TSP分支定界法
动态规划法,回溯法,分支限界法求解TSP问题实验报告
TSP问题算法实验报告指导教师:****名:***学号:**********提交日期:2015年11月目录总述 (2)动态规划法 (3)算法问题分析 (3)算法设计 (3)实现代码 (3)输入输出截图 (6)OJ提交截图 (6)算法优化分析 (6)回溯法 (6)算法问题分析 (6)算法设计 (7)实现代码 (7)输入输出截图 (9)OJ提交截图 (9)算法优化分析 (10)分支限界法 (10)算法问题分析 (10)算法设计 (10)实现代码 (10)输入输出截图 (15)OJ提交截图 (15)算法优化分析 (15)总结 (16)总述TSP问题又称为旅行商问题,是指一个旅行商要历经所有城市一次最后又回到原来的城市,求最短路程或最小花费,解决TSP可以用好多算法,比如蛮力法,动态规划法…具体的时间复杂的也各有差异,本次实验报告包含动态规划法,回溯法以及分支限界法。
动态规划法算法问题分析假设n个顶点分别用0~n-1的数字编号,顶点之间的代价存放在数组mp[n][n]中,下面考虑从顶点0出发求解TSP问题的填表形式。
首先,按个数为1、2、…、n-1的顺序生成1~n-1个元素的子集存放在数组x[2^n-1]中,例如当n=4时,x[1]={1},x[2]={2},x[3]={3},x[4]={1,2},x[5]={1,3},x[6]={2,3},x[7]={1,2,3}。
设数组dp[n][2^n-1]存放迭代结果,其中dp[i][j]表示从顶点i经过子集x[j]中的顶点一次且一次,最后回到出发点0的最短路径长度,动态规划法求解TSP问题的算法如下。
算法设计输入:图的代价矩阵mp[n][n]输出:从顶点0出发经过所有顶点一次且仅一次再回到顶点0的最短路径长度1.初始化第0列(动态规划的边界问题)for(i=1;i<n;i++)dp[i][0]=mp[i][0]2.依次处理每个子集数组x[2^n-1]for(i=1;i<n;i++)if(子集x[j]中不包含i)对x[j]中的每个元素k,计算d[i][j]=min{mp[i][k]+dp[k][j-1]};3.输出最短路径长度。
TSP问题的解决方案课案
《算法设计与分析》实验报告一学号:姓名:日期: 20161230 得分:一、实验内容:TSP问题二、所用算法的基本思想及复杂度分析:1、蛮力法1)基本思想借助矩阵把问题转换为矩阵中点的求解。
首先构造距离矩阵,任意节点到自身节点的距离为无穷大。
在第一行找到最小项a[1][j],从而跳转到第j行,再找到最小值a[j][k],再到第k行进行查找。
然后构造各行允许数组row[n]={1,1…1},各列允许数组colable[n]={0,1,1….1},其中1表示允许访问,即该节点未被访问;0表示不允许访问,即该节点已经被访问。
如果改行或该列不允许访问,跳过该点访问下一节点。
程序再发问最后一个节点前,所访问的行中至少有1个允许访问的节点,依次访问这些节点找到最小的即可;在访问最后一个节点后,再次访问,会返回k=0,即实现访问源节点,得出一条简单回路。
2)复杂度分析基本语句是访问下一个行列中最小的点,主要操作是求平方,假设有n 个点,则计算的次数为n^2-n。
T(n)=n*(n-1)=O(n^2)。
2、动态规划法1)基本思想假设从顶点s出发,令d(i, V’)表示从顶点i出发经过V’(是一个点的集合)中各个顶点一次且仅一次,最后回到出发点s的最短路径长度。
推导:(分情况来讨论)①当V’为空集,那么d(i, V’),表示从i不经过任何点就回到s了,如上图的城市3->城市0(0为起点城市)。
此时d(i, V’)=Cis(就是城市i 到城市s 的距离)、②如果V’不为空,那么就是对子问题的最优求解。
你必须在V’这个城市集合中,尝试每一个,并求出最优解。
d(i, V’)=min{Cik +d(k, V’-{k})}注:Cik表示你选择的城市和城市i的距离,d(k, V’-{k})是一个子问题。
综上所述,TSP问题的动态规划方程就出来了:2)复杂度分析和蛮力法相比,动态规划求解tsp问题,把原来时间复杂性O(n!)的排列转化为组合问题,从而降低了时间复杂度,但仍需要指数时间。
TSP问题分析动态规划,分支界限法,蛮力法
算法综合实验报告学号: 1004111115 姓名:李宏强一、实验内容:分别用动态规划、贪心及分支限界法实现对TSP问题(无向图)的求解,并至少用两个测试用例对所完成的代码进行正确性及效率关系上的验证。
二、程序设计的基本思想、原理和算法描述:(包括程序的数据结构、函数组成、输入/输出设计、符号名说明等)1、动态规划法(1)数据结构:利用二进制来表示集合,则集合S可由一个十进制数x相对应,此x所由一个十进制数x相对应,此x所对应的二进制数为y,如果y的第k位为1,则表示k存在集合S中。
例如:集合S={0,1}(其子集合为{}{0}{1}{01}),我们用二进制数11(所对应十进制数为3)表示S,11中右手边第1个数为1表示0在集合S中,右手边第二个数为1表示1在集合S中,其他位为0表示其它数字不在集合S中;同理,集合S={0,2}(其子集合为{}{0}{2}{02}可用二进制数101(所对应十进制数为5)表示(右手边第1个数为1表示0在集合S中,右手边第二个数为0表示1不在集合S中,右手边第3个数为1表示2在集合S中,则说明0,2在集合中,1不在集合中。
利用邻接矩阵表示任意两点之间的距离例如:mp[i][j]表示点i,j两点之间的距离。
(2)函数组成输入函数in()利用动态规划法算法实现的求解函数solve()主函数main()(3)输入/输出设计本程序可以通过键盘进行输入、屏幕进行输出。
(根据实际程序情况,还可以选择随机产生输入数据、将输出数据输出到文件等其它方式)这里采用随机产生输入数据,将数据输出在屏幕上的方式。
(4)符号名说明n 表示顶点个数。
mp[i][j] 表示顶点i和顶点j之间的距离。
dp[i][j] 表示顶点i经过集合S(用二进制表示的数为j)后回到起始点的最短路径和。
(5)算法描述某一个点i不经过任意点回到起始点的最短路径和为mp[i][0](默认初始点为0)dp[i][0] = mp[i][0]; (1<=i<n)点i经过集合S(二进制表示的数为j)的最短路径和为从点i经过集合S中的某一点k后再从该点出发,经过集合S-{k}的最小值。
分支限界法——TSP问题讲诉
算法中while循环的终止条件是排列树的一个叶结点成为 当前扩展结点。当s=n-1时,已找到的回路前缀是x[0:n1],它已包含图G的所有n个顶点。因此,当s=n-1时,相 应的扩展结点表示一个叶结点。此时该叶结点所相应的回 路的费用等于cc和lcost的值。剩余的活结点的lcost值不 小于已找到的回路的费用。它们都不可能导致费用更小的 回路。因此已找到叶结点所相应的回路是一个最小费用旅 行售货员回路,算法可结束。 算法结束时返回找到的最小费用,相应的最优解由数组v 给出。
0
当前最优解,故没必要扩展
结点C
结点I本身的费用已高于当前 最优解,故没必要扩展结点I
此时,优先队列为空,算法 终止。
算法的while循环体完成对排列树内部结点的扩展。
对于当前扩展结点,算法分2种情况进行处理:
①首先考虑s=n-2的情形,此时当前扩展结点是排列树中某个叶结点的父结 点。如果该叶结点相应一条可行回路且费用小于当前最小费用,则将该叶结 点插入到优先队列中,否则舍去该叶结点。 ②当s<n-2时,算法依次产生当前扩展结点的所有儿子结点。由于当前扩展 结点所相应的路径是x[0:s],其可行儿子结点是从剩余顶点x[s+1:n-1]中选 取的顶点x[i],且(x[s],x[i])是所给有向图G中的一条边。对于当前扩展结点 的每一个可行儿子结点,计算出其前缀(x[0:s],x[i])的费用cc和相应的下界 lcost。当lcost<bestc时,将这个可行儿子结点插入到活结点优先队列中。
算法: 1.找出中间的蚂蚁离两端的距离中较小的。
a[2]=11
a[2]''=27-11=14, 因为a[2]<a[2]'',所以最小距离是11,时间11/1=11 2.找出两端的蚂蚁距两端的距离中较大的。
组合优化问题简介
组合优化问题简介在我们的日常生活和工作中,经常会遇到各种各样需要做出最优选择的情况。
比如,在旅行时规划最佳路线,以使花费的时间和费用最少;在生产线上安排工序,以提高生产效率和降低成本;在物流运输中选择最优的配送方案,以减少运输时间和成本等等。
这些问题都属于组合优化问题。
组合优化问题是一类在离散的、有限的可行解集合中,寻找最优解的问题。
这里的“组合”意味着解决方案是由多个元素的组合而成,而“优化”则表示我们要找到其中最好的那个组合。
让我们以一个简单的例子来理解组合优化问题。
假设你要从城市 A 前往城市 C,中间需要经过城市 B。
从 A 到 B 有三条路线可选择,分别需要花费 2 小时、3 小时和 4 小时;从 B 到 C 也有三条路线可选择,分别需要花费 1 小时、2 小时和 3 小时。
那么,要找到从 A 到 C 的最短时间路线,就需要考虑所有可能的组合,即 3×3=9 种组合,然后从中挑选出总时间最短的那一种。
组合优化问题具有一些显著的特点。
首先,可行解的数量通常是有限的,但可能非常庞大。
就像上面的例子,仅仅是两个阶段的选择就有 9 种可能,如果涉及更多的阶段和更多的选择,可行解的数量会呈指数级增长,这使得直接枚举所有可能的解变得非常困难,甚至在计算上是不可行的。
其次,组合优化问题的目标函数通常是明确的。
在上述例子中,目标就是找到从 A 到 C 的总时间最短的路线,这个目标是清晰可度量的。
再者,很多组合优化问题具有实际的应用背景和重要的经济价值。
例如,在资源分配问题中,如何将有限的资源分配给不同的项目或任务,以实现最大的效益;在网络设计中,如何规划网络拓扑结构,以最小化建设成本和提高网络性能;在排班问题中,如何安排员工的工作时间表,以满足业务需求并减少人力成本等。
常见的组合优化问题包括旅行商问题(TSP)、背包问题、装箱问题、指派问题等。
旅行商问题是一个经典的组合优化问题。
假设有一个旅行商要访问n 个城市,每个城市只能访问一次,最后回到出发城市。
Tsp问题的几种算法的讲解
摘要本文分析比较了tsp问题的动态规划算法,分支界限法,近似等算法。
分析了旅行商问题的时间度特点,针对启发式算法求解旅行商问题中存在的一些问题提出了改进算法。
此算法将群体分为若干小子集,并用启发式交叉算子,以较好利用父代个体的有效信息,达到快速收敛的效果,实验表明此算法能提高寻优速度,解得质量也有所提高。
关键词:旅行商问题TSPAbstractthis paper analyzed the time complexity of traveling salesman problem,then put forward some imprivement towards the genetic algorithm for solving this problen: divding the population into some small parent individual well.so it can quickly get into convergence, the experimental result indicates the impwoved algorithm can accelerate the apeed of finding solution and improve the precision.Keywords traveling salesman problem; genetic algorithm; subset; henristic crossover operator目录1、摘要--------------------------------------------------------------12、Abstract---------------------------------------------------------13、Tsp问题的提法------------------------------------------------24、回溯法求Tsp问题--------------------------------------------35、分支限界法求Tsp问题--------------------------------------76、近似算法求解Tsp问题-------------------------------------107、动态规划算法解Tsp问题----------------------------------12引言tsp问题刚提出时,不少人都认为很简单。
TSP问题的几种解法对比
城市旅行问题之路程短摘要城市旅行问题即旅行商(TSP)问题,要从图G的所有周游路线中求取最小成本的周游路线,而从初始点出发的周游路线一共有(n-1)!条,即等于除初始结点外的n-1个结点的排列数,因此旅行商问题是一个排列问题。
排列问题比子集合的选择问题通常要难于求解得多,这是因为n个物体有n!种排列,只有子集合(n!>O( n2))。
通过枚举(n-1)!条周游路线,从中找出一条具有最小成本的周游路线的算法,其计算时间显然为O(n!)。
这种枚举法运算量相当庞大,随着城市数量呈指数增长。
为此,我们对比应用随机探索的模拟退火算法,线性规划和蚁群算法三种方法:模拟退火算法,利用物理退火达到平衡态时的统计思想,建立数学模型,编写该算法的MATLAB程序,进行求解,得出最短旅行的最短距离为422.13;对TSP的约束条件和目标函数编写LINGO程序,经过多次迭代,得出最短旅行的最短距离也为422.13;蚁群算法:基于自然界蚂蚁觅食的最短路径原理,建立模型,通过MATLAB程序,得出最短旅行距离为427.8971。
关键词模拟退火算法线性规划蚁群算法一.问题重述一个人要到30个不同的城市游玩,每两个城市i和j之间的距离为d ij,如何选择一条路径使得此人走遍所有城市后又回到起点,要求所走路径最短。
二.符号说明三.问题分析与处理便于我们说明和解决问题,先将题中给出的城市编号:表一30座城市的坐标3.1模拟退火方法这是一个典型的TSP组合优化问题[1],并且是一个N-P难问题。
传统的解决此类问题的方法包括:分枝定界法、线性规划法和动态规划法等等。
随着人工智能的发展,一些智能优化的算法逐渐产生,这其中模拟退火算法因具有高效、稳定、通用、灵活的优点备受专家和学者的青睐。
将模拟退火算法引入STP问题求解,可以有效的避免在求解过程中陷入局部最优。
下面就是我们用模拟退火算法具体解决这个问题。
算法设计步骤:(1)问题的解空间和初始值城市旅行问题的解空间S 是遍访36个城市恰好一次的所有回路,是所有城市排列的集合。
TSP问题算法分析
算法第二次大作业TSP问题算法分析021251班王昱(02125029)一.问题描述“TSP问题”常被称为“旅行商问题”,是指一名推销员要拜访多个地点时,如何找到在拜访每个地点一次后再回到起点的最短路径。
TSP问题在本实验中的具体化:从A城市出发,到达每个城市并且一个城市只允许访问一次,最后又回到原来的城市,寻找一条最短距离的路径。
二.算法描述2.1分支界限法2.1.1 算法思想分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
在分支限界法中,每一个活结点只有一次机会成为扩展结点。
活结点一旦成为扩展结点,就一次性产生其所有儿子结点。
在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。
此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。
这个过程一直持续到找到所需的解或活结点表为空时为止。
2.1.2 算法设计说明设求解最大化问题,解向量为X=(x1,…,xn),xi的取值范围为Si,|Si|=ri。
在使用分支限界搜索问题的解空间树时,先根据限界函数估算目标函数的界[down, up],然后从根结点出发,扩展根结点的r1个孩子结点,从而构成分量x1的r1种可能的取值方式。
对这r1个孩子结点分别估算可能的目标函数bound(x1),其含义:以该结点为根的子树所有可能的取值不大于bound(x1),即:bound(x1)≥bound(x1,x2)≥…≥ bound(x1,…,xn)若某孩子结点的目标函数值超出目标函数的下界,则将该孩子结点丢弃;否则,将该孩子结点保存在待处理结点表PT中。
再取PT表中目标函数极大值结点作为扩展的根结点,重复上述。
直到一个叶子结点时的可行解X=(x1,…,xn),及目标函数值bound(x1,…,xn)。
2.2 A*算法算法思想对于某一已到达的现行状态, 如已到达图中的n节点, 它是否可能成为最佳路径上的一点的估价, 应由估价函数f(n)值来决定。
动态规划法,回溯法,分支限界法求解TSP问题实验报告材料
TSP问题算法实验报告指导教师:季晓慧姓名:辛瑞乾学号: 1004131114 提交日期: 2015年11月目录总述 (2)动态规划法 (3)算法问题分析 (3)算法设计 (3)实现代码 (3)输入输出截图 (6)OJ提交截图 (6)算法优化分析 (6)回溯法 (6)算法问题分析 (6)算法设计 (7)实现代码 (7)输入输出截图 (9)OJ提交截图 (10)算法优化分析 (10)分支限界法 (10)算法问题分析 (10)算法设计 (10)实现代码 (11)输入输出截图 (15)OJ提交截图 (16)算法优化分析 (16)总结 (16)总述TSP问题又称为旅行商问题,是指一个旅行商要历经所有城市一次最后又回到原来的城市,求最短路程或最小花费,解决TSP可以用好多算法,比如蛮力法,动态规划法…具体的时间复杂的也各有差异,本次实验报告包含动态规划法,回溯法以及分支限界法。
动态规划法算法问题分析假设n个顶点分别用0~n-1的数字编号,顶点之间的代价存放在数组mp[n][n]中,下面考虑从顶点0出发求解TSP问题的填表形式。
首先,按个数为1、2、…、n-1的顺序生成1~n-1个元素的子集存放在数组x[2^n-1]中,例如当n=4时,x[1]={1},x[2]={2},x[3]={3},x[4]={1,2},x[5]={1,3},x[6]={2,3},x[7]={1,2,3}。
设数组dp[n][2^n-1]存放迭代结果,其中dp[i][j]表示从顶点i经过子集x[j]中的顶点一次且一次,最后回到出发点0的最短路径长度,动态规划法求解TSP问题的算法如下。
算法设计输入:图的代价矩阵mp[n][n]输出:从顶点0出发经过所有顶点一次且仅一次再回到顶点0的最短路径长度1.初始化第0列(动态规划的边界问题)for(i=1;i<n;i++)dp[i][0]=mp[i][0]2.依次处理每个子集数组x[2^n-1]for(i=1;i<n;i++)if(子集x[j]中不包含i)对x[j]中的每个元素k,计算d[i][j]=min{mp[i][k]+dp[k][j-1]};3.输出最短路径长度。
求解TSP算法
问题) 以来, DNA 计算成为了当今研究一 大 热 点 。 论 文 提 出 的 一种 DNA 计算算法可以在线性的操作次数内获得 TSP 的全部 精确解。
1 问题的提出
设有 n 个城市, 一个旅行推销员从某城市出发, 要经过其 余 n- 1 个城市, 最后回到出发的城市, 他怎样选择路程最短的 路线?这就是著名的旅行商问题( TSP) 或货郎担问题。用图论的 语 言 来 描 述 , 正 权 图 G=( V, E, W) 中 , 包 含 图 G 中 每 个 点 至 少 一次的一条环路称为推销员环路, 一条具有最小权和的推销员 环路称为最佳推销员环路, 求最佳推销员环路的问题称为旅行 推销员问题( TSP) 。而具有最小权和的哈密尔顿回路称为最佳 哈密尔顿回路, 求最佳哈密尔顿回路的问题, 称为最佳哈密尔 顿回路问题[2-4]。最佳哈密尔顿回路不一定是最佳 推 销 员 环 路 , 同 样 最 佳 推 销 员 环 路 也 不 一 定 是 最 佳 哈 密 尔 顿 回 路 。但 是 当 正
作者简介: 周康( 1965- ) , 男, 副教授, 博士生, 从事 DNA 计算、运筹学、系统稳定性。
44 2007, 43( 29)
Computer Engineering and Applications 计算机工程与应用
权无向图满足三角不等式, 即两边长度之和大于等于第三边 时, 最佳哈密尔顿回路就是图 G 旅行推销员问题的最佳解。由 于对任何一个正权无向图 , 用 点 vi 到 点 vj 的 最 短 路 径 的 权 替 换权 wij, 则图就满足三角不等式了。因此, TSP 转化为满足三角 不 等 式 的 n 阶 完 全 正 权 无 向 图 G=( V, E, W) 的 最 佳 哈 密 尔 顿 回路问题。TSP 难度大的原因:( 1) 判断 G 是否是哈密尔顿图, 目前既无有效算法, 也不知道这样的有效算法是否存在。在不 知道 G 是否为哈密尔顿图的情况下去寻找 G 的哈密尔顿回路 自然是非常盲目的。( 2) 即使 己 知 G 是 一 个 哈 密 尔 顿 图 , 要 求 出它的一个哈密尔顿回路, 至今没有有效算法, 也不知道这种 有效算法是否存在。
摘要TSP问题是组合优化领域的经典问题之一.
摘要:TSP问题是组合优化领域的经典问题之一,吸引了许多不同领域的研究工作者,包括数学,运筹学,物理,生物和人工智能等领域,他是目前优化领域里的热点.本文从动态规划法,分支界限法,回溯法分别来实现这个题目,并比较哪种更优越,来探索这个经典的NP(Nondeterministic Polynomial)难题.关键词:旅行商问题求解算法比较一.引言旅行商问题(Travelling Salesman Problem),是计算机算法中的一个经典的难解问题,已归为NP一完备问题类.围绕着这个问题有各种不同的求解方法,已有的算法如动态规划法,分支限界法,回溯法等,这些精确式方法都是指数级(2n)[2,3]的,根本无法解决目前的实际问题,贪心法是近似方法,而启发式算法不能保证得到的解是最优解,甚至是较好的解释.所以我认为很多问题有快速的算法(多项式算法),但是,也有很多问题是无法用算法解决的.事实上,已经证明很多问题不可能在多项式时间内解决出来.但是,有很多很重要的问题他们的解虽然很难求解出来,但是他们的值却是很容易求可以算出来的.这种事实导致了NP完全问题.NP表示非确定的多项式,意思是这个问题的解可以用非确定性的算法"猜"出来.如果我们有一个可以猜想的机器,我们就可以在合理的时间内找到一个比较好的解.NP-完全问题学习的简单与否,取决于问题的难易程度.因为有很多问题,它们的输出极其复杂,比如说人们早就提出的一类被称作NP-难题的问题.这类问题不像NP-完全问题那样时间有限的.因为NP-问题由上述那些特征,所以很容易想到一些简单的算法――把全部的可行解算一遍.但是这种算法太慢了(通常时间复杂度为O(2^n))在很多情况下是不可行的.现在,没有知道有没有那种精确的算法存在.证明存在或者不存在那种精确的算法这个沉重的担子就留给了新的研究者了,或许你就是成功者.本篇论文就是想用几种方法来就一个销售商从几个城市中的某一城市出发,不重复地走完其余N—1个城市,并回到原出发点,在所有可能的路径中求出路径长度最短的一条,比较是否是最优化,哪种结果好.二.求解策略及优化算法动态规划法解TSP问题我们将具有明显的阶段划分和状态转移方程的规划称为动态规划,这种动态规划是在研究多阶段决策问题时推导出来的,具有严格的数学形式,适合用于理论上的分析.在实际应用中,许多问题的阶段划分并不明显,这时如果刻意地划分阶段法反而麻烦.一般来说,只要该问题可以划分成规模更小的子问题,并且原问题的最优解中包含了子问题的最优解(即满足最优子化原理),则可以考虑用动态规划解决.所以动态规划的实质是分治思想和解决冗余,因此,动态规划是一种将问题实例分解为更小的,相似的子问题,并存储子问题的解而避免计算重复的子问题,以解决最优化问题的算法策略.旅行商问题(TSP问题)其实就是一个最优化问题,这类问题会有多种可能的解,每个解都有一个值,而动态规划找出其中最优(最大或最小)值的解.若存在若干个取最优值的解的话,它只取其中的一个.在求解过程中,该方法也是通过求解局部子问题的解达到全局最优解,但与分治法和贪心法不同的是,动态规划允许这些子问题不独立,(亦即各子问题可包含公共的子子问题)也允许其通过自身子问题的解作出选择,该方法对每一个子问题只解一次,并将结果保存起来,避免每次碰到时都要重复计算.关于旅行商的问题,状态变量是gk(i,S),表示从0出发经过k个城市到达i的最短距离,S为包含k 个城市的可能集合,动态规划的递推关系为:gk(i,S)=min[gk-1(j,S\{j})+dji] j属于S,dji表示j-i的距离.或者我们可以用:f(S,v)表示从v出发,经过S中每个城市一次且一次,最短的路径.f(S,v)=min { f(S-{u},u)+dist(v,u) }u in Sf(V,1)即为所求2.分支限界法解TSP问题旅行商问题的解空间是一个排列树,与在子集树中进行最大收益和最小耗费分枝定界搜索类似,使用一个优先队列,队列中的每个元素中都包含到达根的路径.假设我们要寻找的是最小耗费的旅行路径,那可以使用最小耗费分枝定界法.在实现过程中,使用一个最小优先队列来记录活节点,队列中每个节点的类型为M i n H e ap N o d e.每个节点包括如下区域: x(从1到n的整数排列,其中x [ 0 ] = 1 ),s(一个整数,使得从排列树的根节点到当前节点的路径定义了旅行路径的前缀x[0:s], 而剩余待访问的节点是x [ s + 1 : n - 1 ]),c c(旅行路径前缀,即解空间树中从根节点到当前节点的耗费),l c o s t(该节点子树中任意叶节点中的最小耗费), rc o s t(从顶点x [ s : n - 1 ]出发的所有边的最小耗费之和).当类型为M i n He a p N o d e ( T )的数据被转换成为类型T时,其结果即为l c o s t的值.分枝定界算法的代码见程序.程序首先生成一个容量为1 0 0 0的最小堆,用来表示活节点的最小优先队列.活节点按其l c o s t 值从最小堆中取出.接下来,计算有向图中从每个顶点出发的边中耗费最小的边所具有的耗费M i n O u t.如果某些顶点没有出边,则有向图中没有旅行路径,搜索终止.如果所有的顶点都有出边,则可以启动最小耗费分枝定界搜索.根的孩子(图1 6 - 5的节点B)作为第一个E-节点,在此节点上,所生成的旅行路径前缀只有一个顶点1,因此s=0, x[0]=1, x[1:n-1]是剩余的顶点(即顶点2 , 3 ,., n ).旅行路径前缀1 的开销为0 ,即c c = 0 ,并且,r c o st=n i=1M i n O u t .在程序中,bestc 给出了当前能找到的最少的耗费值.初始时,由于没有找到任何旅行路径,因此b e s t c的值被设为N o E d g e. 程序旅行商问题的最小耗费分枝定界算法templateT AdjacencyWDigraph::BBTSP(int v[]){// 旅行商问题的最小耗费分枝定界算法// 定义一个最多可容纳1 0 0 0个活节点的最小堆MinHeap > H(1000);T *MinOut = new T [n+1];// 计算MinOut = 离开顶点i的最小耗费边的耗费T MinSum = 0; // 离开顶点i的最小耗费边的数目for (int i = 1; i <= n; i++) {T Min = NoEdge;for (int j = 1; j <= n; j++)if (a[j] != NoEdge &&(a[j] < Min || Min == NoEdge))Min = a[j];if (Min == NoEdge) return NoEdge; // 此路不通MinOut = Min;MinSum += Min;}// 把E-节点初始化为树根MinHeapNode E;E.x = new int [n];for (i = 0; i < n; i++)E.x = i + 1;E.s = 0; // 局部旅行路径为x [ 1 : 0 ] = 0; // 其耗费为0E.rcost = MinSum;T bestc = NoEdge; // 目前没有找到旅行路径// 搜索排列树while (E.s < n - 1) {// 不是叶子if (E.s == n - 2) {// 叶子的父节点// 通过添加两条边来完成旅行// 检查新的旅行路径是不是更好if (a[E.x[n-2]][E.x[n-1]] != NoEdge && a[E.x[n-1]][1] != NoEdge && ( + a[E.x[n-2]][E.x[n-1]] + a[E.x[n-1]][1] < bestc || bestc == NoEdge)) {// 找到更优的旅行路径bestc = + a[E.x[n-2]][E.x[n-1]] + a[E.x[n-1]][1]; = bestc;E.lcost = bestc;E . s + + ;H . I n s e r t ( E ) ; }else delete [] E.x;}else {// 产生孩子for (int i = E.s + 1; i < n; i++)if (a[E.x[E.s]][E.x] != NoEdge) {// 可行的孩子, 限定了路径的耗费T cc = + a[E.x[E.s]][E.x];T rcost = E.rcost - MinOut[E.x[E.s]];T b = cc + rcost; //下限if (b < bestc || bestc == NoEdge) {// 子树可能有更好的叶子// 把根保存到最大堆中MinHeapNode N;N.x = new int [n];for (int j = 0; j < n; j++)N.x[j] = E.x[j];N.x[E.s+1] = E.x;N.x = E.x[E.s+1]; = cc;N.s = E.s + 1;N.lcost = b;N.rcost = rcost;H . I n s e r t ( N ) ; }} // 结束可行的孩子delete [] E.x;} // 对本节点的处理结束try {H.DeleteMin(E);} // 取下一个E-节点catch (OutOfBounds) {break;} // 没有未处理的节点}if (bestc == NoEdge) return NoEdge; // 没有旅行路径// 将最优路径复制到v[1:n] 中for (i = 0; i < n; i++)v[i+1] = E.x;while (true) {//释放最小堆中的所有节点delete [] E.x;try {H.DeleteMin(E);}catch (OutOfBounds) {break;}}return bestc;}while 循环不断地展开E-节点,直到找到一个叶节点.当s = n - 1时即可说明找到了一个叶节点.旅行路径前缀是x [ 0 : n - 1 ],这个前缀中包含了有向图中所有的n个顶点.因此s = n - 1的活节点即为一个叶节点.由于算法本身的性质,在叶节点上lco st 和cc 恰好等于叶节点对应的旅行路径的耗费.由于所有剩余的活节点的lcost 值都大于等于从最小堆中取出的第一个叶节点的lcost 值,所以它们并不能帮助我们找到更好的叶节点,因此,当某个叶节点成为E-节点后,搜索过程即终止. while 循环体被分别按两种情况处理,一种是处理s = n - 2的E-节点,这时,E-节点是某个单独叶节点的父节点.如果这个叶节点对应的是一个可行的旅行路径,并且此旅行路径的耗费小于当前所能找到的最小耗费,则此叶节点被插入最小堆中,否则叶节点被删除,并开始处理下一个E-节点.其余的E-节点都放在while 循环的第二种情况中处理.首先,为每个E-节点生成它的两个子节点,由于每个E-节点代表着一条可行的路径x [ 0 : s ],因此当且仅当是有向图的边且x [ i ]是路径x [ s + 1 : n - 1 ]上的顶点时,它的子节点可行.对于每个可行的孩子节点,将边的耗费加上 即可得到此孩子节点的路径前缀( x [ 0 : s ],x) 的耗费c c.由于每个包含此前缀的旅行路径都必须包含离开每个剩余顶点的出边,因此任何叶节点对应的耗费都不可能小于cc 加上离开各剩余顶点的出边耗费的最小值之和,因而可以把这个下限值作为E-节点所生成孩子的lcost 值.如果新生成孩子的lcost 值小于目前找到的最优旅行路径的耗费b e s t c,则把新生成的孩子加入活节点队列(即最小堆)中.如果有向图没有旅行路径,程序返回N o E d g e;否则,返回最优旅行路径的耗费,而最优旅行路径的顶点序列存储在数组v 中.3.回朔法解TSP问题回朔法有"通用解题法"之称,它采用深度优先方式系统地搜索问题的所有解,基本思路是:确定解空间的组织结构之后,从根结点出发,即第一个活结点和第一个扩展结点向纵深方向转移至一个新结点,这个结点成为新的活结点,并成为当前扩展结点.如果在当前扩展结点处不能再向纵深方向转移,则当前扩展结点成为死结点.此时,回溯到最近的活结点处,并使其成为当前扩展结点,回溯到以这种工作方式递归地在解空间中搜索,直到找到所求解空间中已经无活结点为止.旅行商问题的解空间是一棵排列树.对于排列树的回溯搜索与生成1,2,……, n的所有排列的递归算法Perm类似.设开始时x=[ 1,2,… n ],则相应的排列树由x[ 1:n ]的所有排列构成.旅行商问题的回溯算法找旅行商回路的回溯算法Backtrack是类Treveling的私有成员函数,TSP是Treveling的友员.TSP(v)返回旅行售货员回路最小费用.整型数组v返回相应的回路.如果所给的图G不含旅行售货员回路,则返回NoEdge.函数TSP所作的工作主要是为调用Backtrack所需要变量初始化.由TSP调用Backtrack(2)搜索整个解空间.在递归函数Backtrack中,当i = n时,当前扩展结点是排列树的叶结点的父结点.此时,算法检测图G是否存在一条从顶点x[ n-1 ]到顶点x[ n ]的边和一条从顶点x[ n ]到顶点1的边.如果这两条边都存在,则找一条旅行售货员回路.此时,算法还需判断这条回路的费用是否优于已找到的当前最优回路的费用best.如果是,则必须更新当前最优值bestc和当前最优解bestx.当i < n时,当前扩展结点位于排列树的第i–1 层.图G中存在从顶点x[ i-1 ]到顶点x[ i ]的边时,x[ 1:i ]构成图G的一条路径,且当x[ 1:i ]的费用小于当前最优值时,算法进入排列树的第I层.否则将剪去相应的子树.算法中用变量cc记录当前路径x[ 1:i ]的费用.解旅行商售货员问题的回溯法可描述如下:templateclass Traveling {friend Type TSP(int * *,int [],Type);private:void Backtrack(int i);int n, //图G的顶点数* x, //当前解*bestx; //当前最优解Type * *a, //图G的邻接矩阵cc, //当前费用bestc, //当前最优值NoEdge; //无边际记};templatevode Traveling::Backtrack(int i){if(I==n){if(a[x[n-1]][x[n]]! = NoEdge &&a[x[n]][1]!= NoEdge &&(cc + a[x[n-1]][x[n]]+a[x[n]][1]bestc== NoEdge) ){for(int j=1;j<=n;j++)bestx[j]=x[j];bestc =cc + a[x[n-1]][x[n]]+ a[x[n]][1];}}else {for(int j=I; j<=n;j++)//是否可进入x[j]子树if(a[x[i-1]][x[j]]! = NoEdge &&(cc + a[x[i-1]][x[i]]< bestc||bestc == NoEdge//搜索子数Swap(x[i],x[j]);cc += a[x[i-1]][x[i]];Backtrack(I+1);cc -= a[x[i-1]][x[i]];Swap(x[i],x[j]);}}}templateType TSP(Type * *a,int v[],int n,Type NoEdge){Traveling Y;//初始化YY.x = new int[n+1];// 置x为单位排列for(int i=1;i<=n;i++)Y.x[i] = I;Y.a=a;Y.n=n;Y.bestc = NoEdge;Y.bestc = v; = 0;Y. NoEdge = NoEdge;//搜索x[2:n]的全排列Y.Backtrack(2);Delete[] Y.x;三.三种方法的比较1.动态规划法和回朔法的比较:这本来就是两个完全不同的领域,一个是算法领域,一个是数据结构问题.但两者又交叉,又有区别.从本质上讲就是算法与数据结构的本质区别,回朔是一个具体的算法,动态规划是数据结构中的一个概念.动态规划讲究的是状态的转化,以状态为基准,确定算法,动态规划法所针对的问题有一个显著的特征,即它所对应的子问题树中的子问题呈现大量的重复.动态规划法的关键就在于,对于重复出现的子问题,只在第一次遇到时加以求解,并把答案保存起来,让以后再遇到时直接引用,不必重新求解.简单的说就是:动态规划法是从小单元开始积累计算结果.回朔讲究过程的推进与反还,随数据的搜索,标记,确定下一步的行进方向,回朔是去搜索.如果想要搜索时,发现有很多重复计算,就应该想到用动态规划了.动态规划和搜索都可以解决具有最优子结构的问题,然而动态规划在解决子问题的时候不重复计算已经计算过的子问题,对每个子问题只计算一次;而简单的搜索则递归地计算所有遇到的的子问题.比如一个问题的搜索树具有如下形式:........A......./.......B...C...../.\./.....D...E...F如果使用一般深度优先的搜索,依次搜索的顺序是A-B-D-E-C-E-F,注意其中节点E被重复搜索了两次;如果每个节点看作是一个子问题的话,节点E所代表的子问题就被重复计算了两次;但是如果是用动态规划,按照树的层次划分阶段,按照自底向上的顺序,则在第一阶段计算D,E,F;第二阶段计算B,C;第三阶段计算A;这样就没有重复计算子问题E.搜索法的优点是实现方便,缺点是在子问题有大量的重复的时候要重复计算子问题,效率较低;动态规划虽然效率高,但是阶段的划分和状态的表示比较复杂,另外,搜索的时候只要保存单前的结点;而动态规划则至少要保存上一个阶段的所有节点,比如在动态规划进行到第2阶段的时候,必须把第三阶段的D,E,F三个节点全部保存起来,所以动态规划是用空间换时间.另外,有一种折衷的办法,就是备忘录法,这是动态规划的一种变形.该方法的思想是:按照一般的搜索算法解决子问题,但是用一个表将所有解决过的子问题保存起来,遇到一个子问题的时候,先查表看是否是已经解决过的,如果已解决过了就不用重复计算.比如搜索上面那棵树,在A-B-D-E的时候,已经将E记录在表里了,等到了A-B-D-E-C的时候,发现E已经被搜索过,就不再搜索E,而直接搜索F,因此备忘录法的搜索顺序是A-B-D-E-C-(跳过E)-F自底向上的动态规划还有一个缺点,比如对于下面的树:........A......./.......B...C......G...../.\./.\..../.....D...E...F..H (I)如用自底向上的动态规划,各个阶段搜索的节点依次是:D,E,F,H,IB,C,GAA才是我们最终要解决的问题,可以看到,G,H,I根本与问题A无关,但是动态规划还是将它们也解决了一遍,这就造成了效率降低.而备忘录法则可以避免这种问题,按照备忘录法,搜索的次序仍然是:A-B-D-E-C-(跳过E)-F.备忘录法的优点是实现简单,且在子问题空间中存在大量冗余子问题的时候效率较高;但是要占用较大的内存空间(需要开一个很大的表来记录已经解决的子问题),而且如果用递归实现的话递归压栈出栈也会影响效率;而自底向上的动态规划一般用for循环就可以了.值得一提的是,用动态规划法来计算旅行商的时间复杂度是指数型的.2. 分支限界法和回朔法的比较:分支限界法类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法.但在一般情况下,分支限界与回溯法的求解目标不同.回溯法的求解目标是找出T中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解.我们先看一个列子:设G=(V,E)是一个带权图.图1中各边的费用(权)为一正数.图中的一条周游线是包括V中的每个顶点在内的一条回路.一条周游路线的费用是这条路线上所有边的费用之和.所谓旅行售货员问题就是要在图G中找出一条有最小费用的周游路线.给定一个有n个顶点的带权图G,旅行售货员问题要找出图G的费用(权)最小的周游路线.图1是一个4顶点无向带权图.顶点序列1,2,4,3,1;1,3,2,4,1和1,4,3,2,1是该图中3条不同的周游路线. 301 256 1043 20 4图1 4顶点带权图该问题的解空间可以组织成一棵树,从树的根结点到任一叶结点的路径定义了图G的一条周游路线.图1是当n=4时这种树结构的示例.其中从根结点A到叶结点L的路径上边的标号组成一条周游路线1,2,3,4,1.而从根结点到叶结点O的路径则表示周游路线1,3,4,2,1.图G的每一条周游路线都恰好对应解空间树中一条从根结点到叶结点的路径.因此,解空间树中叶结点个数为(n-1)!.A1B2 3 4C D E3 24 2 3F G H I J K4 3 4 2 3 2L M N O P Q图2 旅行售货员问题的解空间树对于图1中的图G,用回溯法找最小费用周游路线时,从解空间树的根结点A出发,搜索至B,C,F,L.在叶结点L处记录找到的周游路线1,2,3,4,1,该周游路线的费用为59.从叶结点L返回至最近活动结点F处.由于F处已没有可扩展结点,算法又返回到结点C处.结点C成为新扩展结点,由新扩展结点,算法再移至结点G 后又移至结点M,得到周游路线1,2,4,3,1,其费用为66.这个费用不比已有周游路线1,2,3,4,1的费用小.因此,舍弃该结点.算法有依次返回至结点G,C,B.从结点B,算法继续搜索至结点D,H,N.在叶结点N算法返回至结点H,D,然后再从结点D开始继续向纵深搜索至结点O.依次方式算法继续搜索遍整个解空间,最终得到1,3,2,4,1是一条最小费用周游路线.以上便是回溯法找最小费用周游路线的实列,但如果我们用分支限界法来解的话,会更适合.由于求解目标不同,导致分支限界法与回溯法在解空间树T上的搜索方式也不相同.回溯法以深度优先的方式搜索解空间树T,而分支限界法则以广度优先或以最小消耗优先的方式搜索解空间树T.分支限界法的搜索策略是,在扩展结点处,先生成所有的儿子结点(分支),然后再从当前的活动点表中选择下一个扩展结点.为了有效地选择下一扩展结点,以加速搜索的进程,在每一活结点处,计算一个函数值(限界),并根据这些已计算出的函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间树上的最优解的分支推进,以便尽快的找出一个最优解.四.结论:参考文献:。
简述哈密顿的周游列国问题及其解答
简述哈密顿的周游列国问题及其解答哈密顿的周游列国问题,也被称为旅行商问题(TSP,Traveling Salesman Problem),是一种典型的组合优化问题。
问题的背景可以描述为:假设有一个旅行商人,他需要在一系列城市之间旅行,并且每座城市只允许访问一次。
问题的目标是找到一条最短的路径,使旅行商人可以访问所有城市并返回起点城市。
这个问题的重要性在于它具有很高的复杂性,是一个NP-困难(Non-Deterministic Polynomial-time hard)问题。
这意味着,目前还没有有效的算法可以在多项式时间内解决该问题,但可以通过一些启发式算法和近似算法来求得较优解。
下面将详细介绍哈密顿的周游列国问题的背景、解法思路和不同的求解方法。
一、问题背景哈密顿的周游列国问题最早由爱德华·哈密顿在19世纪提出。
他的目标是寻找爱尔兰的一种最短路径,使其可以访问爱尔兰的每个城市。
但是,该问题的一般化形式出现在20世纪,成为了一个经典的组合优化问题。
在TSP问题中,城市之间的距离可以表示为距离矩阵。
该矩阵的每个元素表示两个城市之间的距离或成本。
二、求解思路求解哈密顿的周游列国问题的基本思路是穷举所有可能的路径,并选择最短路径作为解。
但是,由于问题的复杂性,穷举所有可能路径的数量是非常庞大的,因此无法用常规方法解决。
三、精确解法1.动态规划解法动态规划是解决哈密顿的周游列国问题的一种精确解法。
基本思路是建立一个状态转移方程,并使用动态规划的方法求解。
具体步骤如下:(1)定义子问题:记d(S, i)为从起点城市出发,访问集合S中的城市,最后到达城市i的最短路径长度。
(2)递推关系:根据子问题,可以得到状态转移方程:d(S, i) = min{d(S-{i}, j) + dist(j, i) | j∈S-{i}}其中,dist(j, i)表示从城市j到城市i的距离。
(3)边界条件:当集合S中没有城市时,d(S, i)的值为dist(起点城市, i)。
TSP问题分析动态规划-分支界限法-蛮力法教学文案
T S P问题分析动态规划-分支界限法-蛮力法算法综合实验报告学号: 1004111115 姓名:李宏强一、实验内容:分别用动态规划、贪心及分支限界法实现对TSP问题(无向图)的求解,并至少用两个测试用例对所完成的代码进行正确性及效率关系上的验证。
二、程序设计的基本思想、原理和算法描述:(包括程序的数据结构、函数组成、输入/输出设计、符号名说明等)1、动态规划法(1)数据结构:①利用二进制来表示集合,则集合S可由一个十进制数x相对应,此x所对应的二进制数为y,如果y的第k位为1,则表示k存在集合S中。
例如:集合S={0,1}(其子集合为{}{0}{1}{01}),我们用二进制数11(所对应十进制数为3)表示S,11中右手边第1个数为1表示0在集合S中,右手边第二个数为1表示1在集合S中,其他位为0表示其它数字不在集合S中;同理,集合S={0,2}(其子集合为{}{0}{2}{02}可用二进制数101(所对应十进制数为5)表示(右手边第1个数为1表示0在集合S中,右手边第二个数为0表示1不在集合S中,右手边第3个数为1表示2在集合S中,则说明0,2在集合中,1不在集合中。
②利用邻接矩阵表示任意两点之间的距离例如:mp[i][j]表示点i,j两点之间的距离。
(2)函数组成①输入函数in()②利用动态规划法算法实现的求解函数solve()③主函数main()(3)输入/输出设计本程序可以通过键盘进行输入、屏幕进行输出。
(根据实际程序情况,还可以选择随机产生输入数据、将输出数据输出到文件等其它方式)这里采用随机产生输入数据,将数据输出在屏幕上的方式。
(4)符号名说明① n 表示顶点个数。
② mp[i][j] 表示顶点i和顶点j之间的距离。
③ dp[i][j] 表示顶点i经过集合S(用二进制表示的数为j)后回到起始点的最短路径和。
(5)算法描述①某一个点i不经过任意点回到起始点的最短路径和为mp[i][0](默认初始点为0)dp[i][0] = mp[i][0]; (1<=i<n)②点i经过集合S(二进制表示的数为j)的最短路径和为从点i经过集合S中的某一点k后再从该点出发,经过集合S-{k}的最小值。
分支定界TSP
(总第 112 期)
用分支定界算法求解旅行商问题(管 琳等)
105
T SP 问题建立如下数学模型
∑x ij = 2
j∈ v
m in z = ∑ ∑x dij ij, i∈ vj∈ v 对所有 i∈ V ,
s.t . ∑ x ij ≥ 2 i∈ S ,j∈ v- s
对所有
S
炒
V
,3
≤
S
≤
[
V 2
],
A bstract: Based on 0- 1 int eger linear prog ram m ing , m at hem at ics m odel is set and solved by linprog funct ion in optim ist ic toolbox of M A T L A B 6.5.T he solution only containing zeros and ones is acquired using branch and bound alg orithm .T he ex perim ent al results indicate t hat t his alg orit hm is suit able for sm all T SP (t raveling salesm an problem ). K ey w ords: traveling salesm an problem ; branch-and-bound algorit hm ; linprog funct ion
4
3
图 2 B 的邻接矩阵图
Fig.2 B adjacent m atrix f igure
4
3
图 3 C 的邻接矩阵图 F ig.3 C adjacent m atrix f igure
求解TSP问题算法综述
求解TSP问题算法综述一、本文概述本文旨在全面综述求解旅行商问题(Traveling Salesman Problem, TSP)的各种算法。
TSP问题是一个经典的组合优化问题,自提出以来就引起了广泛的关注和研究。
该问题可以描述为:给定一系列城市和每对城市之间的距离,求解一条最短的可能路线,使得一个旅行商从某个城市出发,经过每个城市恰好一次,最后返回出发城市。
本文将首先介绍TSP问题的基本定义、性质及其在实际应用中的重要性。
接着,我们将综述传统的精确算法,如动态规划、分支定界法等,以及它们在求解TSP问题中的优缺点。
然后,我们将重点介绍启发式算法和元启发式算法,包括模拟退火、遗传算法、蚁群算法等,这些算法在求解大规模TSP问题时表现出良好的性能和效率。
本文还将探讨近年来新兴的机器学习算法在TSP问题求解中的应用,如深度学习、强化学习等。
我们将对各类算法进行总结和评价,分析它们在不同场景下的适用性和性能表现。
我们也将展望TSP问题求解算法的未来发展方向,以期为相关领域的研究和实践提供有益的参考和指导。
二、经典算法求解旅行商问题(TSP)的经典算法多种多样,每种算法都有其独特的优缺点和适用场景。
本节将对一些代表性的经典算法进行综述。
暴力穷举法(Brute-Force):暴力穷举法是最简单直观的TSP求解算法。
其基本思想是生成所有可能的旅行路径,计算每条路径的总距离,然后选择最短的那条。
虽然这种方法在理论上可以找到最优解,但由于其时间复杂度为O(n!),对于大规模问题来说计算量极大,因此并不实用。
动态规划(Dynamic Programming, DP):动态规划是一种通过将问题分解为更小的子问题来求解的优化方法。
对于TSP问题,DP算法可以将一个大循环中的多个子问题合并成一个子问题,从而减少重复计算。
然而,TSP的DP算法仍面临“维度灾难”的问题,即当城市数量增多时,所需存储空间和计算时间呈指数级增长。
全局优化问题的分支定界算法读书笔记
《全局优化问题的分支定界算法》读书笔记目录一、内容概述 (2)二、书籍概述 (3)三、分支定界算法介绍 (4)3.1 分支定界算法定义 (5)3.2 分支定界算法的基本原理 (6)3.3 分支定界算法的步骤 (7)四、全局优化问题与分支定界算法的应用 (8)4.1 全局优化问题概述 (9)4.2 分支定界算法在全局优化问题中的应用实例 (10)4.3 分支定界算法的优势与局限性 (11)五、分支定界算法的关键技术与优化方法 (12)5.1 搜索策略的优化 (14)5.2 界限的确定与调整 (15)5.3 算法性能的提升方法 (17)六、分支定界算法的实践应用与案例分析 (18)6.1 在工程领域的应用 (20)6.2 在经济金融领域的应用 (21)6.3 在其他领域的应用及案例分析 (22)七、总结与展望 (24)7.1 本书主要内容的总结 (25)7.2 对分支定界算法未来发展的展望 (26)一、内容概述《全局优化问题的分支定界算法》是一本关于全局优化算法的专业书籍,其中分支定界算法是该书的核心内容。
在读书笔记的第一部分,我将对全书的内容进行概述。
书籍介绍了全局优化问题的重要性和应用场景,全局优化问题是在所有可能的解中寻找最优解的问题,这在许多领域都有广泛的应用,如工程、经济、金融等。
书籍详细阐述了分支定界算法的基本原理和算法流程,分支定界算法是一种树形搜索策略,通过将问题的解空间划分为不同的分支,并逐步缩小搜索范围,从而找到全局最优解。
书籍对算法的每一步进行了详细的解释,包括如何确定边界、如何剪枝以及如何更新搜索范围等。
书籍还介绍了分支定界算法在全局优化问题中的具体应用实例。
这些实例涉及不同类型的优化问题,如连续型、离散型和非线性优化问题等。
书籍通过对这些实例的分析,展示了分支定界算法在不同场景下的应用效果和优势。
书籍还探讨了分支定界算法的改进方向和未来发展趋势,随着计算机技术的不断发展,分支定界算法也在不断地优化和改进。
动态规划法,回溯法,分支限界法求解TSP问题实验报告
#define rson m + 1 , r , rt << 1 | 1
using namespace std;
int mp[20][20];
int x[30],vis[30];
int n,k,cur,ans;
void init()
{
for(int i=0;i<n;i++)
{
mp[i][j]=inf;
continue;
}
int tmp;
scanf("%d",&tmp);
mp[i][j]=tmp;
}
}
int mx=(1<<(n-1));
dp[0][0]=0;
for(int i=1; i<n; i++)
{
dp[i][0]=mp[i][0];
}
dp[0][mx-1]=inf;
实现代码
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <string>
#include <vector>
算法设计
输入:图的代价矩阵mp[n][n]
输出:从顶点0出发经过所有顶点一次且仅一次再回到顶点0的最短路径长度