应力与应变状态分析
应力及应变状态
19Βιβλιοθήκη 一、一点附近应力表示法4. 主应力和应力不变量 已知单元体的应力状态为:
és x t xy t xz ù és x t xy t xz ù ê ú ê ú s ij = êt yx s y t yz ú = ê s y t yz ú êt zx t zy s z ú ê sz ú û ë û ë
s 1 = s 0 × cos a
F
单向拉伸时轴向应力随截面方位变化
16
外载荷不变的情况下, 应力的数值取决于其所 作用平面的方位。
一、一点附近应力表示法
3. 直角坐标系下一点的应力状态
s ij =
és x t xy t xz ù êyx s y t yz ú t êt yx s y t yz ú êt zx t zy s z ú ë û
应力状态和应变状态分析
内容
l塑性加工应力分析 — 一点附近应力表示方法 l平衡微分方程 l塑性加工应变分析 --- 点的应变状态分析
2
F
预测金属变形?载荷?缺陷? 应力和应变分析 变形区域内接触应力 变形力F
平衡方程 Forging F 塑性条件 物理方程 几何方程 边界条件
Extrusion
三维空间问题 (十三个未知数,十三个方程) 轴对称问题 (九个未知数,九个方程) 平面问题 3 (三个未知数,三个方程)
一、一点附近应力表示法
1.基本概念
外力: 外部施加作用在物体上的力。(接触力,摩擦力,重力等) 内力: 外力作用下,物体各点之间产生相互作用的力。 应力: 变形体中单位面积上的内力。
4
一、一点附近应力表示法 外力分析
正压力—工具与工件接触面上的垂直作用力
工程力学7第七章应力状态和应变状态分析
x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
0
x y
2
(
x y
2
)
2
2
2 x
y
y
y
2
090
0
x y
2
(
x y
2
2、为什么要研究一点的应力状态 单向应力状态和纯剪切应力状态的强度计算
σmax≤ [σ] τ
max≤[τ
]
梁截面上的任意点的强度如何计算?
分析材料破坏机理
F F F F T
T
3、怎么研究一点的应力状态
单元体
•各面上的应力均匀分布
• 相互平行的一对面上 应力大小相等、符号相同
满足:力的平衡条件 切应力互等定理
§7-2 平面应力状态分析
一、解析法:
1.任意斜面上的应力 y
y
y
y
y
n
y
x
a
x
e
d
x
x
x
bz
x
x
x
e
x
x
y
f
yy
x
x
b
c
y
y
y
f t
应力的符号规定同前 α角以从x轴正向逆时针 转到斜面的法线为正
(设ef的面积为dA)
x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
第七章应力状态及应变状态分析
第七章 应力状态及应变状态分析第一节 概 述在第一章中将应力定义为内力的集度或单位面积的内力值。
应力又分正应力σ和剪应力τ两种。
前面各章的知识表明,受力杆件中任一点的应力是随截面位置及点的位置的不同而不同,如7-1(a )中a 、b 两点分别在两个截面上,其应力是不同的。
同一截面上的各点,如图7-1(b )中b 、c 两点的应力一般情况下也是不同的。
同一点不同方向的应力也是不同的。
过一点各个方向上的应力情况称为该点的应力状态....,应力状态分析就是要研究杆件中某一点(特别是危险点)各个方向上的应力之间的关系,确定该点处的最大正应力和最大剪应力,为强度计算提供重要依据。
研究应力状态的方法是过杆件中的任一点取出一个微小的六面体——单元..体.。
如图7-1(a )中过a 点取出的单元体放大如图7-2所示。
单元体三个方向的边长很小且趋于零,则该单元体代表一点,即a 点,互相平行的平面上的正应力相等,剪应力也相等。
杆件在任意荷载作用下,从中所取出的单元体表面上一般既有正应为又有剪应力,如图7-2所示。
当图7-2所示的单元体各面上的,0,0,0,0,0,0======zy zx yx yz xz xy ττττττ 即六个面上均没有剪应力作用时,这种面叫做特殊平面,并定义为主平面...。
该主(a)(b)图7-1各点的应力情况平面上作用的正应力称为主应力...,用,,,321σσσ表示(,321σσσ≥≥),如图7-3所示。
各面均为主平面的单元体,称为主单元体....。
三个主应力中若有两个等于零一个不等于零,该单元体称为单向应力状态......,如图7-4(a );三个主应力中有一个等于零,两个不等于零,该单元体称为二向应...力状态...,如图7-4(b );三个主应力均不等于零,该单元体称为三向应力状态......,如7-3。
单向应力状态和二向应力状态属平面应力状态,三向应力状态属空间应力状.....态.。
材料力学应力与应变分析
在复杂应力状态下,物体内部某一点处的主应力表示该点处最主要 的应力,次应力则表示其他较小的应力。
应力表示方法
应力矢量
应力矢量表示应力的方向和大小,通常用箭头表示。
应力张量
在三维空间中,应力可以用一个二阶对称张量表示,包括三个主应力和三个剪切 应力分量。
主应力和剪切应力
主应力
在任意一点处,三个主应力通常是不相等的,其中最大和最小的主应力决定了材料在该点的安全程度 。
采用有限元分析方法,建立高 层建筑的三维模型,模拟不同 工况下的应力与应变分布。
结果
通过分析发现高层建筑的关键 部位存在较高的应力集中,需
要进行优化设计。
结论
优化后的高层建筑结构能够更 好地承受各种载荷,提高了安
全性和稳定性。
THANKS FOR WATCHING
感谢您的观看
不同受力状态下的变形行为。
06 实际应用与案例分析
实际应用场景
航空航天
飞机和航天器的结构需要承受高速、高海拔和极端温度下 的应力与应变,材料力学分析是确保安全的关键。
汽车工业
汽车的结构和零部件在行驶过程中会受到各种应力和应变 ,材料力学分析有助于优化设计,提高安全性和耐久性。
土木工程
桥梁、大坝、高层建筑等大型基础设施的建设需要精确的 应力与应变分析,以确保结构的稳定性和安全性。
剪切应力
剪切应力是使物体产生剪切变形的力,其大小和方向与剪切面的法线方向有关。剪切应力的作用可以 导致材料产生剪切破坏。
04 应变分析
应变定义
定义
应变是描述材料形状和尺寸变化的物理量, 表示材料在外力作用下发生的形变程度。
单位
应变的单位是1,没有量纲,常用的单位还有微应变 (με)和工程应变(%)。
材料力学:第八章-应力应变状态分析
正负符号规定:
切应力 t - 使微体沿顺时针 旋转为正 方位角 a - 以 x 轴为始边、逆时针旋转 为正
斜截面应力公式推导 设α斜截面面积为dA, 则eb侧面和bf 底面面积分别为dAcosα, dAsinα
由于tx 与 ty 数值相等,同时
sa+90 ,ta+90
E
sa+90 ,ta+90
结论: 所画圆确为所求应力圆
应力圆的绘制与应用3
应力圆的绘制
已知 sx , tx , sy ,
画相应应力圆
t
先确定D, E两点位置, 过此二点画圆即为应力圆
Ds x ,t x , E s y ,t y
t
C OE
s 2 , 0
s 1 , 0
应力圆绘制 作D, E连线中垂线,与x轴相交即为应力圆圆心
tb sb
t
sa
O
C
ta
D
sa ,ta
t
s
E
sb ,tb
O
D
sa ,ta
C
s
E
sb ,tb
由|DC|=|CE|,可得sC值:
sC
s
2 β
+
t
2 β
s
2 α
+
t
2 α
2 sα sβ
点、面对应关系
转向相同, 转角加倍 互垂截面, 对应同一直径两端
应变状态
构件内一点处沿所有方位的应变总况或集合, 称为该点处的 应变状态
研究方法
环绕研究点切取微体, 因微体边长趋于零, 微体趋于所研究 的点, 故通常通过微体, 研究一点处的应力与应变状态
第八章2应力应变状态分析
第八章2应力应变状态分析应力应变状态分析是研究材料或结构在外力作用下所产生的应力和应变的过程。
应力是单位面积上的内力,用于描述材料或结构对外力的抵抗能力。
而应变是形变相对于初始状态的变化量,用于描述材料或结构的变形程度。
针对材料或结构的应力应变状态进行分析,可以帮助我们了解其力学性能和稳定性,为工程实践提供重要依据。
应力应变状态分析是弹性力学的基本内容之一、根据材料的力学性质和外力的作用,可以得到不同的应力应变状态。
在弹性力学中,线弹性和平面应变假定是常用的简化假设。
线弹性假定材料仅在拉伸和压缩的方向上有应力,而在横截面上的应力是均匀分布的。
一维拉伸和挤压是线弹性应力应变状态的基本类型。
平面应变假定材料在一个平面内有应力,而在垂直于该平面的方向上无应力。
二维平面应变是平面应变应力应变状态的基本类型。
在应力应变状态分析中,我们通常关注应力和应变之间的关系。
最常见的是材料的应力-应变曲线。
应力-应变曲线描述了材料在外力作用下的力学行为,可以帮助我们了解材料的强度、塑性和韧性等性能。
在弹性阶段,应力-应变曲线呈线性关系,符合胡克定律。
而在屈服点之后,材料会发生塑性变形,应力不再是线性关系。
当应力达到最大值时,材料会发生破坏。
除了应力-应变曲线外,还有一些其他重要的参数和指标可用于描述应力应变状态。
例如,弹性模量是描述材料刚度的重要参数,表示单位应力引起的单位应变量。
剪切弹性模量描述了材料抵抗剪切变形的能力。
同时,杨氏模量和泊松比也是用于描述材料力学性质的常用参数。
应力应变状态分析在材料工程、结构工程以及土木工程等领域具有重要应用。
通过对材料和结构的应力应变状态进行分析,可以帮助我们评估其性能和强度,并且对设计和优化具有指导意义。
例如,在结构工程中,通过应力应变状态分析可以确定材料的承载能力和极限状态,从而确保结构在设计荷载下的安全运行。
然而,应力应变状态分析也面临一些挑战。
首先,材料的力学性质和变形行为往往是非线性的,需要使用复杂的数学模型进行描述。
材料力学之应力与应变分析
3.截取原始单元体的方法、原则
①用三个坐标轴(笛卡尔坐标和极坐标,依问题和构件形状 而定)在一点截取,因其微小,统一看成微小正六面体
②单元体各个面上的应力已知或可求; ③几种受力情况下截取单元体方法:
P
P
Me B
Me
A
s A s=P/A
B t=Me/Wn
Байду номын сангаасa) 一对横截面,两对纵截面 P
⑥
ss"'
a0 *
ttxyxy a0 *
ss"'
4.极值切应力:
应力与应变分析
①令:
,可求出两个相差90o 的
a1,代表两个相互垂直的极值切应力方位。
②极值切应力:
③
(极值切应力平面与主平面成45o)
例一 图示单元体,试求:①a=30o斜
截面上的应力; ②主应力并画出主单元
体;③极值切应力。
s" 40
txy
ssxtxxy
sα
a
a
dA
tα
x
tyx sy
sy tyx
得
符号规定:
应力与应变分析
a角—以x轴正向为起线,逆时针旋转为正,反之为负
s拉为正,压为负
t—使微元产生顺时针转动趋势者为正,反之为负
3.主应力及其方位:
①由主平面定义,令t =0,得:
可求出两个相差90o的a0值,对应两个互相垂直主平面。
④单向应力状态又称简单应力状态,平面和空间应 力状态又称复杂应力状态。
第二节 平面应力状态下的 应力研究、应力圆
一、平面应力分析的解析法
1.平面应力状态图示:
第七章 应力状态、应变分析和强度理论
§7-3 平面应力状态分析--解析法
二、 正应力极值
1 1 ( x y ) ( x y ) cos 2 xy sin 2 2 2 d ( x y ) sin 2 2 xy cos 2 d
设α=α0 时,上式值为零,即
2
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念
3、三向(空间)应力状态 三个主应力1 、2 、3 均不等于零
2 1
3 1
3 2
1 0, 2 0, 3 0
§7-1 应力状态的概念
仅在微体四侧面作用应力,且 应力作用线均平行于微体的不 受力表面-平面应力状态
1
1
1
1
3
3
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念 2、二向(平面)应力状态 三个主应力1 、2 、3 中有两个不等于零
3 2 3 2
3
2
1
3
1
1
1
1 0, 2 0, 3 0
Ft 0
dA ( x dAcos )cos ( x dAcos )sin ( y dAsin )sin ( y dAsin )cos 0
§7-3 平面应力状态分析--解析法
一、任意斜截面上的应力公式 已知: x , y , x , y , dA 求: ,
sin 2 xy cos 2
2 xy 2 ( 50) tan 2 0 1 x y 40 60 2 0 45 135
y =60 MPa xy = -50MPa =-30°
连续介质力学第三章(分析“应力”文档)共110张PPT
x xy xz
ij
y
yz
=
(对称)
z
x
1 2
xy
y
(对称 )
u
x
1 2
u y
v x
1 2
u z
w x
=
v y
1 2
v z
w y
(对称)
w
z
1
2 1
2
xz yz
z
◆ 几何方程:
x
u x
;
y
v y
性体变,从而出现奇异屈服面。
⑩.平衡(或运动)微分方程
◆ 平衡微分方程:
x
x
yx
y
zx
z
F
x 0
2u t2
xy
x
y
y
zy
z
F
y
0
2v t2
xz
x
yz
y
z
z
F
z 0
2w t2
ij'j Fi 0
◆ 一个客观的弹性力学问题,在物体体内任意一点的 应力分量和体力分量必定满足这组方程。
xxyssii n n xyycco o s sq q00sci on s xy
(xyq0)ctg (xyq0) tg
yxtan
左边界:据圣文南原理和平衡的原理得:
Fx 0 , Fy 0 , M0 0 ,
h
hxdy 0
h
hxydy P0
h
h x ydy M 0
h xdy 0
理论上可证明:当一点的应力状态确定时,经推导 必可求出三个实根,即为主应力,且主应力彼此正交。
材料力学-应力状态与应变状态分析
s2 引起 1 s 2 E 2 s 2 E 3 s 2 E
s3 引起 1 s 3 E 2 s 3 E 3 s 3 E
小变形 i i i i i 1,2,3
1
1 E
s1
(s 2
s 3 )
广
2
1 E
s 2
(s 3
s1 )
义 虎 克 定
3
1 E
s 3
(s 1
s 2)
t T = 1 πD3 (1-a4) 16
1
=
1 E
[s1-
(s2+s3)]
=
1+
E
t
T=8.38 kN·m
二、体积应变
单元体边长:dx、dy、dz
体积:V0 = dx·dy·dz
dy
dx → dx +△dx = dx + 1dx = (1 + 1) dx
dy → dy +△dy = dy + 2dy = (1 + 2) dy
体积的绝对增量:△V = V-V0 = V0 (1+ 2+ 3)
单位体积增量:
V V0
1 2
3
体积应变 体积的相对增量
1 2
E
(s1
s2
s
3)
讨论:
V V0
1 2
E
(s1 s 2
s 3)
⒈ 若 s1 + s2 + s3>0,
则 >0 →△V >0,即体积增大;
若 s1 + s2 + s3<0,
s2
s3 dsz 1
dx
dz → dz +△dz = dz + 3dz = (1 + 3) dz
应力和应变分析
应力和应变分析应力和应变分析是材料力学中非常重要的一项内容,它们研究材料在外力作用下的变形行为。
应力是表征材料单位面积内的力的大小,而应变则是描述材料单位长度内的变形程度。
应力和应变的分析可以帮助我们理解材料的强度和刚度,以及材料在不同条件下的变形和破坏机制。
本文将从应力和应变的定义、材料的本构关系和应变测量等方面进行探讨。
首先,应力的定义为单位面积内的力的大小,常用符号为σ,其计算公式为σ=F/A,其中F为施加力的大小,A为力作用的面积。
应力的单位通常为帕斯卡(Pa),1Pa等于1N/m^2、根据作用力的不同方向,应力又可以分为正应力和剪应力。
正应力是垂直于材料截面的力,剪应力则是在材料截面上平行于切平面的力。
其次,应变是材料受力后发生的形变程度,常用符号为ε,其计算公式为ε=ΔL/L0,其中ΔL为长度的增量,L0为力作用前的长度。
应变的单位为无量纲。
类似于应力,应变也有正应变和剪应变之分。
正应变是材料在力作用下产生的沿体积方向的变化,剪应变则是在截面上平行于剪切力方向的变化。
应力和应变之间的关系可以通过材料的本构关系来描述。
材料的本构关系是材料在应力与应变之间的函数关系,通常以应力-应变曲线的形式表示。
根据材料的性质不同,应力-应变曲线可以分为线性区、弹性区、屈服区、塑性区和断裂区。
在线性区内,应力和应变呈线性关系,材料具有良好的弹性行为。
在弹性区内,材料回复到原始形状,没有永久性变形。
当应力超过一定的值时,材料进入屈服区,出现塑性变形。
塑性区内,材料的应变增大,但没有太大的应力增加。
当材料无法再承受应力引起继续塑性变形时,出现断裂。
最后,应变的测量是应力和应变分析的重要一环。
常用的应变测量方法包括拉伸试验、剪切试验、压缩试验等。
拉伸试验是最常见的应变测量方法之一,通过施加拉力来测量材料在不同应力下的应变。
剪切试验则是通过施加剪切力来测量材料的剪切应变。
压缩试验则是将材料压缩后测量其压缩应变。
第七章 应力状态与应变状态分析
§7–1 应力状态的概念
铸铁
P P
2、组合变形杆将怎样破坏? M
2、State of stress at a point:
There are countless sections through a point. The gathering of stresses in all sections is called the state of stress at this point. 3、Element:Element— Delegate of a point in the member. It is a infinitesimal geometric body enveloping the studied point. In common use it is a correctitude cubic
A
P
sx
A
sx
t yx
P
M x
sx
tzx
B
z
C
txz
sx
C
t xy
六、原始单元体(已知单元体):
[例1] P 画出下列图中的A、B、C点的已知单元体。 A P
sx
A
sx t yx
y
B z P M
sx
tzx
C
x
B
txz
sx
C
t ห้องสมุดไป่ตู้y
7、Principal element、principal planes、principal stresses:
量,则两个面上的这两个剪应力分量一定等值、方向相对或相
离。
证明 : 单元体平衡
sy
y
M
z
0
(t xydydz)dx(t yxdzdx)dy0
工程力学中的应力和应变的分析
工程力学中的应力和应变的分析工程力学是研究物体在外力作用下受力与变形规律的学科。
在工程力学中,应力和应变是两个重要的概念,用于描述物体受到外力作用后的力学响应和变形情况。
本文将对工程力学中的应力和应变进行深入的分析和探讨。
一、应力的概念和分类应力是描述物体单位面积内的内力或外力的物理量,用σ表示。
在力的作用下,物体的形状、大小和方向都会发生变化,而应力则用来描述物体内部各点受力状态的大小和方向。
应力可以分为正应力和剪应力两种类型。
1. 正应力:正应力是指垂直于物体截面的力在该截面上的作用效果。
正应力可分为拉应力和压应力两种情况。
拉应力是指垂直于物体截面的力使得截面上的物质向外扩张,压应力则是指垂直于物体截面的力使得截面上的物质向内收缩。
2. 剪应力:剪应力是指与物体截面平行的力在该截面上的作用效果。
剪应力是由于物体受到外部力的平行作用而引起的变形。
剪应力会使得物体的截面发生平行于力的方向的切变变形。
二、应变的概念和分类应变是描述物体相对于原始形状发生变形时各点之间相对位置的改变程度的物理量,用ε表示。
应变描述了物体受到外力作用后的变形程度和特征。
应变可分为线性应变和剪切应变两种类型。
1. 线性应变:线性应变是一种改变物体长度的应变形式,也称为伸长应变。
线性应变正比于物体所受力的大小,并与物体原始长度之比成正比。
线性应变的表达式为ε = ΔL / L0,其中ΔL为线段在力作用下伸长的长度,L0为线段的原始长度。
2. 剪切应变:剪切应变是一种改变物体形状的应变形式,也称为变形应变。
剪切应变是与物体所受剪力大小成正比,与物体的长度无关。
剪切应变的表达式为γ = Δx / h,其中Δx为剪切前后平行于力方向的线段之间的位移,h为物体在该方向上的高度。
三、应力和应变之间的关系应力和应变之间存在一定的关系,通常可以通过弹性模量来表示。
弹性模量是描述物体材料抵抗形变能力的物理量,用E表示。
主要用于刻画物体在受力作用后,恢复原始形状的能力。
材料力学第七章应力应变分析
x
y
2
x
2
y
cos 2
xy sin 2
x
y
2
sin 2
xy cos 2
1、最大正应力的方位
令
d d
2[
x
y sin 2
2
xy cos 2 ] 0
tg 2 0
2 xy x
y
0 0
90
0 和 0+90°确定两个互相垂直的平面,一个是最大正应 力所在的平面,另一个是最小正应力所在的平面.
的方位.
m
m a
A
l
解: 把从A点处截取的单元体放大如图
x 70, y 0, xy 50
A
tan 20
2 xy x y
2 50 1.429
1
3
(70) 0
0
A
x
0
27.5 62.5
3
1
因为 x < y ,所以 0= 27.5° 与 min 对应
max min
x
2
y
(
x
2
y )2
三、应力状态的分类
1、空间应力状态
三个主应力1 、2 、3 均不等于零
2、平面应力状态
三个主应力1 、2 、3 中有两个不等于零
3、单向应力状态
三个主应力 1 、2 、3 中只有一个不等于零
2 3
2
1
1
1
1
1
3 2
2
1
例题 1 画出如图所示梁S截面的应力状态单元体.
F
5
S平面
4
3
l/2
2
l/2 1
任意一对平行平面上的应力相等
应力状态与应变状态分析
应变状态分析对应力状态分析起到补充作用,特别是在复杂受力情况下,能够更 准确地描述物体的变形行为。
应变状态的分类
单轴应变
物体在单向受力过程中发 生的应变,只有一个方向 的长度变化。
双轴应变
物体在双向受力过程中发 生的应变,长度变化发生 在两个相互垂直的方向上。
三轴应变
物体在三向受力过程中发 生的应变,长度变化发生 在三个相互垂直的方向上。
塑性变形
在某些高应力状态下,材料可能 会发生塑性变形,影响其机械性 能和稳定性。
断裂韧性
材料的断裂韧性可能会受到其内 部应力的影响,高应力状态可能 降低材料的断裂韧性,导致材料 更容易断裂。
02
应变状态分析
定义与概念
定义
应变状态分析是研究物体在受力过程中内部应变的分布和变化情况,以及应变与 应力之间的关系。
详细描述
在塑性行为下,材料发生屈服,即应力达到某一特定值后,应变开始急剧增加。这种行为通常发生在 材料承受的应力高于其屈曲点时。
脆性行为
总结词
当材料受到外力作用时,它可能会突然断裂,而不会发生显著的形变。
详细描述
在脆性行为下,材料在较低的应力状态下就会断裂,且断裂前几乎没有明显的塑性变形。这种行为常见于某些脆 性材料,如玻璃或陶瓷。
弹性行为
总结词
当材料受到外力作用时,会发生形变, 但当外力去除后,材料能够完全恢复 其原始形状和尺寸。
详细描述
在弹性行为下,材料的应力和应变之 间呈线性关系,即应力与应变成正比。 这种行为通常发生在材料承受的应力 低于其屈服点时。
塑性行为
总结词
当材料受到外力作用时,会发生形变,并且当外力去除后,材料不能完全恢复其原始形状和尺寸。
应力分析与应变分析
应力分析与应变分析概述应力分析和应变分析是材料力学与结构设计中重要的分析方法。
通过研究材料内部的应力和应变分布情况,可以评估材料的强度和稳定性,为结构设计提供依据。
本文将介绍应力分析和应变分析的基本概念、方法和应用领域。
应力分析应力的概念应力是材料内部的内力状态,是材料中单元体受到的单位面积上的力的大小。
常见的应力类型有正应力、剪切应力和法向应力。
正应力指的是垂直于面元的力,剪切应力指的是在面元平面上的切应力,法向应力是正应力的一种特殊情况。
应力分布材料内部的应力分布可以通过应力场来描述。
应力场是指空间中各点的应力分布情况。
常见的应力场模型包括均匀应力场、线性应力场和非线性应力场。
弹性力学弹性力学是研究材料受力后的变形和应力恢复的一门学科。
通过弹性力学理论,可以计算材料在受力后的应力分布和变形情况。
应力分析的应用应力分析在工程领域有广泛的应用。
例如,在结构设计中,可以通过应力分析来评估结构的强度和稳定性,确定合理的结构形式和尺寸。
此外,应力分析也用于材料疲劳寿命预测、断裂力学研究等领域。
应变分析应变的概念应变是材料内部形变程度的度量,是材料内部单位长度的变化量。
常见的应变类型有线性应变、剪切应变和体积应变。
线性应变指的是材料在受力后的线性变形;剪切应变是材料在受到切应力作用时沿切应力方向发生的形变;体积应变是材料在受力后发生的体积变化。
应变分布类似于应力分布,应变分布可以通过应变场来描述。
应变场是指空间中各点的应变分布情况。
应变分析的方法应变分析的常用方法包括拉伸试验、剪切试验、压缩试验和扭转试验等。
通过这些试验可以获取材料在不同受力状态下的应变数据,进而进行应变分析。
应变测量应变测量是应变分析中的重要环节。
常用的应变测量方法有电阻式应变计、光栅应变计和激光测量等。
这些方法可以准确地获取材料受力后的应变数据,并用于应变分析和应变场重构。
应变分析的应用应变分析在材料研究和工程设计中起着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ma x
min
x y 2
(x 2y)2x2 y ——主应力的大小
1 ; 2 ; 3 ; m ;am x;i0 n
最大正应力(σmax)与X轴的夹角规定用“α0 ” 表示。 简易判断规律:由τ的方向判断。
α0 α0
2、 τ的极值及所在平面
x 2ysi2n xy co 2s
d 0 d
tg21
3、三向应力状态:三向主应力都不等于零的应力状态。
平面应力状态:单向应力状态和二向应力状态的总称。 空间应力状态:三向应力状态 简单应力状态:单向应力状态。 复杂应力状态:二向应力状态和三向应力状态的总称。 纯剪切应力状态:单元体上只存在剪应力无正应力。
§8-2 平面应力状态分析——解析法
一、任意斜面上的应力计算
主应力排列规定:按代数值由大到小。 1 2 3
10 σ1=50 MPa ;
50
30 σ2=10 MPa ; σ3=-30 MPa 。
单位:MPa
10 σ1=10 MPa ;
30 σ2=0 MPa ; σ3=-30 MPa 。
8、画原始单元体: 例 :画出下列图中的 a、b、c 点的已知单元体。
二、σ、τ的极值及所在平面(主应力,主平面)
1、 σ的极值及所在平面(主应力,主平面)
x 2 y x 2 yc2 o s xs y 2 i n d d 0 x 2 ys2 i n 0 xc y 2 o 0 s0 0 0
tg20
2xy x y
——主平面的位置
( 0;
0 0900 )
F
F a
x
a
x
x
F A
y b C
z
y b
C z
M F L
b xz
zx
x
M
WT
yx
C xy
x b x
C
σx
x
x
FL WZ
y
b
M
x
c
x
z
M0
二、应力状态的分类:
yx
b
zx
xz x
C xy
x
M0 WZ
M WT
1、单向应力状态:只有一个主应力不等于零,另两个主应力 都等于零的应力状态。
2、二向应力状态:有两个主应力不等于零 ,另一个主应力 等于零的应力状态。
等价
y x
xy
y
x
n
xy
t
图1
设:斜截面面积为dA,由分离体平衡得:
F n0;
d A (xdcAo )c so s(xd y cAo )ssin (ydsAin )sin (yd x sAin )co s0
Ft 0
dA(xdA cos)sin(xydA cos)cos (ydA sin)cos(yxdA sin)sin0
小结
§8—1 应力状态概述
一、基本概念:
m a x ; m a x
F 铸铁拉伸
F 铸铁压缩
F 铸铁与低碳钢的拉、压、扭 试验现象是怎样产生的?
M
低碳钢 铸铁
组合变形杆将怎样破坏?
σmax ? τmax ?
F M
1、应力状态:构件内任意一点处取一单元体,单元体上的应力。 2、一点处应力状态:构件内通过一点各个方向的应力的总称。 3、研究的目的:找出一点处沿不同方向应力的变化规律,确定
出最大应力,从而全面考虑构件破坏的原因, 建立适当的强度条件。
4、研究方法:取单元体。
单元体的概念:构件内的点的代表物,是包围被研究点的无限小 的几何体,常用的是正六面体。
单元体上应力的性质:每个面上的应力均布,每对相平行面上的 应力大小、性质完全相同。
σα
FP
A FP
x A x
A τα
5、主平面:剪应力等于零的面。 6、主应力:主平面上的应力(正应力)。 7、主单元体:由主平面组成的单元体。
min
x 2
y
(x 2y)2x2 y
450
σ1
yx
0 0x2yxy
1x;y 20 ;3 x.y
20
30 单位:MPa σ1 、σ2、σ3 ?
2、主平面
tg20
2xy x y
2xy
0
0 450;
例:如图所示单元体,求α斜面的应力及主应力、主平面。
60
解:1、 α斜面的应力
50 40
x 2 y x 2 yc2 o s xs y 2 i n
σ1=80.7(MPa);σ2=0;σ3=-60.7(MPa)。
tg20
2xy x y
2 ( 50 ) 40 60
1
0 67.50
60 50
σ1
60
α0
50
40
σ1;σ2;σ3?
90
40
σ3
(单位:MPa)
§8-3 平面应力状态分析——图解法
一、基本原理:
xx 2 2yysin2 x 2yxcycoo2s2sxysin2
300
40604060cos6( 00)
2
2
(单位:MPa)
(50)sin(600)58.3(MP)a
x 2ysi2n xy co 2s
4060sin6(00)(5)0cos6(00) 2
1.83(MP ) a
2、主应力、主平面
ma x
min
x y( 2
x 2
y)2x2 y
42 0 6 0(42 0 6)2 0 ( 5)2 0 8 6..7 7 0 0 ( (M M) )P P
x y 2xy
——最大剪应力 所在的位置
(1;
1 1900 )
max
min
(x
y)2
2Leabharlann 2 xy——xy面内的最大剪应力
max
min
1
3
2
——整个单元体内的最大剪应力
最大剪应力与X轴的夹角规定为“α1”
tg20tg211
(10450)
例:如图所示单元体,求主应力及主平面。
解:1、主应力
σ3
xy
max
考虑剪应力互等和三角变换,得:
x 2 y x 2 yc2 o s xs y 2 i n
x 2ysi2n xy co 2s
——任意α斜面应力的计算公式
规律: 900xy
注意:用公式计算时代入相应的正负号
符号规定:、“”正负号同“”; 、 “正负号同“ ;
、 “为斜面的外法线与 轴正向的夹角, 逆时针为正,顺时针为负。
第八章 应力与应变状态分析
§8—1 应力状态概述 §8-2 平面应力状态分析——解析法 §8-3 平面应力状态分析——图解法 §8-4 梁的主应力及其主应力迹线 §8-5 三向应力状态研究 §8-6 平面应力状态下的应变分析 §8-7 复杂应力状态下的应力 -- 应变关系 §8-8 复杂应力状态下的变形比能
对上述方程消参(2),得:
x 2y 2 2 x 2y 2x 2y ——应力圆方程(莫尔圆)
圆心:
(
x
y
,0)
2
半径: R
(xy
2
)2
xy2
二、应力圆的绘制:
1、取直角坐标系σοτ。
2、取比例尺(严格按比例做图)。
3、找点 D(x,xy) D(y,yx)