实验2 大气中颗粒物测定

合集下载

大气中总悬浮颗粒物的测定(重量法)

大气中总悬浮颗粒物的测定(重量法)

大气中总悬浮颗粒物的测定(重量法)
一、目的意义
大气悬浮颗粒物是悬浮在空气中的微小的固体和液体小滴的混合物,是雾、烟和空气尘埃的主要成分,其浓度达到肯定程度后会导致人体产生一系列疾病,是危害人体健康的主要污染物。

测定分析大气中总悬浮颗粒物的含量,对我们治理大气污染和爱护人类自身健康非常重要。

二、采样测定方法
1、仪器和材料
中流量采样器(流量80-120 L/min ),分析天平(精度O.lmg ),滤膜(聚氯乙烯滤膜),镜子
2、测定方法
(1)滤膜预备:对光检查滤膜是否有针孔或其他缺陷,然后放入分析天平(精度O.lmg )中称重,登记滤膜重量W0(g),将其平放在滤膜袋内。

(2 )采样点和采样时间确定:选取华南师范高校正门为采样点,采样时间为2022年3月12日上午8点至晚上20点,天气状况良好,多云,微风,早晚气温变化不大。

(3 )仪器预备:安装好空气采样器,打开采样头顶盖,取出滤膜夹,擦去灰尘,取出称过的滤膜平放在滤膜支持网上(绒面对上),用滤膜夹夹紧。

对正,拧紧,使不漏气。

(4 )采样:以100 L/min流量采样,每4小时,纪录采样流量和现场的温度及大气压,
用镜子轻轻取出滤膜,绒面对里对折,放入滤膜袋内。

(5 )称量和计算:采样滤膜用分析天平称量(精度O.lmg),登记滤膜重量Wi(g), 按下式计算总悬浮颗粒物(TSP )含量:
(Wi - Wo ) x 1000
TSP 含量(mg/m3)= -
其中,Wi一采样后滤膜的重量(g );
Wo-采样前滤膜的重量(g );
VrT奂算为参比状态下的累计采样体积(m31。

大气中总悬浮颗粒物的测定实验报告

大气中总悬浮颗粒物的测定实验报告

大气中总悬浮颗粒物的测定实验报告一、实验目的:通过测定大气中总悬浮颗粒物的含量,了解空气中悬浮颗粒物的来源和分布情况,为环境保护提供科学依据。

二、实验原理:大气中总悬浮颗粒物是指在空气中漂浮的所有固体微粒和液体微粒的总和,包括可吸入颗粒物(PM10)、可吸入颗粒物(PM2.5)以及细颗粒物(PM3.5)等。

测定大气中总悬浮颗粒物的方法有多种,其中常用的是激光散射法、重量法、滤膜法等。

本实验采用重量法进行测定。

首先将待测空气通过滤膜,使其中的颗粒物被阻留在滤膜上,然后称取滤膜的质量并计算出其中的颗粒物质量,从而得出大气中总悬浮颗粒物的含量。

三、实验仪器和试剂:1.电子天平:用于称取滤膜和待测空气的质量。

2.滤膜:直径为0.45μm,过滤效率达到99.97%以上。

3.空气采样器:用于采集待测空气样本。

4.干燥箱:用于将滤膜样品在高温下烘干至恒重。

5.称量瓶:用于称取干燥后的滤膜样品。

四、实验步骤:1.将电子天平调零并清洁干净。

2.用空气采样器采集一定量的室外空气样本,并将采样瓶密封好。

3.将采样瓶放入干燥箱中加热至恒重,取出后冷却至室温并称重。

4.用去离子水将采样瓶中的空气样本稀释至适当浓度(一般为1%),并倒入称量瓶中。

5.在称量瓶中加入一定量的滤膜,用电子天平称取滤膜的质量并记录下来。

6.将称量瓶放在恒温水浴中加热至恒重,取出后冷却至室温并再次称重。

此时称量瓶中除去滤膜的质量即为大气中总悬浮颗粒物的含量。

五、实验注意事项:1.在采样过程中应避免空气流动和污染源的影响,以保证测量结果的准确性。

2.在加热和冷却过程中应注意温度控制,避免因温度变化过大而导致测量误差。

3.在称量过程中应注意操作规范,避免因人为因素导致测量误差。

颗粒物测定知识点

颗粒物测定知识点

《环境监测》电子教材颗粒物的测定一、大气中颗粒物的测定项目大气中颗粒物的测定项目有:总悬浮颗粒物(TSP)的测定、可吸入颗粒物(PM、10)浓度及粒度分布的测定、自然降尘量的测定、颗粒物中化学组分的测定。

PM2.51、自然沉降量的测定自然沉降量(降尘)是指从空气中自然降落于地面的颗粒物。

颗粒物的降落不仅取决于粒径和密度,也受地形、风速、降水(包括雨、雪、雹等)等因素的影响。

降尘量为单位面积上单位时间内从大气中沉降的颗粒物的质量,以每月每平方公里面积上所沉降颗粒物的吨数表示(t/km2.30d)。

监测方法采用重量法(GB/T 15265-1994)。

2、总悬浮颗粒物(TSP)的测定总悬浮颗粒物(TSP)是指漂浮在空气中的固体和液体颗粒物的总称,其粒径范围为0.1-100μm。

它不仅包括被风扬起的大颗粒物,也包括烟、雾以及污染物相互作用产生的二次污染物等极小颗粒物。

监测方法采用重量法GB/T15432-1995。

总悬浮颗粒物中主要组分的测定:a 金属元素和非金属化合物的测定:颗粒物中常需测定的金属元素和非金属化合物有铍、铬、铅、铁、铜、锌、镉、镍、钴、锑、锰、砷。

硒、硫酸根、硝酸根、氯化物等。

它们的含量很低,一般需采用分光光度法或原子吸收分光光度法等灵敏度高的仪器分析方法进行含量分析。

b 有机化合物的测定:颗粒物中的有机组分很复杂,受到普遍关注的是多环芳烃,如蒽、菲、芘等,其中许多物质具有致癌作用。

3,4苯并芘(简称苯并(a)芘或BaP)就是环境中普遍存在的一种强致癌物质,采用乙酰化滤纸层析-荧光分光光度法或高压液相色谱法测定。

:悬浮在空气中,空气动力学直径≤10µm的颗粒物。

3、PM10:悬浮在空气中,空气动力学直径≤2.5µm的颗粒物。

4、PM2.5二、总悬浮颗粒物(TSP)的测定(重量法)1、原理总悬浮颗粒物(简称TSP)是指空气中粒径在100μm以下的液体或固体颗粒。

总悬浮颗粒物的测定,目前多采用重量法。

空气中颗粒物的测定实验报告思考题

空气中颗粒物的测定实验报告思考题

空气中颗粒物的测定实验报告思考题
1. 你能否列举出影响颗粒物浓度的因素?并分析哪些因素可能会使得颗粒物浓度升高?
影响颗粒物浓度的因素有很多,常见的因素包括: 季节、天气状况、大气环境、车辆排放、人口密度、建筑工程等。

其中可能会使得颗粒物浓度升高的因素包括:车辆排放、大气环境污染、季节、天气状况等。

例如,在交通繁忙、车辆排放较多的地区,颗粒物浓度往往会比较高;在气流稳定、污染物扩散不利的天气条件下,颗粒物浓度往往也会较高。

2. 在颗粒物测定实验中,你认为哪些误差可能会影响测定结果?
颗粒物测定实验中可能会存在的误差包括但不限于以下几种:
(1)仪器的误差:如仪器精度不够,读数不准确等;
(2)采样误差:如采样过程中,不能够完全避免颗粒物的挥发损失等;
(3)操作误差:如样品制备过程中的误操作等;
(4)环境干扰误差:如实验环境的温度、湿度等因素引起的影响等。

3. 你认为如何减小颗粒物浓度?请列举至少三种方法。

减小颗粒物浓度的方法有很多,以下是几种典型的方法:
(1)加强汽车尾气等来源的污染控制,采用更加环保和少污染排放的交通工具;
(2)加强生产工艺的环保改造,控制工业废气排放;
(3)改善大气环境质量,加强自然生态系统保护;
(4)加强公共意识,提高民众环保意识,积极参与环保工作等。

环境大气颗粒物的测定原理

环境大气颗粒物的测定原理

环境大气颗粒物的测定原理环境大气颗粒物的测定原理是通过采集大气中的颗粒物样品,然后利用不同的分析方法来确定其质量浓度和组成。

大气颗粒物主要包括可吸入颗粒物(PM10)和细颗粒物(PM2.5),其测定原理有以下几种方法:1. 重量法:重量法是最常用的测定大气颗粒物质量浓度的方法。

该方法是将空气中的颗粒物通过采样器收集在滤膜上,然后将滤膜放入称量器中进行称重,通过测量滤膜的质量变化来确定颗粒物的质量浓度。

重量法适用于测定PM10和PM2.5的质量浓度,但无法确定颗粒物的化学组成。

2. 光学法:光学法是一种基于颗粒物对光的散射和吸收特性进行测定的方法。

常用的光学法包括激光散射法和激光吸收法。

激光散射法利用激光束与颗粒物发生散射,通过测量散射光的强度来确定颗粒物的浓度。

激光吸收法则是利用颗粒物对激光光束的吸收特性进行测定。

光学法适用于测定颗粒物的质量浓度和粒径分布,但对颗粒物的化学组成无法确定。

3. X射线荧光光谱法:X射线荧光光谱法是一种通过颗粒物中元素的特征X射线荧光来测定其化学组成的方法。

该方法将颗粒物样品暴露在X射线束中,颗粒物中的元素吸收X射线后会发射出特定的荧光信号,通过测量荧光信号的强度和能量来确定颗粒物中各元素的含量。

X射线荧光光谱法适用于测定颗粒物的化学组成,但对颗粒物的质量浓度和粒径分布无法确定。

4. 电子显微镜法:电子显微镜法是一种通过电子显微镜观察颗粒物的形态和结构来确定其组成和来源的方法。

该方法将颗粒物样品放入电子显微镜中,利用电子束与颗粒物相互作用产生的信号来观察颗粒物的形貌、晶体结构和元素分布情况。

电子显微镜法适用于测定颗粒物的形态、组成和来源,但对颗粒物的质量浓度和粒径分布无法确定。

综上所述,环境大气颗粒物的测定原理主要包括重量法、光学法、X射线荧光光谱法和电子显微镜法。

不同的测定方法适用于不同的测定目的,可以综合应用来获取更全面的颗粒物信息。

大气实验报告

大气实验报告
2.大气中颗粒物情况与哪些气象及环境因素有关,气象及环境因素如何影响空气质量(颗粒物)?
答:城市空气污染状况取决于两个因素:污染物的排放情况和大气的扩散能力。在污染源相对稳定的情况下,污染物在大气中的扩散、迁移、流动和转化,与当时的气象条件密切相关,风向、风速、逆温层结、降水等气象因子对污染物的扩散起到、重要作用。如当有降水出现,或有风的时候,往往有利于空气中污染物的扩散;反之当有雾或风很小时,往往容易出现空气污染加重。
答:人为来源:燃烧过程中形成的煤烟飞灰,工业过程中排放的原料及产品微粒,汽车尾气
自然来源:岩石风化,森林火灾,土壤灰尘,植物花粉,真菌孢子
减少燃煤气直接向空气中排放,加大燃料燃烧效率,改良工艺,清洁生产,减少生产过程中废物的排放;研究技术,在汽车尾气排放前净化尾气中有害物质,达到尽可能少的向空气中排放。
3、支起三脚架、放置采样器,注意保持采样器水平安放,确认采样器已经经过流量校准。
4、空白滤膜,打开采样袋,用镊子取出滤膜后放入滤膜袋中,作为空白对照,做好滤膜登记,记录采样人,采样时间。
5、呼尘滤膜,用镊子取出滤膜,装入采样夹,装入采样器中。打开采样器电源开关,调节采样时间为30分钟,开启采样开关,调节采样流量由小至大到20L/min,采样过程注意观察采样流量稳定,采样结束,按下停止按钮,关闭电源开关,将流量调至“零”,小心旋转采样头,防止粉尘洒落,竖向拿采样头、将采样夹取出,置于水平处,双手用镊子取出滤膜,并对折两次,装入采样袋中,采样袋上记录采样时间、采样人。填写采样原始记录表。采样结束后,清点物品,装箱。
四、实验步骤
一、采样前准备
1、准备滤膜袋2个(1个空白对照)、镊子(1个)、呼尘采样头、采样夹、粉尘采样器、湿温度计、记录纸、笔。
2、采样人员要熟悉掌握滤膜装卸方法。

实验大气中总悬浮颗粒物的测定(重量法)

实验大气中总悬浮颗粒物的测定(重量法)

大气中总悬浮颗粒物的测定(重量法)一、原理用重量法测定大气中总悬浮颗粒物的方法一般分为大流量(1.1—1.7m3/min)和中流量(0.05—0.15m3/min)采样法。

其原理基于:抽取一定体积的空气,使之通过已恒重的滤膜,则悬浮微粒被阻留在滤膜上,根据采样前后滤膜重量之差及采气体积,即可计算总悬浮颗粒物的质量浓度。

本实验采用中流量采样法测定。

二、仪器1.中流量采样器:流量50—150L/min,滤膜直径8—10cm。

2.流量校准装置:经过罗茨流量计校准的孔口校准器。

3.气压计。

4.滤膜:超细玻璃纤维或聚氯乙烯滤膜。

5.滤膜贮存袋及贮存盒。

6.分析天平:感量0.1mg。

三、测定步骤1.采样器的流量校准:采样器每月用孔口校准器进行流量校准。

2.采样(1)每张滤膜使用前均需用光照检查,不得使用有针孔或有任何缺陷的滤膜采样;(2)迅速称重在平衡室内已平衡24h的滤膜,读数准确至0.1mg,记下滤膜的编号和重量,将其平展地放在光滑洁净的纸袋内,然后贮存于盒内备用。

天平放置在平衡室内,平衡室温度在20-25℃之间,温度变化小于±3℃,相对湿度小于5 0%,湿度变化小于5%;(3)将已恒重的滤膜用小镊子取出,“毛”面向上,平放在采样夹的网托上,拧紧采样夹,按照规定的流量采样;(4)采样5min后和采样结束前5min,各记录一次U型压力计压差值,读数准确至1mm。

若有流量记录器,则可直接记录流量。

测定日平均浓度一般从8:00开始采样至第二天8:00结束。

若污染严重,可用几张滤膜分段采样,合并计算日平均浓度;(5)采样后,用镊子小心取下滤膜,使采样“毛”面朝内,以采样有效面积的长边为中线对叠好,放回表面光滑的纸袋并贮于盒内。

将有关参数及现场温度、大气压力等记录填写在表1中。

表1 总悬浮物颗粒物采样记录——————市(县)——————监测点3.样品测定:将采样后的滤膜在平衡室内平衡24h,迅速称重,结果及有关参数记录于表2中。

大气tsp监测实验报告

大气tsp监测实验报告

大气tsp监测实验报告1. 简介本实验旨在探究大气中总悬浮颗粒物(Total Suspended Particulate,TSP)的浓度,并通过实测数据对大气质量进行评估。

通过建立采样点位和使用合适的设备进行TSP的采样,可以对大气污染情况进行科学监测和分析。

2. 实验设计与方法2.1 选址为了全面了解所监测区域的空气质量情况,我们在城市、工业区、居民区等场所选取了不同的监测点位。

确保每个监测点位都能有效地代表其所代表的区域。

2.2 仪器与设备本实验使用了TSP采样器、空气采样泵和TSP采样头。

其中,TSP采样器能够将空气中的悬浮颗粒物收集下来,而空气采样泵则提供了充足的负压,确保样品能够被有效地吸附在采样头上。

2.3 采样方法1. 将TSP采样器安装在选定的监测点位上,保证其稳定性和通风情况。

2. 使用接通电源的空气采样泵,将采样泵连接到TSP采样器的进气口。

3. 调整空气采样泵的流量,使其达到所需的采样速率。

4. 开启采样器和采样泵,开始采样过程。

5. 采样时间约为24小时,确保足够的数据量用于分析。

6. 采样结束后,关闭采样器和采样泵,并将采样头从采样器中取出。

3. 数据处理与结果分析3.1 数据处理从所有采样点位中收集的数据被导入计算机进行处理和分析。

首先,将所得数据进行单位统一,并计算每个采样点位的TSP浓度。

然后,使用适当的统计方法计算各个点位的平均TSP浓度。

3.2 结果分析通过对所获得的数据进行统计和分析,我们得到了每个监测点位的TSP平均浓度。

通过对比这些数据,我们可以评估不同区域的大气污染程度以及其对人体健康的影响。

例如,在工业区域的监测点位,TSP浓度可能会明显高于居民区的监测点位。

这是因为工业区域通常有着工厂排放的大量颗粒物,这些颗粒物会污染大气并影响空气质量。

而居民区则相对没有这么多的工业排放源,因此其TSP浓度较低。

此外,通过实验,我们还可以比较不同季节或不同天气条件下大气中TSP的变化情况。

大气中颗粒物的测定方法确认实验报告

大气中颗粒物的测定方法确认实验报告

大气中颗粒物的测定方法确认实验报告
1. 引言
本实验旨在确认大气中颗粒物的测定方法。

通过验证方法的准确性和可靠性,我们可以确保该方法在大气污染监测中的可行性和有效性。

2. 实验步骤
2.1 样品采集
我们选择了不同地点的空气样品进行采集,以代表不同环境条件下的颗粒物含量。

在每个位置,我们使用毛细管扩散器定向收集颗粒物样品,并注意避免污染和损坏。

2.2 样品处理
收集回来的样品在实验室中经过一系列处理步骤。

首先,我们使用滤膜将颗粒物分离并去除空气中的不纯物质。

然后,将样品转移到试管中,并按照测定方法的要求进行预处理。

2.3 测定方法确认
我们使用了已被广泛接受和应用的颗粒物测定方法进行实验。

在实验过程中,我们重复进行了多次测量,以确认方法的可重复性。

同时,我们还与其他实验室合作,共同进行了方法的验证,以确保
结果的准确性。

3. 结果分析
经过实验测定和数据分析,我们得出了以下结论:
- 所选测定方法在大气中颗粒物的测量方面具有较高的准确性
和可靠性。

- 方法的可重复性良好,不同实验重复进行的测量结果非常接近。

- 与其他实验室进行的合作实验也验证了该方法的准确性。

4. 结论
通过本次实验,我们确认所采用的颗粒物测定方法在大气污染
监测中是可行的,并具有较高的准确性和可靠性。

该方法可以用于
大气颗粒物的定量分析和监测工作。

参考文献
[包括实验中所参考的相关文献及方法文献]。

大气探测学实验报告(3篇)

大气探测学实验报告(3篇)

第1篇一、实验背景大气探测学是研究大气状态和变化规律的一门学科,其目的是为了更好地了解和预测大气现象,为气象预报、气候研究、环境保护等领域提供科学依据。

本实验旨在使学生掌握大气探测的基本理论、仪器使用方法和数据处理技能。

二、实验目的1. 理解大气探测的基本原理和方法。

2. 掌握常用大气探测仪器的使用和操作。

3. 学会收集、处理和分析大气探测数据。

4. 培养学生严谨的科学态度和团队协作精神。

三、实验内容本次实验主要分为以下几个部分:1. 地面气象观测(1)实验目的:了解地面气象观测场的基本要求,掌握地面气象观测仪器的使用方法。

(2)实验仪器:百叶箱、温度计、湿度计、气压计、雨量计、风速计等。

(3)实验步骤:① 观察观测场周围环境,了解其选择原则。

② 按照规范要求,布置观测仪器。

③ 观测并记录温度、湿度、气压、降水量、风速和风向等气象要素。

④ 分析数据,计算各项气象要素的平均值、极值等。

2. 温度观测(1)实验目的:掌握温度观测方法,了解温度计的工作原理。

(2)实验仪器:温度计。

(3)实验步骤:① 观察温度计的结构,了解其工作原理。

② 在观测场内,按照规范要求,放置温度计。

③ 观测并记录温度值。

④ 分析数据,计算温度变化趋势。

3. 湿度观测(1)实验目的:掌握湿度观测方法,了解湿度计的工作原理。

(2)实验仪器:湿度计。

(3)实验步骤:① 观察湿度计的结构,了解其工作原理。

② 在观测场内,按照规范要求,放置湿度计。

③ 观测并记录湿度值。

④ 分析数据,计算湿度变化趋势。

4. 气压观测(1)实验目的:掌握气压观测方法,了解气压计的工作原理。

(2)实验仪器:气压计。

(3)实验步骤:① 观察气压计的结构,了解其工作原理。

② 在观测场内,按照规范要求,放置气压计。

③ 观测并记录气压值。

④ 分析数据,计算气压变化趋势。

5. 降水观测(1)实验目的:掌握降水观测方法,了解雨量计的工作原理。

(2)实验仪器:雨量计。

(3)实验步骤:① 观察雨量计的结构,了解其工作原理。

吉林化工学院 空气中总悬浮颗粒物(TSP)的测定实验报告

吉林化工学院  空气中总悬浮颗粒物(TSP)的测定实验报告

吉林化工学院空气中总悬浮颗粒物(TSP)的测定院系资源与环境工程学院专业安全工程学号姓名空气中总悬浮颗粒物(TSP)的测定摘要总悬浮颗粒物是大气质量评价中的一个通用的重要染指标。

它主要来源于燃料燃烧时产生的烟尘、生产加工过程中产生的粉尘、建筑和交通扬尘、风沙扬尘以及气态污染物经过复杂物理化学反应在空气中生成的相应的盐类颗粒。

总悬浮颗粒物和可吸入颗粒物对人体的危害极大,为进一步了解校园空气中总悬浮颗粒物的具体分布情况。

笔者在校园范围内进行了关于空气中总悬浮颗粒物(TSP)的测定的实验。

关键词:总悬浮颗粒物重量法1绪论总悬浮颗粒物对人体的危害程度主要决定于自身的粒度大小及化学组成。

TSP中粒径大于10微米的物质,几乎都可被鼻腔和咽喉所捕集,不进入肺泡。

对人体危害最大的是10微米以下的浮游状颗粒物,称为飘尘(后改称为可吸入颗粒物,大于2.5微米,小于10微米)。

飘尘可经过呼吸道沉积于肺泡。

慢性呼吸道炎症、肺气肿、肺癌的发病与空气颗粒物的污染程度明显相关,当长年接触颗粒物浓度高于0.2毫克/立方米的空气时,其呼吸系统病症增加。

空气中的大颗粒粉尘被人的鼻腔阻拦,小颗粒粉尘可能随气流进入气管和肺部,这些粉尘被气管和肺部的“巨噬细胞”吞食并消化,巨噬细胞吃不净的那些细菌和病毒还会被白血球消灭掉。

人的鼻子的鼻毛、分泌物和黏膜可以将大多数大于10微米的粉尘过滤掉,只有小于10微米的颗粒物才会随气流进入气管和肺部。

因此,人们将“可吸入颗粒物”定义为“空气中≤10微米的颗粒物”。

滞留在上呼吸道中的颗粒物能对粘膜组织产生刺激和腐蚀作用,引起炎症,进而导致慢性鼻咽炎、慢性气管炎。

滞留在细支气管和肺泡中的可吸入尘能与直接进入肺深部的二氧化氮产生联合作用,损伤肺泡和粘膜,引起支气管和肺部产生炎症。

长期持续作用,还会诱发慢性阻塞性肺部疾患,并出现继发性感染,最后,导致肺心病的死亡率增高。

此外,颗粒物的吸附能力使之成为大气污染物的“载体”。

高效液相色谱法测定大气中的细颗粒物

高效液相色谱法测定大气中的细颗粒物

高效液相色谱法测定大气中的细颗粒物随着工业化和城市化的快速发展,环境问题已经成为全球面临的最大挑战之一。

在各种环境污染因素中,细颗粒物的危害日益突出。

大气中细颗粒物的组成繁多,除了常见的重金属、挥发性有机物和颗粒物外,还包含了许多其他类型的污染物。

由于细颗粒物对人类健康和环境的危害性,如何准确、快速地检测和分析细颗粒物在环境保护领域中异常重要。

本文将介绍一种高效液相色谱法测定大气中的细颗粒物的方法。

高效液相色谱法(High Performance Liquid Chromatography, HPLC)是一种色谱分析方法,能够分离、检测并精确测定样品中的化合物。

通过溶解分离的样品通过高压泵进入固定相柱,进而进行分离。

该方法是一种静相分离,对于溶解性较差的物质也有较好的分离效果。

HPLC在气相色谱法(Gas Chromatography, GC)之后成为第二种被广泛使用的分离技术。

在环境保护领域中,HPLC广泛应用于分析环境中的各种化学物质,如有机氯类杀虫剂、甲醛、苯系物、多环芳烃等。

HPLC方法的核心是固定相柱,该柱应该具有良好的选择性、分离效率和再现性。

在分离细颗粒物时,色谱流动相是一种有机物质和无机盐的混合物。

由于流动相的特殊化学性质,可以通过不同的色谱柱来选择性地分离不同的化学物质。

以环境保护领域中的空气颗粒物为例,常见的固定相柱有四氟乙烯、硅胶和C18柱。

HPLC方法可以结合其他样品预处理技术来进行分析。

对于大气中的细颗粒物,由于样品中的颗粒物尺寸较小,很容易受到其他外部因素的干扰,在样品预处理上必须更加谨慎。

目前,颗粒物分析的前处理仍然是样品准备中最困难的问题之一。

主要的技术包括萃取、固相萃取、溶胶浓缩、超声波处理、离子液体液相微萃取等。

例如,采用萃取技术,样品可通过离心分离出固体和液体两部分。

在固体中,颗粒物被轻松地分离和去除,只需要分析液体部分以获取目标物质。

在大气颗粒物样品的预处理中,离子液体液相微萃取法在提高液相萃取方法的灵敏度上显示出很好的优势。

TSP,PM10等测定

TSP,PM10等测定

一、空气中TSP、PM10、PM5及PM2.5的测定实验总悬浮颗粒物简称TSP,是指空气中空气动力学直径小于100μm的颗粒物。

测定TSP采用重量法。

所用的采样器按采气量大小,分为大流量采样器和中流量采样器。

方法的检出限为0.001mg/m3。

本实验选用中流量采样法。

1.原理通过具有一定切割特性的采样器,以恒速抽取定量体积的空气,空气中粒径小于100μm的悬浮颗粒物,被截留在已恒重的滤膜上。

根据采样前、后滤膜重量之差及采样体积,计算出TSP的质量浓度。

PM10、PM5及PM2.5的测定原理与之相同,但需要采用不同切割特性的采样器。

2.仪器⑴中流量采样器:采样器采样口的抽气速度为0.3m/s,采气流量(工作点流量)为100L/min。

⑵滤膜:超细玻璃纤维滤膜或聚氯乙烯等有机滤膜,直径9cm。

滤膜性能:滤膜对0.3μm标准粒子的截留效率不低于99%,在气流速度为0.45m/s时,单张滤膜阻力不大于3.5kPa,在同样气流速度下,抽取经高效过滤器净化的空气5h,每平方厘米滤膜失重不大于0.012mg。

⑶滤膜袋:用于存放采样后对折的采尘滤膜。

袋面印有编号、采样日期、采样地点、采样人等项栏目。

⑷滤膜保存盒:用于保存滤膜,保证滤膜在采样前处于平展不受折状态。

⑸镊子:用于夹取滤膜。

⑹X光看片机:用于检查滤膜有无缺损。

⑺打号机:用于在滤膜及滤膜袋上打号。

⑻恒温恒湿箱:箱内空气温度要求在15~30℃范围内连续可调,控温精度±1℃;箱内空气相对湿度应控制在45%~55%范围内。

恒温恒湿箱可连续工作。

⑼分析天平:感量0.1mg 。

⑽中流量孔口流量计:量程75~125L/min;准确度不超过±2%。

附有与孔口流量计配套的U 型管压差计(或智能流量效准器),最小分度值10Pa 。

⑾气压计。

⑿温度计 3.步骤⑴中流量采样器流量校准(用中流量孔口流量计校准):(注:本次实验不做)新购置或维修后的采样器在启用前,需进行流量校准;正常使用的采样器每月需进行一次流量校准。

[原创]大气中颗粒物的测定方法

[原创]大气中颗粒物的测定方法

大气中颗粒物的测定第一节概述空气中固态和液态颗粒状态的物质统称空气颗粒物(particulate matter)。

风沙尘土、火山爆发、森林火灾和海水喷溅等自然现象,人类生活、生产活动中各种燃料(如煤炭、液化石油气、煤气、天然气和石油)的燃烧是空气颗粒物的重要来源。

颗粒物按大小可分为总悬浮颗粒物、可吸入颗粒物和细粒子。

空气中的颗粒物有固态和液态两种形态。

固态颗粒物中较小的有炭黑、碘化银、燃烧颗粒核等,较大的有水泥粉尘、土尘、铸造尘和煤尘等。

液态颗粒物主要有雨滴、雾和硫酸雾等。

在工农业生产中可产生大量生产性粉尘,根据性质分为无机和有机粉尘。

空气颗粒物污染对人群死亡率有急性和慢性影响,有一定的致癌作用,长期吸入较高浓度的某些粉尘可引起尘肺。

吸入铅、锰、砷等毒性粉尘,经呼吸道溶解后,可引起机体中毒的发生。

粉尘作用于人体上呼吸道,早期可引起鼻粘膜刺激,毛细血管扩张,久而久之,能引起肥大性鼻炎,萎缩性鼻炎,还可引起咽喉炎,支气管炎等。

经常接触生产性粉尘,也能引起皮肤、眼、耳疾病的发生。

大麻、棉花、对苯二胺等粉尘可引起哮喘性支气管炎、偏头痛等变态反应性疾病。

沥青粉尘在日光照射下通过光化学作用,可引起光感性皮炎、结膜炎和一些全身症状。

飘浮在空气中的颗粒物,若携带某些致病微生物,随呼吸道进入人体后,可引起感染性疾病的发生。

如果吸入含致癌物粉尘,如镍、铬等,可导致肺癌的发生。

第二节生产性粉尘生产性粉尘是指在生产过程中形成的,并能长时间飘浮在空气中的固体微粒。

它是污染工作环境、损害劳动者健康的重要职业性有害因素,可引起多种职业性肺部疾病。

一、生产性粉尘的来源和分类生产性粉尘的来源有:矿山开采、凿岩、爆破、运输、隧道开凿、筑路等;冶金工业中的原料准备、矿石粉碎、筛分、配料等;机械铸造工业中原料破碎、配料、清砂等;耐火材料、玻璃、水泥、陶瓷制造等;工业原料的加工;皮毛、纺织工业的原料处理;化学工业中固体原料处理加工,包装物品等生产过程。

大气中悬浮颗粒物的测定 实验报告

大气中悬浮颗粒物的测定 实验报告
安装好空气采样器,打开采样头顶盖,取出滤膜夹,擦去灰尘,取出称过的滤膜平放在滤膜支持网 上(绒面向上),用滤膜夹夹紧,对正,拧紧,使不漏气。 (4)采样
以 7.2L/min 的流量采集样品 1-2 h。记录采样流量和采样时间,同时读取现场气温和气压。用镊 子轻轻取出滤膜,绒面向里对折,放入滤膜袋内。 (5)称量和计算
六、讨论、心得
1、注意事项
1) 滤膜上积尘较多或电源电压变化时,采样流量会有波动,应随时注意检查和调节流量。 2) 抽气动力和排气口应放在滤膜采样夹的下风口,必要时将排气口垫高,以避免排气将地面尘土扬起。 3) 称量不带衬纸的过氯乙烯滤膜时,在取放滤膜时,用金属镊子触一下天平盘,以清除静电的影响。 4) 采样高度应高地面 3-5m。
1、数据记录及处理
采样流量 采样时间
测量指标
L/min
h
TSP
Байду номын сангаас7.2
1.0
PM10
7.2
1.5
PM2.5
6.5
2.0
3、结果分析
采样体积 m3
0.432 0.648 0.780
空白滤膜质量 g
0.0619 0.0639 0.0606
样品滤膜质量 g
0.0622 0.0653 0.0607
质量增加量 g
3) 取样地点。本次实验取样地点在室内靠窗边,该位置并不能全面接触到大气,并且三个取样地点和 高度不一致,实验结果不具有重演性和比较性。
3、测定方法比较
目前,总悬浮颗粒物自动监测仪器有两种不同的分析方法:β-射线衰减 TSP 测尘仪和 TEOM 微量振 荡天平测尘仪,与本实验采用的经典的大流量法对比进行讨论2:
将采样后的滤膜称重,30s 内称完,记下滤膜重量 W1(g),计算 TSP、PM2.5、PM10 的浓度。 2、计算公式 悬浮颗粒物含量(mg/m3)=(W - W0)×1000 / Vt 式中,W――样品滤膜质量,g;

空气颗粒度检测标准

空气颗粒度检测标准

空气颗粒度检测标准空气颗粒度检测是指对空气中悬浮颗粒物的浓度和粒径进行测定和分析,是环境监测领域中的重要内容之一。

空气颗粒物是空气污染的主要成分之一,对人体健康和环境造成严重影响,因此对空气颗粒度的检测标准显得尤为重要。

一、空气颗粒物的分类。

根据颗粒物的粒径大小,可以将空气颗粒物分为可吸入颗粒物(PM10)和细颗粒物(PM2.5)两大类。

PM10是指空气中粒径小于等于10微米的颗粒物,而PM2.5则是指空气中粒径小于等于2.5微米的颗粒物。

这两类颗粒物对人体健康的影响尤为严重,因此对其进行检测和监测至关重要。

二、空气颗粒度检测的方法。

1. 传统方法。

传统的空气颗粒度检测方法主要包括滤膜法、激光散射法和激光粒度分析法。

滤膜法是通过将空气中的颗粒物通过滤膜进行捕集,再对滤膜进行称重来确定颗粒物的质量浓度。

激光散射法则是利用激光光束与颗粒物发生散射来测定颗粒物的浓度和粒径分布。

而激光粒度分析法则是通过激光光束对颗粒物进行扫描,再根据光信号的强度和时间来确定颗粒物的粒径大小。

2. 现代方法。

随着科技的发展,现代空气颗粒度检测方法也在不断更新。

例如,电动力学分析法(ELPI)和多孔板分析法(SMPS)等新型检测方法的出现,使得颗粒物的检测更加精准和高效。

ELPI是一种通过电动力学原理来对颗粒物进行分类和计数的方法,而SMPS则是通过多孔板和电荷器来对颗粒物进行筛选和测定。

三、空气颗粒度检测标准。

为了保障空气颗粒度检测的准确性和可比性,各国家和地区都制定了相应的空气颗粒度检测标准。

这些标准主要包括了颗粒物的采样方法、检测仪器的要求、数据处理的规范等内容,以确保检测结果的准确性和可靠性。

在中国,空气颗粒度检测标准主要由国家环境保护标准和行业标准来规范。

国家环境保护标准主要是针对环境空气质量的监测和评价,而行业标准则是针对特定行业的空气颗粒度监测和控制。

这些标准的制定和实施,对于保障空气质量和人民健康具有重要意义。

大气中总悬浮颗粒物的测定(邓)

大气中总悬浮颗粒物的测定(邓)

大气中总悬浮颗粒物的测定一、监测目的1.了解大气中总悬浮颗粒物(TSP)的测定原理。

2.掌握重量法测定大气中悬浮颗粒物的方法。

二、制定原则目前测定空气中TSP含量广泛采用重量法,以恒速抽取定量体积的空气,使之通过采样器中以恒重的滤膜,则TSP被截留在滤膜上,根据采样前后滤膜重量之差及采气体积计算TSP的浓度。

该方法分为大流量采样器法和中流量采样器法。

本实验采用中流量采样器法。

三、监测方案1.调研及基础资料1.1基础资料的收集主要收集污染源分布及排放情况、气象、地形资料、土地使用和功能区划分情况、人口分布及人群健康情况。

此外,对于监测区以往的监测资料等也应尽量收集,供制定监测方案参考。

1.2实地调查在收集基础资料的基础上,对监测区的环境进行实地调查,了解某些环境信息的变化情况。

调查主要内容有:地形地貌、气象条件,周围建筑分布情况,污染源及排污情况等。

2.监测项目可吸入颗粒物、温度、大气压3.监测点和采样点的布设3.1布设原则(1)监测点周围50m范围内不应有污染源(2)点式检测仪器采样口周围、监测光束附近,或开放光程检测仪器发射光源到监测光束接收端之间不能有阻碍环境空气流通的高大建筑物、树木或其他障碍物。

从采样口或监测光束到附近最高建筑物之间的水平距离,应为该障碍物与采样口或监测光束高度差的两倍。

(3)采样口周围水平面应保证270°以上的捕集空间,如果采样口一边靠近建筑物,采样口周围水平面应有180°以上的自由空间。

(4)监测点周围环境状况相对稳定,安全和防火措施有保障。

(5)监测点附近无强大的电磁干扰,周围有稳定可靠的电力供应,通信线路容易安装和检修。

(6)监测点周围应有合适的车辆通道。

3.2布设监测点和采样点的方法(1)功能布点法:多用于区域性常规监测。

先将监测区域划分为工业区、商业区、居民区、工业和居民混合区、交通稠密区、清洁区等,再根据具体污染情况和人力、物力条件,在各功能区设置一定数量的采样点。

大气的测定实验报告

大气的测定实验报告

实验名称:大气中悬浮颗粒物的测定实验类型:定量实验一、实验目的和要求1. 掌握中流量总悬浮颗粒物采样器的使用方法;2. 熟悉重量法测定大气中总悬浮微粒(TSP)、PM2.5、PM10的方法;3. 了解大气中悬浮颗粒物的污染状况,为环境保护提供数据支持。

二、实验内容和原理1. 基本概念(1)总悬浮颗粒物(TSP):悬浮在空气中,空气动力学当量直径100微米的颗粒物。

以每立方米空气中总悬浮颗粒物的毫克数表示。

(2)可吸入颗粒物(PM):空气动力学当量直径10微米的颗粒物,可以被人体吸入,沉积在呼吸道、肺泡等部位,引发疾病。

(3)细颗粒物(PM2.5):空气动力学当量直径2.5微米的颗粒物。

2. 实验原理采用重量法测定大气中悬浮颗粒物的浓度。

通过采样器采集空气中的颗粒物,经过处理后,称量其质量,计算出浓度。

三、实验材料与仪器1. 实验材料:滤膜、采样器、天平、剪刀、镊子等。

2. 实验仪器:中流量总悬浮颗粒物采样器、天平(感量0.1mg)、剪刀、镊子等。

四、操作方法和实验步骤1. 准备工作(1)检查采样器是否完好,确认采样头、采样管等部件齐全;(2)称量滤膜,记录初始质量;(3)调整采样器,确保采样流量稳定。

2. 采样过程(1)将采样头插入采样管,连接采样器;(2)打开采样器,在采样点处进行采样,采样时间根据实验要求确定;(3)关闭采样器,取出采样管,将采样头上的滤膜取下。

3. 滤膜处理(1)用剪刀将滤膜剪成适当大小;(2)用镊子将滤膜放在天平上,称量其质量;(3)记录滤膜的质量,计算颗粒物浓度。

4. 数据处理根据采样体积和滤膜质量,计算出大气中悬浮颗粒物的浓度。

五、实验数据记录和处理实验数据如下:采样点:某城市某区域采样时间:2022年X月X日采样体积:100L滤膜初始质量:X mg滤膜质量:Y mg颗粒物浓度计算公式:浓度(mg/m³)=(Y-X)/100六、实验结果与分析根据实验数据,计算得到大气中悬浮颗粒物的浓度。

大气中颗粒物的测定(精)

大气中颗粒物的测定(精)

总结:对于颗粒物的去除来说,通常有物理和化学两种方法,而雨除是一种高效率的去除方法。

雨除是指在云形成过程中,云滴首先与细颗粒凝结,再长大而成为雨滴,降落地面,从而使颗粒物在大气中去除。

2.TSP 分析本小组是在10.18-15:00 开始进行大气 TSP 采样,采样时间为 24h。

地点为民大少医天台。

表2 瞬时流量 L/min 2014.10.18 大气中 TSP 采样数据 W1 采样后/g (W1-W0)差值 24h 大气中 TSP 浓度含量 mg/m3 W0 采样前/g 100 0.36 0.4885 0.1285 0.90 经过小组协商,统一认为所测结果应予实际数值有较大误差,原因如下: a.时间。

由于取样时并没有仔细的记录时间,所以导致最后计算时出现模糊不确定的数值取值; b.称量问题。

因为实验室仪器总是跳动不稳定,所以称量的误差大;由于官方监测 TSP 数据在网络上不予公布,因此搜集了当天的气象资料和空气质量标准总悬浮颗粒物标准限值,以帮助完成实验分析:表 3 2014.10.18 北京地区气象条件时间 18 日白天大部分地区污染气象条件条件等级为 4 级,不利于污染物的扩散18 日夜间大部分地区污染条件等级为 4~5 19 日白天风速小湿度大,污染气象条件等级级,不利于污染物为 4 级,不利于污的扩散染物的扩散表 4 空气质量标准总悬浮颗粒物标准限值单位 mg/m3 浓度(mg/m3)年平均日平均一级标准 0.08 0.12 二级标准 0.2 0.3 三级标准 0.3000 0.5由表 3 看可以看出,当天北京市整体受均压场控制,污染物持续积累,空气质量较差;19 日白天,持续处于均压场控制中,风力不大,不利于污染物扩散,空气污染较重;表 4 空气质量标准总悬浮颗粒物标准限值分为三类,北京市属于二类区(城镇规划中确定的居住区、商业交通居民混合区、文化区、一般工业区和农村地区),应严格执行二级标准,即 TSP 日均限值为 0.3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
分析步骤
1. 采样前迅速称重在平衡室内已平衡24h的滤膜,读数准确至 0.1mg,记下滤膜的编号和重量(W0),将其平展地放在光滑 洁净的纸袋内,然后贮存于盒内备用。 2. 采样5min后和采样结束前5min,各记录一次U型压力计压差值, 读数准确至1mm。若有流量记录器,则可直接记录流量。 3. 采样结束:取出滤膜夹,用镊子将受尘面对半折叠2次,用衬 纸包好,贮存于样品盒内,带回实验室,称重(同一台天平)。 携带过程中注意防止二次污染及样本脱落。 4. 采样后的滤膜在平衡室内平衡24h,迅速称重(W1)。
单位体积空气中TSP的质量(mg/m3)
2
仪器
粉尘采样器; 分析天平, 过氯乙烯纤维滤膜(25mm/37mm/40mm/75mm镊子夹); 干燥器(内装变色硅胶); 滤膜夹; 样品盒; 镊子。
3
试剂

4
分析步骤
4
分析步骤
1.干燥:称量前,将过氯乙烯滤膜(40mm)置于干燥器内24h以 上; 2.除静电:用镊子取下滤膜两面的夹衬纸,将滤膜通过除静电 器; 3.称量:将滤膜放在分析天平(感量0.1mg)上称重,将编号 和重量记录在滤膜的衬纸上,放在样品盒中; 4.安装:用镊子取出滤膜,分清滤膜光面和毛面,滤膜毛面应 朝进气方向,将滤膜安装于采样夹上,不能有裂隙或褶皱,再 将装有滤膜的采样夹安装在采样器上。
环境卫生学
大气中总悬浮颗粒物测定
实验目的:
了解大气中TSP测定的卫生学意义;
掌握大气中TSP的测定原理和方法;
测定方法
大气中总悬浮颗粒物浓度测定
——滤膜质量法
1
原理
仪器 试剂 分析步骤 计算 注意事项
CONTENTS
目录
2 3 4
5 6
1
实验原理
• 抽取一定体积的空气
• 将TSP阻留在已知质量的滤膜上 • 由采样后的滤膜增量和采气体积算出
4
分析步骤 采样
短时间采样:以15L/min~40L/min流量采集15min空气样品
长时间采样:以1L/min~5L/min流量采集1h~8h空气样品 采样条件:Q=15L/min,t=60min
4
分析步骤
采样
• 本次实验分组:分为6组,每2组用一台粉尘采样器,采 样两次,每两人用一张滤膜。 • 测试:安装好滤膜采样前要在桌面上开机运行,是否漏 气,观察滤膜是否安装好。采样时应注意保持采样泵流 速恒定。 • 采样:放进通风橱开始采样,设定时间60min,调节流量 至15L/min。记录采样的时间、采样地点、样号、流速等。
THANKS!
5
计算
1.空气中总粉尘短时间浓度计算:
式中:C - 空气中总粉尘的浓度,mg/m3; W1- 采样后的滤膜质量,mg; W0- 采样前的滤膜质量,mg; Vr- 标意事项
TSP采样记录 TSP浓度测定记录
课后作业:
完成实验报告册!
一、实验原理
二、仪器及试剂 三、实验方法 四、实验结果及意义
相关文档
最新文档