(完整版)一元一次不等式与一次函数
(完整word)一元一次不等式与一次函数的关系
导学案:一元一次不等式与一次函数的关系学校____________ 班级____________ 姓名____________【学习目标】1、一元一次不等式与一次函数的关系。
2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较。
3、通过一元一次不等式与一次函数的图象之间的结合,培养数形结合意识。
【学习重点】了解一元一次不等式与一次函数之间的关系。
【学习难点】根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答。
【学习过程】一、复习导学前面我们学习过一次函数、一元一次方程与一元一次不等式,我们知道一元一次方程的解就是一次函数图象与x轴交点的横坐标,也就是说:“一元一次方程ax+b=0”与“求当x为何值时,y=ax+b的值为0”是同一问题,那么一元一次不等式与一次函数之间有怎样的关系呢?如:下面两个问题是同一问题吗?(1)解不等式:2x—4<0(2)当x为何值时,函数y=2x—4的值小于0?-42yx今天我们就来探究类似这样的问题?二、自主探究、合作交流1.探讨一下一元一次不等式与一次函数的图象之间的关系:还记得一次函数吗?请举例给出它的一般形式.如y=2x-5为一次函数.在一次函数y=2x-5中,当y=0时,有方程2x-5=0;当y>0时,有不等式2x-5>0;当y<0时,有不等式2x-5<0.由此可见:_________________________________________________________________ ___________________________________________________________________________.2.做一做:作出函数y=2x-5的图象,观察图象回答下列问题.(1)x取哪些值时,2x-5=0?(2)x取哪些值时,2x-5>0?(3)x取哪些值时,2x-5<0?(4)x取哪些值时,2x-5>1?请回答:(1)(2)(3)(4)3.试一试如果y=-2x-5,那么当x取何值时,y>0?首先要画出函数y=-2x-5的图象,如图:x从图象上可知:_____________________________________________________ __________________________________________________________________.4.练一练函数y1=2x-5和y2=x—2的图象如图所示,观察图象回答下列问题:x-2x(1)x取何值时,y1=y2?(2)x取何值时,y1>y2?(3)x取何值时,y1<y2?从图象上看:总结一次函数与一元一次不等式的关系:从数的角度看从形的角度看三、应用新知、拓展提升 (一)基础演练1.已知函数y =3x +8,当x ________________________时,函数的值等于0.当x _________________________时,函数的值大于0.当x __________________________________时,函数的值不大于2.2.如图,直线l 1,l 2交于一点P ,若y 1≥y 2,则( ) A .x ≥3 B .x ≤3 C .2≤x ≤ 3 D .x ≤4PO 43l 2l 1y x(二)典例示范例1 .作出函数y 1=2x -4与y 2=-2x +8的图象,并观察图象回答下列问题: (1)x 取何值时,2x -4>0? (2)x 取何值时,-2x +8>0?(3)x 取何值时,2x -4>0与-2x +8>0同时成立?(4)你能求出函数y 1=2x -4,y 2=-2x +8的图象与x 轴所围成的三角形的面积吗?并写出过程.例2.一次函数y =—3x +12中,x 为何值时: (1)当x 取何值时,y >0; (2)当x 取何值时,y =0; (3)当x 取何值时,y <0 .(三)拓展提升例3.已知y 1=-x +3,y 2=3x -4,当x 取何值时,y 1>y 2?你是怎样做的?四、课堂小结 1.转化思想:__________问题 ___________问题 2.解函数问题的方法:图象法:_________________________________. 3.一次函数与一元一次不等式的关系: 从数的角度看从形的角度看五、课堂检测1.已知y 1=x -5,y 2=2x +1.当y 1>y 2时,x 的取值范围是( ) A .x >5 B .x <12C .x <-6D .x >-6 2.已知一次函数y kx b =+的图象如图所示,当x <1时,y 的取值范围是( )A .-2<y <0B .-4<y <0C .y <-2D .y <-4-4 y O2x转化3.若一次函数y =(m -1)x -m +4的图象与y 轴的交点在x 轴的上方,则m 的取值范围是________. 4.已知1213222y x y x =-=+,,试确定x 取何值时2y 不小于1y ?5。
一元一次不等式与一次函数
一元一次不等式与一次函数【基础知识精讲】1.一元一次不等式与一次函数的关系。
两个一次函数有时根据需要,要比较其函数值的大小,这时问题就转化为一元一次不等式的问题。
另一方面,利用解不等式的方法也可以求出两个一次函数的值的大小。
事实上,不等式与函数和方程是紧密联系的一个整体。
2.一次函数的图象与一元一次不等式的关系。
一次函数y=kx+b(k≠0)的图像是一条直线,当kx+b>0时,表示图像在x轴上方的部分;当kx+b=0时,表示直线与x轴的交点;当kx+b<0时,表示图像在x轴下方的部分。
【考点聚焦】本章一元一次不等式与一次函数是中考热点,随着素质教育的逐步发展,突出了对创新意识的考查,加大了对“三个一次”(即一元一次方程,一次函数,一元一次不等式)综合应用考查及解决实际问题的考查。
题型有选择题、填空题及解决实际问题(多为压轴题)。
【典例精析】例1作出函数y=x-3的图象如图所示,并观察图象回答下列问题:(1)x取哪些值时,y>0;(2)x取哪些值时,y<0;(3)x取哪些值时,y>3。
思路点拨:首先要认清一次函数的图象是一条直线,两点确定一条直线,所以需要知图象上两点的坐标,可取(3,0)和(0,-3)。
解:由图象可知:(1)当x>3时,y>0;(2)当x<3时,y<0;(3)当x>6时,y>3。
评注:(1)两点确定一条直线。
(2)大于往右看,小于往左看。
【试解相关题】兄弟俩赛跑,哥哥先让弟弟跑9米,然后自己才开始跑。
已知弟弟每秒跑3米,哥哥每秒跑4米,列出函数关系式,画出函数图象,观察图象回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?思路点拨:此题两问均牵扯到不等式问题,但需先列函数关系式。
解:设当时间为x秒时,跑过的路为y米,则y哥哥=4x,y弟弟=3x+9如图所示,由图象知9秒前弟弟跑在哥哥前面;9秒后,哥哥跑在弟弟前面。
评注:通过以上两例,体会:刻画运动变化的规律需要用函数模型;刻画运动变化过程中的某一瞬间需要用方程模型。
一次函数与一元一次方程、不等式
19.2.3 一次函数与方程、不等式第1课时一次函数与一元一次方程、不等式基础题知识点1 一次函数与一元一次方程1.(1)一元一次方程-2x+4=0的解是;(2)函数y=-2x+4,当x=时,函数值y=0;(3)直线y=-2x+4与x轴的交点坐标是;(4)由上述问题可知,一元一次方程ax+b=0的解就是一次函数y=ax+b当y=0时所对应的的值;从图象上看,就是一次函数y=ax+b的图象与轴交点的.2.已知关于x的方程mx+n=0的解为x=-3,则直线y=mx+n与x轴的交点坐标是.3.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.4.如图所示,已知直线y=ax-b,则关于x的方程ax-b=1的解是.5.若一次函数y=ax+b(a,b为常数且a≠0)中x 与y的部分对应值如下表,则方程ax+b=0的解是( )x -2 -1 0 1 2 3y 6 4 2 0 -2 -4C.x=2 D.x=36.已知方程kx+b=0的解是x=3,则函数y=kx +b的图象可能是( )A B C D7.已知关于x的方程kx+b=3的解为x=7,则直线y=kx+b的图象一定过点( )A.(3,0) B.(7,0)C.(3,7) D.(7,3)知识点2 一次函数与一元一次不等式(组)8.如图,直线y=kx+3经过点(2,0),(0,3),则关于x的不等式kx+3>0的解集是( ) A.x>2B.x<2C.x≥2D.x≤29.(2019·遵义)如图所示,直线l1:y=32x+6与直线l2:y=-52x-2交于点P(-2,3),则不等式32x+6>-52x-2的解集是( )A.x>-2B.x≥-2C.x<-2D.x≤-210.如图,已知一次函数y=kx+b的图象分别与x 轴、y轴交于点(2,0)、点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②当x>2时,y<0;③当x<0时,y<3.其中正确的是( )A.①②B.①③C.②③D.①②③11.(2020·遵义)如图,直线y=kx+b(k,b是常数,k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为.12.已知函数y =kx +b 的图象如图所示,利用函数图象回答:(1)当x 取何值时,kx +b =0? (2)当x 取何值时,kx +b =1.5? (3)当x 取何值时,kx +b <0? (4)当x 取何值时,0.5<kx +b <2.5?中档题13.如图是直线y =x -5的图象,点P(2,m)在该直线的下方,则m 的取值范围是( )A .m >-3B .m >-1C .m >0D .m <-314.(2020·湘潭)如图,直线y =kx +b(k <0)经过点P(1,1),当kx +b ≥x 时,则x 的取值范围为( )A .x ≤1B .x ≥1C .x <1D .x >115.(2019·娄底)如图,直线y =x +b 和y =kx +2与x 轴分别交于点A(-2,0)、点B(3,0),则⎩⎪⎨⎪⎧x +b >0,kx +2>0的解集为( )A .x <-2B .x >3C .x <-2或x >3D .-2<x <316.已知一次函数y =-2x +4,完成下列问题: (1)在所给的平面直角坐标系中画出此函数的图象. (2)根据函数图象回答:①方程-2x +4=0的解是 .②当x 时,y >2.③当-4≤y ≤0时,相应x 的取值范围是 .17.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y =k 1x +b 1和y =kx +b 的图象,分别与x 轴交于点A ,B ,两直线交于点C.已知点A(-1,0),B(2,0),观察图象并回答下列问题:(1)关于x 的方程k 1x +b 1=0的解是 ,关于x 的不等式kx +b <0的解集是 .(2)直接写出关于x 的不等式组⎩⎪⎨⎪⎧kx +b >0,k 1x +b 1>0的解集.(3)若点C(1,3),求关于x 的不等式k 1x +b 1>kx +b 的解集和△ABC 的面积.答案1.(1)x=2;(2)2;(3)(2,0);(4)x;x 横坐标.2.(-3,0).3.x=2.4.x=4.5.A6.C7.D8.B9.A10.A11.x<4.12.解:(1)x=-0.5.(2)x=1.(3)x<-0.5.(4)0<x<2. 13.D14.A15.D16.(1)(2)①x=2.②x<1.③2≤x≤4.17.解:(1)x=-1,x>2.(2)-1<x<2.(3)∵点C(1,3),∴由图象可知,不等式k1x+b1>kx+b的解集是x >1.∵AB=3,∴S△ABC=12AB·y C=12×3×3=92.。
一元一次不等式与一次函数
一元一次不等式与一次函数
一元一次不等式和一次函数是初中数学中的两个重要概念,它们的关系如下:
一元一次不等式:指只有一个未知数(一元),且方程中未知数的最高次数为1(一次)的不等式,例如:2x+1>5 或者x-3<7。
一次函数:指只有一个未知数(一元),且方程中未知数的最高次数为1(一次)的函数,例如:y=2x+1 或者y=x-3。
这两个概念之间的关系在于,我们可以将一元一次不等式转化为一次函数的形式进行分析和解决。
具体来说,我们可以将不等式中的未知数视为函数的自变量x,将不等式的两边分别视为函数的因变量y,例如:2x+1>5 可以转化为y=2x+1 和y=5 两个函数,我们可以画出这两个函数的图像,通过比较函数图像来解决不等式的解集。
例如,将不等式x-3<7 转化为一次函数的形式,得到y=x-3 和y=7 两个函数,我们可以在坐标系中画出这两个函数的图像,发现两个函数的交点在x=10 处,因此不等式的解集为x<10。
总之,一元一次不等式和一次函数之间有着紧密的联系,将不等式转化为函数的形式可以帮助我们更好地分析和解决问题。
一元一次不等式与一次函数讲解
一元一次不等式与一次函数讲解一元一次不等式与一次函数是数学中非常重要的概念,它们在我们的生活中都有广泛的应用。
本文将从定义、性质、解法等多个方面介绍一元一次不等式与一次函数,帮助读者更加深入地理解这两个概念。
一、一元一次不等式一元一次不等式,简单来说,就是只有一个未知量的一次不等式。
比如:ax + b > c,其中a、b、c是已知实数,x是未知实数。
一元一次不等式常常用于解决一些实际问题,比如数量关系、利润计算等。
一、一元一次不等式的性质1. 对于一元一次不等式ax + b > c,如果a > 0,则当x > (c-b)/a时,不等式成立;如果a < 0,则当x < (c-b)/a时,不等式成立。
2. 对于一元一次不等式ax + b < c,如果a > 0,则当x < (c-b)/a时,不等式成立;如果a < 0,则当x > (c-b)/a时,不等式成立。
上述性质可以帮助我们更好地解决一元一次不等式的问题。
二、一次函数一次函数,是指一个函数的自变量只有一个,且函数的表达式是一个一次多项式。
一次函数通常表示成f(x) = kx + b的形式,其中k 和b为常数。
一次函数在实际问题中经常被用到,比如直线运动、物品价格变化等,因为它的表达式简单,易于计算,而且有明确的几何意义。
二、一次函数的性质1. 一次函数的图像是一条直线。
2. 当k > 0时,函数图像单调递增;当k < 0时,函数图像单调递减。
3. 如果k = 0,则函数是一个常函数,图像为一条水平直线;如果b = 0,则函数是一个零函数,图像过原点。
4. 一次函数的x轴截距为-b/k,y轴截距为b。
上述性质有助于我们更好地理解一次函数的性质,同时也为我们解决一些实际问题提供了帮助。
三、一元一次不等式的解法对于一元一次不等式ax + b > c,我们可以通过以下几个步骤来解决:1. 将不等式移项得到ax > c-b。
一元一次不等式与一次函数(2)
y2=0.5ax+(40-x)a,即y2=(40-0.5x)a。
令y1=y2,得32a=(40-0.5x)a,解得x=16; 令y1>y2,得32a > (40-0.5x)a,解得x > 16;
令y1<y2,得32a < (40-0.5x)a,解得x < 16。
所以,当x=16时,两种购票方案费用相同;当17≤x ≤ 40时,选 择女士票价打五折的购票方案;当0 < x < 16时,选择买团体 票的购票方案。
一元一次不等式与一次函数
一、复习练习
1、一次函数 y= -3x+12中x为何值时: (1)当x取何值时,y>0;(2)当x取何值时, y=0;(3)当x取何值时,y<0 。 解:(1)当y>0时,则有-3x+12>0,
-3x>-12, x<4
(2)当y=0时,则有-3x+12=0, -3x=-12, x=4 (3)当y<0时,则有-3x+12<0, -3x<-12, x>4 注意:(1)不等式两边同时乘以(或除以)一个 负数,不等号的方向要改变。
三随堂练习
解:设此公司40名员工中女士有x人,则男士有(40-x)人,景点 票价每张a元,打八折的购票方案费用为y1元,女士票价打五折 的购票方案费用为y2元。
根据题意得:y1=40×0.8a,即y1=32a;
某公司40名员工到一景点集体参观,景点门票价格 为30元/人。该景点规定满40人可以购买团体票, 票价打八折。这天恰逢妇女节,该景点做活动,女 士票价打五折,但 不能同时享受两种优惠。请你帮 助他们选择购票方案。
四、考考你
某电信公司的A类手机收费标准:不管通话时间多长, 每部手机必须缴月租费50元,另外每通话1分钟交 费0.4元;B类手机收费如下:没有月租费,但每通 话1分钟收费0.6元。 (1)分别写出A类、B类标准下每月应交费用y元与 通话时间x(分)之间的关系式; (2)什么情况下选择A类收费标准? (3)什么情况下选择B类收费标准? 解(1)A类:y1=50+0.4x, B类:y2=0.6x (2)y1<y2,即50+0.4x<0.6x,x>250,通话时间超过 250分钟时选择A类标准。 (3)y1>y2,50+0.4x>0.6x,x<250,通话时间少于 250分钟时选择B类标准。
一元一次不等式与一次函数整理
一元一次不等式与一次函数整理一元一次不等式和一次函数是初中数学中的重要内容,它们在实际生活中有着广泛的应用。
本文将从概念、性质、解法和应用四个方面来介绍一元一次不等式和一次函数。
一、概念一元一次不等式是指只含有一个未知数的一次不等式,例如:ax+b>c,其中a、b、c为已知数,x为未知数。
一次函数是指函数的表达式为y=kx+b,其中k、b为常数,x、y为自变量和因变量。
二、性质1. 一元一次不等式的解集是一个区间,可以用数轴表示出来。
2. 一次函数的图像是一条直线,斜率k表示函数的增长速度,截距b表示函数的起点。
3. 一元一次不等式和一次函数都具有可加性和可减性,即若a>b,则a+c>b+c,a-c>b-c。
三、解法1. 一元一次不等式的解法有两种:图像法和代数法。
图像法是将不等式转化为数轴上的图形,通过观察图形来确定解集。
代数法是通过移项、化简等代数运算来求解。
2. 一次函数的解法是通过求出函数的斜率和截距,然后画出函数的图像,根据图像来确定函数的性质和解析式。
四、应用1. 一元一次不等式和一次函数在经济学中有着广泛的应用,例如:利润、成本、收益等问题都可以用一次函数来描述。
2. 一元一次不等式和一次函数在物理学中也有着重要的应用,例如:速度、加速度、力等问题都可以用一次函数来描述。
3. 一元一次不等式和一次函数在生活中也有着实际的应用,例如:购物打折、优惠券等问题都可以用一元一次不等式来描述,而房价、工资等问题都可以用一次函数来描述。
一元一次不等式和一次函数是初中数学中的重要内容,它们在实际生活中有着广泛的应用。
掌握一元一次不等式和一次函数的概念、性质、解法和应用,对于提高数学素养和解决实际问题都有着重要的意义。
一元一次不等式与一次函数图象的关系
由上述讨论易知: “关于一次函数的值的问题” 可变换成 “关于一次不等式的问题” ;
反过来, “关于一次不等式的问题”
可变换成 “关于一次函数的值的问题”
。 因此,
我们既可以运用函数图象解不等式 ,
也可以运用解不等式帮助研究函数问题 ,
二者相互渗透 ,互相作用。
不等式与函数 、方程是紧密联系着 的一个整体 。
学习活动2:
y
如果y=-2x-5, 那么当x取何
4 y=-2x-5 3
2
1
值时,y>0?
-3 -2 -1-01
解:由图可知,当
-2 -3
x<-2.5时,y>0
-4
-5
当x取哪些值时,y<1?
x 12 3 4
学习活动3:
兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才 开始跑。已知弟弟每秒跑3m,哥哥每秒跑4m。 列出函数关系式,作出函数图象,观察图象回答 下列问题: (1)何时哥哥追上弟弟? (2)何时弟弟跑在哥哥前面? (3)何时哥哥跑在弟弟前面? (4)谁先跑过20m?谁先跑过100m?
y/m
100
90 80 70
60
50
40
30
20 10
y
弟
y
哥
y
哥
y
弟
(1)何时哥哥追上弟弟? (2)何时弟弟跑在哥哥前面? (3)何时哥哥跑在弟弟前面? (4)谁先跑过20m?谁先跑过100m? (5 ) 你是怎样求解的?与同伴交流。
-2 0 2 4 6 8 10
x /s
学习活动4:
4
作出函数y=2x-5的图象,
3 2
观察图象回答下列问题: 1
一次函数与一元一次方程、不等式
2
易错小结
-1<x<2
易错点:利用函数图象解不等式时,对函数值和点的坐 标的关系不理解导致出错(数形结合思想).
例1
利用函数图象解出x:3x-2=x+4.
先将方程化为ax+b=0的形式, 再在坐标系中画出函数y=ax+ b的图象,然后观察出直线y= ax+b与x轴的交点坐标,从而 取定所求x的值.
导引:
由3x-2=x+4得2x-6=0画函 数y=2x-6的图象,如图所示, 由图可知,直线y=2x-6与x轴的交点为(3,0), 所以x=3.
3
C
已知一次函数y=2x+n的图象如图所示,则方程2x+n=0的解可能是( ) A.x=1 B.x= C.x=- D.x=-1
4
C
【2017·湘潭】一次函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集是( ) A.x≥2 B.x≤2 C.x≥4 D.x≤4
5
B
【2017·菏泽】如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是( ) A.x>2 B.x<2 C.x>-1 D.x<-1
D
【中考·合肥】已知方程 x+b=0的解是x= -2,下列可能为直线y= x+b的图象的是 ( )
2
C
如图,若一次函数y=-2x+b的图象交y轴于点A(0,3),则不等式-2x+b>0的解集为( ) A.x> B.x>3 C.x< D.x<3
2
已知小刚从家出发7分钟时与家的距离是1 200米, 从上公交车到他到达学校共用10分钟.下列说法: ①公交车的速度为400米/分钟; ②小刚从家出发5分钟时乘上公交车; ③小刚下公交车后跑向学校的速度是100米/分钟; ④小刚上课迟到了1分钟.其中正确的有( ) A.4个 B.3个 C.2个 D.1个
一元一次不等式与一次函数的关系
一元一次不等式与一次函数的关系
一元一次不等式与一次函数之间有着密切的联系,这一联系表现在以下几个方面:
一、当令一元一次不等式中等号左边的表达式为一次函数时,可以将其化简为一次函数形式:
1. 一元一次方程组:
a. 当一元一次方程组中等式左右两边分别为一次函数时,可以将其化简为一次函数形式。
b. 两个一次方程涉及到同一个未知数时,可以最终得出结果,即将一元一次不等式化简为一次函数的形式。
2. 一元二次不等式:
a. 当一元二次不等式左边为一次函数时,也可以将其化简为一次函数形式。
b. 二次不等式的解也可以表现为一次函数的形式,即分段函数。
二、求解一元一次不等式可以利用一次函数的性质:
1. 关于一元一次方程:
a. 利用一次函数求函数图像实现一元一次方程的求解,从而得到不
等式的解。
b. 利用一次函数的性质验证不等式的正确性,从而得到不等式的解。
2. 关于一元二次方程:
a. 利用一次函数的对称性,判断不等式的大小,从而得到不等式的解。
b. 利用一次函数的单调性,得到不等式上下界,从而得到不等式的解。
综上所述,一元一次不等式与一次函数有着密切的联系,一元一次不
等式可以化简为一次函数形式,求解一元一次不等式也可以利用一次
函数的性质。
一次函数与一元一次方程和不等式同步辅导(含答案)--绝对经典
11.3.1 -11.3.2 一次函数与一元一次方程和不等式重点知识讲解1.一元一次方程ax+b=0(a≠0)与一次函数y=ax+b(a≠0)的关系(1)一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值为0时的特殊情形.(2)直线y=ax+b与x轴交点的横坐标就是一元一次方程ax+b=0的解x=-ba。
2.一元一次不等式与一次函数的关系(1)一元一次不等式ax+b>0或ax+b<0(a≠0)是一次函数y=ax+b(a≠0)•的函数值不等于0的情形.(2)直线y=ax+b上使函数值y>0(x轴上方的图像)的x的取值范围是ax+b>0的解集;使函数值y<0(x轴下方的图像)的x的取值范围是ax+b<0的解集.经验与方法技巧1.利用一次函数求一元一次方程的解题步骤(1)将一元一次方程化成ax+b=0的形式.(2)画出y=ax+b的图像,确定其与x轴交点的横坐标.2.利用一次函数求一元一次不等式的解集的技巧根据不等式的特点,灵活采用求解方法:(1)利用一个一次函数;(2)•利用两个一次函数.典型例题例1画出y=-3x+5的图象,利用图像求方程-3x+5=0的解.解析取点(0,5),(53,0),图像如图所示.∵直线y=-3x+5与x轴交点的横坐标为53,∴方程-3x+5=0的解为x=53。
评注画函数图像时要准确,求出直线y=-3x+5与x•轴交点的横坐标即为方程的解.例2画出函数y=-3x+12的图像,利用图像求:(1)不等式-3x+12>0的解集.(2)不等式-3x+12≤0的解集.(3)如果y的值在-6≤y≤6的范围内,那么相应的x的值在什么范围内?解析取点(0,12),(4,0),作出函数图像,如图所示,由图像可以看出:(1)当y>0时,x的取值范围为x<4,∴不等式-3x+12>0的解集为x<4.(2)当y≤0时,x的取值范围为x≥4.∴不等式-3x+12≤0的解集为x≥4.(3)当-6≤y≤6时,x的取值范围为2≤x≤6.评注借助图像求不等式的解集,关键是要清楚以下几点:①y>0时,x•的取值范围就是x轴上方的图像所对应的x的取值范围.②y<0时,x的取值范围就是x•轴下方的图像所对应的x的取值范围.③y=0时,x的值就是图像与x轴交点的横坐标.④当y>a或y<a(a≠0)时,应先确定当y=a时对应的x值,然后再进一步确定x的取值范围.例3若y1=-x+3,y2=3x-4,当x取何值时,y1<y2?解析∵y1<y2,∴-x+3<3x-4,解得x>74,∴当x>74时,y1<y2.评注此题是两个一次函数之间的关系,可以直接借助一元一次不等式求出x的取值范围.教材例题习题的变形题例(P41例2)用画图像的方法解下列各题:(1)解不等式:5x+4>2x+10.(2)解方程:5x+4=2x+10.解析(1)如图,原不等式可化为3x-6>0,画出直线y=3x-6,由图像可以看出,当x>2时,这条直线上的点在x轴的上方,即这时y=3x-6>0,所以不等式的解集为x>2.(2)原方程可化为3x-6=0.由图像可以看出,y=3x-6与x轴交点的横坐标为2,所以原方程的解为x=2.评注①从函数的角度看问题,能发现一次函数与一元一次不等式、•一元一次方程之间的联系,体现了数形结合的思想.②本题求不等式的解集时,还可将不等式的两边分别看作两个一次函数,画出两条直线,比较直线上点的位置的高度,也可求得不等式的解集.学科内综合题例1甲、乙两辆摩托车分别从相距20km的A,B两地出发,相向而行,图中的L1,L2分别表示甲、乙两辆摩托车离开A地的距离s(km)与行驶时间t(h)•之间的函数关系.(1)哪辆摩托车的速度较快?(2)经过多长时间,甲摩托车行驶到A,B两地的中点?解析(1)由图像可以看出,甲摩托用了0.6h行驶了20km,而乙摩托车用了0.•5h 行驶了20km,所以乙摩托车的速度较快.(2)设L1的关系式为y=kx,把x=0.6,y=20代入,得20=0.6k,解得k=1003,∴y=1003x.当y=10时,10=1003x.所以经过0.3h,甲摩托车行驶到A,B两地的中点.评注本题第(1)题是比较速度的大小,这一点可以通过图像提供的数量直接分析出来.第(2)题的关键是要分析出甲摩托车行驶到中点时所行驶的路程为10km.例2已知y=12x-2.(1)x取何值时,y>0?(2)x取何值时,y<0?(3)当x>4时,求y的取值范围.解析作出y=12x-2的图像,如图所示.(1)当x>4时,y>0.(2)当x<4时,y<0.(3)当x>4时,y的取值范围是y>0.评注本题可以通过图像直观地得出结论.综合应用题例1某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~20人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,•甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,再给其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?解析设该单位参加这次旅游的人数是x人,选择甲旅行社时所需的费用为y1元,选择乙旅行社时所需的费用为y2元,则y1=200×0.75x,即y1=150x;y2=200×0.8(x-1),即y2=160x-160.由y1=y2,得150x=160x-160,解得x=16;由y1>y2,得150x>160x-160,解得x<16;由y1<y2,得150x<160x-160,解得x>16.因为参加旅游的人数估计为10~20人,所以,当x=16时,甲、•乙两家旅行社的收费相同;当17≤x≤20时,选择甲旅行社费用较少;当10≤x≤15时,选择乙旅行社费用较少.评注已知前提条件,设计方案是解决实际问题的一种常见形式.明确每一种收费方式占优势时对应的自变量的取值范围是解决此类问题的关键,•借助不等式就可确定自变量的取值范围.例2兄弟俩赛距,哥哥先让弟弟跑9m,然后自己才开始跑.已知弟弟每秒跑3m,•哥哥每秒跑4m.列出函数关系式,作出函数图像,观察图像回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?(3)谁先跑过20m?谁先跑过100m?解析设哥哥跑了ts,则哥哥所跑的路程与时间的关系式为s1=4t;弟弟所跑的路程与时间的关系为s2=3t+9.图像如图所示.当s1=s2时,4t=3t+9,t=9.(1)当0≤t<9时,弟弟跑在哥哥的前面.(2)当t>9时,哥哥跑在弟弟的前面.(3)∵20<36,∴弟弟先跑过20m.∵100>36,∴哥哥先跑过100m.评注本题可以从时间或路程两个角度进行分析.在同一时间内,谁跑的路程远,谁就在前面,谁就先跑过20m,100m.也可比较他们各自所用的时间,谁用的时间短,•谁就先跑过.本题既可以通过计算来进行比较,也可通过图像直观地进行判断.创新题例(探究题)我边防局接到情报,在离海岸5海里处有一可疑船只A•正向公海方向行驶,边防局迅速派出快艇B追赶.图中L1,L2分别表示两船相对于海岸的距离s(海里)与追赶时间t(min)之间的关系.(1)A,B哪一个的速度快?(2)至少要用多长时间才能追上可疑船只A?解析由图像可确定L表示快艇B的图像,L表示可疑船只A的图像.(1)快艇10min行驶了5海里,所以其速度为5÷10=0.5(海里/min).可疑船只10min行驶了7-5=2(海里),所以其速度为2÷10=0.2(海里/min).所以快艇B的速度快.(2)设L1的关系式为y1=kx,把(10,5)代入,得5=10k,解得k=0.5,∴y1=0.5x.设L2的关系式为y2=kx+5,把(10,7)代入,得7=10k+5,解得k=0.2,∴y2=0.2x+5.当y1≥y2,即0.5x≥0.2x+5时,0.3x≥5,x≥503.所以至少需要503min,快艇才能追上可疑船只.中考题例(2004年苏州卷)如图,平面直角坐标系中画出了函数y=kx+b的图像.(1)根据图像,求k和b的值.(2)在图中画出函数y=-2x+2的图像.(3)求x的取值范围,使函数y=kx+b的函数值大于函数y=-2x+2的函数值.解析(1)∵直线y=kx+b经过点(-2,0),(0,2).∴02,20,k bb=-+⎧⎨=+⎩解得1,2,kb=⎧⎨=⎩∴y=x+2.(2)y=-2x+2经过(0,2),(1,0),图像如图所示.(3)当y=kx+b 的函数值大于y=-2x+2的函数值时,也就是x+2>-2x+2,解得x>0,•即x 的取值范围为x>0.11.3.1 一次函数与一元一次方程同步练习[要点再现]1.由于任何一元一次方程都可以转化为 的形式,所以解一元一次方程可以转化为:当 时,求 的值。
一元一次不等式与一次函数
知识回顾:1、定义:不等式:一般地用不等号连接的式子叫做不等式。
2、不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
3、解不等式:把不等式变为x>。
或x<a的形式。
一、知识要点:1、一次函数的定义:若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,kHO)的形式,则称y是x的一次函数(x为自变量)。
当b=0时,y=kx,所以说正比例函数是一种特殊的一次函数.一次函数的解析式:y=kx+b(kH0)注:一次函数的解析式的形式是y=d+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.一次函数一般形式y=kx+b(k不为零)①k不为零②x指数为1③b取任意实数一次函数y=kx+b的图象是经过(0,b)和(-纟,0)两点的一条直线,我们称它为直线ky=kx+b,它可以看作由直线尸kx平移|b|个单位长度得到.(当b〉0时,向上平移;当b〈0时,向下平移)(1)解析式:(k、b是常数,kHO)(2)必过点:和(3)走向:k>0,b=0,图象经过第象限;k<0,b二0,图象经过象限O直线经过第象限O直线经过第象限Z?>0\b<0<O C>直线经过第象限P<0<=>直线经过第象限\b>Q[b<0(4)增减性:k>0,y随x的增而;k<0,y随x增大而(5)倾斜度:|k|越大,图象越接近于轴;|k|越小,图象越接近于轴.(6)图像的平移:上加下减;左加右减将函数y=kx+b图像向上平移3个单位变为,然后再向右平移3个单位变为;将函数y=kx+b图像向下平移3个单位变为然后再向左平移3个单位变为2、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线, 所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点,.即横坐标或纵坐标为0的点.34、用待定系数法确定函数解析式的一般步骤:(设、列、解、答)(1)设:根据已知条件写出含有待定系数的函数关系式;(2)列:将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解:解方程得出未知系数的值;(4)答:将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.二、典型例题:1、若点(inji)在函数y=2x+l的图象上,则2m-n的值2、己知正比例函数y=kx伙工0),点⑵-3)在函数上,则y随x的增大而3、如果一次函数空+3的图象经过第一、二、四象限,则m的取值范围是4、地面气温是20°C,如果每升高100m,气温下降6°C,则气温t(°C)与高度h(m)的函数关系式是o5、己知一次函数尸kx+b的图象如图所示,则k,b的符号是()(A)k>0,b>0(B)k>0,b<0(C)k<0,b>0(D)k<0,b<06、已知一次函数尸kx+b的图象经过点(-1,-5),且与正比例函数尸**的图象相交于点(2,a),(1)求a的值,(2)k,b的值,(3)这两个函数图象与x轴所围成的三角形的面积。
一次函数与一元一次不等式的关系2(打印版)
一次函数与一元一次不等式的关系--相交直线【知识点】先找到交点,再根据图象分析出哪条直线在上方,得出解集。
【练习题】1.函数y=mx+n和函数y=kx在同一坐标系中的图象如图所示,则关于x的不等式mx+n>kx的解集是2.如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是()3.如图,已知正比例函数y1=ax与一次函数21 2y x b=+的图象交于点P.下面有四个结论中正确的有①a<0②b<0③当x>0时,y1>0④当x<-2时,y1>y24.如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是5.观察图中的函数图象,则关于x的不等式ax-bx>c的解集为6.如图,已知直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(1,2),请结合图象直接写出不等式mx+n>x+n-2的解集7.如图,直线y x=2与243y x=-+交于点A,根据图象,直接写出不等式2243x x-+的解集8.如图,函数y kx b=+和13y x=的图象相交于点A(m,−3),则不等式13kx b x+>的解集为9.如图,直线l1的解析式为y kx by x=-+,则不等式=+,直线l2的解析式为5 +<-+的解集是kx b x510.如图,函数y kx b=+的图象经过点(2,0),与函数y=2x的图象交于点A,则在x轴上方,当2+<时,x的取值范围是kx b x11.如图,一次函数y1=ax+3与y2=kx-1的图象如图所示,则不等式kx-ax<4的解集是答案1.x<-12.A3.1;44.x<-15.x>16.x<17.3x≥28.9x>-9.2x<10.01<<x11.x<1。
一次函数一元一次方程和一元一次不等式讲解
一次函数一元一次方程和一元一次不等式讲解1.什么是一次函数一次函数,也称为一次多项式函数或线性函数,是指形如$y=a x+b$的函数,其中$a$和$b$是常数,$x$是自变量,$y$是因变量。
一次函数的图像为一条直线,具有特定的斜率和截距。
一次函数的基本形式为$y=ax+b$,其中$a$表示斜率,决定了函数图像的倾斜程度,$b$表示截距,决定了函数图像与$y$轴的交点。
2.一元一次方程的求解等式性质一元一次方程是指只含有一个变量的一次方程。
解一元一次方程的核心思想是通过运用和**方程统一变形原则**,将方程逐步化简,最终得到变量的解。
求解一元一次方程的一般步骤如下:1.对方程中的项进行整理和合并,使得方程成为$a x+b=0$的形式;2.根据方程统一变形原则,将方程中的常数项移至方程的右侧,得到$a x=-b$;3.利用解方程的等式性质,将方程两边同时乘以$\fr ac{1}{a}$,得到$x=\f ra c{-b}{a}$;4.化简得到最终解,即$x$的值。
通过以上步骤,可以求得一元一次方程的解。
3.一元一次不等式的求解等式性质一元一次不等式是指只含有一个变量的一次不等式。
求解一元一次不等式的方法与求解一元一次方程类似,同样可以运用和**不等式统一变形原则**。
求解一元一次不等式的一般步骤如下:1.对不等式中的项进行整理和合并,使得不等式成为$a x+b<c$或$a x+b>c$的形式;2.根据不等式的性质,将常数项移至不等式的右侧;3.根据不等式统一变形原则,将不等式两边同时乘以正数或除以负数,注意在乘或除的过程中要考虑到反号问题;4.根据不等式的性质,得到不等式的最终解。
需要注意的是,在进行不等式符号的翻转时,需要根据乘或除的正负进行对应,以确保不等式符号的方向正确。
4.总结一次函数、一元一次方程和一元一次不等式在数学中起着重要的作用。
掌握了一次函数的概念和性质,以及求解一元一次方程和不等式的方法,能帮助我们更好地理解和解决数学问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式与一次函数
一.选择题(共6小题)
1.如图,已知正比例函数y1=ax与一次函数y2=x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()
A.①②B.②③C.①③D.①④
2.如图,已知一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴交于点A (3,0),若正比例函数y=mx(m为常数,且m≠0)的图象与一次函数的图象相交于点P,且点P的横坐标为1,则关于x的不等式(k﹣m)x+b<0的解集为()
A.x<1B.x>1C.x<3D.x>3
3.若关于x不等式组有且只有四个整数解,且一次函数y=(k+3)x+k+5
的图象不经过第三象限,则符合题意的整数k有()个.
A.4B.3C.2D.1
4.已知直线y=x+与直线y=kx﹣1相交于点P,若点P的纵坐标为,则关于x
的不等式x+>kx﹣1的解集为()
A.x>﹣1B.x≥﹣1C.x<﹣1D.x≤﹣1
5.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立
的是()
A.a2+b>0B.a﹣b>0C.a2﹣b>0D.a+b>0
6.如图,经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),则0<kx+b<4x+4的解集为()
A.x<B.﹣<x<1C.x<1D.﹣1<x<1
二.填空题(共5小题)
7.如图,函数y=3x和y=ax+4的图象相交于点A(m,3),不等式3x≥ax+4的解集为.
8.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点,则不等式mx+2<kx+b<0的解集为.
9.一次函数y=kx+b的图象经过A(﹣1,1)和B(﹣,0),则不等式组0<kx+b<﹣x的解为.
10.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式2x+m<﹣x﹣2<0的解集为.
三.解答题(共3小题)
11.已知:如图一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.
(1)求点A的坐标;
(2)若一次函数y1=﹣x﹣2与y2=x﹣4的图象与x轴分别相交于点B、C,求△ABC的面积.
(3)结合图象,直接写出y1≥y2时x的取值范围.
12.已知直线y=kx+b经过点A(5,0),B(1,4).
(1)求直线AB的函数关系式;
(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;
(3)根据图象,直接写出当x在什么范围内,不等式2x﹣4>kx+b.
13.如图,直线l1:y1=﹣x+m与y轴交于点A(0,6),直线l2:y=kx+1分别与x轴交于点B(﹣2,0),与y轴交于点C,两条直线交点记为D.
(1)m=,k=;
(2)求两直线交点D的坐标;
(3)根据图象直接写出y1<y2时自变量x的取值范围.
一元一次不等式与一次函数参考答案与试题解析
一.选择题(共6小题)
1.如图,已知正比例函数y1=ax与一次函数y2=x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()
A.①②B.②③C.①③D.①④
【解答】解:因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;
一次函数y2=x+b经过一、二、三象限,所以b>0,②错误;
由图象可得:当x>0时,y1<0,③错误;
当x<﹣2时,y1>y2,④正确;
故选:D.
2.如图,已知一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴交于点A (3,0),若正比例函数y=mx(m为常数,且m≠0)的图象与一次函数的图象相交于点P,且点P的横坐标为1,则关于x的不等式(k﹣m)x+b<0的解集为()
A.x<1B.x>1C.x<3D.x>3
【解答】解:当x>1时,kx+b<mx,
所以关于x的不等式(k﹣m)x+b<0的解集为x>1.
故选:B.
3.若关于x不等式组有且只有四个整数解,且一次函数y=(k+3)x+k+5
的图象不经过第三象限,则符合题意的整数k有()个.
A.4B.3C.2D.1
【解答】解:解不等式组得,<x≤2,
∵不等式组有且只有四个整数解,
∴其整数解为:﹣1,0,1,2,
∴﹣2≤<﹣1,即﹣4≤k<﹣2.
∵一次函数y=(k+3)x+k+5的图象不经过第三象限,
∴,解得﹣5≤k<﹣3,
∴﹣4≤k<﹣3,
∴k的整数解只有﹣4.
故选:D.
4.已知直线y=x+与直线y=kx﹣1相交于点P,若点P的纵坐标为,则关于x
的不等式x+>kx﹣1的解集为()
A.x>﹣1B.x≥﹣1C.x<﹣1D.x≤﹣1
【解答】解:把y=代入y=x+,得
=x+,解得x=﹣1.
当x>﹣1时,x+>kx﹣1,
所以关于x的不等式x+>kx﹣1的解集为x>﹣1,
故选:A.
5.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是()
A.a2+b>0B.a﹣b>0C.a2﹣b>0D.a+b>0
【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,
∴a<0,b>0,
a2+b>0,故A正确,
a﹣b<0,故B错误,
a+b不一定大于0,故D错误.
故选:A.
6.如图,经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),则0<kx+b<4x+4的解集为()
A.x<B.﹣<x<1C.x<1D.﹣1<x<1
【解答】解:∵经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),
∴4m+4=,
∴m=﹣,
∴直线y=kx+b与直线y=4x+4的交点A的坐标为(﹣,),直线y=kx+b与x 轴的交点坐标为B(1,0),
又∵当x<1时,kx+b>0,
当x>﹣时,kx+b<4x+4,
∴0<kx+b<4x+4的解集为﹣<x<1.
故选:B.
二.填空题(共5小题)
7.如图,函数y=3x和y=ax+4的图象相交于点A(m,3),不等式3x≥ax+4的解集为x≥1.
【解答】解:将点A(m,3)代入y=3x得,3m=3,
解得,m=1,
所以点A的坐标为(1,3),
由图可知,不等式3x≥ax+4的解集为x≥1.
故答案为x≥1.
8.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点,则不等式mx+2<kx+b<0的解集为﹣4<x<﹣.
【解答】解:不等式mx+2<kx+b<0的解集是﹣4<x<﹣.
故答案是:﹣4<x<﹣.
9.一次函数y=kx+b的图象经过A(﹣1,1)和B(﹣,0),则不等式组0<kx+b<﹣x的解为﹣<x<﹣1..
【解答】解:由题意可得:一次函数图象在y=1的下方时x<﹣1,在y=0的上方时x>﹣,
∴关于x的不等式0<kx+b<1的解集是﹣<x<﹣1.
故答案为:﹣<x<﹣1.
10.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.
【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),
∴﹣4=﹣n﹣2,解得n=2,
∴P(2,﹣4),
又∵y=﹣x﹣2与x轴的交点是(﹣2,0),
∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.
故答案为﹣2<x<2.
三.解答题(共3小题)
11.已知:如图一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.
(1)求点A的坐标;
(2)若一次函数y1=﹣x﹣2与y2=x﹣4的图象与x轴分别相交于点B、C,求△ABC的面积.
(3)结合图象,直接写出y1≥y2时x的取值范围.
【解答】解:(1)解方程组,得,
所以点A坐标为(1,﹣3);
(2)当y1=0时,﹣x﹣2=0,x=﹣2,则B点坐标为(﹣2,0);
当y2=时,x﹣4=0,x=4,则C点坐标为(4,0);
∴BC=4﹣(﹣2)=6,
∴△ABC的面积=×6×3=9;
(3)根据图象可知,y1≥y2时x的取值范围是x≤1.
12.已知直线y=kx+b经过点A(5,0),B(1,4).
(1)求直线AB的函数关系式;
(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;
(3)根据图象,直接写出当x在什么范围内,不等式2x﹣4>kx+b.
【解答】解:(1)根据题意得,
解得,
则直线AB的解析式是y=﹣x+5;
(2)根据题意得,
解得:,
则C的坐标是(3,2);
(3)根据图象可得不等式的解集是x>3.
13.如图,直线l1:y1=﹣x+m与y轴交于点A(0,6),直线l2:y=kx+1分别与x轴交于点B(﹣2,0),与y轴交于点C,两条直线交点记为D.
(1)m=6
,k=;
(2)求两直线交点D的坐标;
(3)根据图象直接写出y1<y2时自变量x的取值范围.
【解答】解:(1)把A(0,6),代入y1=﹣x+m,得到m=6,把B(﹣2,0)代入y=kx+1,得到k=
故答案为6,;
(2)联立l1,l2解析式,即,解得:,
∴D点坐标为(4,3);
(3)观察图象可知:y1<y2时,x>4.
第11页(共11页)。