没有任何结构8.已知函数()2121x f x x ⎧-=⎨-⎩(0)(0)x x ≥<,设计一个求函数值的算法,并画出其程序框图第5题图第6题图1.1.2程序框图(第二课时)[课后练习]:1.如图⑴的算法的功能是____________________________.输出结果i=___,i+2=_____. 2.如图⑵程序框图箭头a 指向①处时,输出 s=__________. 箭头a 指向②处时,输出 s=__________.3.如图⑷所示程序的输出结果为s=132, 则判断中应填 . A 、i ≥10? B 、i ≥11? C 、i ≤11? D 、i ≥12?4.如图(3)程序框图箭头b 指向①处时,输出 s=__________. 箭头b 指向②处时,输出 s=__________5、如图(5)是为求1~1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
新人教版高中数学必修3全册同步测试题及解析答案.doc
新人教版高中数学必修3 全册同步测试题及解析答案篇一:高一数学必修3全册各章节课堂同步习题(详解答案)第一章算法初步1.1算法与程序框图1.1.1算法的概念班次姓名[自我认知]:1.下面的结论正确的是().A.一个程序的算法步骤是可逆的B. 一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D. 设计算法要本着简单方便的原则2.下面对算法描述正确的一项是(). A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征()A.抽象性B.精确性C. 有穷性D.唯一性4.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(lOmin)、听广播(8min)几个步骤,从下列选项中选最好的一种算法()A.S1洗脸刷牙、S2 刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是()A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2?l?0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??O,则f?x?在区间?a,b?内()A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99;第二步:①;第三步:②;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+7+100的一个算法.可运用公式l+2+3+?+n= 第一步①;第二步②;第三步输出计算的结果.11.写出Ix2x3x4x5x6的一个算法.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法. n(n?l)直接计算.21.1. 2程序框图[自我认知]:1 •算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D .流程结构、循环结构、分支结构2 .程序框图中表示判断框的是()A.矩形框B.菱形框D.圆形框D.椭圆形框3.如图⑴、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为()(1)33(2)3A.⑴n>1000 ? (2)n<1000 ?B.⑴n<1000 ?⑵n>1000 ?C.(Dn<1000?⑵n>1000 ?D. (l)n<1000 ?(2)n<1000?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是()A.—个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C. 一个算法必须含有上述三种逻辑结构D.—个算法可以含有上述三种逻辑结构的任意组合[课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是()A.求输出a,b,c三数的最大数B.求输出a,b,c三数的最小数3333C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是A.m?O?B.x?O ?C.x?l ?D.m?l?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构()A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构?x2?l(x?0)8.已知函数f?x???,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?l1.1.2程序框图(第二课时)[课后练习]:班次姓名1 . 如图⑴的算法的功能是.输出结果i=,i+2=.2.如图⑵程序框图箭头a指向①处时,输出s=.箭头a指向②处时,输出s=.3.如图⑷所示程序的输出结果为s=132,则判断中应填A、i>10? B、i>ll? C、i<ll?D、i>12? 4.如图⑶程序框图箭头b指向①处时,输出s=.箭头b指向②处时, 输出S= _________5、如图⑸是为求1-1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
新人教版高中数学选择性必修第三册全套课时作业(世纪金榜) (14)
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
7.2 离散型随机变量及其分布列新版课程标准学业水平要求1.借助具体实例,了解离散型随机变量及其分布列.2.体会连续型随机变量与离散型随机变量的共性与差异. 1.借助教材实例,了解离散型随机变量及其分布列.(数学抽象)2.了解离散型随机变量的性质、两点分布的概念.(数学抽象)3.会求简单的离散型随机变量的分布列.(数学运算)必备知识·素养奠基1.离散型随机变量(1)随机变量:对于随机试验样本空间Ω中的每一个样本点ω,都有唯一的实数X与之对应,我们称X为随机变量.(2)离散型随机变量:可能取值为有限个或可以一一列举的随机变量,我们称之为离散型随机变量.(3)表示:随机变量用大写英文字母表示,如X,Y,Z;随机变量的取值用小写英文字母表示,如x,y,z.(4)本质:通过引入一个取值依赖于样本点的变量X,来刻画样本点和实数的对应关系,实现样本点的数量化.2.离散型随机变量的分布列(1)定义:设离散型随机变量X的可能取值为x1,x2,…,x n,我们称X取每一个值x i 的概率P=p i,i=1,2,…,n为X的概率分布列,简称分布列.(2)表示:表格X x1x2…x nP p1p2…p n概率分布图(3)性质:①p i≥0,i=1,2,…,n;②p1+p2+…+p n=1.3.两点分布对于只有两个可能结果的随机试验,用A表示“成功”,表示“失败”,定义X=如果P=p,则P=1-p,那么X的分布列为X 0 1P 1-p p我们称X服从两点分布或0-1分布.若随机变量X的分布列为X 1 2P那么X服从两点分布吗?提示:不服从两点分布,X的取值只能是0,1.1.思维辨析(对的打“√”,错的打“×”)(1)一只大熊猫一年内的体重是离散型随机变量.( )(2)离散型随机变量的取值一定是有限个.( )(3)离散型随机变量是指某一区间内的任意值.( )提示:(1)×.大熊猫一年内的体重是连续型随机变量.(2)×.离散型随机变量的取值可能是无限个,但是能一一列出.(3)×.离散型随机变量的取值可以是任意的实数.2.下列变量:①某机场候机室中一天的旅客数量为X;②某寻呼台一天内收到的寻呼次数为X;③某水电站观察到一天中长江的水位为X;④某立交桥一天内经过的车辆数为X.其中不是离散型随机变量的是( )A.①中的XB.②中的XC.③中的XD.④中的X【解析】选C.①②④中的随机变量X可能取的值,我们都可以按一定次序一一列出,因此它们都是离散型随机变量;③中的X可以取某一区间内的一切值,无法按一定次序一一列出,故它不是离散型随机变量.3.袋中有大小相同的5个钢球,分别标有1,2,3,4,5五个号码.在有放回地抽取条件下依次取出2个球,设两个球号码之和为随机变量X,则X所有可能值的个数是( )A.25B.10C.9D.5【解析】选C.第一次可取1,2,3,4,5中的任意一个,由于是有放回地抽取,第二次也可取1,2,3,4,5中的任何一个,两次的号码和可能为2,3,4,5,6,7,8,9,10.关键能力·素养形成类型一离散型随机变量的概念【典例】1.下列所述:①某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差X;②某报社一天内收到的投稿件数X;③一天之内的温度X;④一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射击手在一次射击中的得分.其中X是离散型随机变量的是( )A.②③B.②④C.③④D.③④2.(多选题)抛掷两枚骰子一次,记第一枚骰子掷出的点数减去第二枚骰子掷出的点数之差为X,那么“X≤-4”表示的随机事件的结果是( )A.第一枚1点,第二枚4点B.第一枚2点,第二枚6点C.第一枚1点,第二枚5点D.第一枚1点,第二枚6点【思维·引】1.根据离散型随机变量的定义判断;2.利用两次掷出的点数验证.【解析】1.选B.②④中的X可以取的值可以一一列举出来,而①③中的X可以取某一区间内的一切值,属于连续型的.2.选BCD.抛掷两枚骰子,点数之差满足小于等于-4的只有三种情况,故第一枚为1点、第二枚为6点,第一枚为1点、第二枚为5点,第一枚为2点、第二枚为6点.【内化·悟】本例2中,如果掷出的点数之差的绝对值为随机变量X,则X取值有哪些?提示:X=0,1,2,3,4,5.【类题·通】1.关于离散型随机变量的判断(1)把握离散型随机变量的特点:有限个或能一一列出;(2)根据实际情况或条件求出随机变量的取值进行判断.2.关于离散型随机变量取值的意义关键是明确随机试验产生随机变量的方法,就可以反推随机变量的取值对应的试验结果.这个试验结果对于求随机变量取值对应的概率至关重要.【习练·破】在8件产品中,有3件次品,5件正品,从中任取一件,取到次品就停止,设抽取次数为X,则X=3表示的试验结果是________.【解析】X=3表示共抽取3次,前2次均是正品,第3次是次品.答案:共抽取3次,前2次均是正品,第3次是次品【加练·固】一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ.(1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后结果都加上6分,求最终得分η的可能取值,并判定η是否为离散型随机变量. 【解析】(1)ξ0 1 2 3结果取得3个黑球取得1个白球,2个黑球取得2个白球,1个黑球取得3个白球(2)由题意可得:η=5ξ+6,而ξ可能的取值范围为{0,1,2,3},所以η对应的各值是:5×0+6,5×1+6,5×2+6,5×3+6.故η的可能取值为6,11,16,21.显然,η为离散型随机变量.类型二离散型随机变量的分布列的性质【典例】1.离散型随机变量X的分布列为X 0 1P 9C2-C 3-8C则常数C的值为( )A.B.C.或D.以上都不对2.设离散型随机变量X的分布列为X 0 1 2 3 4P 0.2 0.1 0.1 0.3 m求:(1)2X+1的分布列;(2)求P(1<X≤4)的值.【思维·引】1.利用分布列中概率和为1求出C值,再验证是否符合性质(1);2.(1)求出2X+1的取值,再求出对应的概率后列分布列;(2)根据分布列求出当1<X≤4时的概率.【解析】1.选B.由离散型随机变量X的分布列,得解得C=或(舍去).2.由分布列的性质知:0.2+0.1+0.1+0.3+m=1,解得m=0.3.(1)由题意可知P(2X+1=1)=P(X=0)=0.2,P(2X+1=3)=P(X=1)=0.1,P(2X+1=5)=P(X=2)=0.1,P(2X+1=7)=P(X=3)=0.3,P(2X+1=9)=P(X=4)=0.3.所以2X+1的分布列为:2X+1 1 3 5 7 9P 0.2 0.1 0.1 0.3 0.3(2)P(1<X≤4)=P(X=2)+P(X=3)+P(X=4)=0.1+0.3+0.3=0.7.【内化·悟】本例1中,C为什么不能取?提示:若C=,则3-8C=3-=-<0,不符合分布列的性质.【类题·通】关于离散型随机变量的分布列的性质(1)X的各个取值表示的事件是互斥的,可以利用互斥事件和的概率公式求随机变量在一定范围内的概率;(2)两个性质p1+p2+…=1,且p i≥0,i=1,2,…,要逐一验证,特别不能忽视p i≥0.【习练·破】1.(2020·重庆高二检测)已知随机变量ξ的分布列为P(ξ=k)=mk(k=1,2,3,4,5),则实数m=( )A.B. C. D.【解析】选C.因为随机变量ξ的分布列为P(ξ=k)=mk(k=1,2,3,4,5),所以m+2m+3m+4m+5m=1,解得实数m=.2.已知随机变量X的分布列:X 1 2 3 4 5P a(1)求a;(2)求P(X≥4),P(2≤X<5).【解析】(1)由++a++=1,得a=.(2)P(X≥4)=P(X=4)+P(X=5)=+=,P(2≤X<5)=P(X=2)+P(X=3)+P(X=4)=++=.类型三求离散型随机变量的分布列【典例】某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得-10分.如果一位挑战者回答前两个问题正确的概率都是,回答第三个问题正确的概率为,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求这位挑战者回答这三个问题的总得分X的分布列.(2)求这位挑战者闯关成功的概率.【思维·引】(1)先确定总得分X的取值,再分别求出概率后列分布列;(2)利用分布列求X≥10的概率.【解析】(1)这位挑战者回答这三个问题的总得分X所有可能的取值为-10,0,10,20,30,40,P(X=-10)=××=,P(X=0)=×××=,P(X=10)=×=,P(X=20)=××=,P(X=30)=×××=,P(X=40)=×=.所以X的分布列为:X -10 0 10 20 30 40P(2)依题意总分不低于10分就算闯关成功,所以这位挑战者闯关成功的概率P=P(X≥10)=1-P(X≤0)=1--=.【类题·通】求离散型随机变量的分布列的一般步骤:(1)确定X的所有可能取值x i(i=1,2,…)以及每个取值所表示的意义;(2)利用概率的相关知识,求出每个取值相应的概率P(X=x i)=p i(i=1,2,…);(3)写出分布列;(4)根据分布列的性质对结果进行检验.【习练·破】在射击的试验中,令X=如果射中的概率为0.75,则随机变量X的分布列为________.【解析】由P(X=1)=0.75,得P(X=0)=0.25.所以X的分布列为:X 1 0P 0.75 0.25答案:X 1 0P 0.75 0.25课堂检测·素养达标1.已知随机变量X的分布列是X 1 2 3P a b则a+b=( )A. B. C.1 D.【解析】选A.由随机变量X的分布列的性质得:+a+b=1,解得a+b=.2.某人进行射击,共有10发子弹,若击中目标或子弹打完就停止射击,射击次数为ξ,则ξ=10,表示的试验结果是( )A.第10次击中目标B.第10次未击中目标C.前9次未击中目标D.第9次击中目标【解析】选C.击中目标或子弹打完就停止射击,射击次数ξ=10,则说明前9次均未击中目标,第10次击中目标或未击中目标.3.设随机变量X等可能取值1,2,3,…,n,若P(X<4)=0.3,则n=( )A.3B.4C.10D.不确定【解析】选C.因为X等可能取1,2,3,…,n,所以X的每个值的概率均为.由题意知P(X<4)=P(X=1)+P(X=2)+P(X=3)==0.3,所以n=10.4.在一次比赛中,需回答三个问题,比赛规定:每题回答正确得100分,回答不正确得-100分,则选手甲回答这三个问题的总得分ξ的所有可能取值是________.【解析】在一次比赛中,需回答三个问题,比赛规定:每题回答正确得100分,回答不正确得-100分,则选手甲回答这三个问题,全答错时,总得分ξ=-300分,答错2题答对1题时,总得分ξ=-100分,答错1题答对2题时,总得分ξ=100分,全答对时,总得分ξ=300分,所以总得分ξ所有可能取值是:300分,100分,-100分,-300分.答案:300分,100分,-100分,-300分【新情境·新思维】袋内有5个白球,6个红球,从中摸出两球,记X=则X的分布列为________.【解析】P(X=0)==,P(X=1)=1-=.故X的分布列如表:X 0 1P答案:X 0 1P关闭Word文档返回原板块。
新人教A版高中数学【必修3】 3.1 习题课课时作业练习含答案解析
§3.1习题课课时目标 1.进一步理解随机事件的有关概念;理解频率与概率的关系及概率的意义.2.会解决简单的有关概率的实际问题.1.下面的事件:①掷一枚硬币,出现反面;②对顶角相等;③3+5>10,是随机事件的有() A.②B.③C.①D.②③2.下面的事件:①袋中有2个红球,4个白球,从中任取3个球,至少取到1个白球;②某人买彩票中奖;③实系数一次方程必有一实根;④明天会下雨.其中是必然事件的有()A.①B.④C.①③D.①④3.从某班学生中任意找出一人,如果该同学的身高小于160 cm的概率为0.2,该同学的身高在[160,175]之间的概率为0.5,那么该同学的身高超过175 cm的概率为()A.0.2 B.0.3 C.0.7 D.0.84.若P(A+B)=P(A)+P(B)=1,则事件A与B的关系是()A.互斥不对立B.对立不互斥C.对立且互斥D.以上均不对5.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只产品是正品(甲级品)的概率为________.6.某射击运动员进行双向飞蝶射击训练,七次训练的成绩记录如下:(1)(2)该射击运动员击中飞碟的概率约为多少?(保留3位小数)一、选择题1.下列说法正确的是( ) A .任何事件的概率总是在(0,1)之间 B .频率是客观存在的,与试验次数无关C .随着试验次数的增加,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定 2.下列事件中,随机事件是( ) A .向区间(0,1)内投点,点落在(0,1)区间 B .向区间(0,1)内投点,点落在(1,2)区间 C .向区间(0,2)内投点,点落在(0,1)区间 D .向区间(0,2)内投点,点落在(-1,0)区间 3.给出下列三个命题,其中正确的有( )①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品; ②做7次抛硬币的试验,结果3次出现正面向上,因此正面出现的概率是37; ③随机事件发生的频率就是这个随机事件发生的概率. A .0个 B .1个 C .2个 D .3个 4.如果事件A 、B 互斥,A 、B 分别为A 、B 的对立事件,则有( ) A .A +B 是必然事件 B .A +B 是必然事件 C .A 与B 一定互斥 D .A 与B 不互斥5.关于互斥事件的理解,错误的是( )A .若A 发生,则B 不发生;若B 发生,则A 不发生B .若A 发生,则B 不发生,若B 发生,则A 不发生,二者必具其一C .A 发生,B 不发生;B 发生,A 不发生;A 、B 都不发生D .若A 、B 又是对立事件,则A 、B 中有且只有一个发生6.考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于( )A .1B .12C .13 D .07.下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率mn 就是事件的概率;③频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值; ④频率是概率的近似值,概率是频率的稳定值. 其中正确的是________.8.某人在一次射击中,命中9环的概率为0.28,命中8环的概率为0.19,不够8环的概率为0.29,则这人在一次射击中命中9环或10环的概率为________.9.从一副混合后的扑克牌(52张)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得为黑桃”,则概率P(A ∪B)的值是________.(结果用最简分数表示) 三、解答题10.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、得到黄球、得到绿球的概率各是多少?11.我国已经正式加入WTO ,包括汽车在内的进口商品将最多五年内把关税全部降到世贸组织所要求的水平,其中有21%的进口商品恰好5年关税达到要求,18%的进口商品恰好4年达到要求,其余的进口商品将在3年或3年内达到要求,求进口汽车在不超过4年的时间内关税达到要求的概率.能力提升12.甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,求(1)甲获胜的概率;(2)甲不输的概率.13.下表为某班英语及数学成绩的分布,学生共有50人,成绩分1~5五个档次,例如表中所示英语成绩为4分、数学成绩为2分的学生为5人,将全班学生的姓名卡片混在一起,任取一张,该张卡片对应学生的英语成绩为x,数学成绩为y,设x,y为随机变量.(注:没有重名学生)(1)x=1的概率为多少?x≥3且y=3的概率为多少?(2)a+b等于多少?1.随机事件在一次试验中发生与否是随机的,但随机中含有规律性,概率是大次数地重复试验中频率的稳定值.2.概率可看作频率理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地作为这个事件的概率.3.复杂事件求概率时常用的两种转化方法:一是转化为彼此互斥的事件的概率;二是转化为求其对立事件发生的概率.答案:§3.1习题课双基演练1.C 2.C3.B [该同学身高超过175 cm (事件A)与该同学身高不超过175 cm 是对立事件,而不超过175 cm 的事件为小于160 cm (事件B)和[160,175](事件C)两事件的和事件,即 P(A)=1-P(A ) =1-[P(B)+P(C)] =1-(0.2+0.5) =0.3.]4.C [∵P(A +B)=1,∴A +B 为必然事件.又∵P(A +B)=P(A)+P(B),∴A 与B 为互斥事件,因此有A ∩B 为不可能事件.A ∪B 为必然事件,所以A 与B 也是对立事件.] 5.92%解析 记抽验的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而抽验产品是正品(甲级品)的概率为P(A)=1-P(B)-P(C)=1-5%-3%=92%. 6.解 (1)计算n An 得各次击中飞碟的频率依次为0.810,0.792,0.820,0.820,0.793,0.794, 0.807.(2)由于这些频率非常接近0.810,在它附近摆动,所以运动员击中飞碟的概率约为0.810. 作业设计 1.C 2.C3.A [由频率和概率的定义及频率与概率的关系可知①②③都不正确.]4.B [A 、B 互斥,A 、B 可以不同时发生,即A ∩B =∅,所以A ∩B 的对立事件A ∩B =A ∪B 是必然事件,即A +B 是必然事件.]5.B [A 、B 互斥,A 、B 可以不同时发生,A 、B 也可以同时不发生,但只要一个发生,另一个一定不发生.对立事件是必定有一个发生的互斥事件,故只有B 错.]6.A [由正方体的对称性知其六个面的中心构成同底的两个四棱锥,且四棱锥的各个侧面是全等的三角形,底面四个顶点构成一个正方形,从这6个点中任选3个点构成的三角形可分为以下两类:第一类是选中相对面中心两点及被这两个平面所夹的四个面中的任意一个面的中心,构成的是等腰直角三角形,此时剩下的三个点也连成一个与其全等的三角形.第二类是所选三个点均为多面体的侧面三角形的三个点(即所选3个点所在的平面彼此相邻)此时构成的是正三角形,同时剩下的三个点也构成与其全等的三角形,故所求概率为1.] 7.①③④ 8.0.52解析 P =1-P(x ≤8)=1-P(x<8)-P(x =8) =1-0.29-0.19=0.52.9.726解析 一副扑克中有1张红桃K,13张黑桃,事件A 与事件B 为互斥事件,∴P(A ∪B)=P(A)+P(B)=152+1352=726.10.解 设事件A 、B 、C 、D 分别表示“任取一球,得到红球”,“任取一球,得到黑球”,“任取一球,得到黄球”,“任取一球,得到绿球”, 则由已知得P(A)=13, P(B ∪C)=P(B)+P(C)=512, P(C ∪D)=P(C)+P(D)=512,P(B ∪C ∪D)=1-P(A)=P(B)+P(C)+P(D) =1-13=23.解得P(B)=14,P(C)=16,P(D)=14.故得到黑球,得到黄球,得到绿球的概率分别为14,16,14.11.解 方法一 设“进口汽车恰好4年关税达到要求”为事件A ,“不到4年达到要求”为事件B ,则“进口汽车不超过4年的时间内关税达到要求”就是事件A +B ,显然A 与B 是互斥事件,所以P(A ∪B)=P(A)+P(B)=0.18+(1-0.21-0.18)=0.79.方法二 设“进口汽车在不超过4年的时间内关税达到要求”为事件M ,则N 为“进口汽车5年关税达到要求”,所以P(M)=1-P(N)=1-0.21=0.79.12.解 (1)“甲获胜”是“和棋或乙胜”的对立事件,所以“甲获胜”的概率为P =1-12-13=16. (2)方法一 设事件A 为“甲不输”,看作是“甲胜”“和棋”这两个互斥事件的并事件,所以P(A)=16+12=23.方法二 设事件A 为“甲不输”,看作是“乙胜”的对立事件.所以P(A)=1-13=23. 所以甲不输的概率是23.13.解 (1)P(x =1)=1+1+350=110, P(x ≥3,y =3)=850=425. (2)P(x =2)=1-P(x =1)-P(x ≥3)=1-550-35 50=1050=a+b+750,∴a+b=3.。
最新人教版高中数学必修三测试题及答案全套
最新人教版高中数学必修三测试题及答案全套阶段质量检测(一)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.下列给出的赋值语句正确的有( ) ①2=A ; ②x +y =2; ③A -B =-2; ④A =A *AA .0个B .1个C .2个D .3个解析:选B 对于①,赋值语句中“=”左右不能互换,即不能给常量赋值,左边必须为变量,右边必须是表达式,若改写为A =2就正确了;②赋值语句不能给一个表达式赋值,所以②是错误的,同理③也是错误的,这四种说法中只有④是正确的.2.计算机执行下面的程序段后,输出的结果是( )a =1b =3a =a +b b =a -bPRINT a ,bA .1 3B .4 1C .0 0D .6 0解析:选B 输出a =1+3=4,b =4-3=1. 3.把二进制数10 110 011(2)化为十进制数为( ) A .182 B .181 C .180D .179解析:选D 10 110 011(2)=1×27+0×26+1×25+1×24+0×23+0×22+1×21+1×20=128+32+16+2+1=179.4.下图是计算函数y =⎩⎪⎨⎪⎧-x , x ≤-1,0, -1<x ≤2x 2, x >2的值的程序框图,则在①、②和③处应分别填入的是( )A.y=-x,y=0,y=x2B.y=-x,y=x2,y=0C.y=0,y=x2,y=-xD.y=0,y=-x,y=x2解析:选B当x>-1不成立时,y=-x,故①处应填“y=-x”;当x>-1成立时,若x>2,则y=x2,即②处应填“y=x2”,否则y=0,即③处应填“y=0”.5.下面的程序运行后的输出结果为()A.17 B.19C.21 D.23解析:选C第一次循环,i=3,S=9,i=2;第二次循环,i=4,S=11,i=3;第三次循环,i=5,S=13,i=4;第四次循环,i=6,S=15,i=5;第五次循环,i=7,S=17,i=6;第六次循环,i=8,S=19,i=7;第七次循环,i=9,S=21,i=8.此时i=8,不满足i<8,故退出循环,输出S=21,结束.6.下面的程序运行后,输出的值是( )i =0DOi =i +1LOOP UNTIL 2^i >2 000 i =i -1PRINT i ENDA .8B .9C .10D .11解析:选C 由题意知,此程序为循环语句,当i =10时,210=1 024;当i =11时,211=2 048>2 000,输出结果为i =11-1=10.7.下列程序框图运行后,输出的结果最小是( )A .2 015B .2 014C .64D .63解析:选D 由题图知,若使n (n +1)2>2 015,n 最小为63.8.(全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n =2,依次输入的a 为2,2,5,则输出的s =( )A .7B .12C.17 D.34解析:选C第一次运算:s=0×2+2=2,k=1;第二次运算:s=2×2+2=6,k=2;第三次运算:s=6×2+5=17,k=3>2,结束循环,s=17.9.执行如图所示的程序框图,输出的结果为()A.55 B.89C.144 D.233解析:选B初始值:x=1,y=1,第1次循环:z=2,x=1,y=2;第2次循环:z=3,x=2,y =3;第3次循环:z=5,x=3,y=5;第4次循环:z=8,x=5,y=8;第5次循环:z=13,x=8,y =13;第6次循环:z=21,x=13,y=21;第7次循环:z=34,x=21,y=34;第8次循环:z=55,x =34,y=55;第9次循环:z=89,x=55,y=89;第10次循环时z=144,循环结束,输出y,故输出的结果为89.10.(四川高考)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,2,则输出v的值为()A.9B.18C.20 D.35解析:选B由程序框图知,初始值:n=3,x=2,v=1,i=2,第一次循环:v=4,i=1;第二次循环:v=9,i=0;第三次循环:v=18,i=-1.结束循环,输出当前v的值18.故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.459与357的最大公约数是________.解析:459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数为51. 答案:5112.对任意非零实数a ,b ,若a ⊗b 的运算原理如图所示,则log 28⊗⎝⎛⎭⎫12-2=________.解析:log 28<⎝⎛⎭⎫12-2,由题图,知log 28⊗⎝⎛⎭⎫12-2=3⊗4=4-13=1.答案:113.(山东高考)执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.解析:第1次循环:a =0+1=1,b =9-1=8,a <b ,此时i =2; 第2次循环:a =1+2=3,b =8-2=6,a <b ,此时i =3; 第3次循环:a =3+3=6,b =6-3=3,a >b ,输出i =3. 答案:314.(天津高考改编)阅读如图所示的程序框图,运行相应的程序,则输出S 的值为________.解析:S=4不满足S≥6,S=2S=2×4=8,n=1+1=2;n=2不满足n>3,S=8满足S≥6,则S=8-6=2,n=2+1=3;n=3不满足n>3,S=2不满足S≥6,则S=2S=2×2=4,n=3+1=4;n=4满足n>3,输出S=4.答案:4三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或运算步骤.)15.(本小题满分12分)如图是求1+12+13+…+1100的算法的程序框图.(1)标号①②处应分别是什么?(2)根据框图用“当”型循环语句编写程序.解:(1)①k<101?(k<=100?)②S=S+1k. (2)程序如下:16.(本小题满分12分)以下是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.解:算法语句每一步骤对应于程序框图的步骤,其框图如下:17.(本小题满分12分)画出求12-22+32-42+…+992-1002的值的程序框图.解:程序框图如图所示:18.(本小题满分14分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n).(1)若程序运行中输出的一个数组是(9,t),求t的值;(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.解:(1)由程序框图知:当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4;(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最后一对,共输出(x,y)的组数为1 007;(3)程序框图的程序语句如下:(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.算法的每一步都应该是确定的,能有效执行的,并且得到确定的结果,这是指算法的( ) A .有穷性 B .确定性 C .普遍性 D .不唯一性 答案:B2.已知函数y =⎩⎨⎧x ,x ≥0,x +1,x <0,输入自变量x 的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是( )A .顺序结构B .条件结构C .顺序结构、条件结构D .顺序结构、循环结构 答案:C3.用“辗转相除法”求得360和504的最大公约数是( ) A .72 B .36 C .24D .2520解析:选A 504=360×1+144,360=72×5+0,故最大公约数是72. 4.若十进制数26等于k 进制数32,则k 等于( ) A .4 B .5 C .6D .8解析:选D 由题意知,26=3×k 1+2,解得k =8.5.阅读下图所示的程序框图,运行相应的程序,输出的结果是( )A .3B .11C .38D .123解析:选B 根据框图可知第一步的运算为:a =1<10,满足条件,可以得到a =12+2=3,又因为a=3<10,满足条件,所以有a=32+2=11,因为a=11>10,不满足条件,输出结果a=11.6.对于下列算法:如果在运行时,输入2,那么输出的结果是()A.2,5 B.2,4C.2,3 D.2,9解析:选A本题主要考查条件语句的应用.输入a的值2,首先判断是否大于5,显然2不大于5,然后判断2与3的大小,显然2小于3,所以结果是b=5,因此结果应当输出2,5.7.根据下面的算法,可知输出的结果S为()第一步,i=1;第二步,判断i<10是否成立,若成立,则i=i+2,S=2i+3,重复第二步,否则执行下一步;第三步,输出S.A.19 B.21C.25 D.27解析:选C该算法的运行过程是:i=1,i=1<10成立,i=1+2=3,S=2×3+3=9,i=3<10成立,i=3+2=5,S=2×5+3=13,i=5<10成立,i=5+2=7,S=2×7+3=17,i=7<10成立,i=7+2=9,S=2×9+3=21,i=9<10成立,i=9+2=11,S=2×11+3=25,i=11<10不成立,输出S=25.8.按下列程序运行的结果是()A.10.5 B.11.5C.16 D.25解析:选D A=4.5,第一个条件结构中的条件不满足,则B=6-3=3,B=3+2=5;而第二个条件结构中的条件满足,则B=5×5=25,所以运行结果为25.9.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S*(n+1)B.S=S*x n+1C.S=S*nD.S=S*x n解析:选D由题意知,由于求乘积,故空白框中应填入S=S*x n.10.(全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.14解析:选B a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,跳出循环,输出a=2,故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.将二进制数110 101(2)化成十进制数,结果为________,再转为七进制数,结果为________.解析:110 101=1×25+1×24+0×23+1×22+0×21+1=32+16+0+4+0+1=53.110 101(2)=104(7).答案:53104(7)12.如图所示,程序框图(算法流程图)的输出结果是________.解析:第一次进入循环体有T =0+0,第二次有T =0+1,第三次有T =0+1+2,……,第n 次有T =0+1+2+…+n -1(n =1,2,3,…),令T =n (n -1)2>105,解得n>15,故n =16,k =15.答案:1513.输入8,下列程序执行后输出的结果是________.解析:∵输入的数据为8,t ≤4不成立, ∴c =0.2+0.1(8-3)=0.7. 答案:0.714.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为________.解析:第1次循环:s =1+(1-1)=1,i =1+1=2;第2次循环:s =1+(2-1)=2,i =2+1=3;第3次循环:s =2+(3-1)=4,i =3+1=4;第4次循环:s =4+(4-1)=7,i =4+1=5.循环终止,输出s 的值为7.答案:7三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)阅读下列两个程序,回答问题. ①x =3 y =4 x =y PRINT x ,y END(1)上述两个程序的运行结果是:①________________;②_____________________________________________. (2)上述两个程序中的第三行有什么区别? 解:(1)两个程序的运行结果是①4 4;②3 3;(2)程序①中的x =y 是将y 的值4赋给x ,赋值后,x 的值变为4,程序②中的y =x 是将x 的值3赋给y ,赋值后y 的值变为3.16.(本小题满分12分)用秦九韶算法求多项式f (x )=7x 7+6x 6+5x 5+4x 4+3x 3+2x 2+x ,当x =3时的值.解:f (x )=((((((7x +6)x +5)x +4)x +3)x +2)x +1)x , v 0=7,v 1=7×3+6=27, v 2=27×3+5=86, v 3=86×3+4=262, v 4=262×3+3=789, v 5=789×3+2=2 369, v 6=2 369×3+1=7 108, v 7=7 108×3+0=21 324, ∴f (3)=21 324.17.(本小题满分12分)在音乐唱片超市里,每张唱片售价25元,顾客购买5张(含5张)以上但不足10张唱片,则按九折收费,顾客购买10张以上(含10张)唱片,则按八五折收费,编写程序,输入顾客购买唱片的数量a ,输出顾客要缴纳的金额C .并画出程序框图.②x =3 y =4 y =x PRINT x ,yEND解:由题意得C =⎩⎪⎨⎪⎧25a ,a <5,22.5a ,5≤a <10,21.25a ,a ≥10.程序框图,如图所示:程序如下:18.(本小题满分14分)设计一个算法,求f(x)=x 6+x 5+x 4+x 3+x 2+x +1,当x =2时的函数值,要求画出程序框图,并写出程序.解:则程序框图为:程序为:S =0i =0WHILE i ≤6S =S +2^i i =i +1WEND PRINT S END阶段质量检测(二)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查.则这两种抽样的方法依次是( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样,系统抽样解析:选D 由抽样方法的概念知选D.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=-10x +200,则下列结论正确的是( )A .y 与x 具有正的线性相关关系B .若r 表示变量y 与x 之间的线性相关系数,则r =-10C .当销售价格为10元时,销售量为100件D .当销售价格为10元时,销售量在100件左右解析:选D y 与x 具有负的线性相关关系,所以A 项错误;当销售价格为10元时,销售量在100件左右,因此C 错误,D 正确;B 项中-10是回归直线方程的斜率.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝ ⎛⎭⎪⎫1+1+…+1n =2x -3y +1.6.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.7.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得的他们某月交通违章次数的数据制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.8.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据:用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y =-0.7x +a ,则a 的值为( ) A .5.25 B .5 C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25. 9.在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84 B .84,1.6 C .85,1.6D .85,4解析:选C 去掉一个最高分93,去掉一个最低分79,平均数为15×(84+84+86+84+87)=85,方差为15[(85-84)2+(85-84)2+(85-86)2+(85-84)2+(85-87)2]=1.6.10.图甲是某县参加2017年高考学生的身高条形统计图,从左到右各条形表示的学生人数依次记为A 1,A 2,…,A 10{如A 2表示身高(单位:cm)在[150,155)内的学生人数},图乙是统计图甲中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm ,不含180 cm)的学生人数,那么在流程图中的判断框内应填写的条件是( )A .i <6?B .i <7?C .i <8?D .i <9?解析:选C 由图甲可知身高在160~180 cm 的学生都在A 4~A 7内,∴i <8. 二、填空题(本大题共4小题,每小题5分,共20分)11.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为____件.解析:设乙设备生产的产品总数为x 件, 则4 800-x 50=x80-50,解得x =1 800,故乙设备生产的产品总数为1 800件. 答案:1 80012.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4,则样本在[25,25.9)上的频率为________.解析:[25,25.9)包括[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;频数之和为20,频率为2040=12.答案:1213.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表法抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:____________________,_______,_______,_______,_______. (下面摘取了随机数表第7行至第9行) 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44714.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,则x100=0.030×10,解得x =30.同理,y =20,z =10.故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共4题,共50分.解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样法. (2)x 甲=17(102+101+99+98+103+98+99)=100, x乙=17(110+115+90+85+75+115+110)=100, s 2甲=17(4+1+1+4+9+4+1)≈3.43, s 2乙=17(100+225+100+225+625+225+100)=228.57, ∴s 2甲<s 2乙,故甲车间产品比较稳定. 16.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数. 解:由分组[10,15)的频数是10,频率是0.25, 知10M =0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3.故p =3M =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.17.(本小题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2016年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升的.对数据预处理如下:对预处理后的数据,容易算得x =0,y =3.2,b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×2942+22+22+42=26040=6.5. a ^=y -b ^x =3.2.由上述计算结果知所求回归直线方程为 y ^-257=b ^(x -2 010)+a ^=6.5(x -2 010)+3.2. 即y ^=6.5(x -2 010)+260.2.①(2)利用直线方程①,可预测2016年的粮食需求量为 6.5×(2 016-2 010)+260.2 =6.5×6+260.2 =299.2(万吨).18.(本小题满分14分)(四川高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月均用水量的中位数.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)内的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]内的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=2a ×0.5, 解得a =0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000. (3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是() A.分层抽样B.抽签抽样C.随机抽样D.系统抽样答案:D2.下列各选项中的两个变量具有相关关系的是()A.长方体的体积与边长B.大气压强与水的沸点C.人们着装越鲜艳,经济越景气D.球的半径与表面积解析:选C A、B、D均为函数关系,C是相关关系.3.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民.这2 500名城镇居民的寿命的全体是()A.总体B.个体C.样本D.样本容量答案:C4.已知总体容量为106,若用随机数表法抽取一个容量为10的样本.下面对总体的编号最方便的是()A.1,2,…,106 B.0,1,2,…,105C.00,01,…,105 D.000,001,…,105解析:选D由随机数抽取原则可知选D.5.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A .18B .36C .54D .72解析:选B 易得样本数据在区间[10,12)内的频率为0.18,则样本数据在区间[10,12)内的频数为36. 6.对一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是( )A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化解析:选B 设原来数据的平均数为x -,将它们改变为x i +c 后平均数为x ′,则x ′=x -+c ,而方差s ′2=1n[(x 1+c -x --c )2+…+(x n +c -x --c )2]=s 2.7.某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x +y 的值为( )A .7B .8C .9D .10解析:选B 甲班学生成绩的众数为85,结合茎叶图可知x =5;又因为乙班学生成绩的中位数是83,所以y =3,即x +y =5+3=8.8.相关变量x ,y 的样本数据如下表:经回归分析可得y 与x 线性相关,并由最小二乘法求得回归直线方程为y ^=1.1x +a ,则a =( ) A .0.1 B .0.2 C .0.3D .0.4 解析:选C ∵回归直线经过样本点的中心(x ,y ),且由题意得(x ,y )=(3,3.6),∴3.6=1.1×3+a ,∴a =0.3.9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数是3.2,全年进球数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为( )①甲队的技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1个B.2个C.3个D.4个解析:选D因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,①也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,①正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,①正确.10.已知数据:①18,32,-6,14,8,12;②21,4,7,14,-3,11;③5,4,6,5,7,3;④-1,3,1,0,0,-3.各组数据中平均数和中位数相等的是()A.①B.②C.③D.①②③④解析:选D运用计算公式x=1n(x1+x2+…+x n),可知四组数据的平均数分别为13,9,5,0.根据中位数的定义:把每组数据从小到大排列,取中间一位数(或两位的平均数)即为该组数据的中位数,可知四组数据的中位数分别为13,9,5,0.故每组数据的平均数和中位数均对应相等.二、填空题(本大题共4小题,每小题5分,共20分)11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.解析:由分层抽样得,此样本中男生人数为560×280560+420=160.答案:16012.(山东高考)下图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.解析:设样本容量为n,则n×(0.1+0.12)×1=11,所以n=50,故所求的城市数为50×0.18=9.答案:913.(江苏高考)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:解析:对于甲,平均成绩为x -=90,所以方差为s 2=15×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,对于乙,平均成绩为x -=90,方差为s 2=15×[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.由于2<4,所以乙的平均成绩较为稳定.答案:214.某班12位学生父母年龄的茎叶图如图所示,则12位同学母亲的年龄的中位数是________,父亲的平均年龄比母亲的平均年龄多________岁.解析:由41+432=42,得中位数是42.母亲平均年龄=42.5, 父亲平均年龄为45.5,因而父亲平均年龄比母亲平均年龄多3岁. 答案:42 3三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109)3株;[109,111)9株;[111,113)13株; [113,115)16株;[115,117)26株;[117,119)20株; [119,121)7株;[121,123)4株;[123,125]2株. (1)列出频率分布表; (2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几? 解:(2)频率分布直方图如下:(3)由上述图表可知数据落在[109,121)范围内的频率为:0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.16.(本小题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84 乙 92 95 80 75 83 80 90 85 (1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由?解:(1)作出茎叶图如下:(2)x 甲=18(78+79+81+82+84+88+93+95)=85,x 乙=18(75+80+80+83+85+90+92+95)=85.s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41, ∵x甲=x 乙,s 2甲<s 2乙,∴甲的成绩较稳定,派甲参赛比较合适.17.(本小题满分12分)某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这些服装件数x 之间有如下一组数据:已知∑i =17x 2i =280,∑i =17x i y i =3 487, (1)求x ,y ;(2)求纯利y 与每天销售件数x 之间的回归直线方程; (3)每天多销售1件,纯利y 增加多少元? 解:(1)x =17(3+4+5+…+9)=6,y =17(66+69+…+91)≈79.86.(2)设回归直线方程为y ^=a ^+b ^x ,则b ^=∑i =17x i y i -7x - y-∑i =17x 2i -7x2=3 487-7×6×79.86280-7×62≈4.75. a ^=y -b x -≈79.86-4.75×6=51.36. ∴所求的回归直线方程为y ^=51.36+4.75x .(3)由回归直线方程知,每天多销售1件,纯利增加4.75元.18.(本小题满分14分)某地统计局就该地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?解:(1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25, 0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-(0.1+0.2)0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25, 所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人).再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人).阶段质量检测(三)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( ) A .对立事件 B .互斥但不对立事件 C .不可能事件D .必然事件解析:选B 根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,故两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,故两者不是对立事件,所以事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.2.已知集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23 B .12C.13D .16解析:选C 从A ,B 中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中和为4的有(2,2),(3,1),共2种情况,所以所求概率P =26=13.3.在区间[-3,3]上任取一个实数,所得实数是不等式x 2+x -2≤0的解的概率为( ) A.16 B .13C.12D .23解析:选C 由x 2+x -2≤0,得-2≤x ≤1, 所求概率为1-(-2)3-(-3)=12.4.在正方体ABCD A 1B 1C 1D 1中随机取点,则点落在四棱锥O ABCD 内(O 为正方体的对角线的交点)的概率是( )A.13 B .16C.12D .14解析:选B 设正方体的体积为V ,则四棱锥O ABCD 的体积为V6,所求概率为V 6V =16.5.从{}a ,b ,c ,d ,e 的所有子集中任取一个,这个集合恰是集合{}a ,b ,c 子集的概率是( ) A.35 B .25C.14D .18解析:选C 符合要求的是∅,{}a ,{}b ,{}c ,{}a ,b ,{}a ,c ,{}b ,c ,{}a ,b ,c 共8个,而集合{}a ,b ,c ,d ,e 共有子集25=32个,∴P =14.6.(全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13B.12C.23D.56解析:选C 从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P =46=23,故选C.7.连续掷两次骰子,以先后得到的点数m ,n 为点P (m ,n )的坐标,那么点P 在圆x 2+y 2=17内部的概率是( )A.19 B .29C.13D .49解析:选B 点P (m ,n )的坐标的所有可能为6×6=36种,而点P 在圆x 2+y 2=17内部只有⎩⎪⎨⎪⎧m =1n =1,⎩⎪⎨⎪⎧ m =1n =2,⎩⎪⎨⎪⎧ m =1n =3,⎩⎪⎨⎪⎧ m =2n =1,⎩⎪⎨⎪⎧ m =2n =2,⎩⎪⎨⎪⎧ m =2n =3,⎩⎪⎨⎪⎧ m =3n =1,⎩⎪⎨⎪⎧m =3n =2,共8种,故概率为29.8.甲、乙、丙三人在3天节假日中值班,每人值班1天,则甲排在乙的前面值班的概率是( ) A.16 B .14C.13 D .12解析:选C 甲、乙、丙三人在3天中值班的情况为甲,乙,丙;甲,丙,乙;丙,甲,乙;丙,乙,甲;乙,甲,丙;乙,丙,甲共6种,其中符合题意的有2种,故所求概率为13.9.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个卡片,从中无放回...地每次抽一张卡片,共抽2次,则取得两张卡片的编号和不小于...14的概率为( )A.128 B .156C.356D .114 解析:选D 从中无放回地取2次,所取号码共有56种,其中和不小于14的有4种,分别是(6,8),(8,6),(7,8),(8,7),故所求概率为456=114.10.小莉与小明一起用A ,B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A 立方体朝上的数字为x ,小明掷的B 立方体朝上的数字为y 来确定点P (x ,y ),那么他们各。
【人教A版】高中数学新课标必修三全册习题(含答案)
平均数分别是()A.91.5和91.5 B.91.5和92析,获得成绩数据的茎叶图如图所示.(1)计算样本的平均成绩及方差;C.25 D.27解析:该算法的运行过程是:i=1,i=1<10成立,i=1+2=3,S=2×3+3=9,i=3<10成立,i=3+2=5,S=2×5+3=13,i=5<10成立,i=5+2=7,S=2×7+3=17,i=7<10成立,i=7+2=9,S=2×9+3=21,i=9<10成立,i=9+2=11,S=2×11+3=25,i=11<10不成立,输出S=25.答案:C5.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.3 B.11C.38 D.123解析:根据框图可知第一步的运算为:a=1<10,满足条件,可以得到a=12+2=3.又因为a=3<10,满足条件,所以有a=32+2=11,因为a=11>10,不满足条件,输出结果a=11.答案:BA.A>0,V=S-T B.A<0,V=S-TC.A>0,V=S+T D.A<0,V=S+T解析:由条件结构及已知可得A>0,由已知总收入S和盈利V的值知:V=S+T,故C 项正确.答案:C12.执行如图所示的程序框图,若输出x的值为23,则输入的x值为()A.0 B.1C.2 D.11解析:设输入x的值为m,该程序框图的运行过程是:x=m,n=1n=1≤3成立x=2m+1n=1+1=2n=2≤3成立x=2(2m+1)+1=4m+3n=2+1=3n=3≤3成立x=2(4m+3)+1=8m+7n=3+1=4n=4≤3不成立输出x=8m+7,则有8m+7=23,解得m=2,即输入的x值为2.故选C.答案:C二、填空题:本大题共4小题,每小题5分,共20分.13.将258化成四进制数是________.解析:利用除4取余法.则258=10 002(4).答案:10 002(4)14.用秦九韶算法求多项式f(x)=3x6+12x5+8x4-3.5x3+7.2x2+5x-13在x=6时的值,v3=________.解析:f(x)=(((((3x+12)x+8)x-3.5)x+7.2)x+5)x-13,v0=3,v1=3×6+12=30,v2=v1x+8=30×6+8=188,v3=v2x-3.5=188×6-3.5=1 124.5.答案:1 124.515.阅读如图所示的程序框图,运用相应的程序,若输入m的值为2,则输出的结果i =________.解析:由程序框图,i=1后:A=1×2,B=1×1,A<B?否;i=2后:A=2×2,B=1×2,A<B?否;i=3后:A=4×2,B=2×3,A<B?否;i=4后:A=8×2,B=6×4,A<B?是,输出i=4.答案:416.输入8,下列程序执行后输出的结果是________.解析:∵输入的数据是8,t≤4不成立,∴c=0.2+0.1(8-3)=0.7.答案:0.7三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)阅读下列两个程序,回答问题.(1)上述两个程序的运行结果是:①________;②________.(2)上述两个程序中的第三行有什么区别?解析:(1)两个程序的运行结果是①44;②33;(2)程序①中的x=y是将y的值4赋给x,赋值后,x的值变为4,程序②中的y=x是将x的值3赋给y,赋值后y的值变为3.18.(本小题满分12分)利用秦九韶算法判断函数f(x)=x5+x3+x2-1在[0,2]上是否存在零点.解析:f(0)=-1<0,下面用秦九韶算法求x=2时,多项式f(x)=x5+x3+x2-1的值.多项式变形为f(x)=((((x+0)x+1)x+1)x+0)x-1,v0=1,v1=1×2+0=2,v2=2×2+1=5,v3=5×2+1=11,v4=11×2+0=22,v5=22×2-1=43,所以f(2)=43>0,即f(0)·f(2)<0,所以函数f(x)=x5+x3+x2-1在[0,2]上存在零点.19.(本小题满分12分)执行图中程序,回答下面问题:(1)若输入:m=30,n=18,则输出的结果为________.(2)画出该程序的程序框图.解析:(1)由程序知题目为用辗转相除法求两个正整数的最大公约数,所以30=1×18+12,18=1×12+6,12=2×6+0,即最大公约数为6.(2)程序框图:21.(本小题满分12分)在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由点B(起点)向点A(终点)运动.设点P 运动的路程为x ,△APB 的面积为y ,且y 与x 之间的函数关系式用如图所示的程序框图给出.(1)写出程序框图中①,②,③处应填充的式子.(2)若输出的面积y 值为6,则路程x 的值为多少?并指出此时点P 在正方形的什么位置上.解析:(1)由题意,得y =⎩⎪⎨⎪⎧2x ,0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12,故程序框图中①,②,③处应填充的式子分别为:y =2x ,y =8,y =24-2x.(2)若输出的y 值为6,则2x =6或24-2x =6,解得x =3或x =9,当x =3时,此时点P 在正方形的边BC 上,距C 点的距离为1;当x =9时,此时点P 在正方形的边DA 上,距D 点的距离为1.22.(本小题满分12分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次为(x1,y1),(x2,y2),…,(x n,y n),…(1)若程序运行中输出的一个数组是(9,t),求t的值.(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.解析:(1)由程序框图知:当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4.(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 011时,输出最后一对,共输出(x,y)的组数为1 005.(3)程序框图的程序语句如下:第二章质量评估检测时间:120分钟满分:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.某班的60名同学已编号1,2,3,…,60,为了解该班同学的作业情况,老师收取了号码能被5整除的12名同学的作业本,这里运用的抽样方法是()A.简单随机抽样B.系统抽样C.分层抽样D.抽签法解析:抽出的号码是5,10,15,…,60,符合系统抽样的特点:“等距抽样”.答案:B2.统计某校1 000名学生的数学测试成绩,得到样本频率分布直方图如图所示,若满分为100分,规定不低于60分为及格,则及格率是()A.20% B.25%C.6% D.80%解析:从左至右,后四个小矩形的面积和等于及格率,则及格率是1-10×(0.005+0.015)=0.8=80%.答案:D3.已知变量x和y满足关系y=0.1x-10,变量z与y负相关,则下列结论中正确的是()A.x与y负相关,x与z负相关B.x与y正相关,x与z正相关C.x与y正相关,x与z负相关D.x与y负相关,x与z正相关解析:∵变量x和y满足关系y=0.1x-10,∴变量x和y是正相关关系. 又变量z与y图中可以得到这10位同学身高的中位数是()A.161 cm B.162 cm________,父亲的平均年龄比母亲的平均年龄多________岁.1A .求函数y =⎩⎪⎨⎪⎧x 2(x <0),-x 2(x ≥0)的函数值B .求函数y =⎩⎪⎨⎪⎧ x 2(x <0),2(x =0),-x 2(x >0)的函数值C .求函数y =⎩⎪⎨⎪⎧x 2(x >0),2(x =0),-x 2(x <0)的函数值D .以上都不正确解析:由算法知,当x <0时,y =x 2;当x =0时,y =2;当x >0时,y =-x 2.故选B.答案:B5.在用二分法求方程零点的算法中,下列说法正确的是( ) A .这个算法可以求方程所有的零点 B .这个算法可以求任何方程的零点 C .这个算法能求方程所有的近似零点D .这个算法并不一定能求方程所有的近似零点解析:二分法求方程零点的算法中,仅能求方程的一些特殊的近似零点.(满足函数零点存在性定理的条件)则D 正确.答案:D6.下列算法要解决的问题是( )第一步,比较a 与b 的大小,如果a <b ,则交换a ,b 的值. 第二步,比较a 与c 的大小,如果a <c ,则交换a ,c 的值. 第三步,比较b 与c 的大小,如果b <c ,则交换b ,c 的值. 第四步,输出a ,b ,c .A .输入a ,b ,c 三个数,比较a ,b ,c 的大小B .输入a ,b ,c 三个数,找出a ,b ,c 中的最大数C .输入a ,b ,c 三个数,按从大到小的顺序输出D .输入a ,b ,c 三个数,求a ,b ,c 的平均数解析:由这四个步骤可知算法要解决问题是输入a ,b ,c 三个数,按从大到小的顺序输出.答案:C7.如下算法:第一步,输入x 的值. 第二步,若x ≥0,则y =x . 第三步,否则,y =x 2. 第四步,输出y 的值,若输出的y 值为9,则x =________.解析:根据题意可知,此为分段函数y =⎩⎪⎨⎪⎧x ,x ≥0x 2,x <0的算法,当x ≥0时,x =9;当x <0时,x 2=9, 所以x =-3. 答案:9或-38.已知一个算法如下:第二步,如果a ≥4,则y =2a -1;否则,y =a 2-2a +3. 第三步,输出y 的值.问:(1)这个算法解决的是什么问题?(2)当输入的a 的值为多少时,输出的数值最小?最小值是多少?解析:(1)这个算法解决的是求分段函数y =⎩⎪⎨⎪⎧2a -1,a ≥4,a 2-2a +3,a <4的函数值的问题.(2)当a ≥4时,y =2a -1≥7;当a <4时,y =a 2-2a +3=(a -1)2+2≥2, ∵当a =1时,y 取得最小值2.∴当输入的a 值为1时,输出的数值最小为2.3.如图程序框图的运行结果是()534.如图程序框图中,若R=8,运行结果也是8,则程序框图中应填入的内容是()A.a=2b B.a=4b16.阅读如图所示程序框图.若输入x为9,则输出的y的值为()A.8B.3 C.2D.17.如图所示的是一个算法的程序框图,已知a1=3,输出的b=7,则a2等于()A.9B.10 C.11D.128.阅读如图的程序框图,若输出的结果为6,则①处执行框应填的是()A.x=1B.x=2 C.b=1D.b=2程序框图:B组能力提升则程序框图中①处应填________.a径的圆的面积,即a 2-π4a 2,故空白部分的面积S =a 2-2⎝⎛⎭⎫a 2-π4a 2=π2a 2-a 2. 答案:S =π2a 2-a 212.阅读如图所示的程序框图,根据该图和下列各小题的条件回答下面的问题.(1)该程序框图解决的是一个什么问题?(2)若当输入的x 值为0和4时,输出的值相等,则当输入的x 值为3时,输出的值为多大?(3)在(2)的条件下要想使输出的值最大,输入的x 值应为多大?解析:(1)该程序框图解决的是求二次函数f (x )=-x 2+mx 的函数值的问题. (2)当输入的x 值为0和4时,输出的值相等, 即f (0)=f (4).因为f (0)=0,f (4)=-16+4m , 所以-16+4m =0.所以m =4.所以f (x )=-x 2+4x . 于是f (3)=-32+4×3=3,所以当输入的x 值为3时,输出的f (x )值为3. (3)因为f (x )=-x 2+4x =-(x -2)2+4, 当x =2时,f (x )最大值=4,所以要想使输出的值最大,输入的x 值应为2.13.如图,是解决某个问题而绘制的程序框图,仔细分析各框内的内容及图框之间的关系,回答下面的问题:(1)图框①中x =2的含义是什么?(2)图框②中y 1=ax +b 的含义是什么? (3)图框④中y 2=ax +b 的含义是什么? (4)该程序框图解决的是怎样的问题?(5)当最终输出的结果是y 1=3,y 2=-2时,求y =f (x )的解析式. 解:(1)图框①中x =2表示把2赋值给变量x .(2)图框②中y 1=ax +b 的含义是:该图框在执行①的前提下,即当x =2时,计算ax +b 的值,并把这个值赋给y 1.(3)图框④中y 2=ax +b 的含义是:该图框在执行③的前提下,即当x =-3时,计算ax +b 的值,并把这个值赋给y 2.(4)该程序框图解决的是求函数y =ax +b 的函数值的问题,其中输入的是自变量x 的值,输出的是对应x 的函数值.(5)y 1=3,即2a +b =3. ⑤ y 2=-2,即-3a +b =-2. ⑥ 由⑤⑥,得a =1,b =1, 所以f (x )=x +1.课时作业(三) 条件结构A 组 基础巩固1.如图,是计算函数y =⎩⎪⎨⎪⎧-x ,x ≤-1,0,-1<x ≤2,x 2,x >2的值的程序框图,则在①,②,③处应分别填入的是( )。
新教材人教B版高中数学选择性必修第三册课时练习-数列
章末综合测评(一) 数列(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列{a n }是首项为4,公差为3的等差数列,如果a n =2 020,则序号n 等于( )A .671B .673C .674D .675B [{a n }的通项公式a n =3n +1,令3n +1=2 020,得n =673.]2.公比为2的等比数列{a n }的各项都是正数,且a 5·a 11=16,则a 7等于( ) A .1 B .2 C .4 D .8 B [由性质得a 5a 11=a 28=16,由题意知a 8=4,a 7=a 82=42=2.]3.一个首项为23,公差为整数的等差数列,第7项开始为负数,则它的公差是( )A .-2B .-3C .-4D .-6 C [由题意,知a 6≥0,a 7<0. ∴⎩⎨⎧a 1+5d =23+5d ≥0,a 1+6d =23+6d <0, ∴-235≤d <-236. ∵d ∈Z ,∴d =-4.]4.若1,a 1,a 2,4成等差数列;1,b 1,b 2,b 3,4成等比数列,则a 1-a 2b 2的值等于( )A .-12 B.12 C .±12 D.14 A [∵1,a 1,a 2,4成等差数列, ∴3(a 2-a 1)=4-1,∴a 2-a 1=1.又∵1,b 1,b 2,b 3,4成等比数列,设其公比为q ,则b 22=1×4=4,且b 2=1×q 2>0, ∴b 2=2,∴a 1-a 2b 2=-(a 2-a 1)b 2=-12.]5.已知数列{a n }的前n 项和S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3B .a n =2n +3C .a n =⎩⎨⎧1,n =12n -3,n ≥2D .a n =⎩⎨⎧1,n =12n +3,n ≥2C [当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=2n -3,又当n =1时,a 1的值不适合n ≥2时的通项公式,故选C.]6.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫11+a n 是等差数列,则a 11等于( )A .0 B.12 C.23 D .-1B [设数列{b n }的通项公式b n =11+a n ,因为{b n }是等差数列,b 3=11+a 3=13,b 7=11+a 7=12.公差d =b 7-b 34=124.∴b 11=b 3+(11-3)×d =13+8×124=23, 即11+a 11=23,故a 11=12.]7.已知数列{a n }满足a 1=5,a n a n +1=2n ,则a 7a 3=( ) A .2 B .4 C .5 D.52 B [依题意得a n +1a n +2a n a n +1=2n +12n =2,即a n +2a n =2,数列a 1,a 3,a 5,a 7,…是一个以5为首项,2为公比的等比数列,因此a 7a 3=4.]8.数列{a n },{b n }满足a n b n =1,a n =n 2+3n +2,则{b n }的前10项和为( ) A.14 B.512 C.34 D.712 B [依题意b n =1a n=1n 2+3n +2=1(n +1)(n +2)=1n +1-1n +2,所以{b n }的前10项和为S 10=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+⎝ ⎛⎭⎪⎫14-15+…+⎝ ⎛⎭⎪⎫111-112=12-112=512,故选B.]二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.在等比数列{a n }中,a 3=6,前三项和S 3=18,则公比q 的值为( ) A .1 B .-12 C .-1 D.12AB [由题知a 3q 2+a 3q +a 3=18,即6q 2+6q +6=18,化简得,q =1或-12,故选AB.]10.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N +),且a 2+a 4+a 6=9,则( ) A .a n +1=3a n B .3a n +1=a n C .a 5+a 7+a 9=35D .a 5+a 7+a 9=135AC [由题知log 3a n +1=log 3(3a n )=log 3a n +1, 所以a n +1=3a n >0,所以a n +1a n =3,所以{a n }是公比为3的等比数列.所以a 5+a 7+a 9=(a 2+a 4+a 6)q 3=9×33=35.故选AC.] 11.已知数列{a n }是等比数列,则下列结论中正确的是( )A .数列{a 2n }是等比数列B .若a 3=2,a 7=32,则a 5=±8C .若a 1<a 2<a 3,则{a n }为递增数列D .若数列{a n }的前n 项和S n =3n -1+r ,则r =-1AC [B 错误,a 3,a 5,a 7同号;若{a n }的前n 项和S n =3n -1+r ,则r =-13,故D 错误,AC 正确.]12.设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列说法正确的是( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值ABD [由S 6=S 7得a 7=0,故B 正确,由S 5<S 6得a 6>0,故d =a 7-a 6<0,故A 正确;由S 7>S 8得a 8<0;∵a 6+a 7+a 8+a 9=2(a 7+a 8)<0,∴S 9<S 5,故C 错误;又S 5<S 6=S 7>S 8,故S 6,S 7是S n 的最大值,故D 正确,故选ABD.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.若{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是________.2 [设前三项为a -d ,a ,a +d (d >0),则有⎩⎨⎧a -d +a +a +d =12,(a -d )·a ·(a +d )=48,解得⎩⎨⎧d =2,a =4,所以首项为4-2=2.] 14.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 5=________.31 [由题知⎩⎨⎧ a 1+a 3=5,a 1·a 3=4,且{a n }是递增数列,得⎩⎨⎧a 1=1,a 3=4,所以q 2=a 3a 1=4,q =2,所以S 5=a 1(1-q 5)1-q =1-251-2=31.]15.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的第________项.13 [162是这个数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项.]16.设S n 为数列{a n }的前n 项和,已知a 1=12,n +1a n +1=na n +2n ,则a n =________,S n =________.(本题第1空2分,第2空3分)n 2n 2-2+n 2n [由题意可知,a 1=12,n +1a n +1-n a n =2n, ∴1a 1=2,2a 2-1a 1=2,3a 3-2a 2=22, ……n a n -n -1a n -1=2n -1. ∴以上n 个式子相加得 n a n=2+2+22+…+2n -1=2n . ∴a n =n 2n .∴S n =12+222+323+…+n 2n ,① ∴12S n =122+223+…+n -12n +n2n +1, ②①-②得12S n =12+122+…+12n -n 2n +1=1-12n -n2n +1,即S n =2-2+n2n .]四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求T n .[解] (1)由已知S n =2a n -a 1,得a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2). 从而a 2=2a 1,a 3=2a 2=4a 1.因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1), 所以a 1+4a 1=2(2a 1+1),解得a 1=2.所以数列{a n }是首项为2,公比为2的等比数列. 故a n =2n .(2)由(1)得1a n=12n ,所以T n =12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n1-12=1-12n .18.(本小题满分12分)数列{a n }对任意n ∈N +,满足a n +1=a n +1,a 3=2. (1)求数列{a n }的通项公式;(2)若b n =⎝ ⎛⎭⎪⎫13a n +n ,求数列{b n }的通项公式及前n 项和S n .[解] (1)由已知得a n +1-a n =1,数列{a n }是等差数列,且公差d =1.又a 3=2,所以a 1=0,所以a n =n -1.(2)由(1)得,b n =⎝ ⎛⎭⎪⎫13n -1+n ,所以S n =(1+1)+⎝ ⎛⎭⎪⎫13+2+…+⎝ ⎛⎭⎪⎫13n -1+n =1+13+132+…+13n -1+(1+2+3+…+n )=1-⎝ ⎛⎭⎪⎫13n1-13+n (n +1)2=3-31-n 2+n (n +1)2. 19.(本小题满分12分)已知函数f (x )=3x x +3,数列{x n }的通项由x n =f (x n -1)(n ≥2且x ∈N +)确定.(1)求证:⎩⎨⎧⎭⎬⎫1x n 是等差数列;(2)当x 1=12时,求x 2 020.[解] (1)证明:∵x n =f (x n -1)=3x n -1x n -1+3(n ≥2且n ∈N +),∴1x n=x n -1+33x n -1=13+1x n -1,∴1x n-1x n -1=13(n ≥2且n ∈N +),∴⎩⎨⎧⎭⎬⎫1x n 是等差数列. (2)由(1)知1x n=1x 1+(n -1)×13=2+n -13=n +53.∴1x2 020=2 020+53=2 0253=675. ∴x 2 020=1675.20.(本小题满分12分)一个热气球在第一分钟上升了25 m 的高度,在以后的每一分钟里,它上升的高度都是它在前一分钟里上升高度的80%.这个热气球上升的高度能超过125 m 吗?[解] 用a n 表示热气球在第n 分钟上升的高度,由题意, 得a n +1=45a n ,因此,数列{a n }是首项a 1=25,公比q =45的等比数列. 热气球在前n 分钟内上升的总高度为: S n =a 1+a 2+…+a n =a 1(1-q n )1-q=25×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n1-45=125×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n<125.故这个热气球上升的高度不可能超过125 m.21.(本小题满分12分)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1.(1) 求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n=1-12n ,n ∈N +,求{b n }的前n 项和T n .[解] (1)设等差数列{a n }的首项为a 1,公差为d . 由S 4=4S 2,a 2n =2a n +1,得 ⎩⎨⎧4a 1+6d =8a 1+4d ,a 1+(2n -1)d =2a 1+2(n -1)d +1, 解得⎩⎨⎧a 1=1,d =2,因此a n =2n -1,n ∈N +.(2)由已知b 1a 1+b 2a 2+…+b n a n=1-12n ,n ∈N +,当n =1时,b 1a 1=12;当n ≥2时,b n a n =1-12n -⎝ ⎛⎭⎪⎫1-12n -1=12n . 所以b n a n=12n ,n ∈N +.由(1)知a n =2n -1,n ∈N +, 所以b n =2n -12n ,n ∈N +.所以T n =12+322+523+…+2n -12n , 12T n =122+323+…+2n -32n +2n -12n +1. 两式相减,得12T n =12+⎝ ⎛⎭⎪⎫222+223+…+22n -2n -12n +1=32-12n -1-2n -12n +1, 所以T n =3-2n +32n .22.(本小题满分12分)已知函数f (x )=2x +33x ,数列{a n }满足a 1=1,a n +1=f ⎝ ⎛⎭⎪⎫1a n ,n ∈N +.(1)求数列{a n }的通项公式; (2)令b n =1a n -1a n(n ≥2),b 1=3,S n =b 1+b 2+…+b n ,若S n <m -2 0112对一切n ∈N+都成立,求最小的正整数m 的值.[解] (1)∵a n +1=f ⎝ ⎛⎭⎪⎫1a n =2+3a n3=a n +23, ∴{a n }是以a 1=1为首项,23为公差的等差数列, ∴a n =23n +13.(2)当n ≥2时,b n =1a n -1a n =1⎝ ⎛⎭⎪⎫23n -13⎝ ⎛⎭⎪⎫23n +13 =92⎝ ⎛⎭⎪⎫12n -1-12n +1, 当n =1时,上式同样成立, ∴b n =92⎝ ⎛⎭⎪⎫12n -1-12n +1.∴S n =b 1+b 2+…+b n=92⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =92⎝ ⎛⎭⎪⎫1-12n +1, ∵S n <m -2 0112对一切n ∈N +都成立,即92⎝ ⎛⎭⎪⎫1-12n +1<m -2 0112对一切n ∈N +都成立.又92⎝ ⎛⎭⎪⎫1-12n +1随着n 的增大而增大,且92⎝ ⎛⎭⎪⎫1-12n +1<92, ∴92≤m -2 0112,∴m ≥2 020.∴最小的正整数m 的值为2 020.。
高中人教版数学必修3课本练习_习题参考答案
⾼中⼈教版数学必修3课本练习_习题参考答案⾼中数学必修③课本练习,习题参考答案新⼼希望教育:RenYongSheng 第⼀章算法初步1.1算法与程序框图1.1.1算法的概念(p5)1. 解;第⼀步:输⼊任意正实数r,第⼆步:计算第三步:输出圆的⾯积S2. 解;第⼀步:给定⼀个⼤于l的正整数;第⼆步:令;第三步:⽤除,得到余数;第四步:判断“”是否成⽴,若成⽴,则i是n的因数;否则,i不是n的因数;第五步:使的值增加l,仍⽤表⽰,即令;第六步,判断“”是否成⽴.若是,则结束算法;否则,返回第三步1.1.2程序框图与算法的基本逻辑(P19)1.解;算法步骤:第⼀步,给定精确地d,令i=1第⼆步,取出的到⼩数点后第i位的不⾜近似值,记为a;取出的到⼩数点后第i位的过剩近似值,记为b,第三步,计算第四步,若m第五步,输出程序框图如下图所⽰:1.1算法与程序框图(P20)A 组解;题⽬:在国内寄平信(外埠),每封信的质量x(克)不超过60克时的邮费(单位:分)标准为,试写出计算邮费的算法并画出程序框图。
算法如下:第⼀步,输⼊质量数x。
第⼆步,判断是否成⽴,若是,则输出y=120,否则执⾏第三步。
第三步,判断是否成⽴,若是,则输出y=240,否则,输出y=360,算法结束。
程序框图如下图所⽰:(注释:条件结构)第⼀步,i=1,S=0.第⼆步,判断是否成⽴,若成⽴,则执⾏第三步,否则,执⾏第四步。
第三步,,i=i+1,返回第⼆步。
第四步,输出S.程序框图如下图所⽰:(注释:循环结构)3. 解:算法如下:第⼀步,输⼊⼈数x,设收取的卫⽣费为y元。
第⼆步,判断x>3是否成⽴,若不成⽴,y=5,输出y ;否则,输出y.程序框图如下图所⽰:(注释:条件结构)B1. 解:分析:我们设计对于⼀般的⼆元⼀次⽅程组(其中)的通⽤算法:第⼀步,,得(即) (3)第⼆步,解(3),得 (4)第三步,将(4)代⼊(1),得,因此,只要输⼊相应的未知数的系数和常数项,就能计算出⽅程组的解,即可以输出x、y的值,⽤顺序结构即可。
人教版高中数学必修三 课时作业:第3章 概率 3.3.2
课时目标
在正方形围栏内均匀撒米粒,食,此刻小鸡正在正方形的内切圆中的概率是
.如图所示,在一个边长为3 cm的正方形内部画一个边长为的正方形,向大正方形内随机投点,用随机模拟的方法求所投的点落入小正方形内的概率.
所投点落入小正方形内}.
[0,1]上的均匀随机数,
经过平移和伸缩平移变换,a=3a1-1.5
计用随机模拟的方法估计他能赶上车的概率的步骤?
解:能赶上车的条件是到达乙地时汽车没有出发,我们可以用两组均匀随机数x 和y 来表示到达乙地的时间和汽车从乙地出发的时间,当x ≤y 时能赶上车.
设事件A :“他能赶上车”.
①利用计算器或计算机产生两组[0,1]上的均匀随机数,x 1=RAND ,y 1=RAND.
②经过变换x =0.5x 1+9.5,y =0.5y 1+9.75.
③统计出试验总次数N 和满足条件x ≤y 的点(x ,y )的个数N 1.
④计算频率f n (A )=N 1N ,则N 1N 即为概率P (A )的近似值.
能力提升
12.将[0,1]内的均匀随机数转化为[-3,4]内的均匀随机数,需实施的变换为( )
答案:C
解析:根据伸缩平移变换
13.利用模拟的方法计算如图,由y =1和y =x 2所围成的部分M
的面积.
解:(1)用计算机产生两组[0,1]内均匀随机数a 1=RAND( ),b
=RAND( ).
(2)经过平移和伸缩变换,a =(a 1-0.5)*2.
(3)数落在区域内(即满足0<b <1,且b -a 2>0)的样本点数N 1计算S 阴影=2N 1N (N 代表落在矩形中的点(a ,b )的个数).。
高一数学人教新课标A版必修三课时作业(答案详析版)
课时作业(一) 算法的概念一、选择题1.下列叙述中,能称为算法的个数为( ) ①植树需要运苗、挖坑、栽苗、浇水这些步骤;②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100; ③从青岛乘火车到济南,再从济南乘飞机到广州观看广州恒大的亚冠比赛; ④3x >x +1;⑤求所有能被3整除的正数,即3,6,9,12,…. A .2 B .3 C .4 D .5答案:B2.关于一元二次方程x 2-5x +6=0的求根问题,下列说法正确的是( ) A .只能设计一种算法 B .可以设计多种算法 C .不能设计算法D .不能根据解题过程设计算法 答案:B3.一个厂家生产商品的数量按照每年比前一年都增加18%的比率递增,若第一年的产量为a ,“计算第n 年的产量”的算法中用到的一个函数解析式是( )A .y =an 0.18B .y =a (1+18%)nC .y =a (1+18%)n -1D .y =n (1+18%)n 答案:C4.对于解方程x 2-2x -3=0的下列步骤: ①设f (x )=x 2-2x -3;②计算判别式Δ=(-2)2-4×1×(-3)=16>0; ③作f (x )的图象;④将a =1,b =-2,c =-3代入求根公式x =-b ±Δ2a ,得x 1=3,x 2=-1.其中可作为解方程的算法的有效步骤为( ) A .①② B .②③ C .②④ D .③④答案:C5.如下算法: 第一步,输入x 的值.第二步,若x ≥0,则y =x ;否则,y =x 2. 第三步,输出y 的值.若输出的y 值为9,则x 的值是( ) A .3 B .-3 C .3或-3 D .-3或9答案:D 二、填空题6.以下是解二元一次方程组⎩⎪⎨⎪⎧2x -y +6=0,①x +y +3=0 ②的一个算法,请将该算法补充完整.第一步,①②两式相加得3x +9=0.③ 第二步,由③式可得____________.④ 第三步,将④式代入①式得y =0. 第四步,输出方程组的解____________.解析:由3x +9=0,得x =-3,即④处应填x =-3; 把x =-3代入2x -y +6=0,得y =0,即方程组的解为⎩⎪⎨⎪⎧x =-3,y =0.答案:x =-3 ⎩⎪⎨⎪⎧x =-3,y =07.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99,求他的总分和平均成绩的一个算法为: 第一步,取A =89,B =96,C =99. 第二步,__________________________. 第三步,__________________________. 第四步,输出计算的结果.解析:应先计算总分D =A +B +C ,然后再计算平均成绩E =D3.答案:计算总分D =A +B +C 计算平均成绩E =D38.已知A (-1,0),B (3,2),下面是求直线AB 的方程的一个算法,请将其补充完整: 第一步,__________________________________.第二步,用点斜式写出直线AB 的方程y -0=12[x -(-1)].第三步,将第二步的方程化简,得到方程x -2y +1=0.解析:该算法功能为用点斜式方程求直线方程,第一步应为求直线的斜率,应补充为“计算直线AB 的斜率k =12”. 答案:计算直线AB 的斜率k =12三、解答题9.已知一个等边三角形的周长为a ,求这个三角形的面积.设计一个算法解决这个问题. 解:算法步骤如下: 第一步,输入a 的值. 第二步,计算l =a3的值.第三步,计算S =34×l 2的值. 第四步,输出S 的值.10.有分别装有醋和酱油的A 、B 两个瓶子,现要将B 瓶中的酱油装入A 瓶,A 瓶中的醋装入B 瓶,写出解决这个问题的一种算法.解:算法步骤如下:第一步,引入第三个空瓶C 瓶. 第二 步,将A 瓶中的醋装入C 瓶中. 第三步,将B 瓶中的酱油装入A 瓶中. 第四步,将C 瓶中的醋装入B 瓶中. 第五步,交换结束.11.已知函数y =⎩⎪⎨⎪⎧2x-1 (x ≤-1),log 3(x +1) (-1<x <2),x 4 (x ≥2),试设计一个算法,输入x 的值,求对应的函数值.解:算法如下: 第一步,输入x ;第二步,当x ≤-1时, 计算y =2x -1,否则执行第三步;第三步,当x<2时,计算y=log3(x+1),否则执行第四步;第四步,计算y=x4;第五步,输出y.课时作业(二)程序框图、顺序结构一、选择题1.下列关于程序框图的说法正确的是()①程序框图只有一个入口,也只有一个出口;②程序框图中的每一部分都应有一条从入口到出口的路径通过它;③流程线只要是上下方向就表示上下执行,可以不要箭头;④连接点是用来连接两个程序框图的.A.①②③B.②③C.①④D.①②答案:D2.下列是程序框图中的一部分,表示恰当的是()答案:A3.如图所示的程序框图,若输入x=3,则输出y的值为()A.33 B.34C.40 D.45答案:B4.如图所示的程序框图,若输出的结果为2,则①处的执行框内应填的是()A.x=2 B.b=2C.x=1 D.a=5答案:C5.如图所示的是一个算法的程序框图,已知a1=3,输出的b=7,则a2等于()A.9 B.10C.11 D.12答案:C二、填空题6.执行如图所示的程序框图,输出ω的值为________.解析:ω=5×10+8×2=50+16=66.答案:667.已知点P(x0,y0),直线l:x+2y-3=0,求点P到直线l的距离的一个算法程序框图如图所示,则在①处应填________.解析:应填上点到直线的距离公式. 答案:d =|x 0+2y 0-3|58.如图所示程序框图,则输出X 的值是________.解析:X =1+3+5=9. 答案:9 三、解答题9.已知一个圆的周长为a ,求这个圆的面积.试设计该问题的算法,并画出程序框图.解:由圆的周长及面积公式可得. 算法如下:第一步,输入a 的值. 第二步,计算r =a2π的值. 第三步,计算S =πr 2的值. 第四步,输出结果. 相应的程序框图如右图:10.如图所示的程序框图,根据该图和下列各小题的条件回答下面的几个小题.(1)该程序框图解决的是一个什么问题?(2)当输入的x的值为0和4时,输出的值相等,问:当输入的x的值为3时,输出的值为多大?(3)在(2)的条件下要想使输出的值最大,输入的x的值应为多大?解:(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题.(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4,所以f(x)=-x2+4x.则f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的f(x)值为3.(3)因为f(x)=-x2+4x=-(x-2)2+4,当x=2时,f(x)最大值=4.所以要想使输出的值最大,输入的x的值应为2.课时作业(三)条件结构一、选择题1.下列关于条件结构的说法正确的是()A.条件结构的程序框图中有两个入口和一个出口B.无论条件结构中的条件是否满足,都只能执行两条路径之一C.条件结构中的两条路径可以同时执行D.对于一个算法来说,判断框中的条件是唯一的答案:B2.如图所示框图,当x1=6,x2=9,p=8.5时,x3等于()A.7B.8C.10 D.11答案:B3.下面的程序框图,若输入a,b,c分别是21,32,75,则输出的值是()A.96 B.53C.107 D.128答案:B4.程序框图如图所示,若输出的y=0,那么输入x的值为()A.-3,0 B.-3,-5C.0,-5 D.-3,0,-5答案:A5.某程序框图如图所示,现输入如下四个函数,则可以输出的函数是( )A .f (x )=x 2B .f (x )=1xC .f (x )=ln x +2x -6D .f (x )=x 3+x 答案:D 二、填空题6.如图是求实数x 的绝对值的算法程序框图,则判断框①中可填________.解析:因为满足条件直接输出x ,否则输出-x , ∴条件应该是x ≥0?或x >0? 答案:x ≥0?或x >0?7.如图是某种算法的程序框图,当输出的y 的值大于2时,则输入的x 的取值范围为________.解析:由题知,此算法的程序框图是求分段函数f (x )=⎩⎪⎨⎪⎧3-x -1(x ≤0),x (x >0)的值.若f (x )>2,①当x ≤0时,令3-x -1>2, 即3-x >3,所以-x >1,得x <-1; ②当x >0时,令x >2,得x >4.综上所述,x 的取值范围为(-∞,-1)∪(4,+∞). 答案:(-∞,-1)∪(4,+∞)8.如图所示的程序框图,如果输入三个实数a ,b ,c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入________.解析:由框图知将a ,b ,c 中较大的用x 表示,先令x =a ,再比较x 与b 的大小.若b >x ,则令x =b ,否则判断x 与c 的大小;若x >c ,则令x =c ,输出x ,否则直接输出x .答案:c >x? 三、解答题9.如图所示的程序框图,其作用是:输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值相等,求这样的x 值有多少个?解:由题可知算法的功能是求分段函数y =⎩⎪⎨⎪⎧x 2(x ≤2),2x -3(2<x ≤5),1x (x >5)的函数值.要满足题意,则需要⎩⎪⎨⎪⎧ x ≤2,x 2=x 或⎩⎪⎨⎪⎧2<x ≤5,2x -3=x 或⎩⎪⎨⎪⎧x >5,1x =x ,解得x =0或x =1或x =3,共3个值.10.在新华书店里,《创新方案》每本售价14.80元,书店为促销,规定:如果顾客购买5本或5本以上,10本以下则按九折(即13.32元)出售;如果顾客购买10本或10本以上,则按八折(即11.84元)出售.请设计一个完成计费工作的程序框图.解:程序框图:课时作业(四) 循环结构、程序框图的画法一、选择题1.以下说法不正确的是()A.顺序结构是由若干个依次执行的处理步骤组成的,每一个算法都离不开顺序结构B.循环结构是在一些算法中从某处开始按照一定条件,反复执行某一处理步骤,故循环结构中一定包含条件结构C.循环结构中不一定包含条件结构D.用程序框图表示算法,使之更加直观形象,容易理解答案:C2.(全国丙卷)执行如图所示的程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B.4C.5 D.6解析:选B程序运行如下:开始a=4,b=6,n=0,s=0.第1次循环:a=2,b=4,a=6,s=6,n=1;第2次循环:a=-2,b=6,a=4,s=10,n=2;第3次循环:a=2,b=4,a=6,s=16,n=3;第4次循环:a=-2,b=6,a=4,s=20,n=4.此时,满足条件s>16,退出循环,输出n=4.故选B.3.(全国乙卷)执行如图所示的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A .y =2xB .y =3xC .y =4xD .y =5x解析:选C 输入x =0,y =1,n =1, 运行第一次,x =0,y =1,不满足x 2+y 2≥36; 运行第二次,x =12,y =2,不满足x 2+y 2≥36;运行第三次,x =32,y =6,满足x 2+y 2≥36,输出x =32,y =6.由于点⎝⎛⎭⎫32,6在直线y =4x 上,故选C.4.如图是一算法的程序框图,若此程序运行结果为S =720,则在判断框中应填入关于k 的判断条件是( )A .k ≥6?B .k ≥7?C .k ≥8?D .k ≥9?答案:C5.执行如图所示的程序框图,输出的S 值为( )A.3 B.-6C.10 D.-15答案:C二、填空题6.阅读下边的框图,运行相应的程序,输出S的值为________.解析:n=3,S=0+(-2)3=-8,n-1=2>1;S=-8+(-2)2=-4,n-1=1≤1,终止循环,故输出S =-4.答案:-47.如图的程序框图,若输入m=4,n=3,则输出a=________,i=________.解析:由程序框图可知,当a=m×i=4×i能被n=3整除时输出a和i并结束程序.显然,当i=3时,a 可以被3整除,故i=3,此时a=4×3=12.答案:12 38.已知如图所示的程序框图(未完成),设当箭头a 指向①时,输出的结果为S =m ;当箭头a 指向②时,输出的结果为S =n ,则m +n 的值为________.解析:当箭头a 指向①时:i =1,S =1;i =2,S =2;i =3,S =3;i =4,S =4;i =5,S =5;i =6,结束循环,输出结果S =m =5.当箭头a 指向②时:i =1,S =1;i =2,S =1+2;i =3,S =1+2+3;i =4,S =1+2+3+4;i =5,S =1+2+3+4+5;i =6,结束循环,输出结果S =n =1+2+3+4+5=15,故m +n =20.答案:20 三、解答题9.设计程序框图,求出12×⎝⎛⎭⎫-23×34×⎝⎛⎭⎫-45×…×99100的值. 解:程序框图如图所示:10.以下是某次考试中某班15名同学的数学成绩:72,91,58,63,84,88,90,55,61,73,64, 77,82,94,60.画出求80分以上的同学的平均分的程序框图.解:程序框图如图所示:课时作业(五)输入语句、输出语句和赋值语句一、选择题1.下列给出的输入、输出语句正确的是()①INPUT a;b;c②INPUT x=3③PRINT A=4④PRINT20,3*2A.①②B.②③C.③④D.④答案:D2.下列给出的赋值语句中正确的是()A.x+3=y-2 B.d=d+2C.0=x D.x-y=5答案:B3.执行下列算法语句后的结果(x MOD y表示整数x除以整数y的余数)为()(运行时从键盘上输入16和5)A.A=80,B=1,C=401B.A=80,B=3,C=403C.A=80,B=3.2,C=403.2D.A=80,B=3.2,C=404答案:A4.将两个数a=25,b=9交换,使a=9,b=25,下面语句正确的一组是()a=b b=a b=aa=bc=bb=aa=ca=cc=bb=aA B C D答案:C5.程序:INPUT AA=A*2A=A*3A=A*4A=A*5PRINT AEND若输入的是2,则输出的值是()A.16 B.120C.240 D.360答案:C二、填空题6.(1)程序Ⅰ的运行结果为________;(2)若程序Ⅱ与程序Ⅰ运行结果相同,则程序Ⅱ输入的值为________.解析:(1)程序Ⅰ中,x=x+2=2,x=x+3=2+3=5,故输出x的值是5.(2)程序Ⅱ的功能是求y=x2+6x+10的函数值,由题意知程序Ⅱ中y=5,∴x2+6x+10=5,即x=-1或-5.输入的值为-1或-5.答案:(1)5(2)-1或-57.程序:若输入的是3,则运行结果是________.解析:先对M,N进行赋值运算,第一句输入3时,将3赋给了M;第二句,将3赋给N;第三句,将12赋给M ;第四句,将18赋给P ;第五句,将54赋给Q ;第六句,输出M ,N ,P ,Q 的值.答案:12,3,18,548.结合下图,下面程序输出的结果为________.INPUT “a ,b =”;a ,b S1=a ^2S2=S1-b ^2PRINT S2END解析:该程序功能是求一个边长为a 的正方形,去掉一个边长为b 的小正方形后剩余的面积(即阴影部分面积),最后输出S 2的值为a 2-b 2.答案:a 2-b 2 三、解答题9.已知函数f (x )=3x -1,求f [f (2)]的值.编写一个程序,解决上述问题. 解:程序如下:10.某城市规定,在法定工作时间内每小时的工资是8元,在法定工作时间外每小时的加班工资为16元,某人在一周内工作60小时,其中加班20小时.编写程序,计算这个人这一周所得的工资.解:算法如下:第一步,输入法定工作时间. 第二步,输入加班工作时间. 第三步,计算法定工作时间所得工资. 第四步,计算加班工作时间所得工资. 第五步,计算这个人这一周所得的工资. 第六步,输出这个人这一周所得的工资.程序框图如图所示:程序如下:11.以下是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.解:程序框图如图所示:课时作业(六) 条件语句一、选择题1.下列问题所描述出来的算法,其中不包含条件语句的为( ) A .输入三个表示三条边长的数,计算三角形的面积 B .给出两点的坐标,计算直线的斜率 C .给出一个数x ,计算它的常用对数的值 D .给出三棱锥的底面积与高,求其体积 答案:D 2.运行程序:INPUT A ,B IF A >B THEN C =A/2ELSEC =B/2END IF PRINT C END在两次运行中分别输入8,4和2,4,则两次运行程序的输出结果分别为( ) A .8,2B .8,4C .4,2D .4,4答案:C3.给出如图所示的程序:执行该程序时,若输入的x 为3,则输出的y 值是( ) A .3 B .6 C .9 D .27答案:B4.阅读下列程序:如果输入x=-2,则输出结果为()A.2 B.-12C.10 D.-4答案:D5.已知程序如下:INPUT“a,b,c=”;a,b,cmax=aIF b>max THENmax=bEND IFIF c>max THENmax=cEND IFPRINT“max=”;maxEND根据程序提示输入a=4,b=2,c=-5,则程序运行结果是()A.max=a B.max=bC.max=c D.max=4答案:D二、填空题6.判断输入的数x是否为正数,若是,输出它的平方;若不是,输出它的相反数,则横线上应填________.解析:y 是一个分段函数,由题意知,y =⎩⎪⎨⎪⎧-x (x ≤0),x 2(x >0).答案:x <=07.读程序,写出程序的意义:______________________________________________.解析:由程序可知,该算法功能是求函数y =⎩⎪⎨⎪⎧-2x (x <0),2(x =0),x 2+1(x >0)的函数值.答案:求函数y =⎩⎪⎨⎪⎧-2x (x <0),2(x =0),x 2+1(x >0)的函数值8.下面是一个算法,如果输出的值是25,则输入的x 的值为________.INPUT xIF x <0 THEN y =(x +1)*(x +1)ELSEy =(x -1)*(x -1)END IF PRINT y END解析:程序对应的函数是y =⎩⎪⎨⎪⎧(x +1)2(x <0),(x -1)2(x ≥0).由⎩⎪⎨⎪⎧ x <0,(x +1)2=25或⎩⎪⎨⎪⎧x ≥0,(x -1)2=25,得x =-6或x =6. 答案:6或-6 三、解答题9.已知函数y =⎩⎪⎨⎪⎧x 2-1(x >0),x +1(x =0),-x 2+2x (x <0).试输入x 的值,计算y 值,写出程序.解:程序如下:10.如图所示,在边长为16的正方形ABCD 的边上有一动点P ,点P 沿边线由B →C →D →A (B 为起点,A 为终点)运动.若设P 运动的路程为x ,△APB 的面积为y ,试写出程序,根据输入的x 值,输出相应的y 值.解:由题意可得函数关系式为: y =⎩⎪⎨⎪⎧8x (0<x ≤16),128(16<x ≤32),8(48-x )(32<x <48),显然需利用条件语句的嵌套或叠加编写程序. 程序如下:课时作业(七) 循环语句一、选择题1.下列问题,设计程序求解时,要用到循环语句的有( ) ①输入每个同学的数学成绩,求全班同学的平均分; ②求分段函数的函数值; ③求连续100个自然数的平方和; ④输入100个数,从中找出最大的数. A .1个 B .2个 C .3个 D .4个答案:C2.下面为一个求20个数的平均数的程序,在横线上应填充的语句为( )A.i>20 B.i<20C.i>=20 D.i<=20答案:A3.有以下程序段,其中描述正确的是()k=8WHILE k=0k=k+1WENDA.循环体语句执行10次B.循环体是无限循环C.循环体语句一次也不执行D.循环体语句只执行一次答案:C4.以下程序()x=-1DOx=x*xLOOP UNTIL x>10PRINT xENDA.输出结果是1B.能执行一次C.能执行10次D.是“死循环”,有语法错误答案:D5.下面两个程序最后输出的“S”分别等于()A.17,17 B.21,21C.21,17 D.14,21答案:C二、填空题6.下面的程序执行后输出的结果是________.n=5S=0WHILE S<10S=S+nn=n-1WENDPRINT nEND解析:第一次执行循环体:S=5,n=4;第二次执行循环体:S=9,n=3;第三次执行循环体:S=12,n=2,此时S≥10,循环终止,故输出n=2. 答案:27.下列程序运行后,输出的值为________.i=0DOi=i+1LOOP UNTIL i*i>=2 000i=i-1PRINT iEND解析:由程序知i2≥2 000时,i的最小值为45,又把i-1=44的值赋给i,∴i=44.答案:44解析:a 的初始值为10,故循环体中的值应该递减,即a 从10减到1,循环的条件为a >0,当然也可以为a ≥1.答案:①a >0 ②a -1 三、解答题9.给出一个算法的程序框图(如图所示).(1)说明该程序的功能;(2)请用WHILE 型循环语句写出程序.解:(1)该程序的功能是求1+12+13+…+199的值.(2)程序如下:S =0K =1WHILE K <=99 S =S +1/K K =K +1WEND PRINT S END10.某商场第一年销售计算机5 000台,如果平均每年销售量比上一年增加10%,那么从第一年起,大约几年可使总销售量达到30 000台?画出解决此问题的程序框图,并写出程序.解:程序框图如图所示:程序:m=5 000S=0i=0WHILE S<30 000S=S+mm=m*(1+0.1)i=i+1WENDPRINT iEND课时作业(八) 算法案例一、选择题1.4 830与3 289的最大公约数为()A.23B.35C.11 D.13答案:A2.用秦九韶算法求多项式f(x)=4x5-x2+2当x=3的值时,需要进行乘法运算和加减运算的次数分别为()C.5,2 D.6,2答案:C3.用辗转相除法求72与120的最大公约数时,需要做除法的次数为()A.4 B.3C.5 D.6答案:B4.用更相减损术求459与357的最大公约数,需要做减法的次数为()A.4 B.5C.6 D.7答案:B5.下列各数,化为十进制后,最大的为()A.101 010(2)B.111(5)C.32(8)D.54(6)答案:A二、填空题6.用更相减损术求168,54的最大公约数为________.解析:先将168,54约简为84,27,由更相减损术.84-27=57,57-27=30,30-27=3,27-3=24,24-3=21,21-3=18,18-3=15,15-3=12,12-3=9,9-3=6,6-3=3,故84和27最大公约数为3,168和54最大公约数为6.答案:67.三位七进制数表示的最大的十进制数是______.解析:最大的三位七进制数表示的十进制数最大,最大的三位七进制数为666(7),则666(7)=6×72+6×71+6×70=342.答案:3428.按照秦九韶算法求多项式f(x)=1.5x5+3.5x4-4.1x3-3.6x+6当x=0.5时的值的过程中,令v0=a5,v1=v0x+a4,…,v5=v4x+a0,则v4=________.解析:由题意,有v0=1.5,v1=1.5×0.5+3.5=4.25,v2=4.25×0.5-4.1=-1.975,v3=-1.975×0.5+0=-0.987 5,v4=-0.987 5×0.5-3.6=-4.093 75.答案:-4.093 75三、解答题9.10x1(2)=y02(3),求x、y的值.解:因为10x 1(2)=1×20+x ×21+0×22+1×23=9+2x ,y 02(3)=2×30+y ×32=9y +2,所以9+2x =9y +2且x ∈{}0,1,y ∈{}1,2,所以x =1,y =1.10.用秦九韶算法计算当x =2时,多项式f (x )=x 6-12x 5+60x 4-160x 3+240x 2-192x +64的值. 解:将f (x )改写为f (x )=(((((x -12)x +60)x -160)x +240)x -192)x +64, v 0=1,v 1=1×2-12=-10,v 2=-10×2+60=40, v 3=40×2-160=-80,v 4=-80×2+240=80, v 5=80×2-192=-32,v 6=-32×2+64=0. 所以f (2)=0,即x =2时,原多项式的值为0.11.用秦九韶算法求多项式f (x )=5x 5+7x 4+6x 3+3x 2+x +1,当x =3时的值. 解:f (x )=5x 5+7x 4+6x 3+3x 2+x +1 =(5x 4+7x 3+6x 2+3x +1)x +1 =((5x 3+7x 2+6x +3)x +1)x +1 =(((5x 2+7x +6)x +3)x +1)x +1 =((((5x +7)x +6)x +3)x +1)x +1∴f (3)=((((5×3+7)×3+6)×3+3)×3+1)×3+1 =1 975.阶段质量检测(一)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.下列给出的赋值语句正确的有( ) ①2=A ; ②x +y =2; ③A -B =-2; ④A =A *AA .0个B .1个C .2个D .3个解析:选B 对于①,赋值语句中“=”左右不能互换,即不能给常量赋值,左边必须为变量,右边必须是表达式,若改写为A =2就正确了;②赋值语句不能给一个表达式赋值,所以②是错误的,同理③也是错误的,这四种说法中只有④是正确的.2.计算机执行下面的程序段后,输出的结果是( )a =1b =3a =a +b b =a -bPRINT a ,bA .1 3B .4 1C .0 0D .6 0解析:选B 输出a =1+3=4,b =4-3=1. 3.把二进制数10 110 011(2)化为十进制数为( ) A .182 B .181 C .180D .179解析:选D 10 110 011(2)=1×27+0×26+1×25+1×24+0×23+0×22+1×21+1×20=128+32+16+2+1=179.4.下图是计算函数y =⎩⎪⎨⎪⎧-x , x ≤-1,0, -1<x ≤2x 2, x >2的值的程序框图,则在①、②和③处应分别填入的是( )A .y =-x ,y =0,y =x 2B .y =-x ,y =x 2,y =0C .y =0,y =x 2,y =-xD .y =0,y =-x ,y =x 2解析:选B 当x >-1不成立时,y =-x ,故①处应填“y =-x ”;当x >-1成立时,若x >2,则y =x 2,即②处应填“y =x 2”,否则y =0,即③处应填“y =0”.5.下面的程序运行后的输出结果为()A .17B .19C .21D .23解析:选C 第一次循环,i =3,S =9,i =2; 第二次循环,i =4,S =11,i =3; 第三次循环,i =5,S =13,i =4; 第四次循环,i =6,S =15,i =5; 第五次循环,i =7,S =17,i =6; 第六次循环,i =8,S =19,i =7; 第七次循环,i =9,S =21,i =8.此时i =8,不满足i <8,故退出循环,输出S =21,结束.6.下面的程序运行后,输出的值是( )i =0DOi =i +1LOOP UNTIL 2^i >2 000 i =i -1PRINT i ENDA .8B .9C .10D .11解析:选C 由题意知,此程序为循环语句,当i =10时,210=1 024;当i =11时,211=2 048>2 000,输出结果为i =11-1=10.7.下列程序框图运行后,输出的结果是( )A .2 015B .2 014C .64D .63解析:选D 由题图知,若使n (n +1)2>2 015,n 最小为63.8.(全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =( )A .7B .12C .17D .34解析:选C 第一次运算:s =0×2+2=2,k =1;第二次运算:s =2×2+2=6,k =2;第三次运算:s =6×2+5=17,k =3>2,结束循环,s =17.9.执行如图所示的程序框图,输出的结果为( )A.55 B.89C.144 D.233解析:选B初始值:x=1,y=1,第1次循环:z=2,x=1,y=2;第2次循环:z=3,x=2,y=3;第3次循环:z=5,x=3,y=5;第4次循环:z=8,x=5,y=8;第5次循环:z=13,x=8,y=13;第6次循环:z=21,x=13,y=21;第7次循环:z=34,x=21,y=34;第8次循环:z=55,x=34,y=55;第9次循环:z=89,x=55,y=89;第10次循环时z=144,循环结束,输出y,故输出的结果为89.10.(四川高考)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,2,则输出v的值为()A.9B.18C.20 D.35解析:选B由程序框图知,初始值:n=3,x=2,v=1,i=2,第一次循环:v=4,i=1;第二次循环:v=9,i=0;第三次循环:v=18,i=-1.结束循环,输出当前v的值18.故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.459与357的最大公约数是________.解析:459=357×1+102,357=102×3+51,102=51×2, 所以459与357的最大公约数为51. 答案:5112.对任意非零实数a ,b ,若a ⊗b 的运算原理如图所示,则log 28⊗⎝⎛⎭⎫12-2=________.解析:log 28<⎝⎛⎭⎫12-2,由题图,知log 28⊗⎝⎛⎭⎫12-2=3⊗4=4-13=1.答案:113.(山东高考)执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.解析:第1次循环:a =0+1=1,b =9-1=8,a <b ,此时i =2; 第2次循环:a =1+2=3,b =8-2=6,a <b ,此时i =3; 第3次循环:a =3+3=6,b =6-3=3,a >b ,输出i =3. 答案:314.(天津高考改编)阅读如图所示的程序框图,运行相应的程序,则输出S 的值为________.解析:S=4不满足S≥6,S=2S=2×4=8,n=1+1=2;n=2不满足n>3,S=8满足S≥6,则S=8-6=2,n=2+1=3;n=3不满足n>3,S=2不满足S≥6,则S=2S=2×2=4,n=3+1=4;n=4满足n>3,输出S=4.答案:4三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或运算步骤.)15.(本小题满分12分)如图是求1+12+13+…+1100的算法的程序框图.(1)标号①②处应分别是什么?(2)根据框图用“当”型循环语句编写程序.解:(1)①k<101?(k<=100?)②S=S+1k.(2)程序如下:16.(本小题满分12分)以下是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.解:算法语句每一步骤对应于程序框图的步骤,其框图如下:17.(本小题满分12分)画出求12-22+32-42+…+992-1002的值的程序框图.解:程序框图如图所示:(x n,y n).(1)若程序运行中输出的一个数组是(9,t),求t的值;(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.解:(1)由程序框图知:当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4;(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最后一对,共输出(x,y)的组数为1 007;(3)程序框图的程序语句如下:(B 卷 能力素养提升) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.算法的每一步都应该是确定的,能有效执行的,并且得到确定的结果,这是指算法的( ) A .有穷性 B .确定性 C .普遍性 D .不唯一性 答案:B2.已知函数y =⎩⎨⎧x ,x ≥0,x +1,x <0,输入自变量x 的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是( )A .顺序结构B .条件结构C .顺序结构、条件结构D .顺序结构、循环结构 答案:C3.用“辗转相除法”求得360和504的最大公约数是( ) A .72 B .36 C .24D .2520解析:选A 504=360×1+144,360=72×5+0,故最大公约数是72. 4.若十进制数26等于k 进制数32,则k 等于( ) A .4 B .5 C .6D .8解析:选D 由题意知,26=3×k 1+2,解得k =8.5.阅读下图所示的程序框图,运行相应的程序,输出的结果是()A.3 B.11C.38 D.123解析:选B根据框图可知第一步的运算为:a=1<10,满足条件,可以得到a=12+2=3,又因为a=3<10,满足条件,所以有a=32+2=11,因为a=11>10,不满足条件,输出结果a=11.6.对于下列算法:如果在运行时,输入2,那么输出的结果是()A.2,5 B.2,4C.2,3 D.2,9解析:选A本题主要考查条件语句的应用.输入a的值2,首先判断是否大于5,显然2不大于5,然后判断2与3的大小,显然2小于3,所以结果是b=5,因此结果应当输出2,5.7.根据下面的算法,可知输出的结果S为()第一步,i=1;第二步,判断i<10是否成立,若成立,则i=i+2,S=2i+3,重复第二步,否则执行下一步;第三步,输出S.A.19 B.21 C.25 D.27 解析:选C该算法的运行过程是:i=1,i=1<10成立,i=1+2=3,S=2×3+3=9,i=3<10成立,i=3+2=5,S=2×5+3=13,i=5<10成立,i=5+2=7,S=2×7+3=17,i=7<10成立,i=7+2=9,S=2×9+3=21,i=9<10成立,i=9+2=11,S=2×11+3=25,i=11<10不成立,输出S=25.8.按下列程序运行的结果是()A.10.5 B.11.5C.16 D.25解析:选D A=4.5,第一个条件结构中的条件不满足,则B=6-3=3,B=3+2=5;而第二个条件结构中的条件满足,则B=5×5=25,所以运行结果为25.9.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S*(n+1)B.S=S*x n+1C.S=S*nD.S=S*x n解析:选D由题意知,由于求乘积,故空白框中应填入S=S*x n.10.(全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.14解析:选B a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,跳出循环,输出a=2,故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.将二进制数110 101(2)化成十进制数,结果为________,再转为七进制数,结果为________.解析:110 101=1×25+1×24+0×23+1×22+0×21+1=32+16+0+4+0+1=53.110 101(2)=104(7).答案:53104(7)12.如图所示,程序框图(算法流程图)的输出结果是________.解析:第一次进入循环体有T =0+0,第二次有T =0+1,第三次有T =0+1+2,……,第n 次有T =0+1+2+…+n -1(n =1,2,3,…),令T =n (n -1)2>105,解得n>15,故n =16,k =15.答案:1513.输入8,下列程序执行后输出的结果是________.解析:∵输入的数据为8,t ≤4不成立, ∴c =0.2+0.1(8-3)=0.7. 答案:0.714.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为________.解析:第1次循环:s =1+(1-1)=1,i =1+1=2;第2次循环:s =1+(2-1)=2,i =2+1=3;第3次循环:s =2+(3-1)=4,i =3+1=4;第4次循环:s =4+(4-1)=7,i =4+1=5.循环终止,输出s 的值为7.答案:7三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)阅读下列两个程序,回答问题. ①x =3 y =4 x =y②x =3 y =4 y =xPRINT x ,y END(1)上述两个程序的运行结果是:①________________;②_____________________________________________. (2)上述两个程序中的第三行有什么区别? 解:(1)两个程序的运行结果是①4 4;②3 3;(2)程序①中的x =y 是将y 的值4赋给x ,赋值后,x 的值变为4,程序②中的y =x 是将x 的值3赋给y ,赋值后y 的值变为3.16.(本小题满分12分)用秦九韶算法求多项式f (x )=7x 7+6x 6+5x 5+4x 4+3x 3+2x 2+x ,当x =3时的值. 解:f (x )=((((((7x +6)x +5)x +4)x +3)x +2)x +1)x , v 0=7,v 1=7×3+6=27, v 2=27×3+5=86, v 3=86×3+4=262, v 4=262×3+3=789, v 5=789×3+2=2 369, v 6=2 369×3+1=7 108, v 7=7 108×3+0=21 324, ∴f (3)=21 324.17.(本小题满分12分)在音乐唱片超市里,每张唱片售价25元,顾客购买5张(含5张)以上但不足10张唱片,则按九折收费,顾客购买10张以上(含10张)唱片,则按八五折收费,编写程序,输入顾客购买唱片的数量a ,输出顾客要缴纳的金额C .并画出程序框图.解:由题意得C =⎩⎪⎨⎪⎧25a ,a <5,22.5a ,5≤a <10,21.25a ,a ≥10.程序框图,如图所示:程序如下:18.(本小题满分14分)设计一个算法,求f(x)=x6+x5+x4+x3+x2+x+1,当x=2时的函数值,要求画出程序框图,并写出程序.解:则程序框图为:程序为:S=0i=0WHILE i≤6S=S+2^ii=i+1WENDPRINT SEND课时作业(九) 简单随机抽样一、选择题1.在简单随机抽样中,某一个个体被抽到的可能性()A.与第几次有关,第一次可能性最大B.与第几次有关,第一次可能性最小C.与第几次无关,与抽取的第几个样本有关D.与第几次无关,每次可能性相等答案:D2.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240B.个体是每名学生C.样本是40名学生D.样本容量是40答案:D3.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法:①1,2,3,...,100;②001,002, (100)③00,01,02,...,99;④01,02,03, (100)其中正确的序号是()A.②③④B.③④C.②③D.①②答案:C4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性、“第二次被抽到”的可能性分别是()A.110,110 B .310,15 C.15,310 D .310,310答案:A5.从一群游戏的小孩中随机抽出k 人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任选m 人,发现其中有n 个小孩曾分过苹果,估计参加游戏的小孩的人数为( )A.kn m B .k +m -n C.km n D .不能估计答案:C 二、填空题6.某种福利彩票是从1~36的号码中,选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.解析:符合抽签法的特点:①个体数较少;②样本容量小. 答案:抽签法7.假设要检验某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表法抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你依次写出最先被检测的5袋牛奶的编号____________.(下面摘取的是随机数表第7行至第9行.)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:找到第8行第7列的数开始向右读,第一个符合条件的是785,第二个数916大于800,要舍去,第三个数955也要舍去,第四个数667符合题意,这样依次读出结果.答案:785,667,199,507,1758.从个体数为N 的总体中抽出一个样本容量是20的样本,每个个体被抽到的可能性是15,则N 的值是________.解析:从个体数为N 的总体中抽出一个样本容量是20的样本,∴每个个体被抽取的可能性是20N . ∵每个个体被抽取的可能性是15,∴20N =15,∴N =100. 答案:100。
必修3全套课时训练
第一章统计§1从普查到抽样1.为了了解某种花的发芽天数,种植某种花的球根200个,进行调查发芽天数的试验,样本是()A.200个表示发芽天数的数值B.200个球根C.无数个球根发芽天数的数值集合D.无法确定2.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是()A.40 B.50 C.120 D.1503.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是()A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是1004.若要调查某城市家庭的收入情况,在该问题中,总体是()A.某城市B.某城市的所有家庭的收入C.某城市的所有人口D.某城市的工薪阶层5.对于下列调查:①测定海洋中微生物的含量;②某种灯泡使用寿命的测定;③入学报考者的学历调查;④全国人口普查.其中不属于样本调查的是()A.①②B.③④C.②③D.①④6.下列调查,比较适用普查而不适用抽样调查方式的是()A.为了了解中央电视台春节联欢晚会的收视率B.为了了解初三年级某班的每个学生周末(星期六)晚上的睡眠时间C.为了了解夏季冷饮市场上一批冰淇淋的质量情况D.为了考察一片试验田某种水稻的穗长情况7.抽样调查一定要保证________原则,尽可能地避免人为因素的干扰,并且要保证每个个体以相同的可能性被抽取到.8.(1)对某班学生视力作一个调查;(2)某汽车生产厂要对所生产的某种品牌的轿车的抗碰撞情况进行检验;(3)联合国教科文组织要对全世界适龄儿童的入学情况做一个调查.对于上述3个实际问题所应选用的调查方法分别为__________、____________、____________.9.某公司新上市一款MP4,为了调查产品在用户中受欢迎的情况,采用什么形式调查为好____________(填“普查”或“抽样调查”).10.为调查小区平均每户居民的月用水量,下面是2名同学设计的方案:学生甲:我把这个用水量调查表放在互联网上,只要登陆网站的人就可以看到这张表,他们填的表可以很快地反馈到我的电脑中,这样就可以很快估算出小区平均每户居民的月用水量;学生乙:我给我们居民小区的每一个住户发一张用水调查表,只要一两天就可以统计出小区平均每户居民的月用水量.请你分析上述2名学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?11.春节前夕,质检部门检查一箱装有2 500件包装食品的质量,抽查总量的2%,在这个问题中,下列说法正确的是()A.总体是指这箱2 500件包装食品B.个体是一件包装食品C.样本是按2%抽取的50件包装食品D.样本容量是50§2 抽样方法2.1简单随机抽样1.关于简单随机抽样的特点,有以下几种说法,其中不正确的是()A .要求总体的个数有限B .从总体中逐个抽取C .它是一种不放回抽样D .每个个体被抽到的机会不一样,与先后顺序有关2.下列调查中属于抽样调查的是( )①每隔5年进行一次人口普查; ②某商品的质量优劣;③某报社对某个事情进行舆论调查; ④高考考生的查体.A .②③B .①④C .③④D .①②3.抽签法中确保样本代表性的关键是( )A .制签B .搅拌均匀C .逐一抽取D .抽取不放回4.下列抽样实验中,用抽签法方便的有( )A .从某厂生产的3 000件产品中抽取600件进行质量检验B .从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C .从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D .从某厂生产的3 000件产品中抽取10件进行质量检验5.总体个数为M ,其中带有标记的是N 个,要从中抽取K 个入样,用随机抽样的方法进行抽取,则抽取样本中带有标记的有( )A.NK MB.MK NC.MN KD .N 6.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,3107.要检查一个工厂产品的合格率,从1 000件产品中抽出50件进行检查,检查者在其中随意抽取了50件,这种抽样法可称为______________.8.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是____________.9.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)10.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,写出抽样过程.11.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?12.在简单随机抽样中,某一个个体被抽到的可能性( )A .与第几次抽样有关,第一次抽到的可能性大一些B .与第几次抽样无关,每次抽到的可能性相等C .与第几次抽样有关,最后一次抽到的可能性大些D .与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同13.某车间工人已加工一种轴50件,为了了解这种轴的直径是否符合要求,要从中抽出5件在同一条件下测量,试用两种方法分别取样.2.2 第1课时 分层抽样1.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法( )A .抽签法B .随机数表法C .系统抽样D .分层抽样2.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( )A.70 B.20 C.48 D.23.某工厂生产A、B、C三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n的样本,样本中A型号产品有15件,那么样本容量n为() A.50 B.60 C.70 D.804.下列问题中,最适合用分层抽样方法抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D.从50个零件中抽取5个做质量检验5.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为()A.5个B.10个C.20个D.45个6.要完成下列两项调查:①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学高一年级的12名体育特长生中选出3人调查学习负担情况.应采用的抽样方法是()A.①②都用随机抽样法B.①用分层抽样法,②用简单随机抽样法C.①②都用分层抽样法D.①用简单随机抽样法,②用分层抽样法7.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是____________.8.将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.9.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.10.某小学有1 800名学生,6个年级中每个年级的人数大致相同,男女生的比例也大致相同,要从中抽取48名学生,测试学生100米跑的成绩.你认为应该用什么样的方法?怎样抽样?为什么要用这个方法?11.某工厂有3条生产同一产品的流水线,每天生产的产品件数分别是3 000件,4 000件,8 000件.若要用分层抽样的方法从中抽取一个容量为150件产品的样本,应该如何抽样?12.某校高一年级500名学生中,血型为O型的有200人,A型的有125人,B型的有125人,AB型的有50人.为了研究血型与色弱的关系,要从中抽取一个容量为40的样本,应如何抽样?写出AB血型的样本的抽样过程.13.选择合适的抽样方法抽样,写出抽样过程.(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个.(2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个.(3)有甲厂生产的300个篮球,抽取10个.2.2第2课时系统抽样1.下列抽样问题中最适合用系统抽样法抽样的是()A.从全班48名学生中随机抽取8人参加一项活动B.一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C.从参加模拟考试的1 200名高中生中随机抽取100人分析试题作答情况D.从参加模拟考试的1 200名高中生中随机抽取10人了解某些情况2.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是()A.2 B.3 C.4 D.53.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了()A.抽签法B.随机数表法C.系统抽样D.有放回抽样4.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,325.一个年级有12个班,每个班有50名同学,随机编号1,2,…,50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是() A.抽签法B.有放回抽样C.随机数法D.系统抽样6.总体容量为524,若采用系统抽样,当抽样的间距为下列哪一个数时,不需要剔除个体()A.3 B.4C.5 D.67.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.8.采用系统抽样的方法,从个体数为1 003的总体中抽取一个容量为50的样本,则在抽样过程中,被剔除的个体数为________,抽样间隔为________.9.采用系统抽样从含有8 000个个体的总体(编号为0000,0001,…,7999)中抽取一个容量为50的样本,则最后一段的编号为____________,已知最后一个入样编号是7894,则开头5个入样编号是________________________.10.某学校有30个班级,每班50名学生,上级要到学校进行体育达标验收.需要抽取10%的学生进行体育项目的测验.请你制定一个简便易行的抽样方案(写出实施步骤).11.某学校有8 000名学生,需从中抽取100个进行健康检查,采用何种抽样方法较好,并写出过程.12.某种体育彩票五等奖的中奖率为10%,已售出1 000 000份,编号为000000~999999,则用简单随机抽样需要随机抽取____________个号码,若要在某晚报上公布获奖号码,约要________版(每版可排100行,每行可排175个数字或空格,每个编号后需留1个空格).而用系统抽样,应该在0~________内随机抽取一个数字,个位数是这个数字的号码中奖.13.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1 200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:1 20030=40; 确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样.§2 习题课1.下列哪种工作不能使用抽样方法进行( )A .测定一批炮弹的射程B .测定海洋水域的某种微生物的含量C .高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D .检测某学校全体高三学生的身高和体重的情况2.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .123.下列抽样实验中,最适宜用系统抽样的是( )A .某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B .某厂生产的2 000个电子元件中随机抽取5个入样C .从某厂生产的2 000个电子元件中随机抽取200个入样D .从某厂生产的20个电子元件中随机抽取5个入样4.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为( )A .2个B .3个C .5个D .13个5.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是( )A .12,24,15,9B .9,12,12,7C .8,15,12,5D .8,16,10,66.为了调查某产品销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况,若用系统抽样法,由抽样间隔和随机剔除个数分别为( )A .3,2B .2,3C .2,30D .30,27.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.8.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.9.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.则该地区生活不能自理的老人中男性比女性约多________人.10.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:,应当怎样进行抽样?11.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?12.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36§3统计图表1.如图所示是从一批产品中抽样得到的数据的条形统计图,由图可看出数据出现机会最大的范围是()A.(8.1,8.3) B.(8.2,8.4) C.(8.4,8.5) D.(8.6,8.7)2.把过期的药品随意丢弃,会造成对土壤和水体的污染,危害人们的健康.如何处理过期药品,有关机构随机对若干家庭进行调查,调查结果如图,其中对过期药品处理不正确的家庭达到()A .79%B .80%C .18%D .82%3.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天课外阅读所用时间的数据,结果用如图的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为( )A .0.6小时B .0.9小时C .1.0小时D .1.5小时A .0.13B .0.39C .0.52D .0.645.一个容量为35的样本数据,分组后,组距与频数如下:[5,10),5个;[10,15),12个;[15,20),7个;[20,25),5个;[25,30),4个;[30,35),2个.则样本在区间[20,+∞)上的频率为( )A .20%B .69%C .31%D .27%6.某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示,若130~140分数段的人数为900人,则90~100分数段的人数为________.7.甲、乙两名运动员在某个赛季一些场次中得分的茎叶图如图所示,则水平发挥较好的运动员是______.8.将容量为n 的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n =________.9.下图是某保险公司提供的资料,在1万元以上的保险单中,有821少于2.5万元,那么不少于2.5万元的保险单有________万元.10.为了对两个城市进行调查,在A 、B 两座城市各安放了仪器,测量两个城市的噪音的分11.台州某校七(1)班同学分三组进行教学活动,对七年级400名同学最喜欢喝的饮料种类情况、八年级300名同学零花钱的最主要用途情况、九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.九年级同学完成家庭作业时间情况统计表(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少?(2)补全八年级300名同学中零花钱的最主要用途情况的频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)12.对某校13.贵阳市是我国西部的一个多民族城市,总人口数为370万(2000年普查统计).如图1和图2所示的是2000年该市各民族人口的统计图,请你根据统计图提供的信息回答下列问题.(1)2000年贵阳市少数民族的总人口数是多少?(2)2000年贵阳市总人口中的苗族所占的百分比是多少?(3)若2000年贵阳市参加中考的学生有40 000人,则参加中考的少数民族的学生人数约为多少?§4 数据的数字特征1.下列说法正确的是( )A .在两组数据中,平均值较大的一组方差较大B .平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C .方差的求法是求出各个数据与平均值的差的平方后再求和D .在记录两个人射击环数的两组数据中,方差大的表示射击水平高2.已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a ,中位数为b ,众数为c ,则有( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a3.甲、乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是( )A .甲B .乙C .甲、乙相同D .不能确定4.一组数据的方差为s 2,将这组数据中的每个数据都扩大3倍,所得到的一组数据的方差是( ) A.13s 2 B .s 2 C .3s 2 D .9s 25.如图是2010年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.6D .85,0.46.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为x A 和x B ,样本标准差分别为s A 和s B 则( )A.x A >x B ,s A >s BB.x A <x B ,s A >s BB.C.x A >x B ,s A <s B D.x A <x B ,s A <s B7.已知样本9,10,11,x ,y 的平均数是10,方差是4,则xy =________.8.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):如果甲、9.若a1,a2,…,a20,这20个数据的平均数为x,方差为0.20,则数据a1,a2,…,a20,x这21个数据的方差为________.10.(1)已知一组数据x1,x2,…,x n的方差是a,求另一组数据x1-2,x2-2,…,x n-2的方差;(2)设一组数据x1,x2,…,x n的标准差为s x,另一组数据3x1+a,3x2+a,…,3x n+a的标准差为s y,求s x与s y的关系.11.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:(2)①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).12.为了了解市民的保护意识,某校高一(1)班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况,有关数据如下表:求这5013.师大附中三年级一班40人随机平均分成两组,两组学生一次考试的成绩情况如下表:§5用样本估计总体1.下列说法不正确的是( )A .频率分布直方图中每个小矩形的高就是该组的频率B .频率分布直方图中各个小矩形的面积之和等于1C .频率分布直方图中各个小矩形的宽一样大D .频率分布折线图是从所加的左边区间的中点开始,用线段依次连接频率分布直方图的每个小矩形上端中点,直至右边所加区间的中点得到的A .0.5B .0.24C .0.6D .0.73.100辆汽车通过某一段公路时的时速的频率分布直方图如下图所示,则时速在[60,70)的汽车大约有( )A .30辆B .40辆C .60辆D .80辆4.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31.如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量约为( )A .900个B .1 080个C .1 260个D .1 800个5.某工厂对一批产品进行了抽样检测.下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A .90B .75C .60D .456.在样本的频率分布直方图中,共有5个小长方形,已知中间一个小长方形面积是其余4个小长方形面积之和的13,且中间一组的频数为10,则这个样本容量是________. 7.某中学举办电脑知识竞赛,满分为100分,80分以上为优秀(含80分).现将高一两个班参赛学生的成绩进行整理后分成5组,绘制成频率分布直方图如下图所示.已知图中从左到右的第一、三、四、五小组的频率分别为0.30、0.15、0.10、0.05,而第二小组的频数是40,则参赛的人数是________,成绩优秀的频率是________.8.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是____________.9.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在各组上的频率为m,该组上直方图的高为h,则|a-b|=________.10.美国历届总统中,就任时年纪最小的是罗斯福,他于1901年就任,当时年仅42岁;就任时年纪最大的是里根,他于1981年就任,当时69岁.下面按时间顺序(从1789年的华盛顿到2009年的奥巴马,共44任)给出了历届美国总统就任时的年龄:57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,49,51,47,55,55,54,42,51,56,55,51, 54,51,60,62,43,55,56,61,52,69,64,46,54,48(1)将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图.(2)用自己的语言描述一下历届美国总统就任时年龄的分布情况.11.抽查100袋洗衣粉,测得它们的重量如下(单位:g):494498493505496492485483508511495494483485511493505488501491493509509512484509510495497498504498483510503497502511497500493509510493491497515503515518510514509499493499509492505489494501509498502500508491509509499495493509496509505499486491492496499508485498496495496505499505496501510496487511501496(1)列出样本的频率分布表:(2)画出频率分布直方图,频率分布折线图;(3)估计重量在[494.5,506.5]g的频率以及重量不足500 g的频率.12.在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17在某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,你会得到什么结论?§5习题课1.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000中再用分层抽样方法抽出100人作出一步调查,则在[2 500,3 000](元)/月收入段应抽出的人数为()A.20 B.25 C.40 D.502.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是()A.55.2,3.6 B.55.2,56.4 C.64.8,63.6 D.64.8,3.63.一容量为20的样本,其频率分布直方图如图所示,样本在[30,60)上的频率为()A.0.75 B.0.65 C.0.8 D.0.94.甲、2:A.甲B.乙C.稳定性相同D.无法确定5.某校在“创新素质实践行”活动中组织学生进行社会调查,并对学生的调查报告进行了评比,下面是将某年级60篇学生调查报告进行整理,分成5组画出的频率分布直方图(如图所示).已知从左至右4个小组的频率分别为0.05,0.15,0.35,0.30,那么在这次评比中被评为优秀的调查报告有(分数大于或等于80分为优秀且分数为整数)()A.18篇B.24篇C.25篇D.27篇6.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.7.将容量为n的样本中的数据分成6组,绘制频率分布直方图,若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n=________.8.某地区为了解中学生的日平均睡眠时间(单位:h),随机选择了n位中学生进行调查,根。
高中数学必修三全册练习题
本册综合素能检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下列各项中最小的数是( ) A .111111(2) B .20106 C .1000(4) D .101(8)[答案] A[解析] 111111(2)=1×25+1×24+1×23+1×22+1×21+1×20=63,210(6)=2×62+1×61+0×60=78,1000(4)=1×43+0×42+0×41+0×40=64,101(8)=1×82+0×81+1×80=65,故最小的数为111111(2).2.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样和分层抽样抽取,则不用剔除个体;如果样本容量增加1,则在采用系统抽样时,需要在总体中先剔除1个个体,则n 的值为( )A .6B .12C .18D .3 [答案] A[解析] 由于要用分层抽样三层之比为123,因此,凡为6的整倍数,又样本容量增加1时需要删除1人,所以35n +1为整数,因此n =6,故选A.3.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色’’与“乙分得红色”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .不是互斥事件[答案] C[解析] 甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.4.在长为12 cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20 cm 2的概( )A.16B.13C.23D.45[答案] C[解析] 设AC =x cm ,则BC =(12-x )cm(0<x <12).面积S =x ·(12-x )>20,解得2<x <10,∴矩形面积大于20 cm 2的概率为10-212=23.故选C.5.某程序框图如图所示,现输入选项中的四个函数,则可以输出的是( )A .f (x )=|x |xB .f (x )=ln(x 2+1-x )C .f (x )=e x +e -xe x -e -xD .f (x )=x 21+x 4[答案] B[解析] 由框图知f (x )应满足:奇函数,有零点.A 中的函数不能输出,因为此函数没班级:_________姓名:_________学号:______-----------------------------密--------------------------------------封-----------------------------------线-------------------------------有零点;B 中函数可以输出;C 中函数不存在零点,故不能输出;D 中函数为偶函数,也不能输出,故选B.6.如图是某年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个).去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别a 1,a 2,则一定有( )A .a 1>a 2B .a 1<a 2C .a 1=a 2D .a 1,a 2的大小与m 的值有关 [答案] B[解析] 去掉一个最高分和一个最低分后,甲选手得分是81,85,85,84,85,则平均数是a 1=15(81+85+85+84+85)=84;乙选后得分是84,84,86,84,87,则平均数是a 2=15(84+84+86+84+87)=85>84,所以a 1<a 2.7.(2014·浙江)在3张奖卷中有一、二等奖各1张,另一张无奖,甲、乙两人各抽取1张,两人都中奖的概率是( )A.16B.13C.12D.23[答案] B[解析] 设三张卷分别用A ,B ,C 代替,A 一等奖;B 二等奖;C 无奖,甲、乙各抽一张共包括(A ,B ),(A ,C ),(B ,A ),(B ,C ),(C ,A ),(C ,B )6种基本事件,其中甲、乙都中奖包括两种,P =26=13,故选B.8.(2015·江苏卷)根据如图所示的伪代码,可知输出的结果S 为( )A .7B .5C .9D .11[答案] A[解析] 第一次循环:S =3,I =4;第二次循环:S =5,I =7;第三次循环:S =7,I=10;结束循环,输出S =7.9.如果数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则5x 1+2,5x 2+2,…,5x n +2的平均数和方差分别为( )A.x ,s 2 B .5x +2,s 2 C .5x +2,25s 2 D.x ,25s 2[答案] C[解析] 本题考查平均数与方差的计算公式.由平均数与方差的计算公式分析可得5x 1+2,5x 2+2,…,5x n +2的平均数为5x +2,方差为25s 2,故选C.10.(2015·广东佛山高三教学质量检测(一))某程序框图如下图所示,该程序运行后输出的S 的值是( )A .-3B .-12C.13 D .2[答案] A[解析] 该程序框图的运行过程是: S =2,i =1,i =1≤2 010成立, S =1+21-2=-3; i =1+1=2,i =2≤2 010成立, S =1+(-3)1-(-3)=-12;i =2+1=3,i =3≤2010成立, S =1+(-12)1-(-12)=13;i =3+1=4, i =4≤2 010成立; S =1+131-13=2;i =4+1=5, …….对于判断框内i 的值,n ∈N ,当i =4n +1时,S =2;当i =4n +2时,S =-3;当i =4n +3时,S =-12;当i =4n +4时,S =13.由于2 010=4×502+2,则S =-3.该程序框图中含有当型循环结构,判断框内的条件不成立时循环终止,即i =2 011时开始不成立,输出S =-3.11.(2015·石家庄模拟)从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:身高 x (cm) 160 165 170 175 180 体重y (kg)6366707274根据上表可得回归直线方程y ^=0.56x +a ^,据此模型预报身高为172 cm 的高三男生的体重为( )A .70.09B .70.12C .70.55D .71.05[答案] B[解析] 由表中数据得x =160+165+170+175+1805=170,y =63+66+70+72+745=69.将(x ,y )代入y ^=0.56x +a ^,∴69=0.56×170+a ^,∴a ^=-26.2,∴y ^=0.56x -26.2. ∴当x =172时,y =70.12,故选B.12.(2015·全国卷)根据下面给出的2004年至2003年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 [答案] D[解析] 由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2012·江苏高考卷)某学校高一、高二、高三年级的学生人数之比为334,现用分层抽样的方法从该校高中三个年极的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.[答案]15[解析]由已知,高二人数占总人数的310,所以抽取人数为310×50=15.14.102,238的最大公约数是________.[答案]34[解析]利用辗转相除法或更相减损术可得最大公约数是34.15.(2014·福建高考)如右图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.[答案]0.18[解析]由题意知,这是个几何概型问题,S阴影S正方形=1801000=0.18.∵S正方形=1,∴S阴影=0.18.16.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:队员12345 6三分球个数a1a2a3a4a5a6下图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填________,输出的s=________.[答案]i≤6?(i<7?)a1+a2+a3+a4+a5+a6[解析]由题意可知,程序框图是要统计6名队员投进的三分球的总数,由程序框图的循环逻辑知识可知,判断框应填i≤6?,输出的结果就是6名队员投进的三分球的总数,而6名队员投进的三分球数分别为a1,a2,a3,a4,a5,a6,故输出的s=a1+a2+…+a6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)(2014·山东)海关对同时从A、B、C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C数量50150100(1)求这6件样品中来自A、B、C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.[解析](1)因为工作人员是按分层抽样抽取样品,所以各地区抽取样品的比例为:AB C=50150100=13 2各地区抽取的商品数分别别为A:6×16=1;B:6×36=3;C:6×26=2.(2)设各地商品分别为A、B1、B2、B3、C1、C2所以所含基本事件共有(A,B1),(A,B2),(A,B3),(A,C1),(A,C2),(B1,B2),(B1,B3),(B1,C1),(B1,C2),(B2,B3),(B2,C1),(B2,C2),(B3,C1),(B3,C2),(C1,C2)15种不同情况,样本事件包括(B1,B2),(B1,B3),(B2,B3),(C1,C2)4种情况.所以,这两件商品来自同一地区的概率为P =415.18.(本小题满分12分)高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.[解析](1)因为分数在[50,60)之间的频数为2,频率为0.008×10=0.08,所以高一(1)班参加校生物竞赛的人数为20.08=25.分数在[80,90)之间的频数为25-2-7-10-2=4,频率为425=0.16,所以频率分布直方图中[80,90)间的矩形的高为0.1610=0.016.(2)设“至少有1人分数在[90,100]之间”为事件A,将[80,90)之间的4人编号为1、2、3、4,[90,100]之间的2人编号为5、6.在[80,100]之间任取2人的基本事件有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.其中,至少有1人分数在[90,100]之间的基本事件有9个,根据古典概型概率的计算公式,得P(A)=915=35.[易错点拨]在茎叶图的基础上,计算频率分布直方图中某个小矩形的高是较新颖的命题方式,计算时,要注意理解小矩形的高的意义.对于古典概型的概率的求解很重要的一步是列举基本事件,此时,要注意避免重复与迹漏.19.(本小题满分12分)某城市理论预测2014年到2018年人口总数(单位:十万)与年份的关系如下表所示:年份2014+x 0123 4人口总数y 5781119(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的回归方程y^=b^x+a^;(3)据此估计2019年该城市人口总数.(参考数据:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30)[解析](1)概据题中数表画出数据的散点图如下图所示.(2)由题中数表,知x=15(0+1+2+3+4)=2,y=15(5+7+8+11+19)=10.所以b=5i=1x i y i-5x-y5i=1x2i-5x-2=3.2,a ^=y -b ^x =3.6.所以回归方程为y ^=3.2x +3.6.(3)当x =5时,y ^=3.2×5+3.6=19.6(十万)=196(万). 答:估计2019年该城市人口总数约为196万.20.(本小题满分12分)(2014·福建)根据世行2013年新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为1035~4085元为中等偏下收入国家;人均GDP 为4085~12616美元为中等偏上收入国家;人均GDP 不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:行政区 区人口占城市人口比例区人均GDP(单位:美元)A 25% 8000B 30% 4000C 15% 6000D 10% 3000 E20%10000(1)判断该城市人均GDP 是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.[解析] (1)设城市人口总数为a ,该城市人均GDP 为:8000×0.25a +4000×0.30a +6000×0.15a +3000×0.10a +10000×0.20aa =6400因为6400∈[4085,12616)所以该城市人均GDP 达到了中等偏上国家标准.(2)从“5个行政区中随机抽取2个”所有的基本事件是:{A ,B },{A ,C },{A ,D },{A ,E },{B ,C },{B ,D },{B ,E },{C ,D },{C ,E },{D ,E },共10种情况,其中2个行政区都达到中等以上国家标准的有{A ,C },{A ,E },{C ,E },共3种情况因此P =310. 21.(本小题满分12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率.[探究] (1)茎叶图中的数据越集中在上部,则说明该班的平均身高较高;(2)先求出平均数,再代入方差公式即可;(3)写出所有基本事件,再统计基本事件的总数和所求事件包含的基本事件的个数,利用古典概型计算概率.[解析] (1)由题中茎叶图可知:甲班身高集中于160~179 cm 之间,而乙班身高集中于170~180 cm 之间,因此乙班平均身高高于甲班.(2)甲班的平均身高为x =110(158+162+163+168+168+170+171+179+179+182)=170,甲班的样本方差为 s 2=110[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2.(3)设“身高为176 cm 的同学被抽中”的事件为A ,用(x ,y )表示从乙班10名同学中抽中两名身高不低于173 cm 的同学的身高,则所有的基本事件有(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173),共10个基本事件,而事件A 含有(181,176),(179,176),(178,176),(176,173),共4个基本事件,故P (A )=410=25.22.(本小题满分12分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的分类垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计 1 000吨生活垃圾,数据统计如下(单位:吨):(1)(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱,“可回收物”箱,“其他垃圾”箱的投放量分别为a 、b 、c ,其中a >0,a +b +c =600.当数据a 、b 、c 的方差s 2最大时,写出a 、b 、c 的值(结论不要求证明),并求出此时s 2的值.[解析] (1)厨余垃圾投放正确的概率为P =“厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23.(2)设“生活垃圾投放错误”为事件A ,则事件A 表示“生活垃圾投放正确”.事件A 的概率为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )=400+240+601 000=710,所以P (A )=1-P (A )=1-710=310.(3)当a =600,b =0,c =0时,方差s 2取得最大值. 因为x =13(a +b +c )=200,所以s 2=13[(600-200)2+(0-200)2+(0-200)2]=80 000.[名题点睛] 本题结合一个特殊设计的表格给出各类数据,显然,可用的与不可用的数据均在表中,合理应用表中的数据是求解本题的关键.在求解事件的概率时,可考虑利用对立事件求解题.在限定条件下,可根据条件及方差公式判断何时“方差最大”,抓住这一关键性的条件,问题就容易解决了.。
数学必修3整套练习一课一练(90页)
第一章算法初步1.1算法与程序框图班次姓名1.1.1算法的概念[自我认知]:1.下面的结论正确的是( ).A.一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则2.下面对算法描述正确的一项是( ).A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征( )A.抽象性B.精确性C.有穷性D.唯一性4.算法的有穷性是指( )A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法 ( )A.S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是 ( )A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程210x-=有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为157.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c=a,b的值;③输出斜边长c的值,其中正确的顺序是 ( )A.①②③B.②③①C.①③②D.②①③[课后练习]:8.若()f x 在区间[],a b 内单调,且()()0f a f b <g ,则()f x 在区间[],a b 内 ( ) A.至多有一个根 B.至少有一个根 C.恰好有一个根 D.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99; 第二步:____①______; 第三步:_____②_____; 第四步:输出计算的结果.10.写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n =(1)2n n +直接计算. 第一步______①_______; 第二步_______②________; 第三步 输出计算的结果.11.写出1×2×3×4×5×6的一个算法.12.写出按从小到大的顺序重新排列,,x y z 三个数值的算法.1.1.2程序框图[自我认知]:1.算法的三种基本结构是 ( ) A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构 C.顺序结构、分支结构、流程结构 D.流程结构、循环结构、分支结构2.程序框图中表示判断框的是 ( )A.矩形框 B.菱形框 D.圆形框 D.椭圆形框3.如图(1)、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为 ( )A.⑴3n ≥1000 ? ⑵3n <1000 ? B. ⑴3n ≤1000 ? ⑵3n ≥1000 ? C. ⑴3n <1000 ? ⑵3n ≥1000 ? D. ⑴3n <1000 ? ⑵3n <1000 ?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是 ( )A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合⑴⑵班次 姓名[课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是 ( ) A.求输出,,a b c 三数的最大数 B.求输出,,a b c 三数的最小数 C.将,,a b c 按从小到大排列 D.将,,a b c 按从大到小排列6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是( )A.0m =?B.0x = ?C.1x = ?D.1m =?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构 ( ) A.顺序结构 B.条件结构和循环结构 C.顺序结构和条件结构 D.没有任何结构8.已知函数()2121x f x x ⎧-=⎨-⎩(0)(0)x x ≥<,设计一个求函数值的算法,并画出其程序框图第5题图第6题图1.1.2程序框图(第二课时)[课后练习]:1.如图⑴的算法的功能是____________________________.输出结果i=___,i+2=_____. 2.如图⑵程序框图箭头a 指向①处时,输出 s=__________. 箭头a 指向②处时,输出 s=__________.3.如图⑷所示程序的输出结果为s=132, 则判断中应填 . A 、i ≥10? B 、i ≥11? C 、i ≤11? D 、i ≥12?4.如图(3)程序框图箭头b 指向①处时,输出 s=__________. 箭头b 指向②处时,输出 s=__________5、如图(5)是为求1~1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时目标掌握三种结构的特点及相互联系.
A.①② B.②③
A.y=x3 B.y=3-x
答案:2
答案:x<2?y=log2x
9.执行下图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是________.
答案:68
解析:输入l=2,m=3,n=5,则y=278,再赋y=173,最后赋y=68并输出.
三、解答题
10.已知f(x)=x2-2x-3,求f(3),f(-5),f(5),并计算f(3)+f(-5)+f(5)的值,设计出解决该问题的一个算法,并画出程序框图.
解:算法如下:
第一步:x=3;
第二步:y1=x2-2x-3;
第三步:x=-5;
第四步:y2=x2-2x-3;
第五步:x=5;
第六步:y3=x2-2x-3;
第七步:y=y1+y2+y3;
第八步:输出y1,y2,y3,y.
程序框图如下图:
11.已知函数y =⎩⎪⎨⎪
⎧
-x +1,,x ,0,,x =,
x +3,,x ,)请设计算法的流程图,要求输入自变量,输
出函数值.
解:程序框图如下图所示.
能力提升
12.如果执行如图所示的程序框图,输入x =4.5,则输出的数i =________.
答案:4
13.已知小于10000的正偶数,当它被3,4,5,6除时,余数都是2,写出求解并且输出所有满足条件的正偶数的程序框图.
解:偶数首先一定是整数,因此,我们应该在程序的开始定义一个变量,并设初值为2,最后输出的是一个偶数,这个偶数应满足的条件是分别被3,4,5,6除时,余数为2,而且应该是同时满足上述条件.所以条件判断式中几个条件应该是“且”的关系.因为是对偶数进行处理,所以,每次变量的增值应该是2,而不是1,这样才能保证每次是对偶数进行的处理,程序框图如图.
课时目标
了解具体算法的基本过程与主要特点;
言”准确地描述出来,计算机才能够解决问题.
2
.算法的五个特征为概括性、逻辑性、有穷性、不唯一性、普遍性.
课时作业
一、选择题
1.算法的有穷性是指( ) A .算法必须包含输出步骤
B .算法中每个操作步骤都是可执行的
C .算法必须在有穷步内结束
D .以上说法均不正确 答案:C
解析:算法的有穷性是指一个算法的步骤序列是有限的,它应在有限步骤之后停止,而不能是无限的.
2.下列关于算法的描述正确..的是( ) A .算法与求解一个问题的方法相同 B .算法只能解决一个问题,不能重复使用
C .算法过程要一步一步执行,每步执行的操作必须确切
D .算法要求按部就班做,每一步可以有不同的结果 答案:C
解析:A 中算法能够解决一类问题而不是一个问题,同理B 也不正确,D 中每一步执行的操作,只能有唯一的结果,故D 错误.
3.利用计算机进行运算,首先必须( ) A .编程 B .人机对话
C .计算机自动完成
D .无法进行 答案:A
解析:编程就是设计算法. 4.对算法的理解不正确的是( )
A .一个算法应包含有限的操作步骤,而不能是无限的
B .算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的
C .算法中的每一个步骤都应当有效地执行,并得到确定的结果
D .一个问题只能设计出一种算法
课时目标
课时作业
一、选择题
1.程序框图中“▱”表示的意义是( )
A.框图的开始或结束
B.数据的输入或结果的输出
C.赋值、执行计算的传送
D.根据给定条件判断
答案:B
解析:掌握构成程序框图的图形符号及其作用.
2.程序框图中表示判断框的是( )
A.矩形框B.菱形框
C.圆形框D.椭圆形框
答案:B
解析:矩形框是处理框;连结点用小圆圈但没有圆形框;没有椭圆形框;只有圆角方形框表示起止框.
3.下列关于程序框图的说法,正确的是( )
A.程序框图和流程图不是一个概念
B.程序框图是描述算法的语言
C.程序框图可以没有输出框,但必须要有输入框给变量赋值
D.程序框图虽可以描述算法,但不如用自然语言描述算法直观
答案:B
4.以下给出对程序框图的几种说法:
①任何一个程序框图都必须有起止框;
②输入框只能紧挨着放在开始框后,输出框只能紧挨着放在结束框前;
③判断框是唯一具有超过一个出口的程序框;
④对于一个程序来说,判断框内的条件表述方法是唯一的.
其中正确说法的个数是( )
A.1 B.2 C.3 D.4
答案:B
解析:①③正确.
5.阅读如图所示程序框图,若输入x为3,则输出的y的值为( )
A.40 B.30 C.25 D.24
答案:A
6.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则如图所示,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )
A.4,6,1,7 B.7,6,1,4
C.6,4,1,7 D.1,6,4,7
答案:C
解析:由题意可知
⎩⎪
⎨
⎪⎧a+2b=14,
2b+c=9,
2c+3d=23,
4d=28.
解得a=6,b=4,c=1,d=7.
二、填空题
7.在画程序框图时,框图一般按________、________的方向画.在程序框图中,图形符号↓的名称是________,表示的意义是________.
答案:由上到下由左到右流程线执行方向
5
11.已知函数f(x)=x2-3x-2,求f(3)+f(-5)的值,设计一个算法并画出算法的程序框图.
解:第一步:求f(3)的值.
第二步:求f(-5)的值.
第三步:将前两步的结果相加,存入y.
第四步:输出y的值.
程序框图如图.
能力提升
12.如图,输出的结果是________.
答案:12
解析:由程序框图知,当m=2时,p=2+5=7,m=7+5=12.
13.如图所示的程序框图,根据该图和下列各小题的条件回答下面的几个小题.
(1)该程序框图解决的是一个什么问题?
(2)当输入的x的值为0和4时,输出的值相等,问当输入的x的值为3时,输出的值为多大?
(3)在(2)的条件下要想使输出的值最大,输入的x的值应为多大?
(4)在(2)的条件下按照这个程序框图输出的f(x)值,当x的值大于2时,x值大的输出的f(x)值反而小,为什么?
(5)在(2)的条件下要想使输出的值等于3,输入的x的值应为多大?
(6)在(2)的条件下要想使输入的值与输出的值相等,输入的x的值应为多大?
解:(1)该程序框图解决的是求二次函数
f(x)=-x2+mx的函数值的问题;
(2)当输入的x的值为0和4时,输出的值相等,
即f(0)=f(4).
因为f(0)=0,f(4)=-16+4m,
所以-16+4m=0,
所以m=4.所以f(x)=-x2+4x.
因为f(3)=-32+4×3=3,
所以当输入的x的值为3时,输出的y值为3;
(3)因为f(x)=-x2+4x=-(x-2)2+4,
当x=2时,f(x)max=4,
所以要想使输出的值最大,输入的x的值应为2;
(4)因为f(x)=-(x-2)2+4,
所以函数f(x)在[2,+∞)上是减函数.
所以在[2,+∞)上,x值大的对应的函数值反而小,
从而当输入的x的值大于2时,x值大的输出的f(x)值反而小;
(5)令f(x)=-x2+4x=3,解得x=1或x=3,
所以要想使输出的值等于3,输入的x的值应为1或3;
(6)由f(x)=x,即-x2+4x=x,得x=0或x=3,
所以要想使输入的值和输出的值相等,输入的x的值应为0或3.。