4-20mA电流信号转成0-5V电压信号

合集下载

实用的4~20mA输入0~5V输出的IV转换电路

实用的4~20mA输入0~5V输出的IV转换电路

实用的4~20mA输入/0~5V输出的I/V转换电路最简单的4-20mA输入/5V输出的I/V转换电路在与电流输出的传感器接口的时候,为了把传感器(变送器)输出的1-10 mA或者4-20mA电流信号转换成为电压信号,往往都会在后级电路的最前端配置一个I/V转换电路,图1就是这种电路最简单的应用示意图。

仅仅使用一只I/V转换取样电阻,就可以把输入电流转换成为信号电压,其取样电阻可以按照Vin/I=R求出,Vin是单片机需要的满度A/D信号电压,I是输入的最大信号电流。

这种电路虽然简单,但是却不实用,首先,其实际意义是零点信号的时候,会有一个零点电流流过取样电阻,如果按照4~20mA输入电流转换到最大5V 电压来分析,零点的时候恰好就是1V,这个1V在单片机资源足够的时候,可以由单片机软件去减掉它。

可是这样一来。

其有用电压就会剩下5-1=4V而不是5V 了。

由于单片机的A/D最大输入电压就是单片机的供电电压,这个电压通常就是5V,因此,处理这种简单的输入转换电路时比较麻烦。

为了达到A/D转换的位数,就会导致芯片成本增加。

LM324组成的4-20mA输入/5V输出的I/V转换电路解决上面问题的简单方法是在单片机输入之前配置一个由运算放大器组成的缓冲处理电路,见图2。

增加这级运算放大器可以起到对零点的处理会变得更加方便,无需耗用单片机的内部资源,尤其单片机是采用A/D接口来接受这种零点信号不为零电压的输入时,可以保证A/D转换位数的资源能够全部应用于有用信号上。

以4~20mA 例,图B中的RA0是电流取样电阻,其值的大小主要受传感变送器供电电压的制约,当前级采用24V供电时,RA0经常会使用500Ω的阻值,对应20mA 的时候,转换电压为10V,如果仅仅需要最大转换电压为5V,可以取RA0=250Ω,这时候,传感变送器的供电只要12V就够用了。

因为即使传送距离达到1000米,RA0最多也就几百Ω而已。

4-20mA电流信号转成0-5V电压信号

4-20mA电流信号转成0-5V电压信号

LM324组成的4-20mA输入/5V输出的I/V转换电路解决上面问题的简单方法是在单片机输入之前配置一个由运算放大器组成的缓冲处理电路,见图2。

增加这级运算放大器可以起到对零点的处理会变得更加方便,无需耗用单片机的内部资源,尤其单片机是采用A/D接口来接受这种零点信号不为零电压的输入时,可以保证A/D转换位数的资源能够全部应用于有用信号上。

以4~20mA 例,图中的RA0是电流取样电阻,其值的大小主要受传感变送器供电电压的制约,当前级采用24V供电时,RA0经常会使用500Ω的阻值,对应20mA 的时候,转换电压为10V,如果仅仅需要最大转换电压为5V,可以取RA0=250Ω。

这时候,传感变送器的供电只要12V就够用了。

因为即使传送距离达到1000米,RA0最多也就几百Ω而已。

〹ォ<。

)#)))≦同时,线路输入与主电路的隔离作用,尤其是主电路为单片机系统的时候,这个隔离级还可以起到保护单片机系统的作用。

图2 采用的是廉价运放LM324,其对零点的处理是在反相输入端上加入一个调整电压,其大小恰好为输入4mA时在RAO上的压降。

有了运算放大器,还使得RAO的取值可以更加小,因为这时信号电压不够大的部分可以通过配置运放的放大倍数来补足。

这样,就可以真正把4~20mA电流转换成为0~5V电压了。

使用运算放大器也会带来一些麻烦,尤其在注重低成本的时候,选择的运放往往是最最廉价的,运放的失调与漂移,以及因为运放的供电与单片机电路供电的稳定性,电源电压是否可以保证足够稳定,运放的输入阻抗是否对信号有分流影响,以及运放是否在整个信号范围内放大特性平坦,如此等等,造成这种廉价电路的实际效果不如人意。

而最大的不如人意之处还是在零点抵消电路上,随着信号电流的变化,运放的反相端的电压总是会与零点调整电压发生矛盾,就是这个零点电压也在随着运放输出的变化而变化,只不过由于有了信号有用电压的存在,而在结果中不容易区分而已。

4-20mA电流环、电压电流转换芯片方案比较

4-20mA电流环、电压电流转换芯片方案比较

4-20mA电流输出芯片比较(1)TI公司4-20mA电流输出芯片比较Precision Voltage-to-Current Converter/Transmitter NAME XTR110 XTR111 SUPPLY RANGE to 40V7V to 44V NONLINEARITY%% INPUT0V to +5V, 0V to +10V0 to 12VOUTPUT 0mA to 20mA, 5mA to 25mA OutputsOther Ranges0mA–20mA, 4mA–20mA,5mA–25mA AND VOLTAGEOUTPUTSOutput Current Equation I O = 10 [(Vref In/16) + (VIN1/4) +(VIN2/2)] /RSPANI O = 10 × Vvin/RsetPROBABLEPRICE90元10元XTR110应用电路XTR111内部没有提供将0V输入转换成4mA输出的电路,最常用的方法是采用两个电阻网络连接参考电压和输入信号进行分压输入XTR111 应用电路4-20mA CURRENT TRANSMITTERwith Sensor Excitation and Linearization NAME XTR105XTR112XTR114 SUPPLY RANGE to 36VPRECISION CURRENT SOURCESINPUT EXCITATION2- OR 3-WIRE RTD OPERATIONOutput Current Equation IO = VIN (40/RG) + 4mA, VIN in Volts, RG in Input Offset V oltage VCM = 2VPROBABLE PRICE25元50元60元XTR105/XTR112/XTR114原理图4-20mA Current-Loop TransmitterNAME XTR115XTR116XTR117 SUPPLY RANGE to 36V to 40V VFOR SENSOR EXCITATION NC LOW QUIESCENT CURRENT200μA130A LOW SPAN ERROR%LOW NONLINEARITY ERROR%PROBABLE PRICE20元15元XTR115/XTR116/XTR117原理图RCV42——4-20mA电流转0-5V电压基本连接RCV42——4-20mA电流转0-5V电压实例XTR101--Precision, Low Drift 4-20mA TWO-WIRE TRANSMITTERXTR106-- 4-20mA CURRENT TRANSMITTER with Bridge Excitation and LinearizationXTR108-- 4-20mA, TWO-WIRE TRANSMITTER “Smart” Programmable with SignalConditioningXTR300-- Industrial Analog Current/V oltage OUTPUT DRIVER(2)AD公司4-20mA电流输出芯片比较DAC and Current TransmitterNAME AD420AD5412AD5422AD694 FUNCTION DAC4–20 mA Transmitter RESOLUTION161216-SUPPL YRANGE12-32V A VDD: A VSS:V to 36 VINPUT16BITDIGITALSerial Input12BITDIGITALSerial Input16BITDIGITALSerial InputPrecalibrated InputRanges:0 V to 2 V, 0 V to 10 VOUTPUT 4 mA to 20 mA, 0mA to 20 mA,0 mA to 24 Ma0 V to 5 V, 0 V to10 V, ±5 V, ±10 V 4 mA to 20 mA, 0mA to 20 mA,0 mA to 24 mA0 V to 5 V, 0 V to10 V, ±5 V, ±10 V4 mA to 20 mA, 0mA to 20 mA,0 mA to 24 mA0 V to 5 V, 0 V to10 V, ±5 V, ±10 V4–20 mA, 0–20 mAPROBABLEPRICE60元50元60元50元AD420—standard configurationAD5412/5422—in HART configuration AD694—standard configuration(3)AMG公司4-20mA电流输出芯片比较NAME DESCRIPTION PROBABL E PRICEAM40050元AM46040元AM46240元AM400—standard configuration AM460—standard configurationAM462—standard configuration另查过Linear和MAXIM公司无相关产品。

4~20mA输入0~5V输出的IV转换电路

4~20mA输入0~5V输出的IV转换电路

4~20mA输入/0~5V输出的I/V转换电路在与电流输出的传感器接口的时候,为了把传感器(变送器)输出的1-10mA或者4-20mA电流信号转换成为电压信号,往往都会在后级电路的最前端配置一个I/V转换电路,图1就是这种电路最简单的应用示意图。

仅使用一只I/V转换取样电阻,就可以把输入电流转换成为信号电压,其取样电阻可以按照Vin/I=R求出,Vin是单片机需要的满度A/D信号电压,I是输入的最大信号电流。

这种电路虽然简单,但是却不实用,首先,其实际意义是零点信号的时候,会有一个零点电流流过取样电阻,如果按照4~20mA输入电流转换到最大5V电压来分析,零点的时候恰好就是1V,这个1V在单片机资源足够的时候,可以由单片机软件去减掉它。

可是这样一来。

其有用电压就会剩下5-1=4V而不是5V了。

由于单片机的A/D最大输入电压就是单片机的供电电压,这个电压通常就是5V,因此,处理这种简单的输入转换电路时比较麻烦。

为了达到A/D转换的位数,就会导致芯片成本增加。

LM324组成的4-20mA输入/5V输出的I/V转换电路解决上面问题的简单方法是在单片机输入之前配置一个由运算放大器组成的缓冲处理电路,见图2。

增加这级运算放大器可以起到对零点的处理会变得更加方便,无需耗用单片机的内部资源,尤其单片机是采用A/D接口来接受这种零点信号不为零电压的输入时,可以保证A/D转换位数的资源能够全部应用于有用信号上。

以4~20mA例,图B中的RA0是电流取样电阻,其值的大小主要受传感变送器供电电压的制约,当前级采用24V供电时,RA0经常会使用500Ω的阻值,对应20mA的时候,转换电压为10V,如果仅仅需要最大转换电压为5V,可以取RA0=250Ω,这时候,传感变送器的供电只要12V就够用了。

因为即使传送距离达到1000米,RA0最多也就几百Ω而已。

同时,线路输入与主电路的隔离作用,尤其是主电路为单片机系统的时候,这个隔离级还可以起到保护单片机系统的作用。

立格压力变送器说明书

立格压力变送器说明书

立格压力变送器说明书
立格(LUGB)压力变送器是一种用于测量液体、气体或蒸汽压
力的设备,它将压力信号转换为标准的电信号输出,通常为4-20mA
电流信号或0-5V电压信号。

这种变送器通常被广泛应用于工业自动
化控制系统中,用于监测和控制压力变化。

立格压力变送器的说明书通常包括以下内容:
1. 产品介绍,说明产品的型号、规格、特点和适用范围。

2. 技术参数,包括测量范围、精度、输出信号类型、工作温度、工作压力等技术指标。

3. 结构原理,介绍产品的内部结构、工作原理和传感器类型。

4. 安装与使用,详细说明产品的安装方法、使用注意事项、校
准步骤以及维护保养方法。

5. 应用领域,列举产品的典型应用场景和行业领域。

6. 故障排除,介绍产品常见故障及排除方法。

7. 认证与标准,说明产品通过的认证和符合的标准。

8. 注意事项,包括产品的运输、存储、安装和使用过程中需要注意的事项。

总的来说,立格压力变送器说明书是用户了解和正确使用该产品的重要参考资料,可以帮助用户更好地掌握产品的特性和正确的使用方法,确保产品的正常运行和使用寿命。

用户在阅读说明书时应该仔细阅读,按照说明书的指导进行操作,以免造成不必要的损失。

浅谈4-20mA.DC(1-5V.DC)信号制

浅谈4-20mA.DC(1-5V.DC)信号制

浅谈4-20mA.DC(1-5V.DC)信号制典型电路2009-09-03 10:46:08 阅读20 评论0 字号:大中小4-20mA.DC(1-5V.DC)信号制是国际电工委员会(IEC):过程控制系统用模拟信号标准。

我国从DDZ-Ⅲ型电动仪表开始采用这一国际标准信号制,仪表传输信号采用4-20mA.DC,联络信号采用1-5V.DC,即采用电流传输、电压接收的信号系统。

这种信号制的优点有:现场仪表可实现两线制,所谓两线制即电源、负载串联在一起,有一公共点,而现场变送器与控制室仪表之间的信号联络及供电仅用两根电线。

因为信号起点电流为4mA.DC,为变送器提供了静态工作电流,同时仪表电气零点为4mA.DC,不与机械零点重合,这种“活零点”有利于识别断电和断线等故障。

而且两线制还便于使用安全栅,利于安全防爆。

控制室仪表采用电压并联制信号传输,同一个控制系统所属的仪表之间有公共端,便于与检测仪表、调节仪表、计算机、报警装置配用,并方便接线。

现场仪表与控制室仪表之间的联络信号采用4-20mA.DC的理由是:因为现场与控制室之间的距离较远,连接电线的电阻较大,如果用电压源信号远传,由于电线电阻与接收仪表输入电阻的分压,将产生较大的误差,而用恒电流源信号作为远传,只要传送回路不出现分支,回路中的电流就不会随电线长短而改变,从而保证了传送的精度。

控制室仪表之间的联络信号采用1-5V.DC的理由是:为了便于多台仪表共同接收同一个信号,并有利于接线和构成各种复杂的控制系统。

如果用电流源作联络信号,当多台仪表共同接收同一个信号时,它们的输入电阻必须串联起来,这会使最大负载电阻超过变送仪表的负载能力,而且各接收仪表的信号负端电位各不相同,会引入干扰,而且不能做到单一集中供电。

采用电压源信号联络,与现场仪表的联络用的电流信号必须转换为电压信号,最简单的方法就是:在电流传送回路中串接一个250欧姆的标准电阻,把4-20mA.DC转换为1-5V.DC,通常由配电器来完成这一任务。

为什么将4-20mA信号转换为1-5V电压信号

为什么将4-20mA信号转换为1-5V电压信号

4-20mA.DC(1-5V.DC)信号制是国际电工委员会(IEC):过程控制系统用模拟信号标准。

我国从DDZ-Ⅲ型电动仪表开始采用这一国际标准信号制,仪表传输信号采用4-20mA.DC,联络信号采用1-5V.DC,即采用电流传输、电压接收的信号系统。

这种信号制的优点有:现场仪表可实现两线制,所谓两线制即电源、负载串联在一起,有一公共点,而现场变送器与控制室仪表之间的信号联络及供电仅用两根电线。

因为信号起点电流为4mA.DC,为变送器提供了静态工作电流,同时仪表电气零点为4mA.DC,不与机械零点重合,这种“活零点”有利于识别断电和断线等故障。

而且两线制还便于使用安全栅,利于安全防爆。

控制室仪表采用电压并联制信号传输,同一个控制系统所属的仪表之间有公共端,便于与检测仪表、调节仪表、计算机、报警装置配用,并方便接线。

现场仪表与控制室仪表之间的联络信号采用4-20mA.DC的理由是:因为现场与控制室之间的距离较远,连接电线的电阻较大,如果用电压源信号远传,由于电线电阻与接收仪表输入电阻的分压,将产生较大的误差,而用恒电流源信号作为远传,只要传送回路不出现分支,回路中的电流就不会随电线长短而改变,从而保证了传送的精度。

控制室仪表之间的联络信号采用1-5V.DC的理由是:为了便于多台仪表共同接收同一个信号,并有利于接线和构成各种复杂的控制系统。

如果用电流源作联络信号,当多台仪表共同接收同一个信号时,它们的输入电阻必须串联起来,这会使最大负载电阻超过变送仪表的负载能力,而且各接收仪表的信号负端电位各不相同,会引入干扰,而且不能做到单一集中供电。

采用电压源信号联络,与现场仪表的联络用的电流信号必须转换为电压信号,最简单的方法就是:在电流传送回路中串接一个250欧姆的标准电阻,把4-20mA.DC转换为1-5V.DC,通常由配电器来完成这一任务。

附录1---相关标准:IEC 60381-1 :1982 过程控制系统用模拟信号第1部分:直流电流信号IEC 60381-2 :1978 过程控制系统用模拟信号第2部分:直流电压信号附录2---国际电工委员会(IEC)简介:国际电工委员会(International Electro technical Commission)成立于1906年,是世界上成立最早的非政府性国际电工标准化机构,负责有关电工、电子领域的国际标准化工作。

若干方法实现0-5Vto4-20mA转换

若干方法实现0-5Vto4-20mA转换

4-20mA电流环,0-5V转4-20mA转换一、分立零件+运算放大器兜0~5V转0~20mA二、采用双Op,双电源之电流环线路(Op在选用的时候需要输出比较大的电流)线路没有做过流保护回路,可自行串入过流保护,和接反保护三、INA133 组成之0~10V转4~20mA,电流环。

然亦可改为0~5V只需修改其求和运算之电阻0~5V转4~20mA之电流环,下面线路图纸中线路仿真因为修改图片中的数据,故而采用之前0~10之数据,仅仅修改电阻与参考电压之值而已。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~四、转换芯片使用带有多种保护的V-I转换专用芯片[AM462][XTR110][AD694][AD421]基本功能特点基本功能特点单端接地电压信号转换成电流0/4-20mA 输出集成了多种电路保护功能集成了可调的恒流源/恒压源典型应用• 可调的电压转换电流电路(U/I)• 可调的恒压/恒流源 (可对外提供)• 带有保护的电压调整电路• 对微处理器具有保护功能的输出级 (框架集成电路方案 [1])• 微处理器的周边电路(供电、保护、工业标准模拟输出)AM463规格书下载地址/datasheet-pdf/view/197542/AME/AM462.html4-20mA工业控制应用(视频)/download/trng/webcasts-cn/TI_Mirror_050607/presentation.htmRCV420规格书下载地址/pdf/96277_BURR-BROWN_RCV420.pdfXTR101规格书下载地址/pdf/69214_BURR-BROWN_XTR101.pdf。

4-20mA电流信号转成0-5V或0-10V电压信号精编版

4-20mA电流信号转成0-5V或0-10V电压信号精编版

4-20mA电流信号转成0-5V或0-10V电压信号1、电流信号转成电压信号,或电压信号转成电流信号,实质就是信号传输中的阻抗变换问题;2、信号传输阻抗匹配,就是满足信号源输出最大信号能量的条件;3、信号传输阻抗匹配,就是信号传输能流最大、衰减最小、畅通无阻、失真变形最小;4、电流信号转成电压信号,就是低阻抗传输转换为高阻抗传输;5、这种阻抗变换,一定要通过阻抗变换设备、阻抗变换电路来实现;6、常用阻抗变换的设备有阻抗变换变压器,例如音响系统的输入输出变压器;7、常用阻抗变换电路,如射极输出电路,在模拟电子电路中经常用作输出级、输入级、中间转换级等;8、超高频闭路电视系统,信号分流用的三通、四通分配器,就是信号匹配阻抗转换器,通过它实现闭路电视系统的阻抗匹配,否则信号将受阻传不出去,或信号失真变形;9、4-20mA电流信号转成0-5V或0-10V电压信号,用什么样的阻抗变换电路、设备,关键看信号的性质,是高频还是低频,是交流还是直流;10、这种在电流信号回路中串入电阻的方法,是错误的,不可取的,是不懂信号传输匹配意义的做法;并电阻没问题的,我们经常这样转化,加250欧姆电阻转换成1-5V,加500欧姆电阻转换成2-10V,至于0-1V,0-2V这两个范围几乎不用,完全能够达到控制要求简单化:4-20MA的信号输出并联一个315欧姆的电阻,就可以转换为1.3-6.3伏的电压信号.再串联两只二极管(降压1.3),就可以转换为0-5伏的电压信号.推荐4个实用的4-20mA输入/0-5V输出的I/V转换电路一、最简单的4~20mA输入/1~5V输出的I/V转换电路应用示意图二、廉价运放LM324搭的廉价的4~20mA输入/0~5V输出的I/V转换电路三、推荐采用运放OP07搭的4~20mA输入/0~5V输出的I/V转换电路四、推荐采用精密的4~20mA输入/0~5V输出的I/V转换专用集成电路RCV420是一种精密的I/V转换电路,也是目前最佳的4-20mA转换0-5V的电路方案,有商用级(0℃-70℃)和工业级(-25℃-+85℃)供你选购。

4-20mA转0-5V、0-2A抗干扰措施

4-20mA转0-5V、0-2A抗干扰措施

隔离及其他降噪技术在干扰噪声比较严重蝗场合,隔离是一种非常重要的抑制干扰的措施。

对于不可能实现一点接地原则的场合,或者对于为安全起见两端设备必须分别接地的情况,如果测量系统中存在差较大的地电位噪声,则隔离是克服这种共模噪声不得影响的最有效措施。

1、变压器隔离:得用变压器和副边之间固有的电气隔离特性,可以将系统中接地点不同的各电路之间的电气连接隔离开来。

此外,变压器还可以起到阻抗变换的作用。

变压器隔离具有一定的局限性。

对于低频信号,要求变压器的电感更大,而这会导致变压器体积太大。

而且变压器之间的分布电容较大,对于高频的地电位差噪声来说不能起到较好的隔离作用。

在变压器原边和副边线圈之间装设接地的金属箔屏蔽层可以解决分布电容问题,但是要注意屏蔽层必须适当接地才有效。

信号隔离器的输入信号和输出信号在电气上是互相隔离开的,隔离耐压可以高达千伏,而信号的传输又是线性的,因此隔离放大器可以用模拟信号。

以下是信号隔离器基本特性和应用范围:主要特性:>> 精度、线性度误差等级:0.1、0.2、0.5级>> 辅助电源:12V、15V或24V直流单电源供电>> 4-20mA/0-5V/0-10V等标准信号输入>> 0~1V(max 2A)/0~10V/0-24V(max 2A) 等电压信号输出>> 信号输入/信号输出3000VDC隔离>> 辅助电源与输出信号不隔离>> 螺丝固定安装,插拔式接线端子>> 尺寸:120 x 105 x 29mm>> 0~100mA/0~500mA/0~1A/0-2A等电流信号输出>> 工业级温度范围: - 45 ~ + 85 ℃产品选型表:DIN11D IRT - V(A)□- P□– V(A)□注:定货时请告知输出负载电阻的大小。

选型举例:例1:输入信号:0-10V 供电电源:24V 输出信号:0-1A 负载电阻: 10欧姆型号:DIN11 IRT V2-P1-Az应用:>> 电流信号放大或电压信号驱动能力加强>> 电磁开关线性控制器>> 电磁阀、比例阀门线性驱动器>> 地线干扰抑制长距离传输采用电流信号:当信号传输距离较长时,采用电流信号抑制干扰的有效措施,如工业测量领域常用的4-20ma电流环传输。

4-20ma电流转电压电路

4-20ma电流转电压电路

#1楼主:4-20毫安电流转1-5V电压转换电路贴子发表于:2008/8/14 21:35:04最简单的4-20mA输入/5V输出的I/V转换电路在与电流输出的传感器接口的时候,为了把传感器(变送器)输出的1-10mA或者4-20mA电流信号转换成为电压信号,往往都会在后级电路的最前端配置一个I/V转换电路,图1就是这种电路最简单的应用示意图。

仅仅使用一只I/V转换取样电阻,就可以把输入电流转换成为信号电压,其取样电阻可以按照Vin/I=R求出,Vin是单片机需要的满度A/D信号电压,I是输入的最大信号电流。

这种电路虽然简单,但是却不实用,首先,其实际意义是零点信号的时候,会有一个零点电流流过取样电阻,如果按照4~20mA输入电流转换到最大5V电压来分析,零点的时候恰好就是1V,这个1V在单片机资源足够的时候,可以由单片机软件去减掉它。

可是这样一来。

其有用电压就会剩下5-1=4V而不是5V了。

由于单片机的A/D最大输入电压就是单片机的供电电压,这个电压通常就是5V,因此,处理这种简单的输入转换电路时比较麻烦。

为了达到A/D转换的位数,就会导致芯片成本增加。

LM324组成的4-20mA输入/5V输出的I/V转换电路解决上面问题的简单方法是在单片机输入之前配置一个由运算放大器组成的缓冲处理电路,见图2。

增加这级运算放大器可以起到对零点的处理会变得更加方便,无需耗用单片机的内部资源,尤其单片机是采用A/D 接口来接受这种零点信号不为零电压的输入时,可以保证A/D转换位数的资源能够全部应用于有用信号上。

以4~20mA 例,图B中的RA0是电流取样电阻,其值的大小主要受传感变送器供电电压的制约,当前级采用24V供电时,RA0经常会使用500Ω的阻值,对应20mA 的时候,转换电压为10V,如果仅仅需要最大转换电压为5V,可以取RA0=250Ω,这时候,传感变送器的供电只要12V就够用了。

因为即使传送距离达到1000米,RA0最多也就几百Ω而已。

4-20mA电流信号转成0-5V或0-10V电压信号

4-20mA电流信号转成0-5V或0-10V电压信号

4-20mA电流信号转成0-5V或0-10V电压信号解决方法:1.采用专用的电流转电压芯片,或者隔离放大器(要求精度高,抗干扰时)如:MAXIM MAX472深圳顺源公司的ISO系列产品/2.自己搭建电路,节省成本,但不推荐直接串联精密电阻的方式用运放搭建电路就非常好给个地址: /html/zonghejishu/2007/0925/2621.html1、 0-5V/0-10mA的V/I变换电路图1是由运放和阻容等元件组成的V/I变换电路,能将0—5V的直流电压信号线性地转换成0-10mA的电流信号,A1是比较器.A3是电压跟随器,构成负反馈回路,输入电压Vi与反馈电压Vf比较,在比较器A1的输出端得到输出电压VL,V1控制运放A1的输出电压V2,从而改变晶体管T1的输出电流IL而输出电流IL又影响反馈电压Vf,达到跟踪输入电压Vi的目的。

输出电流IL 的大小可通过下式计算:IL=Vf/(Rw+R7),由于负反馈的作用使Vi=Vf,因此IL=Vi/(Rw+R7),当Rw+R7取值为500Ω时,可实现0-5V/0-10mA的V/I转换,如果所选用器件的性能参数比较稳定,运故A1、A2的放大倍数较大,那么这种电路的转换精度,一般能够达到较高的要求。

2、 0-10V/0-10mA的V/I变换电路图2中Vf是输出电流IL流过电阻Rf产生的反馈电压,即V1与V2两点之间的电压差,此信号经电阻R3、R4加到运放A1的两个输入端Vp与Vn,反馈电压Vf=V1-V2,对于运放A1,有VN=Vp;Vp=V1/(R2+R3)×R2,VN=V2+(Vi-V2)×R4/(R1+R4),所以V1/(R2+R3)×R2=V2+(Vi-V2)×R4/(R1+R4),依据Vf=V1-V2及上式可推导出:若式中R1=R2=100kΩ,R1=R4=20kΩ,则有:Vf×R1=Vi×R4,得出:Vf=R4/R1×Vi=1/5Vi,如果忽略流过反馈回路R3、R4的电流,则有:IL=Vf/Rf=Vi/5Rf,由此可以看出.当运放的开环增益足够大时,输出电流IL与输入电压Vi满足线性关系,而且关系式中只与反馈电阻Rf的阻值有关.显然,当Rf=200Ω时,此电路能实现0-10v/0-10mA的V/I变换。

实用的4~20mA输入0~5V输出的IV转换电路

实用的4~20mA输入0~5V输出的IV转换电路

最简单的4-20mA输入/5V输出的I/V转换电路在与电流输出的传感器接口的时候,为了把传感器(变送器)输出的1-10mA或者4-20mA 电流信号转换成为电压信号,往往都会在后级电路的最前端配置一个I/V转换电路,图1就是这种电路最简单的应用示意图。

仅仅使用一只I/V转换取样电阻,就可以把输入电流转换成为信号电压,其取样电阻可以按照Vin/I=R求出,Vin是单片机需要的满度A/D信号电压,I是输入的最大信号电流。

这种电路虽然简单,但是却不实用,首先,其实际意义是零点信号的时候,会有一个零点电流流过取样电阻,如果按照4~20mA输入电流转换到最大5V电压来分析,零点的时候恰好就是1V,这个1V在单片机资源足够的时候,可以由单片机软件去减掉它。

可是这样一来。

其有用电压就会剩下5-1=4V而不是5V 了。

由于单片机的A/D最大输入电压就是单片机的供电电压,这个电压通常就是5V,因此,处理这种简单的输入转换电路时比较麻烦。

为了达到A/D转换的位数,就会导致芯片成本增加。

LM324组成的4-20mA输入/5V输出的I/V转换电路解决上面问题的简单方法是在单片机输入之前配置一个由运算放大器组成的缓冲处理电路,见图2。

增加这级运算放大器可以起到对零点的处理会变得更加方便,无需耗用单片机的内部资源,尤其单片机是采用A/D接口来接受这种零点信号不为零电压的输入时,可以保证A/D 转换位数的资源能够全部应用于有用信号上。

以4~20mA 例,图B中的RA0是电流取样电阻,其值的大小主要受传感变送器供电电压的制约,当前级采用24V供电时,RA0经常会使用500Ω的阻值,对应20mA 的时候,转换电压为10V,如果仅仅需要最大转换电压为5V,可以取RA0=250Ω,这时候,传感变送器的供电只要12V就够用了。

因为即使传送距离达到1000米,RA0最多也就几百Ω而已。

同时,线路输入与主电路的隔离作用,尤其是主电路为单片机系统的时候,这个隔离级还可以起到保护单片机系统的作用。

单片机adc检测4-20ma电路,以及计算方法

单片机adc检测4-20ma电路,以及计算方法

单片机ADC检测4-20mA电路,以及计算方法随着科技的不断进步,单片机在工业领域的应用越来越广泛。

在工业现场,经常需要监测各种参数,如温度、压力、流量等,而这些参数通常是以电流的形式进行传输的。

其中,4-20mA电流信号是工业领域中最常用的一种信号,因为它具有很好的抗干扰性能和远距离传输能力,因此被广泛应用于工业自动化控制系统中。

要对4-20mA电流进行监测和检测,通常会使用单片机的ADC(模数转换器)来进行采集。

本文将介绍如何设计一个简单的单片机ADC检测4-20mA电路,并探讨计算方法。

1. 单片机ADC检测4-20mA电路的设计在设计单片机ADC检测4-20mA电路时,需要考虑以下几点:1)信号隔离:由于工业现场常常存在噪声干扰和接地电位差,因此需要对电流信号进行隔离,以保证采集的准确性和稳定性。

2)电流-电压转换:由于单片机的ADC一般是以电压形式进行采集的,因此需要将4-20mA电流信号转换为相应的电压信号。

3)电压采集:设计一个合适的电压采集电路,将转换后的电压信号输入到单片机的ADC引脚进行采集。

基于以上考虑,可以设计如下的单片机ADC检测4-20mA电路:电流信号输入端 -> 隔离电阻 -> 电流-电压转换电阻 -> 电压采集电路-> 单片机ADC引脚2. 单片机ADC检测4-20mA电路的计算方法在实际的工程应用中,需要将采集到的电压信号转换为对应的电流数值,以便进行后续的控制和监测。

下面将介绍单片机ADC检测4-20mA电路的计算方法。

假设电流-电压转换电阻的阻值为R,输入的4-20mA电流信号经过该电阻转换后得到对应的电压信号V,单片机的ADC采集到的电压值为V_ADC。

则根据欧姆定律和ADC的工作原理,可以得到电流与ADC采集值的关系:I = V / R = (V_ADC / 1024 * Vref) / R其中,I为实际电流值,V为电压值,R为电流-电压转换电阻的阻值,V_ADC为单片机ADC采集到的电压值,1024为ADC的分辨率,Vref为ADC的参考电压(一般为5V)。

4-20毫安电流转1-5V方法资料

4-20毫安电流转1-5V方法资料

4-20毫安电流转1-5V电压转换电路资料在与电流输出的传感器接口的时候,为了把传感器(变送器)输出的1-10mA或者4-20mA电流信号转换成为电压信号,往往都会在后级电路的最前端配置一个I/V转换电路,图1就是这种电路最简单的应用示意图。

图(1)最简单的4-20mA输入/5V输出的I/V转换电路图(2)用取样电阻仅仅使用一只I/V转换取样电阻,就可以把输入电流转换成为信号电压,其取样电阻可以按照VinI=R求出,Vin是单片机需要的满度A/D信号电压,I是输入的最大信号电流。

这种电路虽然简单,但是却不实用,首先,其实际意义是零点信号的时候,会有一个零点电流流过取样电阻,如果按照4~20mA输入电流转换到最大5V电压来分析,零点的时候恰好就是1V,这个1V在单片机资源足够的时候,可以由单片机软件去减掉它。

可是这样一来。

其有用电压就会剩下5-1=4V而不是5V 了。

由于单片机的A/D最大输入电压就是单片机的供电电压,这个电压通常就是5V,因此,处理这种简单的输入转换电路时比较麻烦。

为了达到A/D转换的位数,就会导致芯片成本增加。

解决上面问题的简单方法是在单片机输入之前配置一个由运算放大器组成的缓冲处理电路,见图3图(3)LM324组成的4-20mA输入/5V输出的I/V转换电路增加这级运算放大器可以起到对零点的处理会变得更加方便,无需耗用单片机的内部资源,尤其单片机是采用A/D接口来接受这种零点信号不为零电压的输入时,可以保证A/D转换位数的资源能够全部应用于有用信号上。

以4~20mA 例,图(3)中的RA0是电流取样电阻,其值的大小主要受传感变送器供电电压的制约,当前级采用24V供电时,RA0经常会使用500Ω的阻值,对应20mA 的时候,转换电压为10V,如果仅仅需要最大转换电压为5V,可以取RA0=250Ω,这时候,传感变送器的供电只要12V就够用了。

因为即使传送距离达到1000米,RA0最多也就几百Ω而已。

0-20mA、4-20mA电流信号转0-5V、0-10V电压信号隔离转换器、模块IC

0-20mA、4-20mA电流信号转0-5V、0-10V电压信号隔离转换器、模块IC

号 调节 增益 益 输 端或 调节 调 出 ( 空 Adj 节
Io+ 脚)
Adj
零点 调节 端或 (空 脚)
信号 输出 Io-
(2)电压输出型产品引脚描述:单列直插 12 脚(SIP 12)封装
1 2 3 4 5 6 7 8 9 10 11 12
信号 输入 Sin+
信号 输入 GND
空 脚
辅助 电源 PW+
7. 在 EMC(电磁干扰)比较特殊的使用场合应注意增加
电磁干扰抑制电路或采取屏蔽措施
8.产品尺寸:32.0mm*13.8mm*8.8mm
1. 仪器仪表与传感器信号收发 2. 直流电流 / 电压信号的隔离、转换及放大 3. 工业现场信号隔离及长线传输 4. 模拟信号地线干扰抑制及数据隔离、采集 5. 4-20mA(0-20mA)/0-5V 等信号的隔离及变 换 6. 信号远程无失真传输 7. 非电量信号变送 8. 电力监控、医疗设备隔离安全栅 9. 传感器 4-20mA 等模拟信号一进二出、
输出信号
O1:4-20mA O2:0-20mA O4:0-5V O5:0-10V O6:1-5V O7: 0-±5V O8: 0-±10V O9: -20-+20mA
5.产品列举:
例 1: 信号输入:0-5V; 信号输出:0-5V; 辅助电源:24V 型号:AOT U1-P1-O4 例 2: 信号输入:0-10V;信号输出:0-20mA;辅助电源:24V 型号:AOT U2-P1-O2 例 3:信号输入:4-20mA 信号输出:0-10V;辅助电源:5V 型号:AOT A4-P3-O5 例 3:信号输入:4-20mA 信号输出:1-5V;辅助电源:12V 型号:AOT A4-P2-O6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LM324组成的4-20mA输入/5V输出的I/V转换电路 解决上面问题的简单方法是在单片机输入之前配置一个由运算放大器组成的缓冲处理电路,见图2。

增加这级运算放大器可以起到对零点的处理会变得更加方便,无需耗用单片机的内部资源,尤其单片机是采用A/D接口来接受这种零点信号不为零电压的输入时,可以保证A/D转换位数的资源能够全部应用于有用信号上。

以4~20mA 例,图中的RA0是电流取样电阻,其值的大小主要受传感变送器供电电压的制约,当前级采用24V供电时,RA0经常会使用500Ω的阻值,对应20mA 的时候,转换电压为10V,如果仅仅需要最大转换电压为5V,可以取RA0=250Ω。

这时候,传感变送器的供电只要12V就够用了。

因为即使传送距离达到1000米,RA0最多也就几百Ω而已。

□ォ<。

)#)))≦
同时,线路输入与主电路的隔离作用,尤其是主电路为单片机系统的时候,这个隔离级还可以起到保护单片机系统的作用。

图2 采用的是廉价运放LM324,其对零点的处理是在反相输入端上加入一个调整电压,其大小恰好为输入4mA时在RAO上的压降。

有了运算放大器,还使得 RAO的取值可以更加小,因为这时信号电压不够大的部分可以通过配置运放的放大倍数来补足。

这样,就可以真正把4~20mA电流转换成为0~5V电压了。

使用运算放大器也会带来一些麻烦,尤其在注重低成本的时候,选择的运放
往往是最最廉价的,运放的失调与漂移,以及因为运放的供电与单片机电路供电的稳定性,电源电压是否可以保证足够稳定,运放的输入阻抗是否对信号有分流影响,以及运放是否在整个信号范围内放大特性平坦,如此等等,造成这种廉价电路的实际效果不如人意。

而最大的不如人意之处还是在零点抵消电路上,随着信号电流的变化,运放的反相端的电压总是会与零点调整电压发生矛盾,就是这个零点电压也在随着运放输出的变化而变化,只不过由于有了信号有用电压的存在,而在结果中不容易区分而已。

这种现象最容易造成非线性加大。

虽然可以在单片机里采用软件校正来纠正,但是,就具体措施而言,这样做需要增加编程人员不少的工作量,而且需要多点采集数据来应对。

由运放组成的V/I、I/V变换电路
时间:2007-09-25 来源: 作者: 点击:5853 字体大小:【大中小】
1、0-5V/0-10mA的V/I变换电路
图1是由运放和阻容等元件组成的V/I变换电路,能将0—5V的直流电压信号线性地转换成0-10mA的电流信号,A1是比较器.A3是电压跟随器,构成负反馈回路,输入电压Vi 与反馈电压Vf比较,在比较器A1的输出端得到输出电压VL,V1控制运放A1的输出电压V2,从而改变晶体管T1的输出电流IL而输出电流IL又影响反馈电压Vf,达到跟踪输入电压Vi的目的。

输出电流IL的大小可通过下式计算:IL=Vf/(Rw+R7),由于负反馈的作用使Vi=Vf,因此IL=Vi/(Rw+R7),当Rw+R7取值为500Ω时,可实现0-5V/0-10mA的V/I转换,如果所选用器件的性能参数比较稳定,运故A1、A2的放大倍数较大,那么这种电路的转换精度,一般能够达到较高的要求。

2、0-10V/0-10mA的V/I变换电路
图2中Vf是输出电流IL流过电阻Rf产生的反馈电压,即V1与V2两点之间的电压差,此信号经电阻R3、R4加到运放A1的两个输入端Vp与Vn,反馈电压Vf=V1-V2,对于运放A1,有VN=Vp;Vp=V1/(R2+R3)×R2,VN=V2+(Vi-V2)×R4/(R1+R4),所以V1/(R2+R3)×R2=V2+(Vi-V2)×R4/(R1+R4),依据Vf=V1-V2及上式可推导出:
若式中R1=R2=100kΩ,R1=R4=20kΩ,则有:Vf×R1=Vi×R4,
得出:Vf=R4/R1×Vi=1/5Vi,如果忽略流过反馈回路R3、R4的电流,则有:IL=Vf/Rf =Vi/5Rf,由此可以看出.当运放的开环增益足够大时,输出电流IL与输入电压Vi满足线性关系,而且关系式中只与反馈电阻Rf的阻值有关.显然,当Rf=200Ω时,此电路能实现0
-10v/0-10mA的V/I变换。

3、1-5V/4-20mA的V/I变换电路
在图3中.输入电压Vi是叠加在基准电压VB(VB=10V)上,从运放A1的反向输入VN端输入的,晶体管T1、T2组成复合管,作为射极跟踪器,起到降低T1基极电流的作用(即忽略反馈电流I2),使得IL≈I1,而运放A1满足VN≈Vp,如果电路图中R1=R2=R,R4=R5=kR,则有如下表达式:
由式①②③可推出:
若Rf=62.5Ω,k=0.25,Vi=1-5V,则I1=4-20mA,而实际变换电流IL比I1小,相差I2(IL=I1-I2),I2是一个随输入电压Vi变化的变量,输入电压最小时(Vi=1V),误差最大,在实际应用中,为了使误差降到最小,一般R1,R2,Rf的阻值分别选取40.25kΩ,40kΩ,62.5Ω。

4、0-10mA/0-5V的I/V变换电路
在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,如图4,若精密电阻R1+Rw=500Ω,可实现0-10mA/0-5V的I/V 变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V的I/V变换。

图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。

对于存在共模干扰的电流输入信号,可采用隔离变压器耦合方式,实现0-10mA/0-5V的I/V变换,一般变压器输出端的负载能力较低,在实际应用中还应在输出端接一个电压跟随器作为缓冲器,以提高驱动能力。

5、由运放组成的0-10mA/0-5V的I/V变换电路
在图5中,运放A1的放大倍数为A=(R1+Rf)/R1,若R1=100kΩ,Rf=150kΩ,则A=2.5;若R4=200Ω,对于0-10mA的电流输入信号,将在R4上产生0-2V的电压信号,由A=2.5可知,0-10mA的输入电流对应0-5V的输出电压信号。

图中电流输入信号Ii是从运放A1的同相输入端输入的,因此要求选用具有较高共模抑制比的运算放大器,例如,OP-07、OP-27等。

6、4-20mA/0-5V的I/V变换电路
经对图6电路分析,可知流过反馈电阻Rf的电流为(Vo-VN)/Rf与VN/R1+(VN-Vf)/R5相等,由此,可推出输出电压Vo的表达式:
Vo=(1+Rf/R1+Rf/R5)×VN-(R4/R5)×Vf。

由于VN≈Vp=Ii×R4,上式中的VN即可用Ii×R4替换,若R4=200Ω,R1=18kΩ,Rf=7.14kΩ,R5=43kΩ,并调整Vf≈7.53V,输出电压Vo的表达式可写成如下的形式:
当输入4-20mA电流信号时,对应输出0-5V的电压信号。

相关文档
最新文档